Add-on Module

RSMOVE

Load Case Generation from Moving Loads

Program Description

Version
March 2011

All rights, including those of translations, are reserved.
No portion of this book may be reproduced – mechanically, electronically, or by any other means, including photocopying – without written permission of ING.-SOFTWARE DLUBAL.

© Ing.-Software Dlubal
Am Zellweg 2 D-93464 Tiefenbach
Tel.: +49 (0) 9673 9203-0
Fax: +49 (0) 9673 9203-51
E-mail: info@dlubal.com
Web: www.dlubal.com
Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Add-on Module RSMOVE</td>
<td>4</td>
</tr>
<tr>
<td>1.2 RSMOVE Team</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Using the Manual</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Open the Add-on Module RSMOVE</td>
<td>6</td>
</tr>
<tr>
<td>2. Input Data</td>
<td>7</td>
</tr>
<tr>
<td>2.1 General Data</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Moving Loads</td>
<td>10</td>
</tr>
<tr>
<td>3. Generation</td>
<td>14</td>
</tr>
<tr>
<td>3.1 Starting the Generation</td>
<td>14</td>
</tr>
<tr>
<td>3.2 Checking the Results</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Adding Load Positions</td>
<td>16</td>
</tr>
<tr>
<td>3.4 Examples</td>
<td>17</td>
</tr>
<tr>
<td>3.4.1 Set of Members</td>
<td>17</td>
</tr>
<tr>
<td>3.4.2 Bridge</td>
<td>18</td>
</tr>
<tr>
<td>3.4.3 General Functions</td>
<td>19</td>
</tr>
<tr>
<td>3.4.4 RSMOVE Generation Cases</td>
<td>19</td>
</tr>
<tr>
<td>3.4.5 Units and Decimal Places</td>
<td>21</td>
</tr>
<tr>
<td>3.4.6 Data Export</td>
<td>21</td>
</tr>
<tr>
<td>A. Index</td>
<td>23</td>
</tr>
</tbody>
</table>
1. Introduction

1.1 Add-on Module RSMOVE

RSMOVE is one of the numerous add-on modules of the RSTAB program family. The program facilitates the generation of load cases determined from the various positions of moving loads. These loads can be relevant in different fields, for example crane loads or vehicle loads on bridge constructions.

The RSTAB program concept does not include the direct analysis of influence lines. However, RSMOVE allows for modeling such type of lines.

The individual load positions of a moving load can be defined easily in the add-on module RSMOVE. You only need to specify the load parameters (such as type of load, space between load positions) and the moving distance. During the process of load case generation, it is also possible to create the enveloping load combination resulting from the single load positions.

RSMOVE offers you sophisticated control parameters for the load generation. Various types of loads, for example, can be applied parallel as well as offset to sets of members or added to already defined loads of existing RSTAB load cases.

All load specifications can be saved in the library to make them available for further structures.

The table input can be exported directly to MS Excel or OpenOffice.org Calc for further use or storage.

Like other add-on modules, RSMOVE is completely integrated in RSTAB. Thus, the program is not only an integral part of the main program in its appearance.

We hope you will enjoy working with RSMOVE.

Your team from Ing.-Software Dlubal
1.2 RSMOVE Team

The following people were involved in the development of RSMOVE:

Program coordination
Dipl.-Ing. Georg Dlubal
Dipl.-Ing. (FH) Younes El Frem

Programming
Ing. Ondřej Šašinka

Program design, dialog figures and icons
Dipl.-Ing. Georg Dlubal
MgA. Robert Kolouch

Program supervision
Ing. Tomáš Ferencz

Manual, help system and translation
Dipl.-Ing. (FH) Robert Vogl
Ing. Dmitry Byströv
Jan Jeřábek
Ing. Ladislav Kábrt
Mgr. Michaela Kryšková
Dipl.-Ing. (FH) Alexander Meierhofer
M.Eng. Dipl.-Ing. (FH) Walter Rustler
Dipl.-Ing. (FH) Walter Fröhlich
Dipl.-Ing. (FH) Andreas Wopperer

Technical support and quality management
Dipl.-Ing. (BA) Markus Baumgärtel
Dipl.-Ing. (BA) Sandy Baumgärtel
Dipl.-Ing. (FH) Steffen Clauß
Dipl.-Ing. (FH) Matthias Entenmann
Dipl.-Ing. Frank Faulstich
Dipl.-Ing. (FH) René Flori
Dipl.-Ing. (FH) Stefan Frenzel
Dipl.-Ing. (FH) Walter Fröhlich
Dipl.-Ing. (FH) Andreas Hörold
Dipl.-Ing. (FH) Andreas Wopperer
Dipl.-Ing. (FH) Bastian Kuhn
M.Sc. Dipl.-Ing. Frank Lobisch
Dipl.-Ing. (FH) Alexander Meierhofer
M.Eng. Dipl.-Ing. (BA) Andreas Niemeier
Dipl.-Ing. (FH) Walter Rustler
Dipl.-Ing. (FH) Christian Stautner
Dipl.-Ing. (FH) Robert Vogl
Dipl.-Ing. (FH) Andreas Wopperer
Dipl.-Ing. (FH) Bastian Kuhn
M.Sc. Dipl.-Ing. Frank Lobisch
Dipl.-Ing. (FH) Alexander Meierhofer
M.Eng. Dipl.-Ing. (BA) Andreas Niemeier
Dipl.-Ing. (FH) Walter Rustler
Dipl.-Ing. (FH) Christian Stautner
Dipl.-Ing. (FH) Robert Vogl
Dipl.-Ing. (FH) Andreas Wopperer

1.3 Using the Manual

Topics like installation, graphical user interface, results evaluation and printout are described in detail in the manual of the main program RSTAB. The present manual focuses on typical features of the RSMOVE add-on module.

The descriptions in this manual follow the sequence and the structure of the module tables. The text of the manual shows the described buttons in square brackets, for example [New]. At the same time, they are pictured on the left. Expressions appearing in dialog boxes, tables and menus are set in italics to clarify the explanations.

At the end of the manual, you find the index. However, if you don’t find what you are looking for, please check our website www.dlubal.com where you can go through our FAQ pages by selecting particular criteria.
1.4 Open the Add-on Module RSMOVE

RSTAB provides the following options to start the add-on module RSMOVE.

Menu

To start the program in the menu bar, point to **Others** on the **Additional Modules** menu, and then select **RSMOVE**.

![Figure 1.1: Menu: Additional Modules → Others → RSMOVE](image)

Navigator

To start RSMOVE in the **Data** navigator, open the **Additional Modules** folder and select **RSMOVE Members**.

![Figure 1.2: Data navigator: Additional Modules → RSMOVE Members](image)
2. **Input Data**

All data required for the definition of design cases is entered in tables. The [Pick] button allows for a graphical selection of the relevant members or sets of members.

When you have started the add-on module, a new window opens where a navigator is displayed on the left, managing all available tables. The pull-down list above the navigator contains the generation cases (see chapter 4.1, page 19).

If you open RSMOVE in an RSTAB structure for the first time, the module will import the following data automatically:

- Members and sets of members
- Load cases and load combinations

To select a table, click the corresponding entry in the RSMOVE navigator or page through the tables by using the buttons shown on the left. You can also use the function keys [F2] and [F3] to select the previous or subsequent table.

Click [OK] to save the entered data and quit the add-on module RSMOVE. When you click [Cancel], you quit the module but without saving the data.

The data in RSMOVE is entered in two input tables. As the results of the load case generation will be transferred directly to RSTAB, RSMOVE requires no result tables.
2.1 General Data

In table 1.1 General Data, you define the relevant sets of members as well as important parameters for the generation of load cases.

![Image](image_url)

Sets of Members

The Members to which moving loads are applied can be defined manually by entering the member numbers. To select the objects graphically in the RSTAB work window, use the buttons [Pick Member(s)] or [Pick Continuous Members].

In case no set of member has yet been defined in RSTAB, you can create a new set of members in the add-on module RSMOVE by using the [New] button. The dialog box New Set of Members appears where you can specify further data. Please note that only Continuous Members are allowed for defining the member set type: It is not possible to assign moving loads to branching groups of members.

Furthermore, you have to take care that the members in the set of members are connected to one another. Therefore, groups of members or unconnected members are not accepted in the Members No. list. The member orientation, however, has no relevance for the load generation.

Use the [Delete] button to remove a set of members from the list. In case you have defined several sets of members for the application of parallel moving loads (see below), you first have to select the set of members that you want to delete by means of the [▼] button in the list in order to set it active.

When you click the button [Reverse Orientation], the program arranges the members contained in the set of members in reverse order. In this way, you can set the moving loads to be running along the set of members in the opposite direction.
The two [Pick] buttons for Add Set of Members have a special meaning. They are not used for a new definition of an RSTAB set of members, but for adding a set of members to the RSMOVE list Members No. in terms of a new row in the list. In this way, it is possible that the same moving load runs parallel or simultaneously along different sets of members. A second or subsequent set of members can be defined graphically.

The individual sets of members for which loads are generated can be displayed in the list by means of the [▼] button. Find an example with several sets of members described in chapter 3.3.

The Length refers to the longest set of all sets of members defined in the Members No. list.

In the input field First Load at, you enter the first position of the load. It describes the distance of the first load position from the first node of the first member.

The Increment defines the (same) spacing between the individual load positions.

A moving load starting to enter the runway of a set of members can be modeled by a negative start value. In the table section below, RSMOVE provides an Option to determine additionally that the Moving Loads Run over End of Set of Members.

Based on the length of the set of members and the increment, RSMOVE determines the Number of Generated Load Cases indicating how many load positions are possible. RSTAB allows for 9,999 load cases.

Start Generation with

In this table section, you enter the No. that you want to use for the first generated load case. The subsequent load positions of a generation case will receive load case numbers in ascending order.

Based on the different load cases, RSMOVE creates a load combination where the load cases are superimposed with the 'Or' setting as acting alternatively. The number of this enveloping load combination must be defined in the No. input field.

In case you enter load case or combination numbers that already exist in RSTAB, additional selection fields and check boxes are activated (see Figure 2.1): For load cases you decide whether RSMOVE will Overwrite the existing load cases or Add Loads that have been generated. For load combinations the program offers you only the Overwrite option. If the check box is not ticked, RSMOVE won't generate a new combination.

RSTAB allows for 9,999 respectively for load cases and load combinations.

Generated LC Will Be Combined as

The two options define the type of load case superposition in the generated load combination. The Permanent combination takes into account the individual load cases as permanent actions. The Conditional setting considers the load cases only when the results have an unfavorable effect on the values of the internal forces and deformations.

The load cases resulting from the individual load positions are always linked with the 'Or' criterion, this means that they are mutually exclusive.

For 2nd and Following Sets of Members

This table section is only active if several sets of members have been defined (see above). For the second set of members, and further sets of members where applicable, you can specify the First Load at and the Load Proportion Compared to 1st Members Set in order to compensate for example an unbalance in the model or load distribution.
2 Input Data

Option
With the check box Moving Loads Run over End of Set of Members, you can control how far the load runs along the set of members: If the check box is ticked, which means that the load exceeds the end of the set of members (linear load, N forces of a bridge), RSMOVE takes into account the portion of the loading which is still on the set of members. If you clear the check box, RSMOVE generates the final load case when all loads are still on the set of members (concentrated loads of a crane runway).

Comment
In this input field, you can enter user-defined notes describing in detail, for example, the parameters applied to the current RSMOVE generation case.

2.2 Moving Loads
In the second input table, you enter the moving loads row by row. Thus, you can define several moving loads to be acting simultaneously in one RSMOVE case. Subsequent to the generation, RSMOVE exports each load position, that may consist of several loads, as separate load case to RSTAB. The numbering runs in ascending order according to the data specified for Start Generation with Load Case No. in the previous input table.

Table 1.2 Moving Loads contains all data specifying the type, distribution, direction and length of the load. The input can be edited by using the common keyboard functions, for example deleting the active table row (where the cursor is placed) with [Ctrl] + [Y] (see RSTAB manual, chapter 4.4.8)

To modify the units and decimal places of lengths and loads, select Units and Decimal Places in the module’s Settings menu (see chapter 4.2, page 21).
2 Input Data

Load Type

In table column A, you define the load to be either a *Force* or a *Moment*. Click into the input field to activate the \(\text{▼} \) button. Use this button to select the corresponding entry from the list. You can also use the function key [F7] to open the list.

The load type can be defined also directly by entering the letter F (for force) or M (for moment).

It depends on your selection which headings are shown in the subsequent table columns and which graphics are displayed in the lower table section.

Load Distribution

Eight different load types are available for selection by means of the list. Each load specification is represented graphically in the left picture in the lower table section.

The following table describes the load distributions in detail. The loads refer to the load type ‘Force’.

<table>
<thead>
<tr>
<th>Load distribution</th>
<th>Load specification</th>
<th>Description</th>
</tr>
</thead>
</table>
| Single load | ![Image](image1.png) | Single force, concentrated moment
The *Load Parameters* to be entered in the table are the size of the concentrated load or moment and the load distance from the moving start. |
| Linear load | ![Image](image2.png) | Uniformly distributed load, uniformly distributed moment
The *Load Parameters* to be entered in the table are the size of the linear load or moment as well as the distances of the linear load’s beginning and end from the moving start. |
| Trapezoidal load | ![Image](image3.png) | Trapezoidal load, trapezoidal moment
In case of a linearly variable load distribution, the *Load Parameters* to be entered are the two load values as well as the distances of the trapezoidal load’s beginning and end from the moving start. |
| Left endless | ![Image](image4.png) | Uniformly distributed load, uniformly distributed moment
This type of load distribution allows you to apply a uniform load for each load position until the start of the member set is reached (see example in chapter 3.4.2).
The *Load Parameters* to be entered in the table are the size of the linear load or moment as well as the distance of the right load edge from the moving start. |
2 Input Data

Right endless
![Image](right_endless.png)

Uniformly distributed load, uniformly distributed moment

This load is used to apply a uniform load to the end of the member set for each load position. The **Load Parameters** to be entered in the table are the size of the linear load or moment as well as the distance of the left load edge from the moving start.

N forces
![Image](n_forces.png)

Single forces, concentrated moments

Single loads that are equal in size are acting in a uniform spacing. The **Load Parameters** to be entered are the load value, the distance of the first load from the moving start as well as the spacing between the single loads among each other.

Uneven pair
![Image](uneven_pair.png)

Single forces, concentrated moments

Two single loads that are unequal in size are running along the set of members. The **Load Parameters** to be entered in the table are the two load values and their distances from the moving start.

2 x even pairs
![Image](two_even_pairs.png)

Single forces, concentrated moments

Two load pairs with single loads that are equal in size are running along the set of members, for example axle loads. The **Load Parameters** to be defined are the load value, the distance of the first load from the moving start, the spacing between the single loads of a force pair as well as the spacing between the force pairs themselves.

<table>
<thead>
<tr>
<th>Load Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table column C offers you the possibility to choose from eight different load directions. Click into the input field to activate the [▼] button. Use this button to select the corresponding entry from the list. You can also use the function key [F7] to open the list. The load's direction of action is represented in the picture at the bottom right. The load can be effective in Local direction of the member axes x, y, z or u, v, and in the Global direction of the axes X, Y, Z. The local axis x is represented by the longitudinal member axis, the y- or u-axis represents the 'strong' axis. Accordingly, the z- or v-axis represents the 'weak' axis of the member cross-section. If the load acts in direction of an axis of the global coordinate system X, Y, Z, the orientation of the local member axes is irrelevant for applying loads.</td>
</tr>
</tbody>
</table>
Load Length
In case the load is not acting perpendicular to the member, the load impact can be related to different reference lengths. The reference length can be selected in the list available in column D. You can check the impact specification in the interactive graphic at the bottom right.

The load can be applied to the entire True length on member. Alternatively, the application length of the load is Projected, that means it is converted to the projection of the member in one of the directions of the global coordinate systems.

Load Parameters
In the table columns E to H, you enter the load values and spacings. The input settings depend on the load distribution selected in column B, the input fields are labeled accordingly. The load pictures in the lower table section facilitate the input of the various parameters.

Load P₁ / P₂
The size of the load is entered in the two table columns. The signs are resulting from the global or local axis directions. In case of a trapezoidal load or an uneven load pair, you have to enter two load values.

Distance A / B / X
The input field A defines the distance of the load from the moving start. Linear and trapezoidal loads require additionally the specification of the distance B from the moving start describing the propagation length of the load. In case of multiaxial single loads, B indicates the spacing between the individual loads (see Table 2.1, page 12).

Comment
In this input field, you can enter user-defined notes describing in detail, for example, the load defined in the current table row.

Save and import load specifications
The loads defined in table 1.2 can be saved as load specification in order to use the input data also in other structures. The two buttons below the table are reserved for the following functions:

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image]</td>
<td>Save As Loads</td>
<td>Saves all loads defined in the table</td>
</tr>
<tr>
<td>![Image]</td>
<td>Read Loads</td>
<td>Imports a saved load specification</td>
</tr>
</tbody>
</table>

Table 2.2: Buttons in table 1.2 Moving Loads
The two buttons open the dialog boxes Save Loads and Read Loads where you can specify the corresponding data.
3. Generation

This chapter describes how the load cases and load combinations are generated and how these loads can be synchronized, if required, with the RSTAB load data.

3.1 Starting the Generation

Before you start the generation, it is recommended to [Check] the input data by using the button shown on the left. If no input error is detected, the following message will be displayed:

![Message after successful check](image)

The button [Generate] is available in both RSMOVE input tables. Use this button to generate the load cases and load combinations for RSTAB. It is not possible to start the generation of RSMOVE load cases out of the graphical RSTAB user interface.

Subsequent to the successful generation, a window appears showing the numbers of the new load cases and combinations for information.

![Message after generation](image)

Thus, the generation of load cases and load combinations is complete.

When you have created several RSMOVE cases, you have to perform the generation for each RSMOVE case separately.
3.2 Checking the Results

The add-on module RSMOVE does not display any results tables when the generation is done. You can check the created load cases including loads in RSTAB.

Quit RSMOVE by clicking the [OK] button to return to the RSTAB user interface where you have the following options to check the generated load cases:

- **Data navigator:** Loads → Load Cases
- **Toolbar:** Loads and/or Results list
- **File menu:** → Structure Data

The descriptions of the moving loads are deduced automatically from the respective load increment number. You can replace them, if necessary, by your own descriptions in the general data of the load cases.

The loads that have been generated in the individual load cases can be checked as usual in RSTAB by means of the graphic, the edit dialog boxes or in table 2.2 *Member Loads*.

![Figure 3.3: Generated load cases in Data navigator, list and dialog box](image)

![Figure 3.4: Table 2.2 Member Loads with generated moving loads](image)
3 Generation

The generated load combination can be checked as well in the Data navigator or in the CO tab of the dialog box Structure Data (File menu → Structure Data).

3.3 Adding Load Positions

It is possible to apply moving loads simultaneously as parallel loads to different sets of members (for example crane runway), or to link existing RSTAB loads with RSMOVE generation results.

Add a set of members

When moving loads are running simultaneously across several sets of members, they can be managed together in one load case for generation - provided that the loads are comparable in their size and impact. This RSMOVE feature can be used in particular for crane girders with parallel running loads on both hall sides.

The sets of members stressed by simultaneously running loads are defined in the RSMOVE input table 1.1 General Data, section Sets of Members. If the first set of member is defined, click one of the [Pick] buttons shown on the left to select the members or the continuous members for the second set of members graphically in the RSTAB work window.

With this selection, you add another set of members to the RSMOVE list Members No. in the form of a new row. The individual sets of members can be displayed in the list by means of the [▼] button.

If the loads are running offset, for example because of an unbalance in the structural model, you can specify the First Load at for the second set of members deviating from the moving start of the first member set in the table section below. In addition, it is possible to scale the loads of the second set of members by specifying a Load Proportion factor in order to model an eccentricity (see figure above).
Complete RSTAB loads

The generated loads can be edited like normal loads in the RSTAB load cases. They can also be completed by further loads.

Vice versa, RSTAB loads that have already been defined can be completed by generated loads: In RSMOVE, table 1.1 General Data, section Start Generation with, enter the number of the relevant RSTAB load case as start number. A selection field will be displayed where you decide whether the data of the load case and all subsequent load cases will be overwritten or added to the existing ones.

3.4 Examples

3.4.1 Set of Members

A concentrated load runs along the structure shown below. Depending on the definition of the set of members, the load is moving in completely different ways.

In table 1.1 General Data, the following input is entered in the Members No. list.

<table>
<thead>
<tr>
<th>Members No.</th>
<th>Runway of moving load</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6,1</td>
<td>The load moves from node 1 along member 1, 2, 3 etc. to member 6 and returns along member 1 to node 1.</td>
</tr>
<tr>
<td>1,6-2,1</td>
<td>The load moves from node 1 to node 2, runs along member 6, 5, 4 etc. and returns to node 1.</td>
</tr>
<tr>
<td>1,2,4,5</td>
<td>The load runs simultaneously along the member sets 1, 2 and 4, 5. The second set of members 4, 5 must be defined separately by using the [Pick] button.</td>
</tr>
</tbody>
</table>

Table 3.1: Definitions for sets of members in table 1.1 General Data
3.4.2 Bridge

A vehicle load moves along a bridge represented by a set of members. At the same time, the set of members is stressed by a traffic surface load, corresponding to a linear load of 5 kN/m. The linear load is not applied where the vehicle load is moving.

![Figure 3.8: Bridge with vehicle load and traffic load p = 5 kN/m](image)

To define the starting settings for the figure above, enter the following data in both RMOVE tables, considering an increment assumed with 1.50 m.

![Figure 3.9: Table 1.1 General Data](image)

![Figure 3.10: Table 1.2 Moving Loads](image)

The load entering the runway of the continuous members is represented by the negative value for the moving start. Thus, a pure linear load is created as the first load case on the set of members. In the second load case, the first single load stands exactly above the support, as shown in the sketch above. The linear load is only effective in a distance of 1.50 m to the right.

In load case 4 with x = -1.50 m, the final of the three single loads appears above the support. The uniform load ‘Left Endless’ is effective for the first time in load case 6 with x = 1.50 m as the left single load is now in a distance of 3.0 m from the support.
4. General Functions

This chapter describes some menu functions as well as export options for the generation cases.

4.1 RSMOVE Generation Cases

You can group members or load specifications in separate generation cases. It is no problem to use the same set of members in different generation cases. However, please concentrate on the assigned start numbers of load cases and load combinations as well as the corresponding generation options to avoid accidental overwriting.

Create a new RSMOVE case

To create a new generation case,

select New Case on the File menu in the RSMOVE add-on module.

The following dialog box appears.

Figure 4.1: Dialog box New RSMOVE Members-Case

In this dialog box, enter a No. (which is not yet assigned) and a Description for the new generation case. When you click [OK], table 1.1 General Data opens where you can enter the new parameters.

Rename an RSMOVE case

To change the description of a generation case subsequently,

select Rename Case on the File menu in the RSMOVE add-on module.

The dialog box Rename RSMOVE Members-Case appears.

Figure 4.2: Dialog box Rename RSMOVE Members-Case
4 General Functions

Copy an RSMOVE case

To copy the input data of the current generation case, select **Copy Case** on the **File** menu in the RSMOVE add-on module.

The dialog box **Copy RSMOVE Members-Case** appears where you can specify the number and description of the new case.

![Figure 4.3: Dialog box Copy RSMOVE Members-Case](image)

Delete an RSMOVE case

To delete a generation case, select **Delete Case** on the **File** menu in the RSMOVE add-on module.

In the dialog box **Delete Cases**, you can select the relevant generation case in the **Available Cases** list to delete it by clicking [OK].

![Figure 4.4: Dialog box Delete Cases](image)
4 General Functions

4.2 Units and Decimal Places

The units and decimal places for RSTAB and all add-on modules are managed in one global
dialog box. In the add-on module RSMOVE, you can use the menu to define the units. To
open the corresponding dialog box,

select Units and Decimal Places on the Settings menu.

The following dialog box opens, which you already know from RSTAB. The add-on module
RSMOVE is preset.

![Dialog box Units and Decimal Places](image)

The settings can be saved as user profile to reuse them in other structures. The correspond-
ing functions are described in the RSTAB manual, chapter 11.6.2, page 336.

4.3 Data Export

Data of the generation results is exported primarily in direction of the main program RSTAB
where the load cases and combinations are created, which can be adjusted, added or com-
bined with further loadings. With some restrictions, it is also possible to prepare data from
RSMOVE directly for other programs.

Clipboard

To copy cells selected in table 1.2 Moving Loads to the clipboard, use the keyboard keys
[Ctrl]+[C]. To insert the cells, for example in a word processing program, press [Ctrl]+[V].
The headers of the table columns won't be transferred.

Printout report

Data from RSMOVE is not integrated in the printout report, but you can export the load
cases and combinations generated in RSTAB. To use the corresponding report function,

select Export to RTF File or BauText on the File menu.
4 General Functions

The function is described in detail in the RSTAB manual, chapter 10.1.11, page 239.

Excel / OpenOffice

RSMOVE provides a function for the direct data export to MS Excel, OpenOffice.org Calc or the file format CSV. To open the corresponding dialog box, select Export Tables on the File menu in the RSMOVE add-on module.

The following export dialog box appears.

![Figure 4.6: Dialog box Export - MS Excel](image)

According to the program concept, only table 1.2 Moving Loads is relevant for the export. Start the data export by clicking the [OK] button. Excel or OpenOffice will be started automatically. It is not necessary to run the programs in the background.

![Figure 4.7: Result in MS Excel, table 1.2 Moving Loads](image)
A Index

A
Add a load ... 17
Add loads .. 16
Axle loads .. 12

C
Comment ... 10, 13
CSV export ... 22

D
Data export ... 21
Decimal places ... 10, 21
Direction .. 12
Distance ... 11, 13
Distribution ... 11

E
Endless ... 11, 18
Entering the runway 9, 18
Excel .. 22
Export ... 21

F
First load at ... 9
Force pair .. 12

G
General data ... 8
Generation case ... 19, 20

I
Increment .. 9
Influence lines ... 4
Installation ... 5

L
Length ... 9, 13
Linear load .. 11
Load case .. 9
Load combination .. 9
Load direction ... 12
Load distribution .. 11
Load factor ... 16
Load parameters ... 12, 13
Load type .. 11

M
Member .. 8
Member loads ... 15
Member orientation 8
Moving loads ... 10
Moving start ... 16

N
N forces .. 12
Navigator ... 7

O
OpenOffice ... 22
Overwrite load case 17

P
Pair .. 12
Parallel load ... 16

Q
Quit RSMOVE .. 7

R
Results ... 15
RSMOVE case ... 19
Run over end ... 10

S
Save load specification 13
Selecting tables ... 7
Set of members .. 8, 9, 16
Single load .. 11
Start generation ... 14
Start program ... 6
Start RSMOVE ... 6

T
Tables ... 7
Trapezoidal load 11

U
Uniformly distributed load 11
Units ... 10, 21
User profile .. 21