DESIGN AND ANALYSIS OF MEMBRANE STRUCTURES IN FEM-BASED SOFTWARE MASTER THESIS

ARCHINEER® INSTITUTES FOR MEMBRANE AND SHELL TECHNOLOGIES, BUILDING AND REAL ESTATE e.V. ANHALT UNIVERSITY OF APPLIED SCIENCES

AUTHOR FIRST TUTOR SECOND TUTOR

Ing. ROSTISLAV LANG Prof. Dr.-Ing. ROBERT OFF Prof. Dr.-Ing. KAI-UWE BLETZINGER

SEPTEMBER 2017 DESSAU-ROSSLAU GERMANY

Note: the presented work follows the software development focused on membrane structures performed by cooperating companies Dlubal Software s.r.o. and FEM Consulting s.r.o. The presented examples were created in the RFEM software.

Shape Analysis of Structures

• The shape is given by the equilibrium of forces and boundary conditions

Different Methods

- Force Density Method
- **Dynamic Relaxation**
- Updated Reference Strategy
- Natural Force Density Method
- Etc.

General Finite Element Approach

- Direct solution of the shape is not possible
- Nonlinear calculation is necessary for reaching the shape with given prestress
- Any load can be a part of the form-finding

 $\frac{\partial \Pi}{\partial d} = \frac{\partial \Pi^{int}}{\partial d} + \frac{\partial \Pi^{ext}}{\partial d} = \int_{\Omega_0} S : \delta E \ d\Omega_0 - \int_{\Omega_0} q \cdot \delta d \ d\Omega_0 = \int_{\Omega} \sigma : \delta e \ d\Omega - \int_{\Omega} q \cdot \delta d \ d\Omega = 0$

Arbitrarily deformed meshes for the same surface geometry ([6] with modification)

Stable and unstable equilibrium position

overpressure, - low pressure) [21]

Hypar Structure

- The isotropic prestress
- The independence on the initial shape

Hypar Structure

- The isotropic prestress
- The independence on the initial shape
- The constant orthotropic prestress is not possible

ETFE Cushion

Prestress, overpressure and boundary conditions

Total pressure $p = p_a + p_0 (p_a \dots atmospheric$ pressure, p₀...overpressure)

Basic internal forces n_v

Hypar Structure

- The isotropic prestress
- The independence on the initial shape
- The constant orthotropic prestress is not possible

ETFE Cushion

Prestress, overpressure and boundary conditions

Pneumatic Structure

Combination of 1D/2D/3D elements

Geometry of the greenhouse structure

FE model of the greenhouse structure (1221 1D elements, 16508 2D elements, 20172 3D elements)

Total pressure $p = p_a + p_0 (p_a \dots atmospheric pressure, p_0 \dots overpressure)$

Basic internal forces n, in the ETFE layers

Shell Structure

• Compression, self weight and boundary conditions

Two views of global deformations u in the form-finding

Basic Internal Forces hx [kN/m] 3.664 -3.752 -3.839 -3.926 -4.014 4.101 -4.189 -4.276 -4.363 -4.451 -4.538 -4.625 Max : -3.664 Min : -4.625

Normal forces N

Basic internal forces n_x

Basic internal forces n_{y}

Stable and unstable equilibrium position

Shell Structure

• Compression, self weight and boundary conditions

Combined Structure

- Tension in membranes and cables, compression in beams
- Structure with and without shape analysis of the beams

Initial shape of the membrane structures, the structure with (above) and without (bellow) the analysis of the shape of steel arches

FE mesh in the initial position, the structure with (above) and without (bellow) the analysis of the shape of steel arches

Vectors of the principal internal forces n_1 *and* n_2

Global deformations u during the form-finding

Shear forces V_{y}

Bending moments M_z

Shell Structure

• Compression, self weight and boundary conditions

Combined Structure

- Tension in membranes and cables, compression in beams
- Structure with and without shape analysis of the beams

Interesting Phenomenon

 Possible existence of different right solutions for shape analysis of combined structures

Different initial shapes of the membrane structures

FE mesh of the membrane structures in the initial position

Global deformations u in the form-finding

STRUCTURAL ANALYSIS

Nonlinear Behavior

- Geometric nonlinearity
- Material nonlinearity

Geomatrical Nonlinearity

The changes of the shape have significant impact on the structural response

Material Nonlinearity

- Avoiding pressures
- Different material models

Methods of solving

- Implicit
- Explicit

Diagram of the Newton-Raphson iterative method a) and its three modifications b),c),d)

$$\begin{split} K(d)d &= f(d) \quad K(d) = K_M(d) + K_\sigma(d) \\ \frac{\partial \Pi}{\partial d} &= \frac{\partial \Pi^{int}}{\partial d} + \frac{\partial \Pi^{ext}}{\partial d} = \int_{\Omega_0} S : \delta E \ d\Omega_0 - \int_{\Omega_0} q \cdot \delta d \ d\Omega_0 = \int_{\Omega} \sigma \end{split}$$

 $: \delta e \, d\Omega - \int_{\Omega} q \cdot \delta d \, d\Omega = 0$

STRUCTURAL ANALYSIS

Hypar Structure

- Eight load cases
- Linear orthotropic material

Load Cases	Actions Combination Expressions	Action Combinations	oad Combinations	Result Combinations	Super Combinations								
Existing Loa	d Cases	LC No.	Load C	Case Description	To Solve	To Solve							
G LC1	Selfweight	1	Selfwe	eight		~ ~	✓						
Qw LC2	Wind A-	Wind A-											
Qw LC3	Wind A+ General Calculation Parameters												
Qw LC4	Wind B-	Action Ca	Action Category EN 1990 DIN										
Qw LC5	Wind B+	Porm	anont										
Qs LC6	Snow full	- Ferni	•										
Qs LC7	Snow 1/2	now 1/2 Self-Weight											
Q= LC8	Snow 2/2	Active	✓ Active										

Definition of load cases

1		Action Combinations	1 1 0	A free Marries	Des hOrseliserie			3				
Load Cases /	Actions Combination Expressions	Action Combinations	Load Con	noinations	Result Combination	is Super Cor	noinations	1				
Existing Action Combinations		AC No.	AC No.		combination Descri	Use						
STR AC1	1.35G	3		1.35G + 1.50Qw + 0.75Qs						✓		
STR AC2	1.35G + 1.50Qw											
STR AC3	1.35G + 1.50Qw + 0.75Qs	General										
STR AC4	1.35G + 1.50Qs	Design Si	Design Situation EN 1990 DIN									
STR AC5	1.35G + 0.90Qw + 1.50Qs	STELLES	STO LILS (STD/GEO) - Remanant (transient - Eq. 6.10									
S Ch AC6	1.00G	Terms OC3	Actions in Action Combination AC3									
S Ch AC7	1.00G + 1.00Qw	Actions in										
S Ch AC8	1.00G + 1.00Qw + 0.50Qs	No.	Factor	Action	Description	Leading	γ	Ψ	Load Cases			
S Ch AC9	1.00G + 1.00Qs	1	1.350	G A1	Permanent		1.35		LC1			
S Ch AC10	1.00G + 0.60Qw + 1.00Qs	23	1.500 0.750	Qw A2 Qs A3	Wind Snow		✓ 1.50 LC2 LC5 □ 1.50 0.50 LC6 LC8		LC2 LC5 LC6 LC8			

Load combinations (ULS and SLS)

 C_n zones definition on the hyper structure [35]

STRUCTURAL ANALYSI

Hypar Structure

- Eight load cases
- Linear orthotropic material

Global Deformation:

TIMIT

413

Hypar membrane

Basic internal forces n_x in the membrane (CO18)

Basic internal forces n_v in the membrane (CO18)

41.29

Vectors of main internal forces n_1 and n_2 (CO18)

FE mesh

Basic internal forces n_{xy} in the membrane (CO18)

STRUCTURAL ANALYSI

Hypar Structure

- Eight load cases
- Linear orthotropic material
- Impact of the warp/weft orientation

First axes orientation (Model 1)

F-,

Global deformations u of Model 1 (CO18)

Main internal forces n_1 of Model 1 (CO18)

Main internal forces n_1 of Model 2 (CO18)

Second axes orientation (Model 2)

Global deformations u of Model 2 (CO18)

STRUCTURAL ANALYSIS

Pneumatic Structure

- Eight load cases
- Linear isotropic material
- Air management

The FE model of the greenhouse structure (1221 1D elements, 16508 2D elements, 20172 3D elements)

STRUCTURAL ANALYSIS

Pneumatic Structure

- Eight load cases
- Linear isotropic material
- Air management

Main internal forces n_1 in ETFE layers (CO2)

Total pressure (atmospheric pressure + change of pressure)

-1.21 -4.60

-7.99

-14.77

-18.16

- -21.55 - -24.94 - -28.33

-31.72

-35 10 Max : 2.18

Min : -35.10

Main internal forces n_2 in wooden shells (CO2)

Main internal forces n_2 in ETFE layers (CO2)

Vectors of the main internal forces n_1 *and* n_2 *in ETFE layers (CO2)*

5.13 4.62 4.11 3.59 3.08 2.57 2.05 1.54 1.03 0.51

Max : 5.65

Principal Internal Force n2 [kN/m]

Basic Steps

- Splitting the surface by cutting lines
- Flattening the spatial patterns into the plane

Flattening Methods

- Simple Triangulation Method
- Mathematical Squashing by Least Square Approach $F(x, y) = \frac{1}{2}v^T P v \longrightarrow min.$
- Physical Squashing by Least Square Approach

 $F(x,y) = F(x_{2D}) = \frac{1}{2} \int_{\Omega_{2D}} (\sigma_{3D \to 2D} + \sigma_{pre}) : (\sigma_{3D \to 2D} + \sigma_{pre}) d\Omega_{2D} \longrightarrow min.$

Physical Squashing with Energy **Minimization** $\frac{\partial \Pi}{\partial d} = \frac{\partial \Pi^{int}}{\partial d} = \frac{\partial (\Pi^{int}_{3D \to 2D} + \Pi^{int}_{pre})}{\partial d} = \int_{\Omega_{3D}} (S_{3D \to 2D} + S_{pre}) : \delta E_{3D \to 2D} \ d\Omega_{3D} =$ $\int_{\Omega_{2D}} (\sigma_{3D \to 2D} + \sigma_{pre}) : \delta e_{3D \to 2D} \, d\Omega_{2D} = 0$

The basis of the simple triangulation method (from the left: the spatial shape, the FE mesh of the spatial model used for form-finding and structural analysis purposes, the modified mesh for flattening purposes, the flattened pattern) [19]

Construction Requirements

- Same lengths of the lines for welding
- Specific compensation for boundary lines

Compensation

• According can be a part of the flattenging process

The influence of material on flattening

Different materials can be taken into account for the FEM flattening

Biaxial test: measured strains [35]

Hypar Structure

• Different cutting lines

Using different cutting lines to split the membrane; arbitrary lines (left), geodesic lines (right top) and planar sections (right bellow)

Resulting patterns using the arbitrary lines (top), geodesic lines (middle) and planar sections (bellow)

Hypar Structure

Different cutting lines

ETFE cushions with the x/y (warp/weft) orientation displaying, FE mesh

ETFE Cushion

- Three cases of the same cushion
- Patterns evaluation
- Specified material

Spatial patterns (3D) with the information that the mathematical squashing was performed

distortion energy minimization was performed

GENERATION OF CUTTING PATTERNS - 0.02730 - 0.02279 - 0.01827 - 0.01375

0.00923 0.00323 -0.00884 -0.01335 0.01787

Max : 0.02730 Min : -0.02239

ETFE cushions with the x/y (warp/weft) orientation displaying, FE mesh

Strains ε_x in 2D patterns caused by flattening (displayed on spatial (3D) patterns for having compact model of all patterns)

Strains ε_v in 2D patterns caused by flattening

Spatial patterns (3D) with the information that the mathematical squashing was performed

distortion energy minimization was performed

Strains ε_{xv} in 2D patterns caused by flattening

0.04526 03847 0.02490

0.01811

0.00454

0.00225 0.01582

0.05111 0.03975 0.02839 0.00567

-0.00569 -0.01705

-0.02840 -0.03976

0.05112

Max : 0.06247 Min : -0.06248

Strains ε_x in 2D patterns caused by flattening (displayed on spatial (3D) patterns for having compact model of all patterns)

Strains ε_{v} in 2D patterns caused by flattening

Strains ε_{xy} in 2D patterns caused by flattening

Strains ε_1 in 2D patterns caused by flattening

Strains ε_2 *in 2D patterns caused by flattening*

Vectors of strains ε_1 and ε_2 in 2D patterns caused by flattening

Hypar Structure

Different cutting lines

ETFE Cushion

- Three cases of the same cushion
- Patterns evaluation
- Specified material

Membrane structure

Ensulign of construction requirements

Membrane structure

FE mesh of the membrane structure

Spatial patterns with the information that the mathematical squashing was performed

Spatial patterns with the information that the distortion energy minimization was performed

THANK YOU FOR YOUR ATTENTION

ARCHINEER® INSTITUTES FOR MEMBRANE AND SHELL TECHNOLOGIES, BUILDING AND REAL ESTATE e.V. ANHALT UNIVERSITY OF APPLIED SCIENCES

DLUBAL SOFTWARE s.r.o.

BRNO UNIVERSITY OF TECHNOLOGY

BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING

