Program: RFEM 5

Category: Geometrically Linear Analysis, Orthotropic Plasticity, Plate, Solid

Verification Example: 0011 – Tapered Timber Beam in Plasticity

0011 - Tapered Timber Beam in Plasticity

Description

A timber beam, reinforced by two steel plates at its ends, is loaded by the pressure p and supported according to the **Figure 1**. Wood fibres (direction of E_x) are parallel to the upper loaded side of the beam. The plastic surface is described according to the Tsai-Wu plasticity theory using strengths below. The problem is described by the following set of parameters.

Material	Steel	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.300	_
	Timber	Modulus of Elasticity	E _x	12000.000	MPa
			$E_y = E_z$	400	MPa
		Poisson's Ratios	$\nu_{\rm yz}=\nu_{\rm xz}=\nu_{\rm xy}$	0.000	_
		Shear Modulus	G _{yz}	200.000	MPa
			$G_{xz} = G_{xy}$	700.000	MPa
		Tensile Plastic Strength	$f_{t,x} = f_{t,z}$	24.000	MPa
			f _{t,y}	16.971	MPa
		Compressive Plastic Strength	$f_{c,x} = f_{c,z}$	24.000	MPa
			f _{c,y}	16.971	MPa
		Shear Plastic Strength	$f_{v,xz} = f_{v,xy}$	2.700	MPa
			f _{v,yz}	1.000	MPa
Geometry	Timber	Length	L	10.000	m
		Thickness	t	0.120	m
		Left Side Height	h_1	0.600	m
		Right Side Height	h_1	1.200	m
	Steel Plates	Width	Ь	0.010	m
Load		Pressure	p	0.300	MPa

Small deformations are considered and the self-weight is neglected in this example. Determine the maximum deflection $u_{z,max}$ and the stress σ_x at the test point.

Verification Example

Verification Example: 0011 – Tapered Timber Beam in Plasticity

Figure 1: Problem sketch

Analytical Solution

Analytical solution is not available for this example.

RFEM 5 Settings

- Modeled in RFEM 5.16.01
- The element size is $I_{\rm FE} = 0.060$ m
- Geometrically linear analysis is considered
- The number of increments is 10

Results

Structure File	Entity	Material model	
0011.01	Solid	Orthotropic Plastic 3D	
0011.02	Plate	Orthotropic Plastic 2D	

Linear Elasticity Results: $u_{z,max}$ [mm]			
RFEM 5 (Solid)	RFEM 5 (Plate)		
-68.515	68.520		

ANSYS 15 (SOLID45, 3D)*	RFEM 5 (Orthotropic Plastic 3D)		RFEM 5 (Orthotropic Plastic 2D)		
u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]	u _{z,max} [mm]	Ratio [-]	
-82.252	-86.515	1.052	-86.035	1.046	

ANSYS 15 (SOLID45, 3D)*	RFEM 5 (Orthoti	ropic Plastic 3D)	RFEM 5 (Orthotropic Plastic 2D)		
σ_{x} [MPa]	σ_{x} [MPa]	Ratio [-]	σ_{x} [MPa]	Ratio [-]	
21.468	21.297	0.992	24.000	1.118	

* Remark: Numerical solution in ANSYS 15 was carried out by the company Designtec s.r.o.

