Program: RFEM 5
Category: Geometrically Linear Analysis, Isotropic Nonlinear Elasticity, Isotropic Plasticity, Member, Plate

Verification Example: 0018 - Plastic Bending - Tapered Cantilever

0018 - Plastic Bending - Tapered Cantilever

Description

A tapered cantilever is fully fixed on the left end $(x=0)$ and subjected to a continuous load q according to the Figure 1. Small deformations are considered and the self-weight is neglected in this example. Determine the maximum deflection $u_{z, \max }$. The problem is described by the following set of parameters.

Material	Elastic-Plastic	Modulus of Elasticity	E	210000.000	MPa
		Poisson's Ratio	ν	0.000	-
		Shear Modulus	G	105000.000	MPa
		Plastic Strength	f_{y}	240.000	MPa
Geometry	Cantilever	Length	L	4.000	m
		Width	w	0.005	m
		Left Side Height	h_{1}	0.250	m
		Right Side Height	h_{2}	0.150	m
Load		Continuous Load	q	2300.000	Nm^{-1}

Figure 1: Problem sketch

Analytical Solution

This is more complex variant of the verification example 0006. The tapered cantilever is considered in this case. The function of the cantilever height $h(x)$ is following

Verification Example: 0018 - Plastic Bending - Tapered Cantilever

$$
\begin{equation*}
h(x)=h_{1}+\frac{x}{L}\left(h_{2}-h_{1}\right) \tag{18-1}
\end{equation*}
$$

The bending moment M for the plate under continuous loading q is defined as

$$
\begin{equation*}
M=-\frac{q(L-x)^{2}}{2} \tag{18-2}
\end{equation*}
$$

Linear Analysis

Considering linear analysis (only elasticity) the maximum deflection of the structure can be calculated as follows:

$$
\begin{equation*}
u_{z, \max }=\int_{0}^{L} \frac{q(L-x)^{3}}{2 E I_{y}(x)} \mathrm{d} x=71.614 \mathrm{~mm} \tag{18-3}
\end{equation*}
$$

Nonlinear Analysis

The quantities of the load are discussed at first. The maximum bending moment obviously occurs on the fully fixed end. The moment M_{e} when the first yield occurs and the ultimate moment M_{p} when the structure becomes plastic hinge are calculated as follows

$$
\begin{align*}
& M_{\mathrm{e}}=2 \int_{0}^{h_{1} / 2} \sigma(z) z w \mathrm{~d} z=2 \int_{0}^{h_{1} / 2} \frac{2 f_{\mathrm{y}}}{t} z^{2} w \mathrm{~d} z=\frac{f_{\mathrm{y}} w h_{1}^{2}}{6}=12.500 \mathrm{kNm} \tag{18-4}\\
& M_{\mathrm{p}}=2 \int_{0}^{h_{1} / 2} \sigma(z) z w \mathrm{~d} z=2 \int_{0}^{h_{1} / 2} f_{\mathrm{y}} z w \mathrm{~d} z=\frac{f_{\mathrm{y}} w h_{1}^{2}}{4}=18.750 \mathrm{kNm} \tag{18-5}
\end{align*}
$$

The corresponding continuous load q_{e} and q_{p} then results

$$
\begin{equation*}
q_{\mathrm{e}}=\frac{2 M_{\mathrm{e}}}{L^{2}}=2.344 \mathrm{Nmm}^{-1} \tag{18-6}
\end{equation*}
$$

$$
\begin{equation*}
q_{\mathrm{p}}=\frac{2 M_{\mathrm{p}}}{L^{2}}=1.563 \mathrm{Nmm}^{-1} \tag{18-7}
\end{equation*}
$$

It is obvious that the continuous load q causes the elastic-plastic state of the plate according to the Figure 1. The bending stress is defined according to the following formula

$$
\begin{equation*}
\sigma_{x}(x, z)=-\kappa(x) E z \tag{18-8}
\end{equation*}
$$

where $\kappa(x)$ is the curvature defined as $\kappa(x)=\mathrm{d}^{2} u_{z} / \mathrm{d} x^{2}$ [1]. The elastic-plastic zone length is described by the parameter x_{p} according to the Figure 1. The bending stress quantity on the

Verification Example: 0018 - Plastic Bending - Tapered Cantilever

surface $(z=-h(x) / 2)$ equals to the plastic strength f_{y} at the point $x=x_{p}$, see Figure 2. The curvature at this point can be calculated according to the formula

$$
\begin{equation*}
\kappa\left(x_{\mathrm{p}}\right)=\frac{2 f_{\mathrm{y}}}{\operatorname{Eh}\left(x_{\mathrm{p}}\right)} \tag{18-9}
\end{equation*}
$$

Figure 2: Bending stress distribution
The elastic-plastic moment at the point $x=x_{\mathrm{p}}$ is then

$$
\begin{equation*}
M_{\mathrm{ep}}\left(x_{\mathrm{p}}\right)=\int_{-h\left(x_{\mathrm{p}}\right) / 2}^{h\left(x_{\mathrm{p}}\right) / 2} \sigma_{x}\left(x_{\mathrm{p}}, z\right) z w \mathrm{~d} z=2 \int_{0}^{h\left(x_{\mathrm{p}}\right) / 2}-\frac{2 f_{\mathrm{y}}}{h\left(x_{\mathrm{p}}\right)} z^{2} w \mathrm{~d} z=-\frac{f_{\mathrm{y}} w\left[h\left(x_{\mathrm{p}}\right)\right]^{2}}{6} \tag{18-10}
\end{equation*}
$$

The elastic-plastic moment $M_{\mathrm{ep}}\left(x_{\mathrm{p}}\right)$ (internal force) has to equal to the bending moment $M\left(x_{\mathrm{p}}\right)$ (external force).

$$
\begin{equation*}
-\frac{f_{y} w\left[h\left(x_{p}\right)\right]^{2}}{6}=-\frac{q\left(L-x_{p}\right)^{2}}{2} \tag{18-11}
\end{equation*}
$$

The elastic-plastic zone length x_{p} results from this equality as follows

$$
\begin{equation*}
x_{\mathrm{p}}=\frac{L-h_{1} \sqrt{\frac{f_{\mathrm{y}} w}{3 q}}}{1+\frac{h_{2}-h_{1}}{L} \sqrt{\frac{f_{\mathrm{y}} w}{3 q}}}=1048.915 \mathrm{~mm} \tag{18-12}
\end{equation*}
$$

The curvature κ_{e} in the elastic zone $\left(x>x_{\mathrm{p}}\right)$ is described by the Bernoulli-Euler formula

$$
\begin{equation*}
\kappa_{\mathrm{e}}=-\frac{M}{E I_{y}(x)}=\frac{q(L-x)^{2}}{2 E I_{y}(x)} \tag{18-13}
\end{equation*}
$$

where $I_{y}(x)$ is the quadratic moment of the cross-section to the y-axis, which is dependent on the coordinate x thanks to the variable height $h(x)^{1}$. The cross-section in the elastic-plastic state is divided into the elastic core and the plastic surface, which is described by the parameter z_{p} according to the Figure 2.

[^0]
Verification Example: 0018 - Plastic Bending - Tapered Cantilever

$$
\begin{equation*}
z_{\mathrm{p}}=\frac{f_{\mathrm{y}}}{\kappa_{\mathrm{p}}(x) E} \tag{18-14}
\end{equation*}
$$

The elastic-plastic moment M_{ep} of the cross-section in the elastic-plastic state has to equal to the bending moment M.

$$
M_{\mathrm{ep}}(x)=2 \int_{0}^{z_{\mathrm{p}}}-\kappa_{\mathrm{p}}(x) E z^{2} w d z+2 \int_{z_{\mathrm{p}}}^{h(x) / 2}-f_{\mathrm{y}} z w \mathrm{~d} z=-\frac{q(L-x)^{2}}{2}
$$

The curvature κ_{p} in the elastic-plastic zone ($x<x_{\mathrm{p}}$) results from this equality.

$$
\begin{equation*}
\kappa_{\mathrm{p}}=\frac{2 f_{\mathrm{y}}}{E \sqrt{3}} \frac{1}{\sqrt{h(x)^{2}-\frac{2 q(L-x)^{2}}{w f_{\mathrm{y}}}}} \tag{18-16}
\end{equation*}
$$

The total deflection of the structure $u_{z, \text { max }}$ is defined as a superposition of the elastic-plastic and the elastic contribution using the Mohr's integral

$$
u_{z, \max }=\int_{0}^{x_{\mathrm{p}}} \kappa_{\mathrm{p}}(L-x) \mathrm{d} x+\int_{x_{\mathrm{p}}}^{L} \kappa_{\mathrm{e}}(L-x) \mathrm{d} x=27.908+58.091=85.999 \mathrm{~mm} \quad(18-17)
$$

RFEM 5 Settings

- Modeled in RFEM 5.16.01
- The element size is $I_{\mathrm{FE}}=0.020 \mathrm{~m}$ for files $0018.01-0018.03$ and $I_{\mathrm{FE}}=0.005 \mathrm{~m}$ for files 0018.04 and 0018.05
- Geometrically linear analysis is considered
- The number of increments is 10
- Shear stiffness of the members is neglected

Results

Structure File	Entity	Material model	Description
0018.01	Member	Isotropic Plastic 1D	-
0018.02	Plate	Isotropic Nonlinear Elastic 2D	-
0018.03	Plate	Isotropic Plastic 2D/3D	-
0018.04	Plate	Isotropic Nonlinear Elastic 2D	Variable Thickness
0018.05	Plate	Isotropic Plastic 2D/3D	Variable Thickness
0018.06	Member	Nonlinear Elastic 1D	-

Verification Example: 0018 - Plastic Bending - Tapered Cantilever

Model	Analytical Solution	RFEM 5	
	$\begin{aligned} & u_{z, \max } \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{aligned} & u_{z, \max } \\ & {[\mathrm{~mm}]} \end{aligned}$	Ratio [-]
Isotropic Plastic 1D	85.999	86.215	1.003
Isotropic Nonlinear Elastic 2D, Plate		86.566	1.007
Isotropic Plastic 2D/3D, Plate		84.142	0.978
Isotropic Nonlinear Elastic 2D, Plate, Variable Thickness		83.728	0.974
Isotropic Plastic 2D/3D, Plate, Variable Thickness		83.088	0.966
Isotropic Nonlinear Elastic 1D		86.215	1.003

References

[1] LUBLINER, J. Plasticity theory. Berkeley: University of California, 1990.

[^0]: ${ }^{1} I_{y}=\frac{1}{12} w h^{3}(x)$

