Program: RFEM 5

Category: Geometrically Linear Analysis, Isotropic Nonlinear Elasticity, Plate, Solid

Verification Example: 0014 – Loaded Plastic Beams with Decaying Stress-Strain Curve

0014 – Loaded Plastic Beams with Decaying Stress-Strain Curve

Description

Four columns with width d, depth d, height h and distance d between them are oriented in the direction of the *z*-axis. They are fixed at the bottom and connected by the rigid block at the top. Block is loaded by the pressure p in the *z*-direction and modeled by an elastic material with high modulus of elasticity E_r . Outer columns are modeled by linear elastic material and inner columns by a stress-strain diagram with the decaying dependence for $\varepsilon > \varepsilon_0$, where the limit is set to $\varepsilon_0 = 0.005$. The stress-strain curves for each material and the overall stress-strain curve are depicted on **Figure 1**. Assuming only small deformations theory and neglecting structure's self-weight, determine its maximum deflection.

Material	Columns	Modulus of	r.	50.000	C De
		Elasticity	<i>E</i> ₁	50.000	GPa
		Poisson's Ratio	ν	0.000	_
	Inner Columns - Stress-Strain Curve	Modulus of Elasticity of the 2nd branch	E ₂	40.000	GPa
		Strain Limit	ε_0	0.005	_
	Block	Modulus of Elasticity	E _r	20000.000	GPa
		Poisson's Ratio	ν	0.000	-
Geometry	Column	Height	h	1.000	m
		Depth Width Distance	d	0.100	m
	Block	Height Depth	d	0.100	m
		Width	7d	0.700	m
Load		Pressure	p	0.158	GPa

Analytical solution

Linear Analysis

Applying Hook's law and assuming that the acting loading will be divided equally to the each column, simple formula for the maximum deflection can be derived:

Verification Example: 0014 – Loaded Plastic Beams with Decaying Stress-Strain Curve

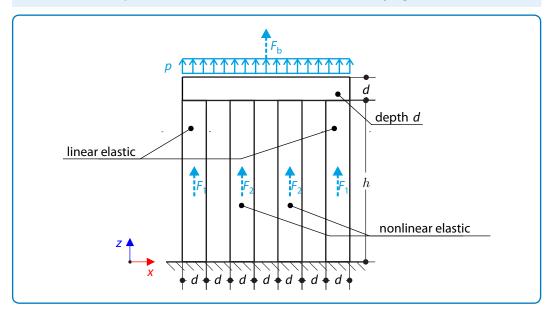


Figure 1: Problem sketch

$$u_{z,\max} = \varepsilon h = \frac{\sigma_{\text{column}}}{E_1} h = \frac{A_{\text{block}}}{A_{\text{column}}} \frac{ph}{4E_1} = \frac{7ph}{4E_1} = 5.530 \text{ mm}$$
(14 - 1)

where A_{block} and A_{column} is cross section of block and one column respectively.

Nonlinear Analysis

The maximum deflection of the structure can be obtained by the following formula:

$$u_{z,\max} = \varepsilon h \tag{14-2}$$

where ε is the total strain of structure, which can be derived from the condition of force equilibrium:

$$2(F_1 + F_2) = F_b \tag{14-3}$$

where $F_{\rm b}$ is the force acting on the block due to the applied pressure:

$$F_{\rm b} = 7d^2p \tag{14-4}$$

and F_1 , F_2 are forces acting on the outer and inner column respectively:

$$F_1 = E_1 \varepsilon d^2 \tag{14-5}$$

$$F_2 = \left[(E_1 + E_2)\varepsilon_0 - E_2\varepsilon \right] d^2 \tag{14-6}$$

Verification Example: 0014 – Loaded Plastic Beams with Decaying Stress-Strain Curve

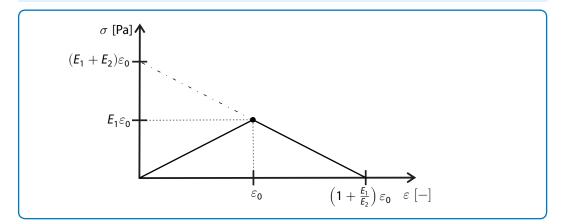


Figure 2: Material stress-strain curve

Substituting the equations (14 - 4) - (14 - 6) into the equation (14 - 3), formula for the total strain of the structure can be derived:

$$\varepsilon = \left[\frac{7p}{2} - (E_1 + E_2)\varepsilon_0\right] \frac{1}{E_1 - E_2} \tag{14-7}$$

The maximum deflection of the structure can be finally obtained by substituting into the equation (14 - 2):

$$u_{z,\max} = \left[\frac{7p}{2} - (E_1 + E_2)\varepsilon_0\right] \frac{h}{E_1 - E_2} = 10.300 \text{ mm}$$
 (14 - 8)

RFEM 5 Settings

- Modeled in version RFEM 5.05.0030
- The element size is $I_{\rm FE} = 0.050$ m
- Geometrically linear analysis is considered
- The number of increments is 1
- The Mindlin plate theory is used
- Nonsymmetric direct solver is used

Results

Structure File	Entity	Material Model
0014.01	Solid	Isotropic Nonlinear Elastic 2D/3D
0014.02	Plate	Isotropic Nonlinear Elastic 2D/3D
0014.03	Solid	Isotropic Linear Elastic
0014.04	Plate	Isotropic Linear Elastic

Verification Example: 0014 – Loaded Plastic Beams with Decaying Stress-Strain Curve

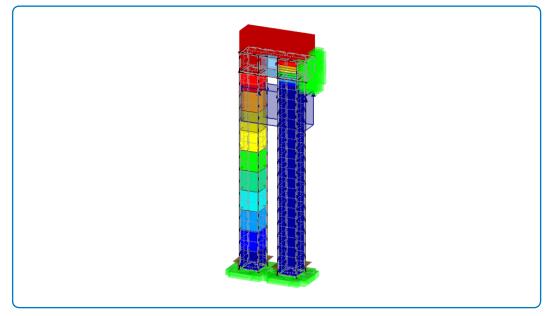


Figure 3: Model in RFEM 5

Linear Analysis

Analytical	RFEM 5		RFEM 5	
Solution	(Solid - Isotropic Linear Elastic)		(Plate - Isotropic Linear Elastic)	
u _{z,max}	u _{z,max}	Ratio	u _{z,max}	Ratio
[mm]	[mm]	[-]	[mm]	[-]
5.530	5.530	1.000	5.530	1.000

Nonlinear Analysis

Analytical Solution	RFEM 5 (Solid - Isotropic Nonlinear Elastic 2D/3D)		RFEM 5 (Plate - Isotropic Nonlinear Elastic 2D/3D)		
u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]	u _{z,max} [mm]	Ratio [-]	
10.300	10.300	1.000	10.300	1.000	