

Program: RFEM 5, RWIND Simulation

Category: Fluid Mechanics

Verification Example: 1010 - Wind Loads on Flat Roof Building

1010 - Wind Loads on Flat Roof Building

Description

This verification example compares wind load calculations on a flat roof building with analytical equations per the ASCE/SEI 7-16, the automatically generated wind loads in RFEM [1] and CFD simulation in RWIND Simulation. The building is defined according to **Figure 1** and the inflow velocity profile is defined according the standard ASCE/SEI 7-16, in **Figure 2**. The problem is described by the following table:

Fluid Properties	Kinematic Viscosity	ν	0.000161	ft ² /s
	Density	ρ	0.078	lb/ft³
Geometry	Width	ь	35.000	ft
	Height	h	28.000	ft
	Length	L	47.000	ft
ASCE/SEI 7-16 Settings	Exposure Category	D	-	-
	Wind Speed	V	100.000	mph
	Topographic factor	K _{zt}	1.000	-
	Ground Elevation factor	K _e	1.000	-
	Wind Directionality factor	K _d	0.850	-
	Gust-effect factor	G	0.850	-

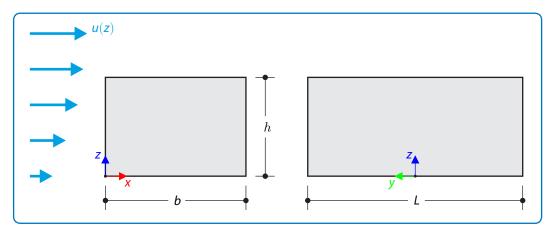


Figure 1: Problem sketch

Figure 2: Inflow velocity according to ASCE/SEI 7-16 (exposure category D, basic wind speed 100 mph)

RFEM Wind Load Generator Settings

- Modeled in RFEM 5.22.03 utilizing the Wind Load Generator vertical walls with roof tool
- Only Case 1 from Fig. 27.3-8 [1] is considered
- The windward roof pressure coefficient (C_p) is taken as the first value given in Figure 27.3-1 [1]

RWIND Simulation Settings

- Modeled in RFEM 5.22.03 and RWIND Simulation 1.21
- Turbulence model: $k-\varepsilon$

Remark: The calculation parameters according to the ASCE/SEI 7-16 are chosen for closely correlated CFD analysis results.

Analysis

This verification example will utilize the steps and analytical equations described in Table 27.2-1 [1] from the ASCE/SEI 7-16 for the MWFRS wind loads on an enclosed building. The steps for this calculation are listed below.

Step 1: Determine the risk category of the building by referencing Table 1.5-1 [1].

Assuming the building's failure could pose a substantial risk to human life; a Risk Category of III is selected.

Step 2: Determine the basic wind speed (V) for the applicable risk category by referencing Figure 26.5-1 and 26.5-2 [1].

 $V = 100.000 \, mph$.

Step 3: Determine the following wind load parameters:

• The wind Directionality Factor (K_d) is determined from Sect. 26.6 and Table 26.6-1 [1].

$$K_d = 0.850$$

• The Exposure Category is determined using Sect. 26.7 [1].

Exposure D is selected due to the smooth surrounding topography so wind is unobstructed.

• To calculate the Topographic variable (K_{zt}) see Section 26.8 and table in Fig. 26.8-1 [1].

 K_{zt} = 1.000, assuming the site conditions and locations of buildings and other structures do not meet all the conditions specified in Sect. 26.8.1 [1].

• The Ground Elevation factor (K_e) is determined from Sect. 26.9 [1].

$$K_e = 1.000$$
, assuming sea level = 0 ft

• Gust-effect factor (G or G_f) is determined using Sect. 26.11 [1].

$$G = 0.850$$

• Enclosure classification is determined using Sect. 26.12 [1].

Enclosed building

• To determine the internal pressure coefficient (GC_{pi}) see Sect. 26.13 and Table 26.13-1 [1].

$$GC_{pi} = \pm 0.180$$

Step 4: Determine the Velocity Pressure Exposure coefficient (K_z or K_h); see Table 26.10-1 [1]. A more accurate calculation is performed using the equation from Note 1.

Exposure D, ($a = 11.5 \text{ and } Z_g = 700$)

$$\mathit{K_{z}(windward)} = 1.030 \ (\mathit{z} = 0 \ - \ 15\mathit{ft.}), \ \mathit{K_{h}(windward)} = 1.148 \ (\mathit{Roof}),$$

Step 5: Determine the Velocity Pressure (q_z and q_h) using Eqn. (26.10-1) [1].

$$q = 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2$$
 (1010 – 1)

$$q_z = 22.417 \, psf(z = 0 - 15ft), \, q_h = 23.568 \, psf(Roof),$$

Step 6: Determine external pressure coefficients (C_p or C_N) on the walls and roof.

$${\it C_p}=0.8~({\it windward}),~{\it C_p}=-0.5~({\it leeward}),~{\it C_p}=-0.7~({\it sidewall})$$

h/L = 0.80

$$\textit{C}_{p} = -1.14\ (0-h/2),\ \textit{C}_{p} = -0.78\ (h/2-h),\ \textit{C}_{p} = -0.62\ (h-2h),\ \textit{C}_{p} = -0.54\ (>2h)$$

Step 7: Calculate the Wind Pressure, (P), on each building surface using Eqn. (27.3-1) [1].

$$P = q \cdot G \cdot C_p - q_i \cdot (GC_{pi}) \tag{1010-2}$$

LC1 (-GC_{pi}):

Windward: $P = q_z \cdot G \cdot C_p - q_h \cdot (GC_{pi})$

$$P = 19.740 \, psf(z = 0 - 15ft.), \, p = 21.483 \, psf(z = 28.00ft.)$$

Leeward: $P = q_z \cdot G \cdot C_p - q_z \cdot (GC_{pi})$

$$P = -6.120 \, psf(z = 28.00 ft.)$$

Sidewall: $P = q_h \cdot G \cdot C_p - q_h \cdot (GC_{pi})$

$$P = -10.367 \, psf (z = 28.00 ft.)$$

Roof: $P = q_h \cdot G \cdot C_p - q_h \cdot (GC_{pi})$

$$P = -19.710 \, psf \, (0 - h/2)$$

$$P = -12.065 \, psf \, (h/2 - h)$$

$$P = -8.668 \, psf(h-2h)$$

$$\textit{P} = -6.969\,\textit{psf}\,(>2h)$$

LC2 (+ GC_{pi}):

Windward: $P = q_z \cdot G \cdot C_p - q_h \cdot (GC_{pi})$

$$P = 10.747 \, psf(z = 0 - 15ft.), \, p = 12.490 \, psf(z = 28ft.)$$

Leeward: $P = q_z \cdot G \cdot C_p - q_z \cdot (GC_{pi})$

$$P = -15.113 \, psf \, (z = 28.00 ft.)$$

Sidewall: $P = q_h \cdot G \cdot C_p - q_h \cdot (GC_{pi})$

$$P = -10.367 \, psf (z = 28.00 ft.)$$

Roof: $P = q_h \cdot G \cdot C_p - q_h \cdot (GC_{pi})$

$$P = -28.702 \, psf \, (0 - h/2)$$

$$P = -21.058 \, psf \, (h/2 - h)$$

$$P = -17.661 \, psf \, (h - 2h)$$

$$P = -15.962 \, psf \, (> 2h)$$

Results

Structure Files	Program		
1010	ASCE/SEI 7-16 (Hand calculations)		
1010	ASCE/SEI 7-16 (RFEM wind load generator)		
1010	RWIND Simulation (inflow velocity according to ASCE/SEI 7-16)		

Quantity	ASCE/SEI 7-16 Hand calculations (LC1)	ASCE/SEI 7-16 RFEM Wind load generator (LC1)	Ratio
F_x [kip]	35.096	35.086	1.000
<i>F_y</i> [kip]	0.000	0.000	-
F_z [kip]	23.760	23.754	1.000

Quantity	ASCE/SEI 7-16 Hand calculations (LC1)	RWIND Simulation	Ratio
F_x [kip]	35.096	38.147	0.920
<i>F_y</i> [kip]	0.000	-0.381	-
F _z [kip]	31.156*	29.046	0.932

*Note: RWIND Simulation does not consider internal pressure coefficients (GC_{pi}). Therefore, the value from the analytical equation LC1 and LC2 were averaged for a more accurate comparison to RWIND Simulation.

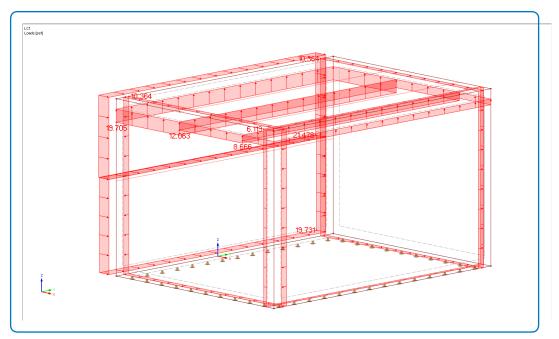


Figure 3: RWIND Wind Load Generator – LC1 Surface pressure

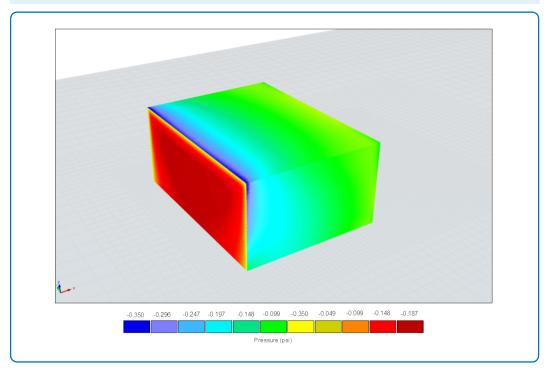


Figure 4: RWIND Simulation – Surface pressure

References

[1] Minimum Design Loads and Associated Criteria for Buildings and Other Structures. ASCE/SEI 7-16, American Society of Civil Engineers, 2017.