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0018 – 1

0018 – Plastic Bending - Tapered Cantilever

Description

A tapered cantilever is fully fixed on the left end (x = 0) and subjected to a continuous load q
according to the Figure 1. Small deformations are considered and the self-weight is neglected
in this example. Determine the maximum deflection uz,max. The problem is described by the
following set of parameters.

Material Elastic-Plastic Modulus of
Elasticity

E 210000.000 MPa

Poisson's
Ratio

𝜈 0.000 −

Shear
Modulus

G 105000.000 MPa

Plastic
Strength

fy 240.000 MPa

Geometry Cantilever Length L 4.000 m

Width w 0.005 m

Left Side
Height

ℎ1 0.250 m

Right Side
Height

ℎ2 0.150 m

Load Continuous
Load

q 2300.000 Nm-1

ℎ1 ℎ2

widthw

plastic zone

xp
L

q

x

z

Figure 1: Problem sketch

Analytical Solution

This ismore complex variant of the verification example 0006. The tapered cantilever is considered
in this case. The function of the cantilever height ℎ(x) is following
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ℎ(x) = ℎ1 +
x
L

(ℎ2 − ℎ1) (18 – 1)

The bending momentM for the plate under continuous loading q is defined as

M = −
q(L − x)2

2
(18 – 2)

Linear Analysis

Considering linear analysis (only elasticity) the maximum deflection of the structure can be calcu-
lated as follows:

uz,max =
L

∫
0

q(L − x)3
2EIy(x)

dx = 71.614 mm (18 – 3)

Nonlinear Analysis

The quantities of the load are discussed at first. The maximum bending moment obviously occurs
on the fully fixed end. The momentMe when the first yield occurs and the ultimate momentMp

when the structure becomes plastic hinge are calculated as follows

Me = 2

ℎ1/2

∫
0

𝜎(z)zw dz = 2

ℎ1/2

∫
0

2fy
t
z2w dz =

fywℎ2
1

6
= 12.500 kNm (18 – 4)

Mp = 2

ℎ1/2

∫
0

𝜎(z)zw dz = 2

ℎ1/2

∫
0

fyzw dz =
fywℎ2

1

4
= 18.750 kNm (18 – 5)

The corresponding continuous load qe and qp then results

qe =
2Me

L2
= 2.344 Nmm−1 (18 – 6)

qp =
2Mp

L2
= 1.563 Nmm−1 (18 – 7)

It is obvious that the continuous load q causes the elastic-plastic state of the plate according to
the Figure 1. The bending stress is defined according to the following formula

𝜎x(x, z) = −𝜅(x)Ez (18 – 8)

where 𝜅(x) is the curvature defined as 𝜅(x) = d2uz/dx2 [1]. The elastic-plastic zone length is
described by the parameter xp according to the Figure 1. The bending stress quantity on the
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surface (z = −ℎ(x)/2) equals to the plastic strength fy at the point x = xp, see Figure 2. The
curvature at this point can be calculated according to the formula

𝜅(xp) =
2fy

Eℎ(xp)
(18 – 9)

x

z
fy fyzp

𝜎x 𝜎x 𝜎x

x < xp x = xp x > xp

Figure 2: Bending stress distribution

The elastic-plastic moment at the point x = xp is then

Mep(xp) =

ℎ(xp)/2

∫
−ℎ(xp)/2

𝜎x(xp, z)zw dz = 2

ℎ(xp)/2

∫
0

−
2fy

ℎ(xp)
z2w dz = −

fyw[ℎ(xp)]2

6
(18 – 10)

The elastic-plastic momentMep(xp) (internal force) has to equal to the bending momentM(xp)
(external force).

−
fyw[ℎ(xp)]2

6
= −

q(L − xp)2

2
(18 – 11)

The elastic-plastic zone length xp results from this equality as follows

xp =
L − ℎ1

√ fyw
3q

1 + ℎ2 − ℎ1
L

√ fyw
3q

= 1048.915 mm (18 – 12)

The curvature 𝜅e in the elastic zone (x > xp) is described by the Bernoulli-Euler formula

𝜅e = −
M

EIy(x)
=

q(L − x)2
2EIy(x)

(18 – 13)

where Iy(x) is the quadratic moment of the cross-section to the y-axis, which is dependent on
the coordinate x thanks to the variable height ℎ(x)1. The cross-section in the elastic-plastic state
is divided into the elastic core and the plastic surface, which is described by the parameter zp
according to the Figure 2.

1 Iy = 1
12wℎ3(x)
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zp =
fy

𝜅p(x)E
(18 – 14)

The elastic-plastic momentMep of the cross-section in the elastic-plastic state has to equal to the
bending momentM.

Mep(x) = 2

zp

∫
0

−𝜅p(x)Ez2w dz + 2

ℎ(x)/2

∫
zp

−fyzw dz = −
q(L − x)2

2
(18 – 15)

The curvature 𝜅p in the elastic-plastic zone (x < xp) results from this equality.

𝜅p =
2fy
E
√
3

1

√ℎ(x)2 − 2q(L − x)2
wfy

(18 – 16)

The total deflection of the structure uz,max is defined as a superposition of the elastic-plastic and
the elastic contribution using the Mohr's integral

uz,max =

xp

∫
0

𝜅p(L − x)dx +
L

∫
xp

𝜅e(L − x)dx = 27.908 + 58.091 = 85.999 mm (18 – 17)

RFEM 5 Settings

• Modeled in RFEM 5.16.01
• The element size is lFE = 0.020m for files 0018.01 - 0018.03 and lFE = 0.005m for files 0018.04
and 0018.05

• Geometrically linear analysis is considered
• The number of increments is 10
• Shear stiffness of the members is neglected

Results

Structure File Entity Material model Description

0018.01 Member Isotropic Plastic 1D -

0018.02 Plate
Isotropic Nonlinear

Elastic 2D
-

0018.03 Plate Isotropic Plastic 2D/3D -

0018.04 Plate
Isotropic Nonlinear

Elastic 2D
Variable Thickness

0018.05 Plate Isotropic Plastic 2D/3D Variable Thickness

0018.06 Member Nonlinear Elastic 1D -
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Model Analytical Solution RFEM 5

uz,max

[mm]
uz,max

[mm]
Ratio
[-]

Isotropic Plastic 1D

85.999

86.215 1.003

Isotropic Nonlinear
Elastic 2D, Plate

86.566 1.007

Isotropic Plastic
2D/3D, Plate

84.142 0.978

Isotropic Nonlinear
Elastic 2D, Plate, Vari-
able Thickness

83.728 0.974

Isotropic Plastic
2D/3D, Plate, Vari-
able Thickness

83.088 0.966

Isotropic Nonlinear
Elastic 1D

86.215 1.003
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