Program: RFEM 5, RWIND Simulation

Category: Fluid Mechanics

Verification Example: 1009 – Wind Loads on Duopitch Roof Building

1009 – Wind Loads on Duopitch Roof Building

Description

This verification example compares wind load calculations on a duopitch roof building with analytical equations per the ASCE/SEI 7-16, the automatically generated wind loads in RFEM [1] and CFD simulation in RWIND Simulation. The building is defined according to **Figure 1** and the inflow velocity profile is defined according the standard ASCE/SEI 7-16, in **Figure 2**. The problem is described by the following table:

Fluid Properties	Kinematic Viscosity	ν	0.000161	ft²/s
	Density	ρ	0.078	lb/ft ³
Geometry	Width	b	33.000	ft
	Height	h_1	20.000	ft
	Total Height	h2	27.000	ft
	Length	L	44.000	ft
ASCE/SEI 7-16 Settings	Exposure Category	D	-	-
	Wind Speed	V	100.000	mph
	Topographic factor	K _{zt}	1.000	-
	Ground Elevation factor	K _e	1.000	-
	Wind Directionality factor	K _d	0.850	-
	Gust-effect factor	G	0.850	-

Figure 1: Problem sketch

Figure 2: Inflow velocity according to ASCE/SEI 7-16 (exposure category D, basic wind speed 100 mph)

RFEM Wind Load Generator Settings

- Modeled in RFEM 5.22.03 utilizing the Wind Load Generator vertical walls with roof tool
- Only Case 1 from Fig. 27.3-8 [1] is considered
- The windward roof pressure coefficient (C_p) is taken as the first value given in Figure 27.3-1 [1]

RWIND Simulation Settings

- Modeled in RFEM 5.22.03 and RWIND Simulation 1.21
- Turbulence model: k-ε

Remark: The calculation parameters according to the ASCE/SEI 7-16 are chosen for closely correlated CFD analysis results.

Analysis

This verification example will utilize the steps and analytical equations described in Table 27.2-1 [1] from the ASCE/SEI 7-16 for the MWFRS wind loads on an enclosed building. The steps for this calculation are listed below.

Step 1: Determine the risk category of the building by referencing Table 1.5-1 [1].

Assuming the building's failure could pose a substantial risk to human life; a Risk Category of III is selected.

Step 2: Determine the basic wind speed (V) for the applicable risk category by referencing Figure 26.5-1 and 26.5-2 [1].

V = 100.000 mph.

Step 3: Determine the following wind load parameters:

• The wind Directionality Factor (K_d) is determined from Sect. 26.6 and Table 26.6-1 [1].

 $K_d = 0.850$

• The Exposure Category is determined using Sect. 26.7 [1].

Exposure D is selected due to the smooth surrounding topography so wind is unobstructed.

• To calculate the Topographic variable (K_{zt}) see Section 26.8 and table in Fig. 26.8-1 [1].

 K_{zt} = 1.000, assuming the site conditions and locations of buildings and other structures do not meet all the conditions specified in Sect. 26.8.1 [1].

• The Ground Elevation factor (K_e) is determined from Sect. 26.9 [1].

 $K_e = 1.000$, assuming sea level = 0 ft

• Gust-effect factor (G or G_f) determined using Sect. 26.11 [1].

G = 0.850

• Enclosure classification is determined using Sect. 26.12 [1].

Enclosed building

• To determine the internal pressure coefficient (GC_{pi}) see Sect. 26.13 and Table 26.13-1 [1].

 $GC_{pi} = \pm 0.180$

Step 4: Determine the Velocity Pressure Exposure coefficient (K_z or K_h); see Table 26.10-1 [1]. A more accurate calculation is performed using the equation from Note 1.

Exposure D, (a = 11.5 and $Z_{q} = 700$)

$$K_{z}(windward) = 1.030 (z = 0 - 15ft.), K_{z}(leeward) = 1.083 (z = 20ft.), K_{h} = 1.110 (Roof)$$

Step 5: Determine the Velocity Pressure (q_z and q_h) using Eqn. (26.10-1) [1].

$$q = 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2$$
 (1009 - 1)

 $q_z = 22.420 \text{ psf}(z = 0 - 15 \text{ft}), q_z = 23.568 \text{ psf}(z = 20 \text{ft}), q_h = 24.150 \text{ psf}(\text{Roof})$

Step 6: Determine external pressure coefficients (C_p or C_N) on the walls.

$$C_p = 0.8$$
 (windward), $C_p = -0.5$ (leeward), $C_p = -0.7$ (sidewall)

Using Figure 27.3-1 [1], C_p for the windward and leeward face of the roof are calculated using interpolation.

L/B = 0.71, a = 22.99

Windward:

$$C_p = -0.44$$

Leeward:

 $C_{p} = -0.6$

Step 7: Calculate the Wind Pressure, (P), on each building surface using Eq. (27.3-1) [1].

$$P = q \cdot G \cdot C_p - q_i \cdot (GC_{pi}) \tag{1009-2}$$

LC1 (-GC_{pi}):

Windward: $P = q_z \cdot G \cdot C_p - q_h \cdot (GC_{pi})$

$$P = 19.593 \text{ psf}(z = 0 - 15\text{ft.}), p = 20.373 \text{ psf}(z = 20\text{ft.})$$

Leeward: $P = q_z \cdot G \cdot C_p - q_z \cdot (GC_{pi})$

$$P = -5.669 \, psf(z = 20.00 ft.)$$

Sidewall: $P = q_h \cdot G \cdot C_p - q_h \cdot (GC_{pi})$

$$P = -9.676 \, psf(z = 20.00 ft.)$$

Roof: $P = q_h \cdot G \cdot C_p - q_h \cdot (GC_{pi})$

$$p = -4.685 \, psf$$
 (Windward), $p = -7.970 \, psf$ (Leeward)

LC2 (+GC_{pi}):

Windward: $P = q_z \cdot G \cdot C_p - q_h \cdot (GC_{pi})$

$$P = 10.899 \, psf(z = 0 - 15 ft.), \, p = 11.679 \, psf(z = 20 ft.)$$

Leeward: $P = q_z \cdot G \cdot C_p - q_z \cdot (GC_{pi})$

$$P = -14.259 \, psf(z = 20.00 ft.)$$

Sidewall: $P = q_h \cdot G \cdot C_p - q_h \cdot (GC_{pi})$

$$P = -18.716 \, psf \, (z = 20.00 ft.)$$

Roof: $\mathbf{P} = q_h \cdot \mathbf{G} \cdot C_p - q_h \cdot (\mathbf{G}C_{pi})$

 $p = -13.379 \, psf$ (Windward), $p = -16.664 \, psf$ (Leeward)

Results

Structure Files	Program
1009	ASCE/SEI 7-16 (Hand calculations)
1009	ASCE/SEI 7-16 (RFEM wind load generator)
1009	RWIND Simulation (inflow velocity according to ASCE/SEI 7-16)

Quantity	ASCE/SEI 7-16 Hand calculations (LC1)	ASCE/SEI 7-16 RFEM Wind load generator (LC1)	Ratio
F _x [kip]	23.514	23.641	0.995
F _y [kip]	0.000	0.000	-
F _z [kip]	9.226	9.248	0.998

Verification Example: 1009 – Wind Loads on Duopitch Roof Building						
Quantity	ASCE/SEI 7-16 Hand calculations (LC1)	RWIND Simulation	Ratio			
F _x [kip]	23.514	22.154	0.942			
F _y [kip]	0.000	-0.097	-			
F _z [kip]	15.516*	17.092	0.908			

*Note: RWIND Simulation does not consider internal pressure coefficients (GC_{pi}). Therefore, the value from the analytical equation LC1 and LC2 were averaged for a more accurate comparison to **RWIND Simulation.**

Figure 3: RWIND Wind Load Generator – LC1 Surface pressure

Figure 4: RWIND Simulation – Surface pressure

References

[1] Minimum Design Loads and Associated Criteria for Buildings and Other Structures. ASCE/SEI 7-16, American Society of Civil Engineers, 2017.

