Version
July 2013

Program
RFEM 5
Spatial Models Calculated acc. to Finite Element Method

Tutorial

All rights, including those of translations, are reserved.
No portion of this book may be reproduced – mechanically, electronically, or by any other means, including photocopying – without written permission of DLUBAL SOFTWARE GMBH.

© Dlubal Software GmbH
Am Zellweg 2 D-93464 Tiefenbach
Tel.: +49 (0) 9673 9203-0
Fax: +49 (0) 9673 9203-51
E-mail: info@dlubal.com
Web: www.dlubal.com
Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2. System and Loads</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Sketch of System</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Materials, Thicknesses and Cross-sections</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Load</td>
<td>7</td>
</tr>
<tr>
<td>3. Creating Model</td>
<td>8</td>
</tr>
<tr>
<td>3.1 Starting RFEM</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Creating Model File</td>
<td>8</td>
</tr>
<tr>
<td>4. Model Data</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Adjusting Work Window and Grid</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Creating Surfaces</td>
<td>11</td>
</tr>
<tr>
<td>4.2.1 Floor</td>
<td>11</td>
</tr>
<tr>
<td>4.2.1.1 Defining Rectangular Surface</td>
<td>11</td>
</tr>
<tr>
<td>4.2.1.2 Creating Arc</td>
<td>14</td>
</tr>
<tr>
<td>4.2.1.3 Adjusting Floor Surface</td>
<td>15</td>
</tr>
<tr>
<td>4.2.2 Wall</td>
<td>16</td>
</tr>
<tr>
<td>4.2.3 Opening</td>
<td>19</td>
</tr>
<tr>
<td>4.2.3.1 Creating Opening</td>
<td>19</td>
</tr>
<tr>
<td>4.2.3.2 Adjusting Opening</td>
<td>20</td>
</tr>
<tr>
<td>4.3 Creating Concrete Members</td>
<td>21</td>
</tr>
<tr>
<td>4.3.1 Columns</td>
<td>21</td>
</tr>
<tr>
<td>4.3.2 Rib</td>
<td>24</td>
</tr>
<tr>
<td>4.4 Defining Supports</td>
<td>28</td>
</tr>
<tr>
<td>4.4.1 Nodal Supports</td>
<td>28</td>
</tr>
<tr>
<td>4.4.2 Line Supports</td>
<td>30</td>
</tr>
<tr>
<td>4.5 Creating Steel Members</td>
<td>31</td>
</tr>
<tr>
<td>4.5.1 Frame</td>
<td>31</td>
</tr>
<tr>
<td>4.5.1.1 Defining Members Continuously</td>
<td>32</td>
</tr>
<tr>
<td>4.5.1.2 Shearing Horizontal Beams</td>
<td>34</td>
</tr>
<tr>
<td>4.5.1.3 Connecting Beams with Releases</td>
<td>35</td>
</tr>
<tr>
<td>4.5.1.4 Reverse Member Orientation</td>
<td>36</td>
</tr>
<tr>
<td>4.5.1.5 Copying Frame</td>
<td>37</td>
</tr>
<tr>
<td>4.5.2 Purlins</td>
<td>38</td>
</tr>
<tr>
<td>4.5.2.1 Defining Members Individually</td>
<td>38</td>
</tr>
<tr>
<td>4.5.2.2 Connecting Members Eccentrically</td>
<td>40</td>
</tr>
<tr>
<td>4.5.3 Diagonal</td>
<td>42</td>
</tr>
<tr>
<td>4.5.3.1 Defining Member</td>
<td>42</td>
</tr>
<tr>
<td>4.5.3.2 Rotating Member</td>
<td>43</td>
</tr>
<tr>
<td>4.6 Checking Input</td>
<td>45</td>
</tr>
<tr>
<td>5. Loads</td>
<td>46</td>
</tr>
<tr>
<td>5.1 Load Case 1: Self-weight</td>
<td>46</td>
</tr>
<tr>
<td>5.1.1 Self-weight</td>
<td>47</td>
</tr>
<tr>
<td>5.1.2 Floor Structure</td>
<td>47</td>
</tr>
<tr>
<td>5.1.3 Earth Pressure</td>
<td>48</td>
</tr>
<tr>
<td>5.1.4 Roof Load</td>
<td>49</td>
</tr>
<tr>
<td>5.2 Load Case 2: Live Load</td>
<td>51</td>
</tr>
<tr>
<td>5.2.1 Floor Slab</td>
<td>52</td>
</tr>
<tr>
<td>5.2.2 Edge of Opening</td>
<td>53</td>
</tr>
<tr>
<td>5.3 Load Case 3: Snow</td>
<td>54</td>
</tr>
<tr>
<td>5.3.1 Roof</td>
<td>54</td>
</tr>
<tr>
<td>5.3.2 Floor</td>
<td>55</td>
</tr>
<tr>
<td>5.4 Load Case 4: Wind</td>
<td>57</td>
</tr>
<tr>
<td>5.4.1 Steel Construction Loads</td>
<td>58</td>
</tr>
<tr>
<td>5.4.2 Column Loads</td>
<td>59</td>
</tr>
<tr>
<td>5.5 Load Case 5: Imperfection</td>
<td>62</td>
</tr>
<tr>
<td>5.5.1 Steel Columns</td>
<td>63</td>
</tr>
<tr>
<td>5.5.2 Concrete Columns</td>
<td>64</td>
</tr>
<tr>
<td>5.6 Checking Load Cases</td>
<td>65</td>
</tr>
<tr>
<td>6. Combination of Actions</td>
<td>66</td>
</tr>
<tr>
<td>6.1 Checking Actions</td>
<td>66</td>
</tr>
<tr>
<td>6.2 Defining Combination Expressions</td>
<td>67</td>
</tr>
<tr>
<td>6.3 Creating Action Combinations</td>
<td>70</td>
</tr>
<tr>
<td>6.4 Creating Load Combinations</td>
<td>70</td>
</tr>
<tr>
<td>6.5 Checking Result Combinations</td>
<td>73</td>
</tr>
<tr>
<td>7. Calculation</td>
<td>74</td>
</tr>
<tr>
<td>7.1 Checking Input Data</td>
<td>74</td>
</tr>
<tr>
<td>7.2 Generating FE Mesh</td>
<td>75</td>
</tr>
<tr>
<td>7.3 Calculating Model</td>
<td>77</td>
</tr>
<tr>
<td>8. Results</td>
<td>78</td>
</tr>
<tr>
<td>8.1 Graphical Results</td>
<td>78</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 Results Tables</td>
<td>81</td>
</tr>
<tr>
<td>8.3 Filtering Results</td>
<td>83</td>
</tr>
<tr>
<td>8.3.1 Visibilities</td>
<td>83</td>
</tr>
<tr>
<td>8.3.2 Results on Objects</td>
<td>86</td>
</tr>
<tr>
<td>8.3.3 Range of Values</td>
<td>88</td>
</tr>
<tr>
<td>8.4 Display of Result Diagrams</td>
<td>90</td>
</tr>
<tr>
<td>8.5 Creating Section</td>
<td>91</td>
</tr>
<tr>
<td>9. Documentation</td>
<td>94</td>
</tr>
<tr>
<td>9.1 Creating Printout Report</td>
<td>94</td>
</tr>
<tr>
<td>9.2 Adjusting the Printout Report</td>
<td>95</td>
</tr>
<tr>
<td>9.3 Inserting Graphics in Printout Report</td>
<td>97</td>
</tr>
<tr>
<td>10. Outlook</td>
<td>102</td>
</tr>
</tbody>
</table>
1 Introduction

With this tutorial we would like to make you acquainted with various features of RFEM. Often you will have several options to achieve your targets. Depending on the situation and your preferences, different ways may be useful. We would like to invite you to play with the software to learn more about the program’s possibilities. With this example we want to encourage you to find out useful functions in RFEM.

The following example represents a mixed construction built of concrete and steel elements. We want to calculate the model for the load cases self-weight, live load, snow, wind and imperfections according to linear static and nonlinear second-order analysis.

You can enter, calculate and evaluate the example of this tutorial also with demo restrictions - maximum 2 surfaces and 12 members. Therefore, you may understand that the model meets demands of realistic construction projects only to some extent. With the features presented we just want to show you how you can define model and load objects in various ways.

As superimposing actions according to EN 1990 involves considerable time and effort, we will use the generator for load combinations already integrated in RFEM 5.

With the 30-day trial version, you can work on the model without any restriction. After that period, the demo mode will be applied so that saving data is no longer possible. In this case, you should allow for enough time (approximately two to three hours) to enter the data and try the functions without stress. You can also interrupt your work on the model in the demo version as long as you do not close RFEM: When you take a break, do not shut down your computer but use the standby mode.

It is easier to enter data if you use two screens, or you may print the description to avoid switching between the displays of PDF file and RFEM input.

The text of the manual shows the described buttons in square brackets, for example [Apply]. At the same time, they are pictured on the left. In addition, expressions used in dialog boxes, tables and menus are set in italics to clarify the explanations. Input required is written in bold letters.

2. System and Loads

2.1 Sketch of System

Our example is a reinforced concrete structure to which a steel construction is attached.

![Figure 2.1: Structural system](image)

The reinforced concrete structure is a substructure consisting of a floor slab with downstand beam, a semicircular shell and two round columns. The structural system is built partially in the earth.

The steel frame is a monopitch roof construction stiffened with a diagonal.

As mentioned above, the model represents a rather "abstract" structure that can be designed also with the demo version whose functions are restricted to a maximum of two surfaces and twelve members.

2.2 Materials, Thicknesses and Cross-sections

We use concrete C30/37 and steel S 235 as materials.

The thickness of walls and floors is 20 cm each. Both concrete columns have a diameter of 30 cm. The beam has a width of 25 cm and height of 40 cm.

We use HE-A 300 cross-sections for the left and right steel frames of the monopitch roof structure. Both purlins are defined with HE-B 260 cross-sections. The bracing diagonal consists of an angle iron L 80x8 with equal legs.
2.3 Load

Load case 1: self-weight and finishes
In the first load case, the self-weight of the model including its floor structure of 1.5 kN/m² is applied. We do not need to determine the self-weight manually. RFEM calculates the weight automatically from the defined materials, surface thicknesses and cross-sections.

Earth pressure is acting additionally on the semicircular wall. The load ordinate at the bottom of the wall is determined for a gravel backfill as follows: \(q = 16.0 \text{ kN/m}^3 \times 4.0 \text{ m} = 64 \text{ kN/m}^2 \).

The roof load (roofing, supporting structure) is assumed with 1.2 kN/m².

Load case 2: live load
The area of the floor surface is used as an assembly room of category A1 bearing an imposed load of 3.0 kN/m².

In addition, a vertically acting linear load of 5.0 kN/m is taken into account around the opening, representing a loading due to a stair access.

Load case 3: snow
The snow load is applied according to EN 1993-1-3 for the snow load zone 2 in Germany and for an altitude of 500 m.

Load case 4: wind
In our example we analyze wind loading only in direction Y (wind direction: from low to high eaves). It is applied according to EN 1991-1-4 for monopitch roofs and enclosed vertical walls. Furthermore, we apply wind zone 1 and terrain category III for the building. As the roof inclination is higher than 5°, we need to take into account positive and negative external pressure coefficients. In this load case we will assume the positive coefficients.

The reinforced concrete area is exposed to wind loads only partially. For the column at the low eaves side we assume a trapezoidal equivalent load with ordinates 0.5 kN/m and 2.0 kN/m. For the column at the high eaves side we apply a uniform equivalent load of 1.5 kN/m.

Load case 5: imperfection
Often imperfections must be considered, for example according to Eurocode 3. Inclinations and precambers are managed in a separate load case. So it is possible to assign specific partial safety factors when you combine this type of load with other actions.

In our example we will analyze imperfections only in direction Y.

For the column cross-sections (HE-A 300) we assume the buckling curve \(b \) (displacement in direction of y-axis) according to EN 1993-1-1, table 6.2. The inclinations \(\phi_{p0} \) and precambers \(e_{0,d} \) are determined according to EN 1993-1-1, section 5.3.2.

We apply imperfections for both reinforced concrete columns according to EN 1992-1-1, clause 5.2.
3. Creating Model

3.1 Starting RFEM

To start RFEM in the taskbar, we click Start, point to All Programs and Dlubal, and then we select Dlubal RFEM 5.01 or we double-click the icon Dlubal RFEM 5.01 on the computer desktop.

3.2 Creating Model File

The RFEM work window opens showing us the dialog box below. We are asked to enter the basic data for the new model.

If RFEM already displays a model, we close it by clicking Close on the File menu. Then, we open the General Data dialog box by clicking New on the File menu.

We write Tutorial into the input field Model Name. To the right, we enter Construction consisting of concrete and steel as Description. We always have to define a Model Name because it determines the name of the RFEM file. The Description field does not necessarily need to be filled in.

In the input field Project Name, we select Examples from the list if not already set by default. The project Description and the corresponding Folder are displayed automatically.

In the dialog section Type of Model, the 3D option is preset. This setting enables a spatial modeling. We also keep the default setting Downward for The Positive Orientation of Global Axis Z.
The dialog section Classification of Load Cases and Combinations requires some settings: we select the entry EN 1990 from the list According to Standard. We don’t change the setting CEN in the field National annex to the right. These specifications are important when we combine actions with partial safety factors and combination coefficients conforming to standards.

Then, we tick the check box Create combinations automatically. We want to superimpose the actions in Load combinations.

Now, the general data for the model is defined. We close the dialog box by clicking the [OK] button.

The empty work window of RFEM is displayed.

4. Model Data

4.1 Adjusting Work Window and Grid

View
First, we click the [Maximize] button on the title bar to enlarge the work window. We see the axes of coordinates with the global directions X, Y and Z displayed in the workspace.

To change the position of the axes of coordinates, we click the button [Move, Zoom, Rotate] in the toolbar above. The pointer turns into a hand. Now, we can position the workspace according to our preferences by moving the pointer and holding the left mouse button down.

Furthermore, we can use the hand to zoom or rotate the view:
- Zoom: We move the pointer and hold the [Shift] key down.
- Rotation: We move the pointer and hold the [Ctrl] key down.

To exit the function, different ways are possible:
- We click the button once again.
- We press the [Esc] key on the keyboard.
- We right-click into the workspace.

Mouse functions
The mouse functions follow the general standards for Windows applications. To select an object for further editing, we click it once with the left mouse button. We double-click the object when we want to open its dialog box for editing.

When we click an object with the right mouse button, its context menu appears showing us object-related commands and functions.

To change the size of the displayed model, we use the wheel button of the mouse. By holding down the wheel button we can shift the model directly. When we press the [Ctrl] key additionally, we can rotate the structure. Rotating the structure is also possible by using the wheel button and holding down the right mouse button at the same time. The pointer symbols shown on the left show the selected function.
4 Model Data

Grid

The grid forms the background of the workspace. In the dialog box *Work Plane and Grid/Snap*, we can adjust the spacing of grid points. To open the dialog box, we use the button [Settings of Work Plane].

![Figure 4.1: Dialog box Work Plane and Grid/Snap](image)

Later, for entering data in grid points, it is important that the control fields *SNAP* and *GRID* in the status bar are set active. In this way, the grid becomes visible and the points will be snapped on the grid when clicking.

Work plane

The XY plane is set as work plane by default. With this setting all graphically entered objects will be generated in the horizontal plane. The plane has no significance for the data input in dialog boxes or tables.

The default settings are appropriate for our example. We close the dialog box with the [OK] button and start with the model input.
4.2 Creating Surfaces

It would be possible to define corner nodes in the graphic or table first to connect them with lines which we can use to create surfaces. But in our example we use the direct graphical input of lines and surfaces.

4.2.1 Floor

The floor surface consists of a rectangular and a semicircular surface.

4.2.1.1 Defining Rectangular Surface

Rectangular slabs are frequently used structural components. To create rectangular plates quickly,

we click Model Data on the Insert menu, then we point to Surfaces, Plane and Graphically and select Rectangle.

or we use the corresponding list button for the selection of plane surfaces. We click the arrow button [▼] to open a pull-down menu offering a large selection of surface geometries.

With the menu item [Rectangle] we can define the plate directly. Related nodes and lines will be created automatically.

After selecting this function, the dialog box New Rectangular Surface opens.

![Figure 4.2: Dialog box New Rectangular Surface](image)

The Surface No. of the new rectangular plate is specified with 1. It is not necessary to change this number.

The Material is preset with Concrete C30/37 according to EN 1992-1-1. When we want to use a different material, we can select another one by means of the [Material Library] button.

The Thickness of the surface is Constant. We increase the value \(d\) to 200 mm, either by using the spin box or by direct input.

In the dialog section Surface Type the Stiffness is preset appropriately with Standard.

We close the dialog box with the [OK] button and start the graphical input of the slab.
We can make the surface definition easier when we set the view in Z-direction (top view) by using the button shown on the left. The input mode will not be affected.

To define the first corner, we click with the left mouse button into the coordinate origin (coordinates X/Y/Z 0.000/0.000/0.000). The current pointer coordinates are displayed next to the reticle.

Then, we define the opposite corner of the slab by clicking the grid point with the X/Y/Z coordinates 7.000/6.000/0.000.

RFEM creates four nodes, four lines and one surface.

As we don't want to create any more plates, we quit the input mode by pressing the [Esc] key. We can also use the right mouse button to right-click in an empty area of the work window.

Show numbering

If we want to display the numbering of nodes, lines and surfaces, we right-click into an empty space of the work window. A context menu with useful functions appears. We activate the **Numbering**.

![Figure 4.3: Rectangular surface 1](image)

![Figure 4.4: Show numbering in context menu](image)
We can use the *Display* tab in the navigator to control the numbering of objects in detail.

Figure 4.5: *Display* navigator for numbering
4.2.1.2 Creating Arc

Now, we need to define an area that is limited by a circular arc.

We click the arrow [▼] of the list button for lines available in the toolbar to open the pull-down menu offering tools for special line types. We select the entry *Arc via Three Nodes*.

In the work window, we click the following nodes one after the other: node 4, the grid point with the coordinates *10.000/3.000/0.000* and node 3. After clicking the last node, the arc will be created as line 5.

To quit the input mode, use the [Esc] button.
4.2.1.3 Adjusting Floor Surface

As the demo version allows for the definition of only two surfaces, we cannot define the semicircular surface as a new surface. Therefore, we extend the rectangular surface to a general plane surface enclosing the arc area.

We double-click surface 1 in the work window to open the dialog box Edit Surface.

![Edit Surface dialog box](image)

Figure 4.8: Modifying boundary lines

We have two input options:

- In the input field Boundary Lines No., we can enter the numbers of the new border lines 1, 2, 4 and 5 manually.
- We can use the [Pick] button shown on the left to select the new boundary lines graphically in the work window. But first it is necessary to empty the preset list in the selection window Edit Surface by clicking the button [Clear].

Now, the floor surface looks like the figure below.

![Floor slab](image)

Figure 4.9: Floor slab
4.2.2 Wall

Copy the arc

The most comfortable way to create a curved surface is copying the circular arc by specifying particular settings for the copy process.

We click arc line 5 with the left mouse button (single click) to select it. The line is now displayed with a different color. Yellow is preset as selection color for black backgrounds.

We use the toolbar button shown on the left to open the dialog box Move or Copy.

![Figure 4.10: Dialog box Move or Copy](image)

We increase the **Number of copies** to **1**: With this setting the arc won’t be moved but copied. As the wall is 4 m high (system line), we enter the value **4.0 m** for the **Displacement Vector in dz**.

Now, we click the [Details] button to specify more settings.
In the dialog section **Connecting**, we tick the check box of the following option:

- Create new surfaces between the selected lines and their copies

Then, we select surface 1 from the list to define it as *Template surface*. In this way, the properties of the floor slab (material, thickness) are preset for the new wall surface.

We close both dialog boxes by clicking the [OK] button.
Set the isometric view

We use the toolbar button shown on the left to set the [Isometric View] because we want to display the model in a graphical 3D representation.

Checking data in navigator and tables

All entered objects can be found in the directory tree of the Data navigator and in the tabs of the table. The entries in the navigator can be opened by clicking the [+] sign (like in Windows Explorer). To switch between the tables, we click the individual table tabs.

In the navigator entry Surfaces and in table 1.4 Surfaces, we see the input data of both surfaces in numerical form (see figure above). RFEM created the wall as quadrangle surface, i.e. a shell that is limited by four lines.
4.2.3 Opening

4.2.3.1 Creating Opening

Now, we insert a rectangular opening into the floor slab. The data input is easier when we reset the [View in Z direction].

We can apply the opening directly, which means without defining lines first. We use the list button for openings available in the toolbar and select the entry Rectangle.

We set the first opening node in grid point $3.000/1.000/0.000$. The second node is defined in grid point $5.000/2.000/0.000$.

The opening is too small. We will adjust its length in the next step.

We close the input mode with the [Esc] button or with a right-click into the empty workspace.
4.2.3.2 Adjusting Opening

The length of the opening is 2.50 m. We select nodes 11 and 12 one after the other by holding down the [Ctrl] key when clicking.

We open the dialog box **Edit Node** with a double click on one of these nodes.

![Figure 4.14: Dialog box Edit Node](image)

Both nodes are listed in the input field **Node No.** We correct the **Coordinate X** by entering **5.500 m**, and then we confirm the input with [OK]. Now, the opening has an appropriate length.

Alternative: It is also possible to apply the opening instantly without modifying coordinates when we use an adjusted grid: Before, we have to open the dialog box **Work Plane and Grid/Snap** (see Figure 4.1, page 10) where we reduce the **Grid Point Spacing** to 50 cm. We can also use the context menu of the GRID button available in the status bar to modify the grid spacing quickly. Just right-click the button shown on the left.

Now, the input of surfaces is complete.
4.3 Creating Concrete Members

4.3.1 Columns

Member elements depend on lines: By creating a member a line is generated automatically.

Changing the work plane

We want to define the columns graphically, so we need to shift the work plane from the horizontal to the vertical plane. To set the [Work Plane YZ], we click the second of the three plane buttons in the toolbar.

We reset the [Isometric View]. Now, we can see that the input grid is spanned in the plane of the two columns (see Figure 4.18).

Definition of cross-section

We click the list button [New Members Single] to open the dialog box New Member.

![Figure 4.15: Dialog box New Member](image)

It is not necessary to change the default settings. We only have to create a Cross-Section. To define the cross-section at the Member start, we click the [Library] button. The cross-section database appears.
In the dialog section *Parametric - Massive*, we select the cross-section type *Circle*. Another dialog box appears.

We define the column diameter D with 300 mm.

For solid cross-sections RFEM presets number 1 - *Concrete C30/37* as *Material*.

We can use the [Info] button to check the properties of the cross-section.
We click [OK] to import the cross-section values and return to the initial New Member dialog box. Now the input field Member start shows the new cross-section. We close the dialog box with [OK] to set the columns graphically.

Graphical definition of members
We define the footing of the front column by clicking the grid point 0.000/6.000/4.000. The top end of the column is set into node 2.

The input command Define member is still active. Therefore, we can continue with the definition of the rear column.

We place the footing of the second column into the grid point 0.000/0.000/4.000. The column’s top end is then defined in the grid zero point which is node 1.

To quit the input mode, we use the [Esc] key. We can also right-click into the empty work window.
4.3.2 Rib

In the next step, we enter the downstand beam below the ceiling.

Modification of line properties
We double-click line 3 to open the dialog box Edit Line. We change to the second tab Member where we tick the check box of the option Available (see Figure 4.19).

The dialog box New Member opens again.

![Figure 4.19: Dialog box New Member](image)

This time we click the [New] button to define a cross-section at the Member start.

In the upper part of the dialog box New Cross-Section, we select the massive REC cross-section table. The dialog box Solid Cross-Sections - Rectangle opens where we define the width b with 250 mm and the depth h with 400 mm.
We click [OK] to import the cross-section values to the dialog box New Cross-Section. Again, material number 1 - Concrete 30/37 is preset.

We click [OK] and return to the initial dialog box New Member. Now the input field Member start shows the rectangular cross-section.
Definition of rib

In RFEM we can model a downstand beam with the member type Rib. We just change the Member Type in the dialog box New Member: We select the entry Rib from the list.

Figure 4.21: Changing the member type

With a click on the button [Edit Member Type] we open the dialog box New Rib.

Figure 4.22: Defining the rib
We define the *Position and Alignment* of the Rib *On +z-side of surface*. This is the bottom side of the floor slab.

For the *Effective Width* we specify \(\frac{L}{8} \) for both sides. RFEM will find the surfaces automatically.

We close all dialog boxes with the [OK] button and check the result in the work window.

Display options

RFEM displays the rib as a member that is eccentrically arranged. As the transparent rendering model does not show surface thicknesses, we set the *Solid Display Model* by means of the list button shown on the left. This display mode helps us to check the placement of the rib.

In addition, we set the rendering option *Filled incl. thickness* available in the *Display* navigator.

To adjust the display, we use the button [Move, Zoom, Rotate] (see "mouse functions" on page 9). The pointer turns into a hand. When we hold down the [Ctrl] key additionally, we can rotate the model by moving the pointer.

For the following input we reset the mode of the *Solid Transparent Display Model*. We also reset the rendering for surfaces to *Filled* provided in the *Display* navigator in order to hide thicknesses.
4.4 Defining Supports

The model is still without supports. In RFEM we can assign supports to nodes, lines, members and surfaces.

4.4.1 Nodal Supports

The columns are supported on their footing in all directions but without restraint.

We select the bottom nodes of the columns by drawing a window across the area including the nodes X and Y. Then, we click the toolbar button [New Nodal Support] to open the dialog box **New Nodal Support**.

Both node numbers 13 and 14 are shown in the field *Node No.*

We modify the type of the support because the preset support type 1 results in a restraint about the longitudinal member axis. With a click on the button [New] (see Figure 4.25) we open another dialog box.
In the second dialog box *New Nodal Support*, we remove the check mark of the *Restraint* for rotation ϕ_z.

We confirm the dialog boxes with [OK]. Now, we see support symbols displayed on the model.
4.4.2 Line Supports

The bottom line of the curved wall is supported as well. This time, we choose another way to enter support data. First, we define the support properties. Then, we assign them to the object graphically.

With a click on the button [New Line Support] we open the dialog box New Line Support. The option Hinged is preset as Type of Support. The first three check boxes ticked with check marks are indicating that a support is available in the directions X, Y and Z. The final three fields are not ticked because the hinged support type has no restraint about X, Y and Z.

We confirm the dialog box with [OK] because the hinged support is adequate for our example.

RFEM displays a support symbol next to the mouse pointer. It becomes a reticle as soon as we approach a line. The number of the corresponding line is displayed in the status bar. We set the support on the curved line 6.

Now, the input of the model’s reinforced concrete construction is complete.
4 Model Data

4.5 Creating Steel Members

4.5.1 Frame

Now we enter the steel construction. First, we define the frame that lies in the plane of the two columns. It is helpful to use a so-called visibility for this plane: This type of partial view allows us to work in a particular zone of the model and we are not disturbed by objects that lie within another plane.

Creation of visibilities

We set the Views tab in the navigator. A number of visibilities is already available. They were Generated by RFEM based on the data we entered.

The button [Visibility by Window] makes it possible to abstract a specific zone from the model graphically: We activate the function and draw a window from the left to the right, completely enclosing both column members.

Please note: If you pull up the window from the left to the right, the visibility contains only objects that are completely within this window. If you pull up the window from the right to the left, the visibility additionally contains those objects that are cut by the window.

Now we can see that the rest of the model (floor, wall) is displayed with a lower color intensity. The corresponding objects cannot be edited.

![Figure 4.28: Creating a visibility by window](image)

Changing the origin of the work plane

Plane YZ is still set as work plane, which is appropriate for defining the frame of the monopitch roof. Also the origin of the work plane is convenient for our purpose. However, we want to show you how you can adjust the work plane. Therefore, we modify the position of the work plane origin.

We click the toolbar button [Set Origin]. Then, in the work window, we select node 2, which is the head of the front column, to be the new origin of the work plane. The reticle of the grid changes its position.
4.5.1.1 Defining Members Continuously

We want to create the monopitch roof frame as a polygonal chain. We open the list button [New Member] and select the menu item Member Continuous.

The dialog box New Member opens. First, we change the Member Type to Beam.

As shown in Figure 4.19 on page 24, we create a cross-section for the Member start by using the [New] button. The dialog box New Cross-Section opens where we click the button [HE-A] at its top. Then, in the dialog box Rolled Cross-Sections - I-sections, we select the cross-section HE A 300 from the HE A cross-section table. For rolled cross-sections RFEM presets number 2 - Steel S 235 as Material.
We confirm all dialog boxes with [OK].

Back in the work window, we define the three frame members in one go by clicking the following nodes and grid points:

- Node 1
- Grid point **0.000/-6.000/-3.000** (grid origin has been modified)
- Grid point **0.000/0.000/-3.000** (roof inclination will be adjusted later)
- Node 2

![Figure 4.31: Defining members continuously](image)

When the last node is defined, we right-click twice into the empty work window to quit the input mode.

Both columns in our model are connected rigidly to the floor nodes 1 and 2. Though this kind of restraint can hardly be built in reality, we do without a modeling of release properties in our example and accept this simplification.
4.5.1.2 Shearing Horizontal Beams

The monopitch roof has an inclination of 8°. That's why we have to adjust the horizontal beam. We draw a selection window across member 5 comprising both end nodes. Then, in the toolbar we select Shear on the Edit menu to open the dialog box 3D Shearing.

![3D Shearing dialog box](image)

We want to modify the inclination of the beam by -8° About axis X. We have to enter a negative value because the objects will be rotated counterclockwise about the axis X. The shearing is applied in vertical direction Z. Finally, we define the 1st point of the rotation axis by using the [Pick] button. We select node 15 having the coordinates 0.000/0.000/-3.000 and confirm the input with [OK].

Figure 4.32: Adjusting the inclination of the horizontal beam
4.5.1.3 Connecting Beams with Releases

Release definition

The horizontal beam cannot transfer any bending moments into the columns because of its connection type. Therefore, we define a release that we assign to both sides of the beam later.

This time we use the Data navigator: We right-click the entry Member End Releases and select New Member End Release in the context menu.

![Figure 4.33: Opening the dialog box New Member End Release in the Data navigator](image)

In the dialog box New Member End Release, the displacements or rotations can be selected that are released at the member end. In our example, those are the rotations ϕ_y and ϕ_z. Thus, no bending moments can be transferred at the node.

We close the dialog box by clicking the [OK] button without modifying any data.

Release assignment

It would be possible to double click the member to open the dialog box Edit Member and assign the releases. However, we use a special function that is available in the following menu:

On the Insert menu, we select Model Data, point to Member Releases and select Assign to Members Graphically.

The dialog box Assign Member End Releases to Members Graphically appears. We open the list and select release type 1 that we have just defined. Then, we click [OK].

![Figure 4.34: Dialog box Assign Member End Releases to Members Graphically](image)

We see in the work window that RFEM has applied a one-third division to the members. By clicking the end of a member we can define the release graphically at this member end. Now we click member 5 in its middle area to assign the release to both sides.
4.5.1.4 Reverse Member Orientation

For the graphical representation of imperfections it may be comfortable for us when the member orientation of columns is directed from the bottom to the top. Therefore, we change the orientation of the right steel column, using a function of the member context menu.

Moving the pointer near member 6, we can see the orientation arrow appearing on the member. We right-click the member and open its context menu where we select the menu item *Reverse Member Orientation*.
The second frame of the monopitch roof can be created very quickly as a copy. We draw a selection window across the frame, enclosing members 4 to 6. Please take care not to include any of the concrete columns! If necessary, you can rotate the model to set a more favorable view. We can also click the members one after the other by holding down the [Ctrl] key.

Before we create the copy, we set the [Work Plane XZ] so that we are able to copy the structure out of the frame plane.

We press the [Ctrl] key. Now, we grab the selection near the foot point of the higher column (node 2) and shift it to the arc end at the wall top. The [+] symbol next to the mouse pointer indicates that the objects are being copied. As soon as the coordinates of the grid point 7.000/6.000/0.000 are displayed in the status bar, we release the mouse button.

Nodes and lines are merged automatically with already defined objects.
4.5.2 Purlins

4.5.2.1 Defining Members Individually

Again, we use the list button [New Member] for the definition of both purlins. We select the option Member Single and open the dialog box New Member.

We define a cross-section for the Member start by using the [New] button again (see Figure 4.19, page 24).

In the dialog box New Cross-Section, we click the button [HE-B] at the box top. The dialog box Rolled Cross-Sections - I-Sections opens where we select the cross-section HE B 260 from the HE B cross-section row (see figure below). Again, number 2 - Steel S 235 is preset.

![Figure 4.38: Selecting HE B 260 in the library](image)

We confirm all dialog boxes with [OK].

We define the purlin at the lower eaves by clicking nodes 15 and 19 one after the other.

Then we click nodes 16 and 20 to create the second purlin.
To quit the input mode, we use the [Esc] key or right-click into the empty work window.
4.5.2.2 Connecting Members Eccentrically

We want to connect the purlins eccentrically to the frame columns. Thus, we shorten the system line by half of the cross-section height of the HE A 300 columns.

Definition of eccentricity

We double-click the purlin at the high eaves (member 11). In the dialog box Edit Member, we change to the dialog tab Options. In the dialog section Member Eccentricity, we click the [New] button to open the dialog box New Member Eccentricity.

We select the option Transverse offset from cross-section of other object. In our example, the Object is the column: We use the [Pick] function to select Member 6 graphically.

Then, we define the Axis offset in direction of the positive cross-section axis z.

Finally, in the dialog section Axial offset from adjoining members, we tick the check boxes for Member start and Member end to arrange the offset on both sides.

After confirming all dialog boxes we can check the result with a maximized view (for example zooming by rolling the wheel button, moving by holding down the wheel button, rotating by holding down the wheel button and keeping the right mouse button pressed).
Apply eccentricity to another member

To transfer the eccentricity to the second purlin, we use the input tables.

We set table 1.17 Members listing numerically the member data of all members that we have defined so far. When we click into table row 10, we see that the second purlin is highlighted in the work window and displayed in the selection color.

We place the pointer into column I and enter 1, which is the number of the eccentricity that we have just defined. We can also select it from the list.

After leaving the table cell with the [Tab] or [↵] key, we see the modification displayed in the graphic.

In the same way, it would be possible to define another eccentricity for the horizontal beams. However, as these members are connected to the column webs, we want to neglect those additional moments in our example.
4.5.3 Diagonal

The final member that we insert is a diagonal for stiffening. It can only transfer tensile forces. Generally, bracings are defined crosswise but the calculation in the demo version only allows for 12 members. A tension member has the effect that the model is calculated non-linearly. In case of compression forces, this member is removed from the stiffness matrix (failure).

4.5.3.1 Defining Member

With the button [Member Single] we open again the dialog box New Member where we select the entry Tension from the Member Type list.

We define a new cross-section for the Member start by using the button [New] (see Figure 4.19, page 24) that opens the cross-section database.

In the dialog box New Cross-Section, we click the [L] button. The dialog box Rolled Cross-Sections - L-Sections appears where we select cross-section L 80x8 from the cross-section table L. The material 2 - Steel S 235 is preset again.

![Diagram of defining tension member with cross-section L 80x8]

We confirm all dialog boxes with [OK], and then we click the nodes 15 and 2 one after the other to define the diagonal (see figure below).

To quit the input mode, we use the [Esc] key. We can also right-click into the empty work window.
4.5.3.2 Rotating Member

A tension member adds to stiffness only by its cross-sectional area. Thus, seen from a structural point of view, the rotation of the member is not irrelevant. For the rendered view, however, we want to rotate the angle section.

We double-click member 12 to open the dialog box Edit Member where we define a member rotation of -90°.

Again, we can check the result in a maximized view by using the zoom and moving function (see page 9).
Figure 4.46: Rotated angle member in zoomed view

Undo/restore

If you want, you can [Undo] the member rotation in this view in order to check the initial position of the cross-section. With the default functions *Undo* and *Redo* that you already know from Windows applications we can undo or restore input data in RFEM, too.

Figure 4.47: Buttons *Undo* and *Redo*

Cancel visibility mode

The parts of the model displayed in RFEM as transparent objects can be reactivated in the *Views* navigator. With a click on the button [Cancel Visibility Mode] all objects are fully displayed again. With the toolbar button [Isometric View] we can reset the spatial full view.

Figure 4.48: Full view of model
Adjusting the color assignment
The Display navigator provides an option to display Colors in Rendering According to particular criteria. The default setting is the display of material colors.

You can click through the menu items to see how the display changes. With the option Cross-Sections for example we can distinguish different cross-section types at a glance.

![Distinguishing cross-sections by colors](image)

For the following input we reset the option Materials.

4.6 Checking Input

Checking Data navigator and tables
As mentioned before, RFEM offers us various possibilities to enter model data. The graphical input is reflected in both the Data navigator tree and the tables. We can display and hide navigator and tables by selecting Navigator or Table on the View menu. We can also use the corresponding toolbar buttons.

In the tables, the model objects are organized in numerous tabs. Graphics and tables are interactive: To find an object in the table, for example a member, we set table 1.17 Members and select the member in the work window by clicking. We see that the corresponding table row is highlighted (see Figure 4.42, page 41).

We can check the numerical data of our input quickly.

Saving data
Finally, the input of model data is complete. To save our file, we select Save on the File menu or use the toolbar button shown on the left.
5. **Loads**

The Data navigator contains the following entries in the folder *Load Cases and Combinations*:

- Load cases
- Actions
- Combination expressions
- Action combinations
- Load combinations
- Result combinations

We define the actual loading like self-weight, snow and wind load in load cases. Then, load cases are organized in actions and superimposed with partial safety factors according to the standard’s combination expressions (see chapter 6).

5.1 Load Case 1: Self-weight

The first load case contains the permanently acting loads from self-weight, floor structure, earth pressure and roof finishes (see chapter 2.3, page 7).

We use the button [New Surface Load] to create a load case.

![Figure 5.1: Button New Surface Load](image)

The dialog box *Edit Load Cases and Combinations* appears.

![Figure 5.2: Dialog box Edit Load Cases and Combinations, tabs Load Cases and General](image)
Load case no. 1 is preset with the action type Permanent. In addition, we enter the Load Case Description Self-weight, finishes, earth pressure.

5.1.1 Self-weight

The Self-Weight of surfaces and members in direction Z is automatically taken into account when the factor Active is specified with 1.000 as already preset.

5.1.2 Floor Structure

We confirm the input by clicking the [OK] button. The dialog box New Surface Load appears.

The floor structure is acting as load type Force, the load distribution is Uniform. We accept these presettings as well as the setting ZL for Global in the dialog section Load Direction.

In the dialog section Load Magnitude, we enter a value of 1.5 kN/m² (see chapter 2.3, page 7). Then, we close the dialog box by clicking [OK].

Now, we can assign the load graphically to the floor surface: We can see that a small load symbol has appeared next to the pointer. This symbol disappears as soon as we move the pointer across a surface. We apply the load to the floor with a click on surface 1 (see Figure 5.4).

The surface load is not applied to the opening. We can see the non-load bearing area identified by the load application symbol.

We can hide and display the load values with the toolbar button [Show Load Values].

To quit the input mode, we use the [Esc] key. We can also right-click into the empty work window.
5.1.3 Earth Pressure

The earth pressure stressing the wall is represented by a linearly variable load acting perpendicular to the surface. This time, we select the curved surface 2 first, and then we open the corresponding dialog box for load input by using the button [New Surface Load].

![Figure 5.5: Dialog box New Surface Load](image)
5 Loads

The load is set as load type Force with the Load Distribution Linear In Z. Thus, we select Local z as Load Direction.

To enter the Load Magnitude, we use the [Pick] button to select significant locations on the model to which we assign load ordinates: We click Node No. 3 and enter the Magnitude 0 kN/m2. Then, we click the [Pick] button again to select Node No. 6 to which we assign the Magnitude -64 kN/m2 (see chapter 2.3, page 7). We enter the load with a negative number because the local z-axis of the surface is directed to the outside.

After confirming the dialog data by clicking [OK], we see the linear surface load displayed in the model, increasing downwards and acting perpendicularly on the shell. We use the context menu shown on the left (appears when we right-click the surface) to show the local surface axes.

5.1.4 Roof Load

The loading due to roof finishes (roofing, supporting structure) is acting as permanent load, too. For applying loads acting upon surfaces to the steel construction, RFEM offers us a tool that is able to convert area loads into member loads.

To open the generator dialog box,

- we point to Generate Loads on the Tools menu, and then we select From Area Loads via Plane.

In the dialog box Convert Area Loads to Member Loads via Planes, we specify the following settings (see Figure 5.7):

- The Area Load Direction of the roof structure is Global related to the true area ZL with the Area Load Magnitude 1.2 kN/m2 (see chapter 2.3, page 7).

Then, we define the plane of the area load graphically by means of the [Pick] button: In the work window, we click the four corner nodes of the roof area 16, 15, 19 and 20 one after the other. Finally, we close the selection window with [OK].

The roof's supporting structure introduces the roof loading (not displayed in the model) into the structural system along the purlins. This means: Both horizontal beams of the monopitch roof do not participate in transferring loads from the roof loading. Thus, they must be excluded from the load generation. We use the [Pick] button shown on the left, available in the dialog section Remove Influence from, to select one of the horizontal beams graphically in the work window (member 8 or 5). We click [OK] in the selection window. After that, the generator dialog box should look as follows.
5 Loads

We confirm the dialog settings with [OK]. An Info dialog box appears showing us information about the conversion of area load values into member loads. We confirm this dialog data as well.

The loading is represented as roof area load. To display the generated loads acting on both purlins, we right-click this load and open the context menu where we select the option Disconnect Generated Load.

However, we [Undo] this specification step: The input parameters entered in the generator dialog box get lost for disconnected loads. It would no longer be possible to adjust for example the load magnitude in case of subsequent modifications.

Now, the input for the load case Self-weight is complete.
5.2 Load Case 2: Live Load

Before we enter live loads, we create a new load case. To open the corresponding dialog box, we point to **Load Cases and Combinations** on the **Insert** menu and select **Load Case**, or we use the corresponding button in the toolbar (to the left of the load case list).

![Figure 5.9: Dialog box Edit Load Cases and Combinations, tab Load Cases](image)

For the **Load Case Description** we enter **Imposed load**, or we choose the entry from the list. We change the **Action Type** to **Q, C Imposed - category C: congregation areas** (see chapter 2.3, page 7) by using the selection list. This classification is important for the partial safety factors and combination coefficients of the load combinations.
5.2.1 Floor Slab

We choose a new input option to enter the surface load: First, we select floor surface 1 with a mouse click. Now, when we open the already familiar dialog box by means of the button [New Surface Load], we can see that the number of the surface is already entered.

![Dialog box New Surface Load](image)

The imposed load is acting as load type Force, the load distribution is Uniform. We accept these presettings as well as the setting ZL for Global in the dialog section Load Direction.

In the dialog section Load Magnitude, we enter a value of 3 kN/m² (see chapter 2.3, page 7). Then, we close the dialog box by clicking [OK].
5.2.2 Edge of Opening

It is easier to apply the linear load to the edge of the opening when we maximize the display of this area by using the Zoom function or the wheel button.

With the toolbar button [New Line Load] to the left of the button [New Surface Load] we open the dialog box New Line Load.

The line load as load type Force with a Uniform load distribution is acting in the load direction ZL.

In the dialog section Load Parameters, we enter 5 kN/m. After clicking the [Ok] button we click line 11 at the opening's edge (check by display in status bar).

To quit the input mode, we use the [Esc] key or right-click into the empty work window.
5.3 Load Case 3: Snow

Again, we create a [New Load Case] to enter the snow load.

![Figure 5.12: Dialog box Edit Load Cases and Combinations, tab Load Cases](image)

For the Load Case Description we enter Snow, or we choose the entry from the list.

We set the Action Type to Q. Snow (H ≤ 1000 m a.s.l.).

5.3.1 Roof

To enter the snow load for the monopitch roof, we use a load generator again. To open the corresponding dialog box,

- we point to Generate Loads on the Tools menu, then we select From Snow Loads and Flat/Monopitch Roof.

The dialog box Generate Snow Loads - Flat/Monopitch Roof opens where we define the following input (see Figure 5.13).

- We select the Snow Load Parameters according to the national annex for Germany for snow load Zone number 2. Furthermore, we change the value of the Altitude to 500 m (see chapter 2.3, page 7).

Then, we define the Roof Geometry graphically by using the [Pick] button: We click the four corner nodes of the roof area 16, 15, 19 and 20 one after the other (see selection window shown on the left).

We check if the new LC3 is set in the dialog section Load Case to Generate.

Again, we want to create Member loads, but both monopitch roof beams do not make a contribution to the load transfer (the snow loads are introduced into the structural system by the roof's supporting structure via purlins). We use the [Pick] button shown on the left, available in the dialog section Remove Influence from, to select one of the horizontal beams graphically (member 8 or 5).
5.3.2 Floor

Snow loading also acts on the semicircular area of the floor surface. As surface 1 is stressed only partially by snow, we cannot use the function New Surface Load. In the full and trial versions of RFEM, it would be advisable to subdivide the floor into two surfaces in order to simply set a surface load on the semicircular surface. As the demo version allows only for two surfaces used in the model, we choose a more complex input option.

First, we set the [View in Z direction]. Then, we select plane [XY] as our new work plane.

We define the snow load as Free Polygon Load. We find the corresponding function in the list of the toolbar button [New Load] (to the right of the button [Surface Load]).

The dialog box New Free Polygon Load opens (see Figure 5.14) where we define the load to be acting On Surfaces No. 1 and Global related to projected area ZP. In contrast to dead loads (like self-weight) which refer to the true area, snow loads must be related to the base area (this difference is not significant for horizontal surfaces).

The load is projected in the XY Plane.
We define the load position in the work window by using the [Pick] button: We start at arc node 4 at the top of the arc, and then we use the reticle cursor to click any points on the arc line one after the other so that we approach the semicircular surface with a polygonal chain. As soon as we reach the arc end at node 3, we close the yellow dialog box with [OK].

In the dialog section Corner Point Numbers and Load Magnitudes, we enter the value 1.284 kN/m² which was given as roof snow load by the generator.

We click [OK]. RFEM puts the load on the semicircular surface. We close the input mode with the [Esc] button or a right-click into the empty workspace. Then, we change to the [Isometric View].
5.4 Load Case 4: Wind

We create a [New Load Case] for the wind loads in direction Y.

In the dialog field Load Case Description, we select Wind in +Y from the list. The Action Type changes automatically to $Q_{w, Wind}$.
5.4.1 Steel Construction Loads

Again, we use a load generator to enter the wind load applied to the walls that are closed on all sides and to the monopitch roof. To access the corresponding function, we point to Generate Loads on the Tools menu, and then we select From Wind Loads and click Vertical Walls with Roof.

In the dialog box Generate Wind Loads - Vertical Walls with Roof, we specify the following settings (see Figure 5.17):

- The Velocity Pressure is defined according to the national annex of Germany for Wind zone 1 and Terrain category III (see chapter 2.3, page 7). The [Info] buttons facilitate the assignment. Finally, we change the value of the Structure height to 8 m.

- Furthermore, we define the Base Geometry with the [Pick] button, selecting floor nodes 1, 4, 3, and 2 (please pay attention to the order shown in the dialog sketch). For the roof geometry we use the [Pick] function again, clicking the roof nodes 15, 19, 20 and 16.

- We check if wind direction A - B is set in the dialog section Set Wind on Side.

- In the dialog section Load Case to Generate, we deactivate both load cases \(w^- \) and \(w^+ \). As described in chapter 2.3, page 7, we want to analyze only the positive external pressure coefficients. The load of \(LC_{w^+} \) will be generated for \(LC_4 \).

- Again, we want to create Member loads, but the monopitch roof beams do not make a contribution to the load transfer. We use the [Pick Member] button shown on the left, available in the dialog section Remove Influence from, to select one of the horizontal beams graphically (member 8 or 5). The diagonal member 12 is automatically excluded from the load transfer.

![Figure 5.17: Dialog box Generate Wind Loads - Vertical Walls with Roof](image-url)
After clicking [OK] a dialog box appears showing us information about the generation data. We click [OK] to confirm the dialog box. Now, we can see the wind loads displayed as surface loads on the model.

In addition, we can use the option *Disconnect Generated Loads* available in the load context menu to make the member loads visible. However, we undo this operation immediately.

5.4.2 Column Loads

The loads applied to the lower part of the structure will be defined manually.

Defining a uniform member load

The wind suction acts on the column at the high eaves side with a constant value.

We select column member 1 with a mouse click and open the dialog box shown in Figure 5.18 with the button [New Member Load].

The *Load Direction* is globally related to the true member length in \mathbf{YL}. The wind load component apportioned to the column is 1.5 kN/m. We enter the value as *Load Parameter*.

We click [OK]. Now we see the member load represented on the column.

![Figure 5.18: Defining wind suction as uniform member load](image)
Defining a trapezoidal member load

Due to a backfill set in a certain zone, the low eaves side reveals an asymmetrical load application area for wind pressure. Thus, the load distribution on the column is variable.

We select column member 2 and use the button [New Member Load] to open the dialog box New Member Load again.

Again, the Load Direction is defined globally in YL, but the Load Distribution is Trapezoidal. With this setting two Load Parameters become accessible: We enter 0.5 kN/m for the member start \(p_1 \) and 3 kN/m for the member end \(p_2 \). (We defined the columns from bottom to top; thus the member start is equal to the column base).

As the Load acts over total length of Member, we tick the corresponding check box.

We click [OK]. Now we see the member load represented on the second column.

Figure 5.19: Defining wind pressure as trapezoidal member load

Now, the RFEM graphic showing the generated and manually defined wind loads should look like the figure below.
Figure 5.20: Wind loads
5.5 Load Case 5: Imperfection

In the final load case we define imperfections for the columns that are stressed by axial force. This time, we use the Data navigator to create a new load case: We right-click the entry Load Cases to open the context menu, and then we select New Load Case.

We choose Imperfection towards +Y from the Load Case Description list. The Action Type changes automatically to Imp Imperfection.

We close the dialog box by clicking the [OK] button.
5.5.1 Steel Columns

We click the toolbar button [New Polygon Load] to open its list menu where we select the entry New Imperfection. The following dialog box opens.

We want to apply the imperfection in Direction of the column axes y, which is the direction of the 'weak' member axis that is parallel aligned with the global axis Y in our example.

To enter the Inclination ϕ_0, we use the [Edit] button that opens the dialog box Calculate Value of Inclination. We set Standard EN 1993-1-1 and change the Structure Height to 4 m. We click [OK] and return to the initial dialog box.

According to EN 1993-1-1, table 5.1, we have to apply a Precamber $e_0,d / L$ of $1/250$ (see chapter 2.3, page 7) for the buckling curve b of cross-sections HE A 300.

Then, we change the activity criterion for the precamber to EN 1993-1-1 (5.8) and confirm the dialog box with [OK].

Finally, we click the four steel columns with the member numbers 6, 4, 9 and 7 to assign the imperfections.

We quit the function with the [Esc] key or a right-click.
5.5.2 Concrete Columns

Once again, we open the dialog box New Imperfection to define the inclination of the concrete columns.
5 Loads

Again, we define the Inclination ϕ_0 with the [Edit] button: In the dialog box Calculate Value of Inclination, we set Standard EN 1992-1-1.

As we do not have to consider precambers in accordance with Eurocode 2, we specify the Precamber $e_{0,d}/L$ with zero ($1/0.00$) in the initial dialog box.

We check if settings are defined as shown in the figure above. Then, we confirm the dialog box and click both concrete columns with the member numbers 1 and 2 to assign the imperfections.

5.6 Checking Load Cases

All five load cases have been completely entered. It is recommended to [Save] the input now.

We can check each load case quickly in the graphics: The buttons [◀] and [▶] in the toolbar allow us to select previous and subsequent load cases.

The loading’s graphical input is also reflected in both the Data navigator tree and the tables. We can access the load data in table 3. Loads which can be set with the button shown on the left.

Again, graphic and tables are interactive: To find a load in the table, for example an imperfection, we set table 3.13 Imperfections, and then we select the load in the work window. We see that the pointer jumps into the corresponding row of the table (see the following figure).
6. Combination of Actions

We combine the load cases according to EN 1990. We take advantage of the generator integrated in the program to superimpose the actions with the required partial safety factors and combination coefficients. The relevant conditions have already been created when the model was defined in the dialog box General Data where we have selected the option Create combinations automatically (see Figure 3.1, page 8).

The Action Type defined for the load cases (see Figure 5.22, page 62) determines the way how load cases are combined in different design situations.

6.1 Checking Actions

The load cases must be assigned to Actions which will be superimposed in accordance with regulations. Actions represent independent influence values that arise from different origins. The correlation existing between them may be neglected with regard to the reliability of the structural system.

Load cases, actions and combinations are managed in the dialog box Edit Load Cases and Combinations (see Figure 5.22, page 62) as well as in tables number 2. We can access these tables by clicking the table button shown on the left. Table 2.1 Load Cases shows us the five load cases with the selected action categories in a clear overview.

The subsequent table 2.2 Actions shows us the load cases that are contained in the individual actions. Each load case of our example is assigned to another action. However, if we had defined several wind load cases for different directions, they all would be listed in the action Wind.

The imperfections are missing in this table because they do not represent "real" actions.
6.2 Defining Combination Expressions

In accordance with EN 1990, we have to combine the actions for the ultimate and the serviceability limit state design according to certain rules. Table 2.3 Combination Expressions shows us which limit states are set to be analyzed.

Only the ultimate limit state (ULS) is relevant for our example. Therefore, we remove the three check marks in the table column **Use** for the combination rules of the serviceability limit states (SLS).

Now, we use the navigator context menu to open the dialog box **Edit Load Cases and Combinations**. We want to *Edit* the parameters of the combination expression **CE1**.

To read describing comments informing us about the combination expression for the limit states STR and GEO, we use the [Info] button available in this dialog box (see figure below).
In the dialog section **Settings**, we activate the option **Imperfection load cases** to **Consider** the imperfections for the generation of combinations. When the check box is ticked, the following dialog box opens.

We tick the check box in the table column **Use** so that LC4 can be taken into account.
Then, we activate the function **Subject to specific load cases** in the dialog section **Options**. Two more table columns will be enabled where we click into the field **Only with Load Cases**. A button [...] appears at the field end which we can use to access the dialog box **Select Load Cases**. We select **LC4 Wind in +Y**. In this way, RFEM will consider imperfections only in combinations which include wind load cases.

We confirm the dialog boxes shown in Figure 6.6 with [OK].

In the dialog section **Settings** of the initial dialog box, we **Reduce number of generated combinations** by taking into account only **Leading variable actions**. When we tick the option, another tab is enabled in the dialog box.

In the tab **Reduce - Leading Actions**, we clear the check box for action **A3** because we want to superimpose the Snow load case as secondary variable load only. Thus, the number of generated combinations will be reduced.

Before we close the dialog box **Edit Load Cases and Combinations** with [OK], we make sure that the option **Generate additionally Either/Or result combination** in the **General** tab is checked as well. This result combination provides the extreme values from the results of all load combinations (envelope).

RFEM creates the action combinations. When we click table tab 2.4 **Action Combinations** and return to table 2.3, the column **Generated Action Combinations** informs us that 13 combinations were created.
6.3 Creating Action Combinations

RFEM creates automatically 13 action combinations (see Figure 6.8) which are listed and sorted by actions in table 2.4 Action Combinations.

This overview corresponds to the presentation of actions described in the standards. By ticking the check box in the Use column we can define the action combinations which will be considered for the generation of load combinations. Because we have applied action \(Q_s \) (snow) to be an accompanying variable action only, we can now see that corresponding action combinations where action \(Q_s \) is the leading one are disabled.

6.4 Creating Load Combinations

15 load combinations are automatically created from the nine relevant action combinations (see Figure 6.9). The result is listed in the subsequent table 2.5 Load Combinations.

Table columns D to M inform us about load cases including respective partial safety and combination factors.

Imperfections are contained, according to our specifications, only in combinations with wind actions \(Q_w \).
We use the navigator context menu shown on the left to open the dialog box *Edit Load Cases and Combinations* where we want to look at the created load combinations.

![Context menu Load Combinations](image)

When we select the *Existing Load Combinations* one after the other in the list, we can see all load cases together with the respective partial safety and combination factors displayed in the dialog section to the right. Load cases which act as *Leading* within the combination are identified by a check mark.

To access the partial safety and combination factors, we use the [Details] button.

![Dialog box Coefficients, tab Partial Safety Coefficients](image)
Furthermore, we can use the Calculation Parameters tab to check the specifications applied by RFEM for the calculation of different load combinations.

![Figure 6.13: Checking the Calculation Parameters of a load combination](image)

Basically, load combinations are analyzed non-linearly according to the Method of Analysis for Second-order analysis.
6 Combination of Actions

6.5 Checking Result Combinations

When we defined the combination expressions, we activated the option *Generate additionally Either/Or result combination* (see Figure 6.5, page 68) giving us information about the extreme values of all load combinations.

RFEM generates a results envelope from the load combinations. The definition criterion can be checked in the final tab of the dialog box *Edit Load Cases and Combinations* as well as in table 2.6 *Result Combinations*.

Figure 6.14: Dialog box *Edit Load Cases and Combinations*, tab *Result Combinations*

All load combinations are superimposed with factor 1.00 and the criterion *Permanent*. They all are assigned to group 1, which means that they act alternatively.

Now, the superposition criteria is completely defined. We can save the input with the [Save] button.
7 Calculation

7. Calculation

7.1 Checking Input Data

Before we calculate the model, we want RFEM to check our input. To open the corresponding dialog box, we select **Plausibility Check** on the **Tools** menu.

The dialog box **Plausibility Check** opens where we define the following settings.

![Figure 7.1: Dialog box Plausibility Check](image)

If no error is detected after clicking [OK], a corresponding message is displayed, including summary of model and load data.

![Figure 7.2: Result of plausibility check](image)

We find more tools for checking the input by selecting **Model Check** on the **Tools** menu.
7.2 Generating FE Mesh

Generate the FE mesh
As we have ticked the option Generate FE mesh in the dialog box Plausibility Check (see Figure 7.1), we have automatically generated a mesh with the standard mesh size of 50 cm. (We can modify the preset mesh size by selecting FE Mesh Settings on the Calculate menu.)

![Figure 7.3: Model with generated FE mesh](image)

Create a FE mesh refinement
We define refinement areas for both ends of the downstand beam to generate a finer FE mesh.

We double-click node 3 to open the dialog box Edit Node. We change to the tab FE Mesh where we tick the check box of the option Available (see Figure 7.4).

Since we have not yet defined any type of FE mesh refinement, the dialog box New FE-Mesh Refinement opens automatically.

It is not necessary to modify the default settings Node - circular as well as the proposed Parameters. The FE mesh will be deleted after confirming both dialog boxes with [OK].

A refinement area represented as spherical form is displayed on the selected node.
Now, we have to transfer the FE mesh refinement to the second end node of the downstand beam. In the Data navigator, we double-click entry \(1 \) listed below the FE Mesh Refinements to access the dialog box Edit FE-Mesh Refinement.

We click the [Pick] button in the dialog section Node No. to select the second node of the rib graphically in the work window.

We close all dialog boxes with [OK].
We create the mesh once again by selecting **Generate FE Mesh** in the **Calculate** menu.

Then, we check the refinement areas.

![Figure 7.6: FE mesh with refinement areas](image)

7.3 Calculating Model

To start the calculation,

we select **Calculate All** on the **Calculate** menu or use the toolbar button shown on the left.

![Figure 7.7: Calculation process](image)
8. Results

8.1 Graphical Results

As soon as the calculation is complete, RFEM shows the deformations of the active load case.

Selecting load cases and load combinations

We can use the toolbar buttons [◀] and [▶] (to the right of the load case list) to change among the results of load cases, load combinations and result combinations. We already know those buttons from checking the load cases. It is also possible to select a specific load case or combination in the list.
Selecting results in the navigator

A new navigator has appeared, managing all result types for the graphical display. We can access the Results navigator when the results display is active. We can switch the results display on and off in the Display navigator, but we can also use the toolbar button [Show Results] shown on the left.

![Results navigator](image)

Figure 8.3: Results navigator

We can see check boxes placed in front of each result category (for example Global Deformations, Members, Surfaces, Support Reactions). When we tick a box, we see the corresponding deformation or internal force displayed in RFEM. In front of the entries listed in the categories we see even more check boxes by which we can set the type of results to be displayed.

Finally, we can browse the single load cases and load combinations. The variety of result categories allows us to display deformations, internal forces of members and surfaces as well as stresses or support forces.

The figure below shows the member internal forces M_z and the surface internal forces m_y calculated for CO13. To display the forces, it is recommended to use the wire-frame model. We can set this display option with the button shown on the left.
Display of values

The color scale in the control panel informs us about the assignment of color ranges. Moreover, we can switch on the result values for particular locations by ticking the option **Values on Surfaces** in the **Results** navigator. To display all values of the FE mesh nodes or grid points, we deactivate the option **Extreme Values** additionally.
8 Results

8.2 Results Tables

We can evaluate results also in the tables.

Table display

The results tables are displayed automatically as soon as the structure is calculated. Like for the numerical input we see various tables with results. Table 4.0 *Summary* offers us a summary of the calculation process, sorted by load cases and combinations.

![Table 4.0 Summary](image)

To select other tables, we click their table tabs. To find specific results in the table, for example the internal forces of the floor slab, we set table 4.14 *Surfaces - Basic Internal Forces*. Now, we select the surface in the graphic (setting the *Solid Transparent Display Model* makes our selection easier), and we see that RFEM jumps to the surface's basic internal forces in the table. The current grid point, that means the position of the pointer in the table row, is indicated by a marking arrow in the graphic.

![Surface internal forces in table 4.14 and marker of current grid point in the model](image)

Like the browsing function in the main toolbar we can use the buttons [▲] and [▼] to select the load cases in the table. We can also use the list in the table toolbar to set a particular load case.
8 Results

Adjust the results grid

The surface results shown in the tables are listed in the grid points that are defined for the surface. The results grid, like the FE mesh, has a default mesh width of 50 cm.

To refine the grid for the result values of surface 1, we double-click the floor slab in the work window (or the relevant entry in the Data navigator). Then, in the dialog box Edit Surface, we change settings in the Grid tab: We select 25 cm for both b and h as new distance of the grid points.

Figure 8.8: Changing the grid for result values

When we click [OK], RFEM updates the result values in the table. A recalculation is not required because the grid point results are determined from the values available in the FE nodes.

Figure 8.9: Result values of surface 1 with refined grid
8.3 Filtering Results

RFEM offers us different ways and tools by which we can represent and evaluate results in clearly-structured overviews. We can use these tools also for our example.

8.3.1 Visibilities

We have already worked with visibilities when we entered the steel frame (see chapter 4.5.1, page 31). Those visibility functions are also useful when evaluating the results.

Show results for concrete columns

We set the Views tab in the navigator. We select Members by Cross-Section listed under the visibilities that RFEM has Generated from the entered data. In addition, we tick the check box for Circle 300 and activate the option User-defined / generated on top of the navigator.

Adjusting the scaling factor

In order to check the diagram of internal forces on the rendered model without difficulty, we scale the data display in the control tab of the panel. We change the factor for Member diagrams to 2 (see figure above).
Show results for floor slab

In the same way, we can filter also surface results in the Views navigator. We clear the check box for *Members by Cross-Section* and select *Surfaces by Geometry* where we tick the check box of the entry *Plane*.

Now, when we change the result type with the button [Deformation] available in the toolbar, we see the following RFEM display.

As already described, we can change the display of result types (deformations, internal forces, stresses etc.) in the *Results* navigator (see Figure 8.3, page 79).
Show deformations of steel construction

Now, in the Views navigator, we clear the check box of Surfaces by Geometry, and then we select Members by Material where we tick the check box for Steel S 235.

The graphic shows us the steel construction's deformations displayed as lines.

It is also possible to display the deformations of cross-sections: We switch to the Display navigator where we select Results, Deformation, Members and Cross-sections Colored.

With the panel button [Options] we can additionally activate the option Smooth color transition.

RFEM does not display any deformations of the L cross-section, for example in CO13. We have defined this member to be a tension member. However, the deformation shows us that compression forces are occurring. They result in failure of the diagonals, which means that this member is not effective within the system.
8.3.2 Results on Objects

Another possibility to filter results is using the filter tab of the control panel where we can specify numbers of particular members or surfaces to display their results exclusively. In contrast to the visibility function, the model will be displayed completely in the graphic.

First, we deactivate the option *User-defined / generated* in the Views navigator.

![Figure 8.14: Resetting the overall view in the Views navigator](image)

Then, in the Results navigator, we select the axial forces N of members. We can deactivate the results of *Surfaces*.

![Figure 8.15: Display settings for member axial forces N](image)
Special selection

To display only the axial forces of columns, we select all members in vertical position. RFEM offers special selection options available in a dialog box. To open the dialog box, we select Select on the Edit menu, and then we click Special, or we use the toolbar button shown on the left.

We select the category Members and the option Parallel to member.

![Special Selection dialog box](image)

Figure 8.16: Selecting parallel members

Then, we use the [Pick] function to select one of the column members in the work window. After closing the dialog boxes with [OK], all members in vertical position are selected.
Show axial forces of columns

In the panel, we change to the filter tab where we activate the setting *Members*.

We click the button [Import from Selection] and see that the numbers of all column members have been entered into the input field above. The axial forces of the rib as well as of the horizontal beams and purlin members disappear in the graphic.

![Figure 8.17: Axial forces of members](image)

8.3.3 Range of Values

With the color scale tab of the panel we can filter results by result values.

First, in the *Results* navigator, we remove the check mark of the member results. Then, we set the basic internal forces n_x of surfaces for display. In this case, the forces are axial forces acting in direction of the local surface axis x. The axis x of the curved wall surface points downwards.

![Figure 8.18: Setting basic internal forces n_x for display](image)
Looking at the wall surface, we can see high compressive forces occurring near the upper arc end nodes. In CO13 for example, they are introduced by both steel columns and across the rib. The high values are indicating singularity effects.

To cut these result peaks for the evaluation, we switch into the color scale tab of the panel. We double-click the color spectrum (not the values!) and open the dialog box *Edit Isoband Value and Color Spectra*.

![Figure 8.19: Changing extreme value for display and [Fill]ing the value spectrum](image)

We reduce the extreme value of the compression forces as shown in the figure above, for example for CO13 (-1200 kN/m instead of -5705.30 kN/m). Finally, we subdivide the value spectrum into equal ranges between top and bottom limit value by clicking the button [Fill].

After clicking [OK] the force distribution is more differentiated. Now, the zone where lifting forces are occurring is clearly visible. Locations of singularities not covered by the color scale are represented without color.

![Figure 8.20: Distribution of wall axial forces with adjusted value spectrum (adapted peaks, compression and tension zone)](image)
8 Results

8.4 Display of Result Diagrams

We can evaluate results also in a diagram available for lines, members, line supports and sections (see chapter 8.5). Now, we use this function to look at the result diagram of the downstand beam.

We right-click member 3 (when we have problems we can switch off the surface results) and select the option Result Diagrams.

A new window opens displaying the result diagrams of the rib member.

In the navigator, we tick the check boxes for the global deformations \(u\) and the internal forces \(M_y\) and \(V-L\). The last option represents the longitudinal shear force between surface and member. These forces are displayed when the button [Results with Ribs Component] is set active in the toolbar. When we click the button to turn it on and off, we can clearly see the difference between pure member internal forces and rib internal forces with integration components from the surfaces.

To adjust the size of the displayed result diagrams, we use the buttons \([+]\) and \([-]\).

The buttons \([\downarrow]\) and \([\uparrow]\) for load case selection are also available in the result diagram window. But we can also use the list to set the results of a load case.

We quit the function Result Diagrams by closing the window.
8.5 Creating Section

The evaluation is made easier by user-defined sections defined as planes slicing through the model. The navigator manages all sections as independent objects.

To create a new section,

we select **Section** on the **Insert** menu

or we use the section context menu in the **Data** navigator.

![Context menu Sections in Data navigator](image)

The dialog box **New Section** opens where we enter the **Section Name Center** because we want to define the section along the plate center.

Then, we define the edge points of the section graphically by using the [Pick] function: We click the midpoint of line 1 (global coordinates 0.000/3.000/0.000), and then we select arc node 5.

![Defining the section](image)

We accept the remaining presets and confirm the dialog box with [OK].
The familiar Result Diagram window appears. In the navigator, we tick the check boxes for the global deformations u and the basic internal forces m_x and n_x. The results of the surfaces $S1$ and $S2$ caught by the section are displayed continuously on a line.

We [Close] the Result Diagram window. Now, we see the section as well displayed in the RFEM work window where we set the basic internal forces m_x.

We switch off the surface results to display only the diagrams of the section (see Figure 8.26).

With the filled display option for sections available in the Display navigator we can highlight the moment diagram in the model.
Figure 8.26: Showing the section in the model
9. Documentation

9.1 Creating Printout Report

It is not recommended to send the complex results output of an FE calculation directly to the printer. Therefore, RFEM generates a print preview first, which is called “printout report” containing input and results data. We use this report to determine the data that we want to include in the printout. Moreover, we can add graphics, descriptions or scans.

To open the printout report,

we select **Open Printout Report** on the **File** menu

or we use the button shown on the left. A dialog box appears where we can specify a **Template** as sample for the new printout report.

![New Printout Report Dialog Box](image1)

We accept template 1 - *Input data and reduced results* and generate the print preview with [OK].

![Print Preview in Printout Report](image2)
9.2 Adjusting the Printout Report

The printout report has a navigator, too, listing the selected chapters. By clicking a navigator entry we can see its contents displayed in the window to the right.

The preset contents can be specified in detail. To adjust the output of internal forces, we right-click chapter Results - Result Combinations. Then we click Selection in the context menu.

A dialog box appears, offering detailed selection options for RC results of members (see figure below).

![Figure 9.3: Context menu Members - Internal Forces](image-url)
We place the pointer in table cell 4.6 Members - Internal Forces (see figure above). The button [...] becomes active which opens the dialog box Details - Internal Forces by Member. Now, we reduce the output to the **Extreme values** of the member internal forces N, V_z, M_y, and M_z.

After confirming the dialog boxes, RFEM adjusts the output of internal forces accordingly.
In the same way, we can adjust all remaining chapters for the printout.

To change the position of a chapter within the printout report, we move it to the new position by using the drag-and-drop function. When we want to delete a chapter, we use the context menu (see Figure 9.3) or the [Del] key on the keyboard.

9.3 Inserting Graphics in Printout Report

Generally, graphics illustrating the documentation are included in the printout.

Printing deformation graphics

We close the printout report with the [X] button. The program asks us *Do you want to save the printout report?* We confirm this query and return to the work window of RFEM.

In the work window, we set the deconations of **RC1 - Ultimate limit state**. Furthermore, we deactivate the Sections in the Results navigator.

RFEM provides two results for each result combination, the maximum and minimum extreme values. Both values are displayed at the same time in the graphic. For our printed graphic we reset the display to show only the **Max-values**.

![Figure 9.6: Showing the maximum deformation results of RC1](image)

Now, we transfer this graphical representation to the printout report. We select **Print Graphic** on the File menu or we use the toolbar button shown on the left.

The dialog box **Graphic Printout** appears (see figure below).
We set the print parameters as shown in Figure 9.7. We do not need to modify the default settings of the dialog tabs Options and Color Spectrum.

We click [OK] to print the deformation graphic into the printout report. The graphic appears at the end of chapter Results - Load Cases, Load Combinations.

Printing result diagrams

Finally, we want to document the distribution of internal forces available in a steel purlin. We close the printout report again by using the button [X].
Back in the RFEM work window, we right-click member 11 (purlin on high eaves). The member’s context menu opens (see page 90) where we select the option Result Diagrams to access the result diagram.

The window shows the result diagrams of RC1. For our printout we tick only the check boxes of the internal forces V_z and M_y. The result diagram shows us the Max and Min Values.

With the [Print] button we open the dialog box Graphic Printout. We can keep the default settings of the tab General. In the Options tab, we change some settings.

We transfer the graphic to the printout report with [OK].
Changing the language in the printout report

The language in the printout report can be selected independently of the language that is set for the RFEM user interface. Thus, we are able to create for example a German printout report in the English version. To activate the function,

we select Language on the Settings menu of the printout report.

In the dialog box Languages, we set German (or another language) as new language. We can check the corresponding modifications in the print preview when we click [OK].

User-defined entries such as load case descriptions or comments won’t be translated.
9 Documentation

Printing the printout report
When the printout report is completely prepared, we can send it to the printer by using the [Print] button.

The PDF print device integrated in RFEM makes it possible to put out report data as PDF file. To activate this function,

we select Export to PDF on the File menu.

In the Windows dialog box Save As, we enter file name and storage location.

By clicking the [Save] button we create a PDF file with bookmarks facilitating the navigation in the digital document.

Figure 9.13: German printout report as PDF file with bookmarks
10. Outlook

Now, we have reached the end of our example. We hope that this tutorial helps you to get started with RFEM and makes you curious to discover more of the program functions. You find the detail program description in the RFEM manual available as download on our website at www.dlubal.com/downloading-manuals.aspx.

With the Help menu or the [F1] key it is possible to open the program's online help system where you can search for particular terms like in the manual. The help system is based on the RFEM manual.

Finally, if you have any questions, you are welcome to use our free fax and e-mail hotline or to have a look at the FAQ page at www.dlubal.com.

Note: This example can be carried out with the demo versions of the add-on modules, for example for steel and reinforced concrete design (RF-STEEL Members, RF-CONCRETE Surfaces/Members, RF-STABILITY etc.). To comply with the programs' demo restrictions, we suggest to replace objects: For example in RF-STEEL EC3, you can replace the beam by a cross-section IPE 300. In this way, you will be able to perform the design, getting an insight into the functionality of the add-on modules. Then, you can evaluate the design results in the RFEM work window.