Program: RFEM 5

Category: Geometrically Linear Analysis, Isotropic Nonlinear Elasticity, Isotropic Plasticity, Member, Plate

Verification Example: 0018 – Plastic Bending - Tapered Cantilever

0018 – Plastic Bending - Tapered Cantilever

Description

A tapered cantilever is fully fixed on the left end (x = 0) and subjected to a continuous load q according to the **Figure 1**. Small deformations are considered and the self-weight is neglected in this example. Determine the maximum deflection $u_{z,max}$. The problem is described by the following set of parameters.

Material	Elastic-Plastic	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.000	_
		Shear Modulus	G	105000.000	MPa
		Plastic Strength	f _y	240.000	MPa
Geometry	Cantilever	Length	L	4.000	m
		Width	W	0.005	m
		Left Side Height	h_1	0.250	m
		Right Side Height	h_2	0.150	m
Load		Continuous Load	q	2300.000	Nm ⁻¹

Figure 1: Problem sketch

Analytical Solution

This is more complex variant of the verification example 0006. The tapered cantilever is considered in this case. The function of the cantilever height h(x) is following

Verification Example: 0018 – Plastic Bending - Tapered Cantilever

$$h(\mathbf{x}) = h_1 + \frac{\mathbf{x}}{L}(h_2 - h_1) \tag{18-1}$$

The bending moment *M* for the plate under continuous loading *q* is defined as

$$M = -\frac{q(L-x)^2}{2}$$
(18-2)

Linear Analysis

Considering linear analysis (only elasticity) the maximum deflection of the structure can be calculated as follows:

$$u_{z,\max} = \int_{0}^{L} \frac{q(L-x)^{3}}{2EI_{y}(x)} dx = 71.614 \text{ mm}$$
(18 - 3)

Nonlinear Analysis

The quantities of the load are discussed at first. The maximum bending moment obviously occurs on the fully fixed end. The moment $M_{\rm e}$ when the first yield occurs and the ultimate moment $M_{\rm p}$ when the structure becomes plastic hinge are calculated as follows

$$M_{\rm e} = 2 \int_{0}^{h_1/2} \sigma(z) z w \, \mathrm{d}z = 2 \int_{0}^{h_1/2} \frac{2f_{\rm y}}{t} z^2 w \, \mathrm{d}z = \frac{f_{\rm y} w h_1^2}{6} = 12.500 \, \mathrm{kNm} \tag{18-4}$$

$$M_{\rm p} = 2 \int_{0}^{h_1/2} \sigma(z) z w \, \mathrm{d}z = 2 \int_{0}^{h_1/2} f_y z w \, \mathrm{d}z = \frac{f_y w h_1^2}{4} = 18.750 \, \mathrm{kNm} \tag{18-5}$$

The corresponding continuous load q_e and q_p then results

$$q_{\rm e} = \frac{2M_{\rm e}}{L^2} = 2.344 \,\rm Nmm^{-1}$$
 (18 - 6)

$$q_{\rm p} = \frac{2M_{\rm p}}{L^2} = 1.563 \,\rm Nmm^{-1}$$
 (18 - 7)

It is obvious that the continuous load *q* causes the elastic-plastic state of the plate according to the **Figure 1**. The bending stress is defined according to the following formula

$$\sigma_{\mathbf{x}}(\mathbf{x}, \mathbf{z}) = -\kappa(\mathbf{x})\mathbf{E}\mathbf{z} \tag{18-8}$$

where $\kappa(x)$ is the curvature defined as $\kappa(x) = d^2 u_z/dx^2$ [1]. The elastic-plastic zone length is described by the parameter x_p according to the **Figure 1**. The bending stress quantity on the

Verification Example: 0018 – Plastic Bending - Tapered Cantilever

surface (z = -h(x)/2) equals to the plastic strength f_y at the point $x = x_p$, see **Figure 2**. The curvature at this point can be calculated according to the formula

$$\kappa(\mathbf{x}_{p}) = \frac{2f_{y}}{Eh(\mathbf{x}_{p})}$$
(18 - 9)

Figure 2: Bending stress distribution

The elastic-plastic moment at the point $x = x_p$ is then

$$M_{\rm ep}(x_{\rm p}) = \int_{-h(x_{\rm p})/2}^{h(x_{\rm p})/2} \sigma_x(x_{\rm p}, z) zw \, dz = 2 \int_{0}^{h(x_{\rm p})/2} -\frac{2f_y}{h(x_{\rm p})} z^2 w \, dz = -\frac{f_y w [h(x_{\rm p})]^2}{6}$$
(18-10)

The elastic-plastic moment $M_{ep}(x_p)$ (internal force) has to equal to the bending moment $M(x_p)$ (external force).

$$-\frac{f_{\rm y}w[h(x_{\rm p})]^2}{6} = -\frac{q(L-x_{\rm p})^2}{2} \tag{18-11}$$

The elastic-plastic zone length x_p results from this equality as follows

$$x_{p} = \frac{L - h_{1}\sqrt{\frac{f_{y}w}{3q}}}{1 + \frac{h_{2} - h_{1}}{L}\sqrt{\frac{f_{y}w}{3q}}} = 1048.915 \text{ mm}$$
(18 - 12)

The curvature $\kappa_{\rm e}$ in the elastic zone ($x > x_{\rm p}$) is described by the Bernoulli-Euler formula

$$\kappa_{\rm e} = -\frac{M}{E I_y(x)} = \frac{q(L-x)^2}{2E I_y(x)}$$
 (18-13)

where $I_y(x)$ is the quadratic moment of the cross-section to the *y*-axis, which is dependent on the coordinate *x* thanks to the variable height $h(x)^1$. The cross-section in the elastic-plastic state is divided into the elastic core and the plastic surface, which is described by the parameter z_p according to the **Figure 2**.

 $I_{y} = \frac{1}{12}wh^{3}(x)$

Verification Example: 0018 – Plastic Bending - Tapered Cantilever

$$z_{\rm p} = \frac{f_{\rm y}}{\kappa_{\rm p}(x)E} \tag{18-14}$$

The elastic-plastic moment M_{ep} of the cross-section in the elastic-plastic state has to equal to the bending moment M.

$$M_{\rm ep}(x) = 2 \int_{0}^{z_{\rm p}} -\kappa_{\rm p}(x) Ez^{2} w \, dz + 2 \int_{z_{\rm p}}^{h(x)/2} -f_{\rm y} z w \, dz = -\frac{q(L-x)^{2}}{2}$$
(18-15)

The curvature $\kappa_{\rm p}$ in the elastic-plastic zone ($x < x_{\rm p}$) results from this equality.

$$\kappa_{\rm p} = \frac{2f_{\rm y}}{E\sqrt{3}} \frac{1}{\sqrt{h(x)^2 - \frac{2q(L-x)^2}{wf_{\rm y}}}}$$
(18 - 16)

The total deflection of the structure $u_{z,\max}$ is defined as a superposition of the elastic-plastic and the elastic contribution using the Mohr's integral

$$u_{z,\max} = \int_{0}^{x_{p}} \kappa_{p}(L-x) dx + \int_{x_{p}}^{L} \kappa_{e}(L-x) dx = 27.908 + 58.091 = 85.999 \text{ mm}$$
(18 - 17)

RFEM 5 Settings

- Modeled in RFEM 5.16.01
- The element size is I_{FE} = 0.020 m for files 0018.01 0018.03 and I_{FE} = 0.005 m for files 0018.04 and 0018.05
- Geometrically linear analysis is considered
- The number of increments is 10
- Shear stiffness of the members is neglected

Results

Structure File	Entity	Material model	Description
0018.01	Member	Isotropic Plastic 1D	-
0018.02	Plate	lsotropic Nonlinear Elastic 2D	-
0018.03	Plate	Isotropic Plastic 2D/3D	-
0018.04	Plate	Isotropic Nonlinear Elastic 2D	Variable Thickness
0018.05	Plate	Isotropic Plastic 2D/3D	Variable Thickness
0018.06	Member	Nonlinear Elastic 1D	-

Verification Example: 0018 – Plastic Bending - Tapered Cantilever							
Model	Analytical Solution	RFEM 5					
	u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]				
Isotropic Plastic 1D		86.215	1.003				
lsotropic Nonlinear Elastic 2D, Plate		86.566	1.007				
lsotropic Plastic 2D/3D, Plate		84.142	0.978				
Isotropic Nonlinear Elastic 2D, Plate, Vari- able Thickness	85.999	83.728	0.974				
lsotropic Plastic 2D/3D, Plate, Vari- able Thickness		83.088	0.966				
lsotropic Nonlinear Elastic 1D		86.215	1.003				

References

[1] LUBLINER, J. *Plasticity theory*. Berkeley: University of California, 1990.

