Fassung März 2018

Zusatzmodul

RF-/BETON Stützen

Verfahren mit Nennkrümmung nach EN 1992-1-1:2010

Programmbeschreibung

Alle Rechte, auch das der Übersetzung, vorbehalten.

Ohne ausdrückliche Genehmigung der DLUBAL SOFTWARE GMBH ist es nicht gestattet, diese Programmbeschreibung oder Teile daraus auf jedwede Art zu vervielfältigen.

© Dlubal Software GmbH Am Zellweg 2 D-93464 Tiefenbach

Tel.:	+49 9673 9203-0
Fax:	+49 9673 9203-51
E-Mail:	info@dlubal.com
Web:	www.dlubal.de

Inhalt

	Inhalt Se	eite		Inhalt Se	eite
1.	Einleitung	4	2.6.1	Nachweisverfahren	43
1.1	Zusatzmodul RF-/BETON Stützen	4	2.6.2	Querkrafttragfähigkeit ohne	
1.2	Gebrauch des Handbuchs	4		Querkraftbewehrung	44
1.3	Rahmenbedingungen	5	2.6.3	Querkraftfragfahigkeit mit Querkraftbewehrung	45
2.	Theoretische Grundlagen	7	2.6.4	Varianten des Querkraftnachweises	48
2.1	Stabilitätsnachweis	7	2.6.5	Querkraftnachweis Rechteckquerschnitt	49
2.1.1	Notwendigkeit des Nachweises	7	2.6.5.1	Gerissener Querschnitt	49
2.1.2	Form des Nachweises	7	2.6.5.2	Völlig überdrückter Querschnitt	52
2.1.3	Klassifizierung des Gesamtsystems	7	2.6.6	Querkraftnachweis Kreisquerschnitt	53
2.1.4	Ermittlung des Ersatzstablänge	8	2.6.6.1	Gerissener Querschnitt	53
2.1.5	Bestimmung der Schlankheit	9	2.6.6.2	Völlig überdrückter Querschnitt	56
2.1.6	Stabilitätsnachweis oder Regelbemessung	10	2.6.7	Querkraftbewehrung	56
2.1.7	Biegemomente aus Theorie I. und II.		2.6.8	Programmablauf zur Querkraftbemessung	59
	Ordnung	10	2.6.8.1	Teil 5.1: Bestimmung der Quertragfähigkei	t 59
2.1.7.1	Planmäßige Ausmitte nach Theorie I.Ordnung	10	2.6.8.2	Teil 5.2: Bestimmung der Druckstrebenfestigkeit	61
2.1.7.2	Zusätzliche ungewollte Ausmitte ei	12	2.6.8.3	Teil 5.3: Bestimmung der Querbewehrung	62
2.1.7.3	Zusätzliche Lastausmitte e2 aus Verformung nach Theorie II. Ordnung	13	2.7	Übergreifungsstöße	63
2.1.8	Art der Querschnittsbemessung	15	2.7.1	Anschlusselemente an eine Stütze	63
2.2	Programmablauf der		2.7.2	Gestaltung von Übergreifungsstößen	65
	Stabilitätsuntersuchung	15	3.	Arbeit mit RF-/BETON Stützen	67
2.2.1	Teil 1: Lastunabhängige Berechnungen	19	3.1	RF-/BETON Stützen starten	67
2.2.2	Teil 2: Bestimmung der maßgebenden Belastung	20	3.2	Masken	68
223	Teil 3: Bestimmung der vorhandenen	20	3.3	Eingabemasken	69
2.2.5	Bewehrung	25	3.3.1	Maske 1.1 Basisangaben	69
2.2.4	Teil 4: Bestimmen der vorhandenen		3.3.2	Maske 1.2 Materialien	77
2.2	Sicherheit	30	3.3.3	Maske 1.3 Querschnitte	82
2.3	Ablauf belm Nachweis vorhändener Bewehrung	31	3.3.4	Maske 1.4 Bewehrung	84
2.4	Ermittlung der vorhandenen Bewehrung	31	3.3.4.1	Längsbewehrung	86
2.4.1	Rechteckiger Querschnitt	32	3.3.4.2	Bügel	87
2.4.2	Kreisförmiger Querschnitt	34	3.3.4.3	Konstruktive Bewehrung	88
2.5	Brandschutznachweis	36	3.3.4.4	Bewehrungsanordnung	88
2.5.1	Unterteilung des Querschnitts	36	3.3.4.5	"Norm"	90
2.5.2	Reduzierung des Querschnitts	37	3.3.4.6	Brandschutz	92
2.5.3	Spannungs-Dehnungs-Linie des Betons	39	3.3.5	Maske 1.5 Stützenparameter - stabweise	93
2.5.4	Spannungs-Dehnungs-Linie des		3.4	Details	105
	Betonstahls	40	3.5	Ergebnismasken	109
2.6	Querkraftnachweis	43	3.5.1	Maske 2.1 Nachweis Stäbe	109

Inhalt

	Inhalt Se	eite	Inhalt	Inhalt
3.5.2	Maske 3.1 Erforderliche Bewehrung querschnittsweise	119		
3.5.3	Maske 3.2 Erforderliche Bewehrung stabweise	123		
3.5.4	Maske 4.1 Vorhandene Längsbewehrung	124		
3.5.5	Maske 4.2 Vorhandene Bügelbewehrung	127		
4.	Ergebnisauswertung	133		
4.1	Ergebnisdarstellung in RFEM/RSTAB	133		
4.2	Ausdruck	137		
5.	Beispiele	142		
5.1	Randstütze	142		
5.1.1	System und Belastung	142		
5.1.2	Bemessungswerte Tragfähigkeit	143		
5.1.3	Räumliche Steifigkeit und Stabilität	147		
5.1.4	Ersatzlänge und Schlankheit	147		
5.1.5	Weitere Eingaben im Modul	148		
5.1.6	Erforderliche Bewehrung	152		
5.1.7	Grenzschlankheit	154		
5.1.8	Ausmitten	155		
5.1.9	Momente nach Theorie I. Ordnung	155		
5.1.10	Momente nach Theorie II. Ordnung	156		
5.1.11	Statisch erforderliche Bewehrung	157		
5.1.12	Vorhandene Bewehrung	157		
5.1.13	Vorhandene Sicherheit	158		
5.2	Schlanke Stütze	161		
5.2.1	Räumliche Steifigkeit und Stabilität	162		
5.2.2	Ersatzlänge und Schlankheit der Stütze	162		
5.2.3	Grenzschlankheit gemäß 5.8.3.1 (1)	164		
5.2.4	Planmäßige Ausmitte gemäß 5.8.8.2	166		
5.2.5	Ausmitte durch Imperfektionen gemäß 5.2	166		
5.2.6	Mindestausmitte gemäß 6.1 (4)	167		
5.2.7	Momente nach Theorie I. Ordnung	167		
5.2.8	Momente nach Theorie II. Ordnung	167		
5.2.9	Vorhandene Bewehrung	172		
5.3	Brandschutznachweis	174		
A:	Literatur	177		

1. Einleitung

1.1 Zusatzmodul RF-/BETON Stützen

Sehr verehrte Anwender von RF-/BETON Stützen,

die Zusatzmodule BETON Stützen (für RSTAB) und RF-BETON Stützen (für RFEM) erweitern die DLUBAL-Produktpalette um ein weiteres leistungsstarkes Werkzeug zur Stahlbetonbemessung. In der gewohnten Art und Weise können Stäbe und Stabzüge mit rechteckigem oder rundem Querschnitt aus dem Modell ausgewählt und Belastungen zur Bemessung angesetzt werden. Die konstruktiven Eigenschaften der Stütze lassen sich komfortabel definieren, ebenso wie die Vorgaben zur Bestimmung der erforderlichen Längs- und Querkraftbewehrung. Die Nachweise können nach den aktuellen Fassungen der Normen EN 1992, ACI 318 oder GB 50010 erfolgen.

Dieses Handbuch beschreibt die Zusatzmodule der beiden Hauptprogramme gemeinsam unter der Bezeichnung **RF-/BETON Stützen**.

Nach dem Start der Berechnung entscheidet das Programm für Sie, welche Belastung für die Nachweise der Biege- und der Querkrafttragfähigkeit maßgebend wird. Für den Nachweis der Biegetragfähigkeit wird untersucht, ob eine Regelbemessung ausreicht oder ob mit den Momenten nach Theorie II. Ordnung zu bemessen ist. In beiden Fällen ist eine zweiachsige Biegebemessung möglich, für die der exakte Verlauf von Dehnung und Spannung des Querschnitts räumlich dargestellt wird. Es werden insgesamt fünf maßgebende Stellen der Stütze für den Nachweis der Biegebruchsicherheit untersucht. Dies sind die Stellen mit der minimalen Normalkraft sowie die Stellen mit dem jeweils minimalen und maximalen Moment um die beiden Hauptachsen des Querschnitts. Für die Querkrafttragfähigkeit werden zudem die Stellen der Stütze mit den extremalen Querkräften in eine Achsrichtung betrachtet.

Nach der Bemessung erstellt RF-/BETON Stützen einen Bewehrungsvorschlag für die Längsund Querkraftbewehrung unter Beachtung sämtlicher konstruktiver Vorschriften. Diese Bewehrung wird dreidimensional und in vorschriftsmäßig bemaßten Grafiken dargestellt. Der Bewehrungsvorschlag kann jederzeit an die individuellen Erfordernisse angepasst werden. Mit diesen Änderungen wird erneut der quantitative Wert der Sicherheit gegen Biegebruch und Querkraftversagen bestimmt.

Wir wünschen Ihnen viel Freude und Erfolg mit RF-/BETON Stützen.

Ihr Team von Dlubal Software GMBH

1.2 Gebrauch des Handbuchs

Da die Themenbereiche Installation, Benutzeroberfläche, Ergebnisauswertung und Ausdruck im RFEM- bzw. RSTAB-Handbuch ausführlich erläutert sind, wird hier auf eine Beschreibung verzichtet. Der Schwerpunkt dieses Handbuchs liegt auf den Besonderheiten, die sich im Rahmen der Arbeit mit dem Zusatzmodul RF-/BETON Stützen ergeben.

Dieses Handbuch orientiert sich an der Reihenfolge und am Aufbau der Eingabe- und Ergebnismasken. Im Text sind die beschriebenen **Schaltflächen** (Buttons) in eckige Klammern gesetzt, z. B. [Ansichtsmodus]. Zugleich sind sie am linken Rand abgebildet. Die Begriffe, die in Dialogen, Tabellen und Menüs erscheinen, sind in *Kursivschrift* hervorgehoben, sodass die Erläuterungen gut nachvollzogen werden können.

Sie können auch die Suchfunktion für die Knowledge Base auf unserer Website nutzen, um in den Beiträgen zu den Stahlbetonmodulen eine Lösung zu finden. Unsere FAQs geben ebenfalls Hilfestellungen zu themenspezifischen Fragen.

۲

1.3 Rahmenbedingungen

Der Produktphilosophie der DLUBAL-Software folgend, werden die Schnittgrößen ermittelt, indem ein Modell und die zugehörige Belastung im Hauptprogramm RFEM oder RSTAB angelegt und dieses anschließend berechnet wird. Die Bemessung der Komponenten dieses Modells und der dort auftretenden Schnittgrößen findet dann im entsprechenden Zusatzmodul statt. Im Modul müssen deshalb zunächst folgende zwei Fragen beantwortet werden:

- Welche Komponente des Modells soll bemessen werden?
- Für welche Belastung soll die Komponente bemessen werden?

Die Komponenten des Modells, die mit RF-/BETON Stützen bemessen werden können, sind sowohl einfache **Stäbe** als auch **Stabzüge**.

Folgende Abbildung verdeutlicht den Unterschied zwischen einem Stab und einem Stabzug.

Bild 1.1: Stäbe (innerhalb eines Stabzugs) und Stabzüge (mit Stäben "S")

Stabzüge bestehen aus mehreren zusammenhängenden Stäben, die nicht verzweigen. In der oberen linken Darstellung sind drei Stabzüge dargestellt. Stabzug 1 erstreckt sich vom Auflager bis zur obersten Platte und besteht aus vier einzelnen Stäben. Stabzug 2 und Stabzug 3 bestehen jeweils aus zwei einzelnen Stäben. Die Nummern der einzelnen Stäbe können der Drahtmodelldarstellung rechts entnommen werden.

Durch Angabe der Nummer eines Stabzuges oder eines Stabes kann diese Komponente im Modul RF-/BETON Stützen zur Bemessung bestimmt werden.

Die Belastung, für die dann die Bemessung stattfindet, ist durch Angabe eines zuvor definierten Lastfalls bzw. einer Last- oder Ergebniskombinationen festzulegen.

Mit dem Festlegen eines Stabes oder Stabzuges erhält das Modul RF-/BETON Stützen Informationen bezüglich des zu bemessenden Bauteils, die der Benutzer bereits beim Anlegen des Modells in RFEM oder RSTAB gegeben hat. Dabei ist zu beachten:

Information	Stab	Stabzug
Material	Als Materialien sind die gängigen Betone der aktuellen Normungen zulässig.	Alle Stäbe des Stabzuges müssen das gleiche Material besitzen, sonst werden sie vom Programm ausgeschlossen.
Querschnitt	Als Querschnittstypen sind recht- eckige und runde Querschnitte zulässig.	Alle Stäbe im Stabzug müssen den gleichen Querschnitt aufweisen.
Systemlänge	Die Systemlänge ist die Länge der Linie, die zur Definition des Stabes verwendet wurde.	Die Systemlänge ist die Summe der Längen der Linien, die zur Definition der Stäbe des Stabzuges verwendet wurde.
Anschließende Platte/Stütze	Alle Flächen und/oder Stäbe, die einen Punkt besitzen, der gleich- zeitig Anfangs- oder Endpunkt der Linie zur Definition des Stabes ist.	Das zu einem einzelnen Stab Gesagte gilt hier für jeden Stab, der Bestandteil des Stabzuges ist.

2.1 Stabilitätsnachweis

2.1.1 Notwendigkeit des Nachweises

Die nachfolgenden Bedingungen bzw. Formeln beziehen sich exemplarisch auf EN 1992-1-1: 2010. Bei bestimmten Bauteilen, z. B. Stützen, haben die Verformungen einen wesentlichen Einfluss auf die Größe der Schnittgrößen. Gemäß EN 1992-1-1:2010, Abs. 5.8.2 wird von einem wesentlichen Einfluss gesprochen, wenn die unter Berücksichtigung der Verformung ermittelten Schnittgrößen (Theorie II. Ordnung) sich um mehr als 10 % der Schnittgrößen des unverformten Systems (Theorie I. Ordnung) unterscheiden bzw. wenn die Schlankheit $\lambda > \lambda_{lim}$ nach Abs. 5.8.3.1 ist.

In einem solchen Fall reicht die Regelbemessung nicht mehr aus, es ist eine Stabilitätsuntersuchung erforderlich. Eine einfache Untersuchungsmethode ist das "Verfahren mit Nennkrümmung" (EN 1992-1-1:2010, Abs. 5.8.8). Es ist anwendbar für Druckglieder als

- Einzelstäbe oder

- Teile einer Rahmenkonstruktion.

Die genauste Beurteilung von Rahmenkonstruktionen erlaubt die nichtlineare Untersuchung des Verhaltens am Gesamtsystem. Dieser Nachweis ist jedoch sehr aufwändig. Das Verfahren mit Nennkrümmung stellt ein gutes Näherungsverfahren dar.

2.1.2 Form des Nachweises

Beim Verfahren mit Nennkrümmung wird ein Gesamtsystem zur Untersuchung der einzelnen Druckglieder in Ersatzstäbe aufgelöst oder für eine Einzelstütze wird ein Ersatzstab gewählt. Für diese Ersatzstäbe werden Schnittgrößen nach Theorie II. Ordnung unter der vereinfachten Annahme einer parabelförmigen Stützenkrümmung ermittelt.

Die Form des Nachweises entspricht einer regulären Querschnittsbemessung.

Bemessen wird der Querschnitt für folgende Schnittgrößen:

- Normalkraft N_{Ed}

- Moment MEd2

mit

N_{Ed}: einwirkende Normalkraft

M_{Ed2}: Moment M_{Ed2} nach Theorie II. Ordnung, das an einer Modellstütze (Kragstütze) im Einspannpunkt ermittelt wurde

2.1.3 Klassifizierung des Gesamtsystems

Bevor der Ersatzstab eines Gesamtsystems bestimmt werden kann, ist zu untersuchen, um welche Art von Gesamtsystem es sich handelt.

Es sind zwei Gesamtsysteme gemäß EN 1992-1-1:2010, Abs. 5.8.3.3 zu unterscheiden:

- ausgesteifte Bauteile
- nicht ausgesteifte Bauteile

Zur Untersuchung der horizontalen Verschieblichkeit müssen Kenntnisse über die Konstruktion (massive Wandscheiben, Bauwerkskerne) vorhanden sein. Diese Informationen sind aus dem RFEM/RSTAB-Modell nicht automatisch ersichtlich. Die Entscheidung, ob es sich also um ein horizontal verschiebliches oder ein horizontal unverschiebliches Gesamtsystem handelt, muss durch Benutzervorgabe erfasst werden.

2.1.4 Ermittlung des Ersatzstablänge

Norm	Absatz
EN 1992-1-1:2010	5.8.3.2

Die Länge (Knicklänge) l₀ eines Ersatzstab ermittelt sich – sowohl für eine Einzelstütze als auch eine Teilstütze eines Rahmentragwerks – nach folgender Formel:

 $I_0 = \beta \cdot I$

mit

β: Verhältnis von Ersatzlänge l
₀ zu Stützenlänge l

I: Länge der Schwerachse einer Stütze

Das Verhältnis β kann für Einzelstützen aus den definierten Auflagern mit Hilfe der folgenden Tabellenwerte bestimmt werden.

a) $l_0 = l$ b) $l_0 = 2l$ c) $l_0 = 0,7l$ d) $l_0 = l/2$ e) $l_0 = l$ f) $l/2 < l_0 < l$ g) $l_0 > l$

Bild 2.1: Länge (Knicklänge) I₀ eines Ersatzstabes

Wurden Auflagerfedern definiert, ist der Wert β durch den Benutzer zu definieren.

Ist das zu untersuchende Druckglied hingegen Teil eines Rahmensystems, so bieten sich zur Bestimmung des Verhältnisses β folgende Nomogramme nach EN 1992-1-1 an:

Bild 2.2: Nomogramme zur Bestimmung des Verhältnisses β

Um k_1 und k_2 automatisch im Programm ermitteln zu können, ist im Prinzip nur die Knickrichtung für das zu untersuchende Druckglied zu bestimmen. Innerhalb dieser Richtung werden dann vom Programm automatisch

- die anschließenden Stützen,
- die anschließenden Riegel und
- die Auflagerbedingungen der anschließenden Riegel am abliegenden Ende bestimmt.

Für jede dieser Stützen und Riegel sind dem Programm die Elastizitätsmoduln, Trägheitsmomente und Längen bekannt.

Gegebenenfalls können die anschließenden Stützen und Riegel auch einzeln ausgewählt werden.

Ein Druckglied kann in mehrere Richtungen ausknicken. Bei unterschiedlichen Lagerungsbedingungen in den einzelnen Richtungen kann es zu verschiedenen Ersatzstablängen für jede Richtung kommen.

Das Verhältnis β ist nur eine Näherung und kann deshalb auch durch den Benutzer definiert werden.

2.1.5 Bestimmung der Schlankheit

Norm	Absatz
EN 1992-1-1:2010	5.8.3.2 (1)

Nachdem die Ersatzstablänge l $_0$ der einzelnen Druckglieder bestimmt ist, kann ihre Schlankheit λ wie folgt ermittelt werden:

$$\lambda = \frac{I_0}{i}$$

mit

i: Trägheitsradius

$$i = \sqrt{\frac{1}{A}}$$

2.1.6 Stabilitätsnachweis oder Regelbemessung

Nur für schlanke Druckglieder ist ein Stabilitätsnachweis zu führen; bei gedrungenen Druckgliedern reicht die Regelbemessung. Die Entscheidung, wann ein Druckglied als "schlank" und wann als "gedrungen" gilt, findet über einen Vergleich mit der so genannten Grenzschlankheit λ_{lim} nach EN 1992-1-1:2010 statt. Ist die vorhandene Schlankheit kleiner als die Grenzschlankheit, so reicht die Regelbemessung aus.

Die Grenzschlankheit λ_{lim} ermittelt wie folgt:

Die Grenzschlankheit λ_{lim} ist abhängig von der eingelegten Bewehrung (siehe Faktor B). Um die wirtschaftlichste Bewehrung zu erhalten wird die Formel für λ_{lim} nach As umgestellt und somit die erforderliche Bewehrungsmenge As,lim bestimmt, die zur Durchführung einer Regelbemessung erforderlich ist. Diese "Grenzlängsbewehrung" wird während der Iterationen zur Berechnung der erforderlichen Längsbewehrung als Vergleichswert verwendet.

$$\lambda_{\text{lim}} = 20 \cdot \text{A} \cdot \text{C} \cdot \frac{1}{\sqrt{n}} \cdot \sqrt{1 + 2\frac{\text{A}_{\text{S}} \cdot \text{f}_{\text{yd}}}{\text{A}_{\text{c}} \cdot \text{f}_{\text{cd}}}} \xrightarrow{\lambda = \lambda_{\text{lim}}} \text{A}_{\text{S,lim}} = \left[\left(\frac{\lambda \cdot \sqrt{n}}{20 \cdot \text{A} \cdot \text{C}} \right)^2 - 1 \right] \cdot \frac{\text{A}_{\text{c}} \cdot \text{f}_{\text{cd}}}{2 \cdot \text{f}_{\text{yd}}}$$

2.1.7 Biegemomente aus Theorie I. und II. Ordnung

2.1.7.1 Planmäßige Ausmitte nach Theorie I.Ordnung

Ist der Momentenverlauf über die Stütze konstant, ermittelt sich die planmäßige Ausmitte **e**₀ nach folgender Gleichung:

$$e_0 = \frac{M_{Ed}}{N_{Ed}} \ge e_{min}, \quad e_{01} = e_{02}$$

mit:

 $e_{min} = h / 30 \ge 20 mm$ Mindestausmitte nach Abs. 6.1 (4)

h: Querschnittshöhe

Ist der Momentenverlauf hingegen linear veränderlich, darf eine Ersatzausmitte ee ermittelt werden.

Bild 2.3: Veränderlicher Momentenverlauf

Diese Ersatzausmitte ee ersetzt dann die planmäßige Ausmitte eo in den bisherigen Formeln.

Es finden sich keine Vorgaben für beispielsweise einen parabelförmigen Momentenverlauf. Daher wird bei einem beliebigen Momentenverlauf stets mit der größten Ausmitte gerechnet. Diese Annahme verhindert, in spezifischer Weise belastete Stützen von der Bemessung auszuschließen.

Ebenfalls mit der größten Ausmitte wird gerechnet, wenn die Stütze eine zweiachsige Biegung erfährt oder die Momente an den Stützenenden aus einer Ergebniskombination herrühren.

Als Modellstütze wird eine Kragstütze gewählt, die durch ein Biegemoment M_{Ed0} am Kopfpunkt und eine Normalkraft N_{Ed} beansprucht ist. Das Moment M_{Ed0} wird durch eine ausmittig angreifende Normalkraft N_{Ed} ersetzt. Mit e₀ wird die planmäßige Ausmitte nach Theorie I. Ordnung bezeichnet.

Bild 2.4: Modellstütze - Kragstütze

Bild 2.5: Ausmitte e₀

2.1.7.2 Zusätzliche ungewollte Ausmitte e_i

Die unvermeidliche Schiefstellung der Stütze wird durch eine Kopfauslenkung ei berücksichtigt.

Bild 2.6: Kopfauslenkung ei

Diese Ausmitte ermittelt sich nach EN 1992-1-1: 2010 nach Gleichung (5.2):

$$e_i = \Theta_i \cdot I_0 / 2$$

Eine Schiefstellung θ_i ermittelt sich nach Gleichung (5.1):

$\Theta_{\mathbf{i}} = \Theta_{0} \cdot \alpha_{\mathbf{h}} \cdot \alpha_{\mathbf{m}}$	
$\Theta_0 = 1/200$	Grundwert der Schiefstellung
$\alpha_{\rm h} = 2 / \sqrt{\rm I} \qquad 2 / 3 \le \alpha_{\rm h} \le 1.0$	Abminderungsbeiwert für die Höhe
$\alpha_{\rm m} = \sqrt{0.5 \cdot (1 + 1/m)}$	Abminderungsbeiwert für die Anzahl der Bauteile

Das Biegemoment M_{Edi} , das sich aus der Schiefstellung e_i ergibt, errechnet sich nach EN 1992-1-1:2010, Abs. 5.2 wie folgt:

 $M_{Edi} = N_{Ed} \cdot e_i$

Beide Auslenkungen (e_0 und e_i) ergeben folgenden Momentenverlauf (Moment nach Theorie I. Ordnung).

Bild 2.7: Theorie I. Ordnung - Auslenkungen $e_{\rm i}$ und $e_{\rm o}$

2.1.7.3 Zusätzliche Lastausmitte e2 aus Verformung nach Theorie II. Ordnung

Unter der Belastung kommt es zu einer Krümmung der Stütze. Der Stützenkopf wird dabei um den Weg e₂ ausgelenkt. Dabei ergibt sich der Momentenverlauf nach Theorie II. Ordnung.

Bild 2.8: Theorie II. Ordnung - Auslenkungen $e_{\text{i}}, e_{\text{0}}$ und e_{2}

Grundgedanke bei der Ermittlung der zusätzlichen Verformung ist die Annahme, dass schlanke Druckglieder bei Erreichen der Fließgrenze in der Bewehrung versagen. Damit ergibt sich als Ausgangspunkt die ungünstigste Konstellation, dass gleichzeitig die Zug- und Druckbewehrung ihre Fließspannungen erreichen. Dies ist für den Bereich des Zugversagens ausreichend genau. Tritt allerdings Druckversagen ein, führt dies zu einer deutlichen Überschätzung der Bruchkrümmung. Dies wird beim Modellstützenverfahren mit dem Faktor K_r berücksichtigt, der später noch genauer erläutert wird.

Die Krümmung verläuft in Abhängigkeit der sich für jedes Teilstück ändernden Steifigkeiten der Stütze nach einer unbekannten Form. Für das Modellstützenverfahren wird jedoch ein parabelförmiger Krümmungsverlauf angenommen. Da der Momentenverlauf zur Krümmung affin ist, kann nun zur Ermittlung der Lastausmitte e² die mit dem Prinzip der virtuellen Kräfte hergeleitete Formel verwendet werden.

$$e_2 = \left(\frac{1}{r}\right) \cdot I_0^2 / c$$
 nach EN 1992-1-1:2010, Abs. 5.8.8.2 (3)

mit

$$\left(\frac{1}{r}\right)$$
: Stabkrümmung im maßgebenden Schnitt
 $\left(\frac{1}{r}\right) = K_r \cdot K_{\phi} \cdot 1/r_0$ nach EN 1992-1-1:2010, Abs. 5.8.8.3

mit

Kr: Beiwert zur Berücksichtigung der Abnahme der Krümmung bei steigenden
 Längsdruckkräften – in der Praxis häufig auf der sicheren Seite liegend mit
 1 angenommen.

$$K_{r} = \frac{|n_{u}| - |n|}{|n_{u}| - |n_{bal}|} \le 1$$

mit

nu: bezogener Bauteilwiderstand bei zentrischer Beanspruchung

$$n_{u} = 1 + \omega$$

n :

n_{bal}:

Achtung:

Der Wert wird aus der eingelegten Bewehrung bestimmt. Daher ist eine iterative Ermittlung erforderlich.

mit

ω: mechanischer Bewehrungsgrad

$$\omega = \frac{\mathsf{A}_{\mathsf{s}} \cdot \mathsf{f}_{\mathsf{yd}}}{\mathsf{A}_{\mathsf{c}} \cdot \mathsf{f}_{\mathsf{cd}}}$$

bezogene Normalkraft

 $n=N_{\rm ed}\,/\,(A_{\rm c}\cdot f_{\rm c})$

bezogene Längsdruckkraft bei größter Biegetragfähigkeit am Einheitsquerschnitt (gilt für symmetrisch bewehrte Rechteckquerschnitte)

 $n_{bal}=0.4$

K₀: Beiwert zur Berücksichtigung der Auswirkungen aus Kriechen

$$K_{\varphi} = 1 + \beta \cdot \phi_{ef} \ge 1$$

mit β:

 $\beta = 0.35 + f_{ck} \ / \ 200 - \lambda \ / \ 150 \geq 0$

Abminderungsbeiwert

 φ_{ef} : effektive Kriechzahl

 $\phi_{ef} = \phi(\infty, t_0) \cdot M_{0Eqp} / M_{0Ed}$

mit

$\phi(\infty, t_0)$:	Endkriechzahl
M _{0Eqp} :	Biegemoment nach Theorie I.Ordnung unter der quasi-ständigen Einwirkungskombination (GZG)
M _{0Ed} :	Biegemoment nach Theorie I.Ordnung unter der Bemessungs- Einwirkungskombination (GZT)
Achtung:	

Unter gewissen Umständen kann es dazu führen, dass der Quotient aus quasi-ständigem Moment und Bemessungsmoment > 1.0 ist. Diesem Umstand wird in Maske 1.1 Rechnung getragen und kann optional deaktiviert werden.

 $1/r_0 = \epsilon_{yd} / (0.45 \cdot d)$

Bemessungswert der Dehnung der Bewehrung an der Streckgrenze

 $\varepsilon_{yd} = f_{yd} / E_s$

d: Nutzhöhe des Querschnitts in der zu erwartenden Richtung des Stabilitätsversagens

I₀: Ersatzlänge

$$I_0 = \beta \cdot I$$

c: Beiwert in Abhängigkeit des Krümmungsverlaufs nach 5.8.8.2(4)

Die Gesamtauslenkung etot ermittelt sich somit wie folgt:

 $e_{tot} = e_0 + e_i + e_2$

Das Gesamtmoment M_{Ed} aus Theorie I. und II. Ordnung ergibt sich zu:

 $M_{Ed} = N_{Ed} \cdot e_{tot}$

Das Druckglied gilt als nachgewiesen, wenn für das Moment M_{Ed} und die Normalkraft N_{Ed} am Einspannpunkt eine ausreichende Bewehrung ermittelt wurde.

2.1.8 Art der Querschnittsbemessung

Der Benutzer muss vorgeben, um welche Achse eine Stütze stabilitätsgefährdet ist. Auch wenn kein Moment vorliegt, ergibt sich eine Stabilitätsgefahr bei Druckgliedern immer durch die ungewollte Ausmitte e_i.

2.2 Programmablauf der Stabilitätsuntersuchung

Der Programmablauf gliedert sich grob in vier Teile:

Bild 2.9: Programmablauf

Bevor auf die einzelnen Teile eingegangen wird, ist zu klären, was in RF-/BETON Stützen unter einer "Belastung" zu verstehen ist.

Eine Belastung kann sich aus einer oder mehreren Einzellasten ergeben, die in Lastfällen zusammengefasst sind. Für einen Lastfall kann sich zum Beispiel ein Schnittgrößenverlauf über die Stütze ergeben, wie er in folgendem Bild dargestellt ist.

Bild 2.10: Schnittgrößenverlauf über die Stütze für einen Lastfall

Bei einer rechteckigen Stütze sind für die Ermittlung der Längsbewehrung neben der Normalkraft N nur die beiden Biegemomente M_y, M_z, deren Momentenvektoren parallel zu den Achsen y bzw. z des Stabkoordinatensystems verlaufen, zu berücksichtigen.

Bild 2.11: Achsen des Stabkoordinatensystems

Wie in vielen Untersuchungen zum Nachweis schlanker Druckglieder bestätigt, sind auch für das Verfahren mit Nennkrümmung Vereinfachungen zulässig. In Anlehnung an DIN 1045-1 wird das Gleichgewicht nur im meistbeanspruchten Querschnitt betrachtet und die Verformung mit vereinfachten Ansätzen ermittelt. Dabei wird der Fließzustand der Bewehrung maßgebend, was die Überführung des komplizierten Nachweises nach Theorie II. Ordnung in eine einfache Querschnittsbemessung ermöglicht.

Für die Bemessung an der meistbeanspruchten Stelle sind fünf Stellen entlang einer Stütze zu untersuchen. Erst wenn feststeht, an welcher Stelle die größte erforderliche Bewehrung vorliegt, kann über eine Bemessung entschieden werden. Diese fünf Stellen sind:

- 1. Stelle, an der die Normalkraft N minimal wird
- 2. Stelle, an der das Moment M_y maximal wird
- 3. Stelle, an der das Moment My minimal wird
- 4. Stelle, an der das Moment Mz maximal wird
- 5. Stelle, an der das Moment Mz minimal wird

Unter einer maximalen Schnittgröße wird dabei der größte positive Wert, unter einer minimalen Schnittgröße jener Wert verstanden, der bei negativen Vorzeichen den absolut größten Betrag hat. Jede dieser fünf Stellen weist neben der extremalen Schnittgröße zugehörige Schnittgrößen auf, für die im Nachgang eine Bemessung stattfindet.

Wie der Schnittgrößenverlauf für den Lastfall zeigt, können von diesen fünf Stellen einige zusammenfallen.

Bild 2.12: Stellen der maßgebenden Schnittgrößen

Eine doppelte Bemessung findet im Falle gleicher Schnittgrößen durch eine programminterne Kontrolle nicht statt.

Neben Lastfällen existieren noch Last- und Ergebniskombinationen. Eine Lastkombination stellt nichts anderes dar als eine Überlagerung von einzelnen Lastfällen, sodass sich wiederum nur ein Schnittkräfteverlauf für jede der drei Schnittkräfte N, M_y und M_z ergibt. Es gilt deshalb das zum einzelnen Lastfall Gesagte.

Bei einer Ergebniskombination hingegen ergibt sich für jede Schnittgröße ein maximaler und ein minimaler Verlauf über die Stütze (siehe folgendes Bild).

Bild 2.13: Schnittgrößenverläufe einer Ergebniskombination

Für eine Ergebniskombination können aber wiederum die fünf Stellen bestimmt werden, an denen die zwei Schnittgrößen M_y und M_z ihre maximalen und minimalen Werte annehmen und die Normalkraft N minimal wird.

Bild 2.14: Stellen der maßgebenden Schnittgrößen

Neben der Bemessung einzelner Stäbe ist die Bemessung von Stabzügen möglich. Ein Stabzug stellt eine Aneinanderreihung von Stäben dar, die nicht verzweigen. Um einen Stabzug zu bemessen, werden die einzelnen Stäbe hinsichtlich der Schnittgrößen zu einem Stab zusammengefasst. Für diesen Stab werden anschließend wieder die fünf genannten Stellen bemessen. Da sich diese Stellen an unterschiedlichen Stäben des Stabzugs befinden können, ist die größte sich ergebende Bewehrung demzufolge auch über den kompletten Stabzug einzulegen.

Damit steht fest, dass für jeden Lastfall, jede Lastkombination und jede Ergebniskombination exakt fünf Bemessungen durchzuführen sind, unabhängig davon, ob ein einzelner Stab oder ein ganzer Stabzug als zu bemessendes Element gewählt wurde.

In welchem Teil des Programms die Bemessungen stattfinden, wird bei genauerer Beleuchtung der einzelnen eingangs dieses Kapitels erwähnten Programmteile vorgestellt.

2.2.1 Teil 1: Lastunabhängige Berechnungen

Diese Berechnungen werden zu Beginn des Programmablaufs durchgeführt. Deren Ergebnisse können dann innerhalb jeder Routine für die einzelnen Belastungen weiterverwendet werden. Dabei handelt es sich um folgende Berechnungsschritte:

Teil 1: Lastunabhängige Berechnung

Weitere Informationen zur Bestimmung der Ersatzlänge finden sich im Kapitel 2.1.4 dieses Handbuchs. Die Bestimmung der vorhandenen Schlankheit ist im Kapitel 2.1.5, die Bestimmung der zusätzlichen ungewollten Ausmitte im Kapitel 2.1.7 beschrieben.

2.2.2 Teil 2: Bestimmung der maßgebenden Belastung

Der zweite Teil des Programms stellt sich als Flussdiagramm wie folgt dar:

Für sämtliche bemessungsrelevante Stellen wird für jeden der zu bemessenden Lastfälle bzw. Last- oder Ergebniskombination zunächst die Grenzschlankheit λ_{lim} ermittelt. Das Kapitel 2.1.6 beschreibt, wie die Grenzschlankheit λ_{lim} bestimmt wird. Es wird keine Stabilitätsuntersuchung erforderlich, wenn die vorhandene Schlankheit kleiner als die Grenzschlankheit λ_{lim} ist. Im oben gezeigten Berechnungsablauf ist dies durch die Abfrage A_{S,lim} \leq 0 dargestellt (A_{S,lim} \leq 0 bedeutet,

dass die für einen unbewehrten Querschnitt berechnete Grenzschlankheit λ_{lim} größer als die vorhandene Schlankheit λ ist, vgl. hierzu Kapitel 2.1.6).

Im Fall einer gezogenen Stütze ist anstelle einer Stabilitätsuntersuchung ebenfalls eine Regelbemessung durchzuführen. Diese Bedingungen werden im oben dargestellten Flussdiagramm, getrennt für die beiden Richtungen y und z, zunächst geprüft. Zudem wird kontrolliert, ob der Benutzer eine Stabilitätsgefährdung für diese Richtungen ausgeschlossen hat. Über den rechten Strang wird das Programm hin zu einer Regelbemessung fortgesetzt, während der weitergeführte Strang die Stabilitätsuntersuchung einleitet.

Zunächst wird in Abhängigkeit vom Schnittkraftverlauf wie in Kapitel 2.1.7.1 erläutert die planmäßige Ausmitte e₀ ermittelt.

Damit sind beide Ausmitten bekannt, mit denen dann im nächsten Berechnungsschritt das Moment nach Theorie I. Ordnung bestimmt werden kann (einschließlich Auswirkung aus Imperfektion).

 $M_{0Ed} = N_{Ed} \left(e_0 + e_i \right)$

mit

N_{Ed} : Bemessungswert der aufzunehmenden Längskraft

e_i: zusätzliche ungewollte Lastausmitte nach Kapitel 2.1.7.2

Der Programmablauf setzt sich mit der Bestimmung der zusätzlichen Lastausmitte e₂ infolge Auswirkungen nach Theorie II. Ordnung fort. Die theoretischen Grundlagen dazu wurden im Kapitel 2.1.7.3 genannt. Der dort erwähnte Faktor K_r dient zur näherungsweisen Bestimmung der Krümmung 1/r und darf nach folgender Formel ermittelt werden:

$$K_r = \frac{\left| n_u \right| - \left| n \right|}{\left| n_u \right| - \left| n_{bal} \right|} \leq 1$$

Dabei ist nu der bezogene Bauteilwiderstand bei zentrischer Druckbeanspruchung. Dieser hängt von der gewählten Bewehrung ab. Da jedoch im ersten Schleifendurchgang noch keine Bewehrung gewählt wurde, wird der Wert von Kr für den ersten Durchgang mit 1,0 angenommen.

In jedem weiteren anschließenden Schleifendurchgang wird der Wert von n_u mit der statisch erforderlichen Bewehrung des vorherigen Schleifendurchgangs ermittelt.

Ist die zusätzliche Lastausmitte e₂ infolge der Auswirkungen nach Theorie II. Ordnung bekannt, kann im nächsten Berechnungsschritt das Moment nach Theorie II. Ordnung bestimmt werden:

$$M_{Ed,II} = N_{Ed} \cdot (e_0 + e_i + e_2)$$

Der oben abgebildete Programmablauf endet dann mit der Bestimmung der erforderlichen Bewehrung.

Das nächste Flussdiagramm stellt die untere Hälfte des Programmablaufs Teil 2 dar.

Der rechte Strang führt ebenfalls zur Bestimmung der erforderlichen Bewehrung, allerdings für die Schnittgrößen nach Theorie I. Ordnung, da eine Regelbemessung ausreichend war.

Der mittlere Strang hingegen zeigt, welche Bedingungen erfüllt sein müssen, damit die Schleife beendet wird. Als erstes wird kontrolliert, ob die erforderliche Bewehrung dieses Schleifendurchgangs größer oder gleich der erforderlichen Bewehrung des vorherigen Durchgangs ist. Eine Übereinstimmung liegt dann vor, wenn sich eine Abweichung erst bei der fünften Nachkommastelle ergibt. Für den ersten Schleifendurchgang kommt eine Beendigung der Schleife über diese Bedingung nicht infrage, da es keine Bewehrung aus dem vorherigen Schleifendurchlauf gibt.

Auch die anschließende Bedingung wird erst wirksam, wenn das Programm diese Stelle ein zweites Mal passiert. Ruft man sich die Formel zur Ermittlung von Kr nochmals vor Augen, ist zu erkennen, dass sich Kr nur ändert, wenn der Wert der einwirkenden Normalkraft N_{Ed} größer ist als die aufnehmbare Längsdruckkraft bei größter Momententragfähigkeit des Querschnitts. Ist dies nicht der Fall, wird der Wert von Kr stets auf 1 gesetzt und die Momente nach Theorie II. Ordnung würden sich in jedem Schleifendurchlauf nicht mehr ändern. Die Schleifen können deshalb vorzeitig verlassen werden.

Sollte keine der beiden Bedingungen zutreffen, wird als vorhandene Bewehrung des nächsten Schleifendurchgangs die erforderliche Bewehrung dieses Durchgangs angesetzt. Das Programm wird mit der Bestimmung der zusätzlichen Lastausmitte e₂ infolge der Auswirkungen nach Theorie II. Ordnung über den zweiten Strang von rechts fortgesetzt.

Diese Schleife kann nur über die Erfüllung der beiden letztgenannten Bedingungen vorzeitig verlassen werden. Um jedoch keine Endlosschleife erzeugt zu haben, findet eine Beendigung automatisch nach dem tausendsten Durchgang statt.

Wird die Schleife über eine der beiden Bedingungen verlassen, so wird überprüft, ob die erforderliche Bewehrung dieses Schleifendurchganges größer ist als die Grenzlängsbewehrung A_{s,lim}. Sollte dies der Fall sein, heißt dies in anderen Worten, dass ein Ansatz von A_{s,lim} zur Vermeidung der Stabilitätsuntersuchung die wirtschaftlichere Lösung ist. Hier vereinen sich dieser Strang und der rechte Strang, über den eine Bewehrung für die Momente nach Theorie I. Ordnung ermittelt wurde. Die erforderliche Bewehrung für die Momente nach Theorie I. Ordnung ergibt sich aus dem maximalen Wert aus der Biegebemessung und der Grenzlängsbewehrung zur Vermeidung der Stabilitätsuntersuchung.

Als Nächstes wird überprüft, ob die erforderliche Bewehrung für diese untersuchte Stelle und diese Belastung größer ist als die bisher größte erforderliche Bewehrung für eine andere Stelle bzw. eine andere Belastung. Sollte dies der Fall sein, wird die erforderliche Bewehrung dieses Schleifendurchgangs als bisher größte registriert und die Schleife wird mit der nächsten Stelle und gegebenenfalls der nächsten Belastung fortgesetzt.

Ein Zahlenbeispiel soll das Prinzip zur Findung der maßgebenden Belastung im zweiten Teil des Programmablaufs veranschaulichen. Als Belastung werden zwei ausgewählte Stellen mit folgenden Schnittgrößen untersucht:

Schnittgröße	1	2
N [kN]:	-431,00	-1500,00
M _{yl} [kNm]:	87,80	-72,80
M _z [kNm]:	0,00	0,00

Bild 2.15: Schnittgrößen

Für die Stelle 1 werden folgende Schritte bis zur Beendigung der Schleife durchlaufen:

Iteration	1	2	
M _{Ed,y,II} [kNm]:	-185,1569	-185,1569	
vorh. A _s [cm ²]:		13,2460	
erf. A, [cm ²]:	13,2460	13,2460	

Bild 2.16: Iteration – Stelle 1

Der zweite Schleifendurchlauf wird verlassen, weil die Bedingung $n_{bal} \ge n$ erfüllt ist und somit die Momente nach Theorie II. Ordnung sich nicht ändern.

Als bisher größte Bewehrung wird der Wert 13,2460 cm² festgehalten. Die Schleife wird mit der zweiten untersuchten Stelle fortgesetzt. Hier ergeben sich sieben Schritte, bevor die Schleife durch die Erfüllung der Bedingung verlassen wird, dass die erforderliche Bewehrung gleich der vorhandenen Bewehrung des vorherigen Schleifendurchlaufs ist.

Iteration	1	2	3	4	5	6	7
M _{Ed,y,II} [kNm]:	-465,1229	-437,8077	-436,5691	-436,5100	-436,5074	-436,5072	-436,5072
erf. A _{s,i+1} [cm ²]:		39,8329	36,2733	36,1117	36,1040	36,1037	36,1037
erf. A _{s.} [cm ²]:	39,8329	36,2733	36,1117	36,1040	36,1037	36,1037	36,1037

Bild 2.17: Iteration – Stelle 2

Die ermittelten Werte lassen sich wie folgt als Diagramm darstellen:

Bild 2.18: Verlauf des Moments nach Theorie II. Ordnung (vertikale Primärachse) sowie der erforderlichen und der vorhandenen Bewehrung (vertikale Sekundärachse)

Der zweite Teil des Programmablaufs schließt mit der Erkenntnis, dass sich die maßgebende Belastung an der untersuchten Stelle 2 ergibt.

Im folgenden dritten Teil des Programmablaufs wird nun eine Bewehrung für diese maßgebende Belastung gefunden.

Der dritte Teil des Programmablaufplans beginnt wieder mit der Bestimmung der Vergleichsschlankheiten. Anschließend wird entschieden, ob eine Regelbemessung oder eine Stabilitätsuntersuchung durchgeführt werden soll.

Für die Stabilitätsuntersuchung wird zunächst wieder das bewehrungsunabhängige Moment nach Theorie I. Ordnung bestimmt.

Anschließend tritt die Berechnung in eine Schleife ein. Die Momente nach Theorie II. Ordnung werden in jedem Durchlauf mit der im vorherigen Durchlauf ermittelten vorhandenen Bewehrung bestimmt. Im ersten Schleifendurchlauf werden die Momente nach Theorie II. Ordnung unabhängig von der Bewehrung ermittelt (K_r = 1). Hat eine veränderte vorhandene Bewehrung keinen Einfluss auf die Größe der Momente nach Theorie II. Ordnung (n_{bal} \geq n), wird die Schleife nach dem zweiten Durchlauf verlassen. Gleiches geschieht, wenn sich die vorhandene Längsbewehrung nach zwei Schleifendurchläufen nicht mehr verändert hat.

Um das Prinzip des dritten Teils des Programmablaufs zu verdeutlichen, wird das begonnene Beispiel für den zweiten Teil des Programmablaufs fortgesetzt. Für die dort als maßgebende Stelle ermittelte Stelle 2 ist die Bewehrung zu finden. Als mögliche Bewehrungsdurchmesser wurden d_s = 16, 20, 25, 26, 28 und 30 festgelegt.

Folgende Anzahl und Durchmesser von Bewehrungsstäben bildeten die vorhandene Bewehrung des jeweiligen Iterationsschritts:

Iteration	1	2	3	4	5
		•••	•••	••••••	•••••
M _{Ed,y,II} [kNm]:	-465,1229	-438,6399	-436,8114	-436,5392	-436,5392
vorh. A _s [cm ²]:	36,1	42,4115	36,9451	36,1911	36,1911
Anzahl:	х	6	6	18	18
φ [mm]:	x	30	28	16	16
erf. A _s [cm ²]:	39,8329	36,3819	35,8991	34,4489	34,4489

Bild 2.19: Iterationsverlauf

Damit steht fest, dass die Stütze eine Bewehrung von 18 Stäben (Ø = 16 mm) erhält, die in der vom Benutzer vorgegebenen Art anzuordnen sind.

Mit dieser vorhandenen Bewehrung ergeben sich folgende Momente nach Theorie II. Ordnung (siehe nächste Seite).

Dlubal

Bild 2.20: Verlauf des Moments nach Theorie II. Ordnung (vertikale Primärachse) sowie der Verlauf der erforderlichen und der vorhandenen Bewehrung (vertikale Sekundärachse)

Das bisherige Abbruchkriterium der Schleife ging davon aus, dass bei einem verringerten Moment durch eine verringerte vorhandene Bewehrung die erforderliche Bewehrung ebenfalls abnimmt. Durch folgendes Beispiel kann dies wiederlegt werden.

Iteration	1	2	3	4	5
		• • • • • •	••••	• • • • • • • • •	••••
M _{Ed,y,II} [kNm]:	-465,1229	-442,3723	-441,4043	-440,8887	-440,3502
M _{Edz,II} [kNm]:	96,0501	91,0648	90,8526	90,7396	90,6216
vorh. A _s [cm ²]:	0	56,2973	52,2761	50,2655	48,2549
Anzahl:	х	28	26	16	24
φ [mm]:	х	16	16	20	16
erf. A _s [cm ²]:	54,4809	51,0660	50,1228	47,8654	48,9917

Bild 2.21: Iterationsverlauf

Die folgende Grafik veranschaulicht, wie die Momente nach Theorie II. Ordnung bei fallender vorhandener Bewehrung auch stetig abnehmen.

Bild 2.22: Verlauf der Momente nach Theorie II. Ordnung

Obwohl die Momente abnehmen, übersteigt die erforderliche Bewehrung des fünften Iterationsschrittes die ihrer Ermittlung zu Grunde gelegte vorhandene Bewehrung.

Bild 2.23: Verlauf der erforderlichen und der vorhandenen Bewehrung

Eine Fortsetzung der Iterationen würde zu einer Endlosschleife führen. Die Ursache liegt in der Anordnung der Bewehrung. Da im fünften Iterationsdurchgang die vorhandene Bewehrung in zwei Reihen je Seite angeordnet wurde, verringert sich die statische Höhe und es kommt damit zu einer größeren Bewehrung.

Iteration	4	5	6	7
	•••••	• • •	••••	••••
M _{Ed,y,II} [kNm]:	-440,8887	-440,3502	-440,5760	-440,3502
M _{Edz,II} [kNm]:	90,7396	90,6216	90,6011	90,6216
erf. A _s [cm ²]:	47,8654	48,9917	47,9090	48,9917
Anzahl:	16	24	10	24
φ [mm]:	20	16	25	16
vorh. A _s [cm ²]:	50,2655	48,2549	49,0874	48,2549
			Schlaifa	

Bild 2.24: Endlosschleife

Um eine Endlosschleife zu vermeiden, wird die Iteration deshalb genau dann beendet, wenn die erforderliche Bewehrung die zu ihrer Ermittlung zu Grunde gelegte vorhandene Bewehrung zum ersten Mal überschreitet. Als Lösung wird die vorhandene Bewehrung des vorherigen Iterationsdurchgangs verwendet. Im oben aufgeführten Beispiel ist das die vorhandene Bewehrung des Iterationsdurchgangs Nr. 4.

Damit ist gleichzeitig ein Automatismus geschaffen, durch den Lösungen mit einlagiger Bewehrung vorgezogen werden, falls der Benutzer mehrere Bewehrungslagen zugelassen hat.

Die so bewehrte Stütze ist dann auch in der Lage, die Belastungen aus den anderen Lastfällen, Last- und Ergebniskombinationen aufzunehmen. Welche Sicherheiten dabei jeweils zustandekommen, wird im vierten Teil des Programmablaufs geklärt.

2.2.4 Teil 4: Bestimmen der vorhandenen Sicherheit

Der vierte Teil des Programmablaufs besteht aus zwei geschachtelten Schleifen, um für alle Belastungen die fünf relevanten Stellen zu untersuchen.

Innerhalb der Schleifen gibt es nur eine Verzweigung, die entscheidet, ob die Sicherheit für Momente nach Theorie I. Ordnung oder Theorie II. Ordnung ermittelt werden sollen.

Für die beiden betrachteten Stellen des ersten Beispiels werden folgende Sicherheiten ermittelt:

St	telle 1	Stelle 2
2.	8028	1.0234

Bild 2.25: Sicherheiten für Stelle 1 und 2

2.3 Ablauf beim Nachweis vorhandener Bewehrung

Der bisher vorgestellte Programmablauf, der sich über die Teile 1 bis 4 erstreckt, gilt für den Fall, dass der Benutzer eine erste Berechnung gestartet hat. Hierfür wird im Teil 2 des Ablaufs eine erforderliche Bewehrung bestimmt, die unabhängig von einer tatsächlich eingelegten, durch Lage und Stabdurchmesser genau definierten Bewehrung ist. Erst im Teil 3 werden verschiedene mögliche Bewehrungen ausprobiert, um die kleinste vorhandene Bewehrung zu finden, mit der dann im vierten Teil des Ablaufs die maßgebende Sicherheit für sämtliche Belastungen gefunden werden kann.

Diese vorhandene Bewehrung erhält der Benutzer dann in einer der Ausgabemasken. Dort hat er die Möglichkeit, die vorhandene Bewehrung nach seinen Vorstellungen abzuändern. Für diese abgeänderte Bewehrung muss jedoch erneut die vorhandene Sicherheit ermittelt werden. Um dies zu gewährleisten, wird mit dem Ändern der vorhandenen Bewehrung die erste Ausgabemaske, die die maßgebenden vorhandenen Sicherheiten zeigt, gelöscht. Nur die Ausgabemaske, die die erforderliche Bewehrung zeigt, bleibt erhalten, da diese unabhängig von der vorhandenen Bewehrung ist. Der Benutzer wird auf das Löschen der Maske für die vorhandene Sicherheit und eine erforderliche Neuberechnung hingewiesen.

Anschließend wird eine Neuberechnung gestartet. Dazu werden die vorgestellten Programmteile 1 und 4 mit der vom Benutzer definierten Bewehrung nochmals durchlaufen und so die Sicherheit abermals bestimmt.

Wie der Programmablauf der Auslegung einer Längsbewehrung gezeigt hat, sind die Ergebnisse zur Bestimmung der vorhandenen Sicherheit entscheidend von der Wahl der Bewehrung abhängig. Deshalb zeigt das folgende Kapitel, wie für eine erforderliche Bewehrung eine vorhandene Bewehrung aus den verfügbaren Bewehrungsstäben ermittelt wird.

2.4 Ermittlung der vorhandenen Bewehrung

Wurde die erforderliche Bewehrung ermittelt, ist aus den zuvor gewählten Bewehrungsstäben diejenige Anzahl eines bestimmten Stabdurchmessers zu wählen, für die gilt:

vorh. $A_s \ge erf. A_s$

Gleichzeitig muss beachtet werden, dass die vorhandene Bewehrung nicht die Mindestbewehrung unterschreitet bzw. die Maximalbewehrung überschreitet, wie nach EN 1992-1-1: 2010, Abs. 9.6.2 vorgeschrieben ist:

$$A_{s,min} = 0.10 \cdot \frac{N_{Ed}}{f_{yd}} \ge 0.002 \cdot A_{c}$$

 $A_{s,max} = 0.04 \cdot A_c$, sowie bei Übergreifungsstößen $A_{s,max} = 0.08 \cdot A_c$

Diese Bewehrung ist zur Aufnahme von Momenten aus ungewollter Einspannung vorzusehen. Es darf jedoch nicht nur der Querschnitt der Bewehrung einen Mindestwert nicht unterschreiten, sondern es existiert auch eine Vorschrift hinsichtlich der Mindestanzahl von Bewehrungs-

stäben. Bei Stützen mit kreisförmigem Querschnitt sind mindestens vier Bewehrungsstäbe einzulegen, während bei Stützen mit Rechteckquerschnitt in jeder Ecke ein Bewehrungsstab einzulegen ist (9.5.2 (4)).

Das Programm folgt der Empfehlung aus [1], Druckglieder nur symmetrisch zu bewehren. Dafür sprechen folgende Gründe:

- Oft ist eine unsymmetrische Bewehrung nicht wirtschaftlicher als eine symmetrische, da die Momente einer Stütze am Kopf und Fuß unterschiedliche Vorzeichen besitzen und meistens die gleiche Größenordnung beibehalten.
- Die Möglichkeit eines um 180° gedrehten, verkehrten Einbaus (bei unsymmetrischer Bewehrung möglich) muss ausgeschlossen werden.

Mit diesen Prämissen kann die Anzahl und der Durchmesser der Stäbe bestimmt werden.

2.4.1 Rechteckiger Querschnitt

Die Anzahl an Bewehrungsstäben wird im Wesentlichen von der durch den Benutzer gewählten Anordnung der Bewehrungsstäbe beeinflusst. Für einen Rechteckquerschnitt kann zwischen folgenden Anordnungen gewählt werden:

Bild 2.26: Anordnung der Bewehrung

Bei zweiseitiger Bewehrung kann sich der Benutzer zudem dafür entscheiden, ob er die Bewehrung parallel zur y-Achse oder parallel zur z-Achse des Querschnittskoordinatensystems verteilt sehen möchte.

Ebenfalls durch den Benutzer vorgegeben wird der minimale Abstand a_{min} der Bewehrungsstäbe innerhalb der ersten Lage. In der ersten Lage dürfen die vorhandenen Abstände a dann nicht kleiner sein als dieser minimale Abstand a_{min}.

Den minimalen Abstand b_{min} innerhalb der zweiten Lage kann der Benutzer ebenfalls definieren. Der Abstand b für zweiseitige Bewehrung darf nicht kleiner sein als der minimale Abstand b_{min} .

Den minimalen Abstand e_{min} zur zweiten Lage kann der Benutzer ebenfalls vorgeben. Der Abstand e für zweiseitige Bewehrung darf nicht kleiner sein als der minimale Abstand e_{min}.

Die Anordnung einer zweiten Bewehrungslage ist nur für zweiseitige Bewehrungsanordnung möglich.

Die Lage der ersten vier Stäbe wird von der definierten Betondeckung bestimmt. Es existieren im Programm zwei Möglichkeiten, die Betondeckung vorzugeben:

Bild 2.28: Lage der ersten vier Bewehrungsstäbe

Zum einen als Schwerachsen-Deckung (linke Grafik) und zum anderen als Rand-Deckung (rechte Grafik).

Bild 2.29: Art und die Größe der Betondeckung

Steht die Art und die Größe der Betondeckung fest, kann für jede Seite der verbleibende Bereich R_y und R_z bzw. R_{y2} (bei zweilagiger Bewehrungslage) bestimmt werden, der mit Bewehrungsstäben gefüllt werden kann.

Bild 2.30: Bereich für weitere Bewehrungsstäbe bei ein- bzw. zweilagiger Bewehrungsanordnung

Stehen diese Bereiche fest, werden sie innerhalb einer Routine beginnend mit dem kleinsten durch den Benutzer zur Verfügung gestellten Stabdurchmesser aufgefüllt. Folgende drei Ereignisse können zur Beendigung der Routine führen:

<u>Ereignis 1</u>: Der vorhandene Bewehrungsquerschnitt **vorh A**_s ist größer als der erforderliche Bewehrungsquerschnitt **erf A**_s. Der Stabdurchmesser und die Anzahl dieser Bewehrungsstäbe werden als Lösung gespeichert.

<u>Ereignis 2</u>: Innerhalb der ersten Bewehrungslage können keine Bewehrungsstäbe mehr angeordnet werden, da sonst der Stababstand a den minimalen Stababstand a_{min} unterschreiten würde. Hat der Benutzer vorgegeben, dass nur eine Bewehrungslage zulässig ist, so wird die Routine erfolglos beendet.

<u>Ereignis 3</u>: Auch innerhalb der zweiten Bewehrungslage können keine Bewehrungsstäbe mehr angeordnet werden, da sonst der Stababstand b den minimalen Stababstand b_{min} unterschreiten würde. Die Routine wird erfolglos beendet.

Wurde eine Routine beendet, wird mit dem nächstgrößeren Stabdurchmesser fortgefahren. Sind alle durch den Benutzer zur Verfügung gestellten Stabdurchmesser durchlaufen, werden die gespeicherten Lösungen miteinander verglichen. Diejenige Lösung, für die sich die geringste Differenz der vorhandenen Bewehrung zur erforderlichen Bewehrung ergibt, wird als Lösung ausgewählt. Es wird anschließend kontrolliert, ob die zulässigen Bewehrungsgrade eingehalten sind.

2.4.2 Kreisförmiger Querschnitt

Die Bewehrungsstäbe werden beim runden Querschnitt radial zum Querschnittsmittelpunkt angeordnet. Ihre Mindestanzahl beträgt vier Stück.

Bild 2.31: Anordnung der Bewehrung

Durch den Benutzer vorgegeben wird der minimale Abstand amin der Bewehrungsstäbe. Der vorhandene lichte Abstand a darf dann nicht kleiner sein als dieser minimale Abstand amin.

Bild 2.32: Abstand a der Bewehrungsstäbe

Bei kreisrunden Querschnitten wird darauf verzichtet, Bewehrungsvorschläge mit einer zweilagigen Bewehrung anzubieten, da dies in der Praxis nur durch einen unverhältnismäßig hohen Verlegeaufwand möglich ist.

Die Lage der Bewehrungsstäbe wird durch die Betondeckung bestimmt. Wie im Kapitel 2.4.1 *Rechteckiger Querschnitt* beschrieben, bestehen zur Definition der Betondeckung die Möglichkeiten der Schwerachsen- und der Rand-Deckung.

Stehen Art und Größe der Betondeckung fest, kann bei gewähltem Stabdurchmesser der eingeschriebene Kreis bestimmt werden, auf dem sich die Schwerpunkte der Bewehrungsstäbe befinden (siehe folgendes Bild).

Bild 2.33: Kreis mit Schwerpunkten der Bewehrungsstäbe

Dieser Kreis besitzt den Radius R und den Umfang U.

Als nächstes wird die erforderliche Anzahl n an Bewehrungsstäben bestimmt.

$$n = \frac{\text{erf. } A_s}{A_{s,\text{Stab}}}$$

Der gefundene Wert wird auf eine ganze Zahl aufgerundet. Mit bekanntem Umfang U kann nun der Zwischenwinkel α bestimmt werden.

Bild 2.34: Zwischenwinkel α

Dies geschieht nach folgender Formel:

$$\alpha = \frac{360^{\circ}}{n}$$

Damit kann der lichte Abstand a der Bewehrungsstäbe ermittelt werden.

$$\mathbf{a} = \mathbf{2} \cdot \mathbf{R} \cdot \sin\left(\frac{\alpha}{2}\right) - \mathbf{d}_{s}$$

Ist dieser lichte Abstand nun kleiner als der minimal zulässige Abstand, wird eine Lösung mit diesem Bewehrungsstabdurchmesser verworfen und der Vorgang mit dem nächstgrößeren Stabdurchmesser wiederholt. Ist der Abstand hingegen größer, so wird die gefundene Lösung gespeichert.

Wenn alle verfügbaren Bewehrungsdurchmesser durchlaufen sind, werden die verschiedenen Lösungen miteinander verglichen. Diejenige Lösung, bei der die vorhandene Bewehrung der erforderlichen Bewehrung am nächsten ist, wird dann gewählt.

2.5 Brandschutznachweis

Die Brandschutzbemessung mit RF-/BETON Stützen erfolgt nach dem vereinfachten Rechenverfahren gemäß EN 1992-1-2 [2], Abs. 4.2. Dabei wird die in Anhang B.2 beschriebene *Zonenmethode* verwendet:

Die Verringerung der Tragfähigkeit bei Brandeinwirkung wird durch eine Verkleinerung des Bauteilquerschnittes und eine Abminderung der Baustofffestigkeiten abgebildet. Bei dem zur Brandbemessung benutzten Ersatzquerschnitt werden die dem Brand direkt ausgesetzten und dadurch zermürbten Betonbereiche nicht berücksichtigt. Der Brandschutznachweis erfolgt dann mit dem reduzierten Querschnitt und den abgeminderten Baustoffeigenschaften analog zum Tragfähigkeitsnachweis bei Normaltemperatur.

Bild 2.35: Brandbeanspruchter Querschnitt mit geschädigten Zonen

2.5.1 Unterteilung des Querschnitts

Der Querschnitt wird in eine Anzahl paralleler (n \geq 3) Zonen gleicher Dicke eingeteilt. Für jede Zone wird die mittlere Temperatur, die entsprechende Druckfestigkeit $f_{c,\theta}$ und ggf. der Elastizitätsmodul ermittelt.

Bild 2.36: Unterteilung einer beidseits brandbeanspruchten Wand in Zonen gemäß [2], Bild B.4

Der brandbeanspruchte Querschnitt wird auf eine äquivalente Wand zurückgeführt. Dabei beträgt die Breite der gleichwertigen Wand 2*w. Diese Ersatzbreite ist wie im wie im Bild 2.36 gezeigt symmetrisch in Zonen zu unterteilen.

Die halbe Ersatzbreite *w* ist abhängig von der Brandbeanspruchung, die auf das Bauteil wirkt. Folgende Tabelle bietet eine Übersicht über die normgemäße Ermittlung der Ersatzbreiten.

Brandbeanspruchung	Halbe Ersatzbreite w
Einseitig brandbeanspruchtes Bauteil	Bauteilbreite in Brandeinwirkungsrichtung
Zweiseitig (gegenüberliegend) brandbe- anspruchte Stütze oder Wand	0,5 * Bauteilbreite in Brandeinwirkungsrichtung
Vierseitig brandbeanspruchte Stütze	0,5 * kleineres Querschnittsmaß

Bild 2.37: Ermittlung der Ersatzbreiten

2.5.2 Reduzierung des Querschnitts

Ermittlung der Temperatur θ_i in Zonenmitte

Nach der Zoneneinteilung des Querschnitts wird die Temperatur θ_i in der Mitte einer jeden Zone i ermittelt. Dies erfolgt anhand der Temperaturprofile gemäß EN 1992-1-2, Anhang A, die auf folgenden Annahmen basieren:

- Die spezifische Wärme von Beton entspricht den Angaben nach EN 1992-1-2, 3.2.2.
- Die Feuchte beträgt 1,5 % (für Feuchten > 1,5 % liegen die dargestellten Temperaturen auf der sicheren Seite).
- Die thermische Leitfähigkeit von Beton ist der untere Grenzwert aus EN 1992-1-2, 3.3.3.
- Der Emissionswert für die Betonoberfläche beträgt 0,7.
- Der konvektive Wärmeübergangskoeffizient beträgt 25 W/m²K.

Ermittlung des Reduktionsfaktors $k_c(\theta_i)$

Für die ermittelte Temperatur im Zentrum der Zone i wird der Reduktionsfaktor $k_c(\Theta_i)$ bestimmt, um den Abfall der charakteristischen Betondruckfestigkeit f_{ck} zu berücksichtigen. Dieser Reduktionsfaktor $k_c(\Theta_i)$ ist abhängig von den Zuschlägen des Betons:

Bei Normalbeton mit quarzhaltigen Zuschlägen ist die Kurve 1, bei Normalbeton mit kalksteinhaltigen Zuschlägen die Kurve 2 gemäß EN 1992-1-2, Bild 4.1 zu verwenden.

Bild 2.38: Beiwert $k_c(\theta_i)$ zur Berücksichtigung des Abfalls der Betondruckfestigkeit gemäß [2], Bild 4.1

Ermittlung der geschädigten Zone mit der Dicke az

Der brandgeschädigte Querschnitt wird durch einen reduzierten Querschnitt abgebildet. Dies bedeutet, dass eine geschädigte Zone der Dicke az an den brandbeanspruchten Seiten beim Nachweis der Tragfähigkeit nicht berücksichtigt wird.

Bild 2.39: Reduktion der Festigkeit und des Querschnitts bei Brandbeanspruchung gemäß [2], Bild B.3

Die Berechnung der geschädigten Zonendicke az erfolgt abhängig vom Bauteiltyp:

• Balken, Platten

$$a_z = w \cdot \left[1 - \frac{k_{c,m}}{k_c(\theta_M)} \right]$$

• Stützen, Wände und andere Konstruktionen, bei denen Auswirkungen infolge Theorie II. Ordnung berücksichtigt werden müssen

$$a_{z} = w \cdot \left[1 - \left(\frac{k_{c,m}}{k_{c}(\theta_{M})} \right)^{1,3} \right]$$

mit

w

- halbe Breite der äquivalenten Wand
- k_{c,m} mittlerer Reduktionskoeffizient für einen bestimmten Querschnitt

$$k_{c,m} = \frac{(1 - \frac{0,2}{n})}{n} \sum_{i=1}^{n} k_c(\theta_i)$$

n Anzahl paralleler Zonen in w

Über den Faktor (1 – 0,2/n) wird die Temperaturveränderung in jeder Zone berücksichtigt.

 $k_c(\theta_M)$ Reduktionskoeffizient für Beton am Punkt M (vgl. Bild 2.38 auf Seite 37)

2.5.3 Spannungs-Dehnungs-Linie des Betons

Für die Abminderung der Materialeigenschaften des Betons ist der Punkt M – ein Punkt auf der zentralen Linie der gleichwertigen Wand (siehe Bild 2.36, Seite 36) – maßgebend. Damit wird der Reduktionsfaktor $k_c(\Theta_M)$ ermittelt. Die abgeminderten Materialeigenschaften des Betons sind für den gesamten reduzierten Querschnitt (ohne der geschädigten Zone a_z) beim Nachweis der Tragfähigkeit im Brandfall zu verwenden.

Druckfestigkeit des Betons für die Heißbemessung

Die Spannungs-Dehnungs-Linie für die Druckfestigkeit des Betons wird in Abhängigkeit von der Temperatur im Punkt M und der Art der Zuschläge bestimmt. Die Werte der Stauchung $\epsilon_{cu1,\theta}$ bei der Druckfestigkeit $f_{c,\theta}$ werden EN 1992-1-2, Tabelle 3.1 entnommen.

$$f_{c,\theta} = k_c(\theta_M) \cdot f_{ck}$$

mit

Beton	Quarzh. Zuschläge			Kalksteinhaltige Zuschläge		
Temp. θ	$f_{\mathrm{c}, \mathrm{\theta}} / f_{\mathrm{ck}}$	[£] c1,θ	£cu1,θ	$f_{\mathrm{c}, \mathrm{\theta}} / f_{\mathrm{ck}}$	ε _{c1,θ}	€cu1,θ
[°C]	[-]	[-]	[-]	[-]	[-]	[-]
1	2	3	4	5	6	7
20	1,00	0,0025	0,0200	1,00	0,0025	0,0200
100	1,00	0,0040	0,0225	1,00	0,0040	0,0225
200	0,95	0,0055	0,0250	0,97	0,0055	0,0250
300	0,85	0,0070	0,0275	0,91	0,0070	0,0275
400	0,75	0,0100	0,0300	0,85	0,0100	0,0300
500	0,60	0,0150	0,0325	0,74	0,0150	0,0325
600	0,45	0,0250	0,0350	0,60	0,0250	0,0350
700	0,30	0,0250	0,0375	0,43	0,0250	0,0375
800	0,15	0,0250	0,0400	0,27	0,0250	0,0400
900	0,08	0,0250	0,0425	0,15	0,0250	0,0425
1 000	0,04	0,0250	0,0450	0,06	0,0250	0,0450
1 100	0,01	0,0250	0,0475	0,02	0,0250	0,0475
1 200	0,00	-	-	0,00	-	-

 $k_c(\Theta_M)$ Reduktionskoeffizient für Beton am Punkt M (siehe Bild 2.38, Seite 37) f_{ck} charakteristische Druckfestigkeit des Betons bei Normaltemperatur

Bild 2.40: Parameter der Spannungs-Dehnungs-Beziehung von Beton bei Brandbeanspruchung gemäß [2], Tabelle 3.1

2 Theoretische Grundlagen

Im Diagramm (Bild 2.41) ist zu erkennen, wie sich die Spannungs-Dehnungs-Beziehung von Normalbeton mit kalksteinhaltigen Zuschlägen in Abhängigkeit von der Temperatur ändert. Für den Brandschutznachweis wird der abfallende Ast nicht berücksichtigt.

Der reduzierte Beton-Elastizitätsmodul für den Brandschutznachweis ermittelt sich nach folgender Gleichung:

$$E_{cd,\theta} = [k_c(\theta_M)]^2 \cdot E_c$$

mit

Ec

 $k_c(\Theta_M)$ Reduktionskoeffizient für Beton am Punkt M (siehe Bild 2.38, Seite 37)

E-Modul des Betons bei Normaltemperatur (20 °C)

Bild 2.42: Reduktionsfaktor k_{ct}(θ) zur Berücksichtigung temperaturabhängiger Betonzugfestigkeit f_{ct} nach [2], Bild 3.2

2.5.4 Spannungs-Dehnungs-Linie des Betonstahls

Ermittlung des Reduktionsfaktors $k_s(\theta)$ für Stahlzugfestigkeit

Zur Bestimmung des Reduktionsfaktors $k_s(\theta)$ ist zunächst die Temperatur in der Stabmitte des ungünstigsten Bewehrungsstabes zu ermitteln. Abhängig von der Herstellungsart und der Klassifizierung des Betonstahls (Klasse N oder Klasse X) sowie der vorhandenen Stahldehnung wird der Reduktionsbeiwert $k_s(\theta)$ ermittelt (siehe folgendes Bild).

Bild 2.43: Reduktionsfaktor k_s(0) zur Berücksichtigung temperaturabhängiger Stahlzugfestigkeit nach [2], Bild 4.2a/b

Reduzierung der Betonstahlfestigkeit f_{sy,}

Die Spannungs-Dehnungs-Beziehung des Betonstahls wird durch folgende drei Parameter definiert:

- Neigung im linear-elastischen Bereich E_{s,θ}
- Proportionalitätsgrenze f_{sp,θ}
- maximales Spannungsniveau f_{sy,θ}

Die in der Heißbemessung maximal anzusetzende Festigkeit des Betonstahls ermittelt sich wie folgt:

 $f_{sy,\theta} = k_s(\theta) \cdot f_{yk}$

mit

- $k_s(\theta)$ Reduktionskoeffizient für Betonstahl (siehe Bild 2.43)
- fyk charakteristische Festigkeit des Betonstahls bei Normaltemperatur

Ermittlung des reduzierten E-Moduls E_{s,0} des Betonstahls

Kann der Betonstahl in Kurve 1 oder Kurve 2 der Bilder 4.2a bzw. 4.2b in EN 1992-1-2 eingeordnet werden (vgl. Bild 2.43), so lässt sich der reduzierte E-Modul des Betonstahls in Abhängigkeit von Betonstahltemperatur und Herstellungsart des Stahls aus EN 1992-1-2, Tabelle 3.2a bzw. 3.2b entnehmen.

Stahltemperatur	f _{sy,θ} / f _{yk}		f _{sp,θ} / f _{yk}		E _{s,0}	$E_{s,\theta}/E_{s}$	
θ[°C]	wgewalzt	kaltverformt	wgewalzt	kaltverformt	wgewalzt	kaltverformt	
1	2	3	4	5	6	7	
20	1,00	1,00	1,00	1,00	1,00	1,00	
100	1,00	1,00	1,00	0,96	1,00	1,00	
200	1,00	1,00	0,81	0,92	0,90	0,87	
300	1,00	1,00	0,61	0,81	0,80	0,72	
400	1,00	0,94	0,42	0,63	0,70	0,56	
500	0,78	0,67	0,36	0,44	0,60	0,40	
600	0,47	0,40	0,18	0,26	0,31	0,24	
700	0,23	0,12	0,07	0,08	0,13	0,08	
800	0,11	0,11	0,05	0,06	0,09	0,06	
900	0,06	0,08	0,04	0,05	0,07	0,05	
1 000	0,04	0,05	0,02	0,03	0,04	0,03	
1 100	0,02	0,03	0,01	0,02	0,02	0,02	
1 200	0,00	0,00	0,00	0,00	0,00	0,00	

Klasse N

Stahl Temperatur	f _{sy,θ} / f _{yk}	$f_{\rm sp, \theta} / f_{\rm yk}$	$E_{\rm s, \theta}/E_{\rm s}$
θ[°C]	warmgewalzt und kaltverformt	warmgewalzt und kaltverformt	warmgewalzt und kaltverformt
20	1,00	1,00	1,00
100	1,00	1,00	1,00
200	1,00	0,87	0,95
300	1,00	0,74	0,90
400	0,90	0,70	0,75
500	0,70	0,51	0,60
600	0,47	0,18	0,31
700	0,23	0,07	0,13
800	0,11	0,05	0,09
900	0,06	0,04	0,07
1 000	0,04	0,02	0,04
1 100	0,02	0,01	0,02

Klasse X

Bild 2.44: Parameter der Spannungs-Dehnungs-Beziehung von Stahl bei Brandbeanspruchung nach [2], Tabelle 3.2a/b

Für Betonstähle, die in Kurve 3 nach EN 1992-1-2, Bild 4.2a einzustufen sind, wird der reduzierte E-Modul wie folgt berechnet:

$$\mathsf{E}_{\mathsf{sv},\theta} = \mathsf{k}_{\mathsf{s}}(\theta) \cdot \mathsf{E}_{\mathsf{s}}$$

mit

- $k_s(\theta)$ Reduktionskoeffizient für Betonstahl (siehe Bild 2.43)
- E_s E-Modul des Betonstahls bei Normaltemperatur (20 °C)

2.6 Querkraftnachweis

2.6.1 Nachweisverfahren

Der Nachweis der Querkrafttragfähigkeit ist nur im Grenzzustand der Tragfähigkeit (GZT) zu führen. Die Einwirkungen und die Widerstände gehen mit ihren Bemessungswerten ein. Das allgemeine Nachweisformat lautet:

 $V_{Ed} \leq V_{Rd}$

mit

V_{Ed}: Bemessungswert der einwirkenden Querkraft

V_{Rd}: Bemessungswert der Querkrafttragfähigkeit

Je nach Versagensmechanismus wird der Bemessungswert der Querkrafttragfähigkeit durch einen der folgenden drei Werte bestimmt:

- V_{Rd,c}: aufnehmbare Querkraft eines Bauteils ohne Querkraftbewehrung
- V_{Rd,s}: aufnehmbare Querkraft eines Bauteils mit Querkraftbewehrung Begrenzung der Tragfähigkeit durch das Versagen der Querkraftbewehrung (Zugstrebenversagen)
- V_{Rd,max}: aufnehmbare Querkraft bedingt durch die Tragfähigkeit der Betondruckstrebe

Bleibt die einwirkende Querkraft V_{Ed} unter dem Wert von $V_{Rd,c}$, dann ist rechnerisch keine Querkraftbewehrung erforderlich und der Nachweis ist erfüllt.

 $V_{Ed} \leq V_{Rd,c}$

Liegt die einwirkende Querkraft V_{Ed} über dem Wert von V_{Rd,c}, ist eine Querkraftbewehrung vorzusehen. Die Querkraftbewehrung muss die gesamte Querkraft aufnehmen. Außerdem ist die Tragfähigkeit der Betondruckstrebe nachzuweisen.

 $V_{Ed} \le V_{Rd,s}$

 $V_{Ed} \le V_{Rd,max}$

Nachfolgend werden die Formeln vorgestellt, mit denen die verschiedenen Querkrafttragfähigkeiten zu ermitteln sind.

2.6.2 Querkrafttragfähigkeit ohne Querkraftbewehrung

Die Querkrafttragfähigkeit ohne Querkraftbewehrung wird gemäß EN 1992-1-1:2010, Gleichung (6.2a) bzw. (6.2b) bestimmt.

$$V_{Rd,c} = \left[C_{Rd,c} \cdot k \cdot (100 \cdot \rho_{l} \cdot f_{ck})^{\frac{1}{3}} + k_{1} \cdot \sigma_{cp} \right] \cdot b_{w} \cdot d$$
6.2a

mit einem Mindestwert

$$V_{\rm Rd,c} = \left[v_{\rm min} + k_1 \cdot \sigma_{\rm cp} \right] \cdot b_{\rm w} \cdot d$$
 6.2b

mit

۱

 $C_{Rd,c} = \frac{0.18}{\gamma_c}$

k: Beiwert zur Berücksichtigung der Plattendicke, Maßstabseffekt (Size Effects):

$$k = 1 + \sqrt{\frac{200}{d}} \le 2,0$$
 d [mm]

d: statische Nutzhöhe der Biegebewehrung im Querschnitt in [mm]

ρ₁: Längsbewehrungsgrad

$$\rho_I = \frac{A_{sI}}{b_W \cdot d} \le 0,02$$

mit $A_{sl}\colon\;$ Fläche der Zugbewehrung, die mindestens $(I_{bd}+d)$ über den betrachteten Querschnitt hinaus geführt wird

b_w: kleinste Querschnittsbreite innerhalb der Zugzone in [mm]

f_{ck}: charakteristischer Wert der Betondruckfestigkeit in [N/mm²]

$$k_1 = 0,15$$

$$\sigma_{cp} = \frac{N_{Ed}}{A_c} < 0, 2 \cdot f_{cd} \qquad \text{in [N/mm^2]}$$

mit N_{Ed} : Normalkraft im Querschnitt infolge Lastbeanspruchung oder Vorspannung [N] ($N_{Ed} > 0$ für Druck). Der Einfluss von Zwang auf N_{Ed} darf vernachlässigt werden;

Ac: Betonquerschnittsfläche in [mm²]

$$v_{min} = 0,035 \cdot k^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}}$$

 $V_{\text{Rd,c}} \text{ in } [N]$

Gleichung (6.2) hat nur Gültigkeit, wenn der Betonquerschnitt nicht völlig überdrückt oder völlig gerissen ist.

Im Falle des völlig gerissenen Querschnitts ergibt sich für die Querkrafttragfähigkeit V_{Rd,c} ein negativer Wert. Im Programm wird zudem zusätzlich kontrolliert, ob es eine Stelle des Betonquerschnitts gibt, die Druck erhält. Sollte sich keine Stelle finden (d. h. im Falle eines völlig gerissenen Querschnitts) oder eine Stelle finden und die Querkrafttragfähigkeit V_{Rd,c} ohne Querkraftbewehrung trotzdem negativ werden, wird das Programm mit der Fehlermeldung der Unbemessbarkeit abgebrochen.

Im Falle des völlig überdrückten Querschnitts ergibt sich zwar für die Querkrafttragfähigkeit V_{Rd,c} ohne Querkraftbewehrung ein positiver Wert, jedoch sind die Voraussetzungen für die empirische Formel nicht mehr gegeben. Im Absatz 6.2.2 der EN 1992-1-1:2010 findet sich die Gleichung (6.4) für unbewehrten Beton:

$$V_{\text{Rd,c}} = \frac{I \cdot b_{\text{w}}}{S} \cdot \sqrt{\left(\frac{f_{\text{ctk};0,05}}{\gamma_{\text{c}}}\right)^2 - \alpha_{\text{l}} \cdot \sigma_{\text{cp}} \cdot \frac{f_{\text{ctk};0,05}}{\gamma_{\text{c}}}}{\beta_{\text{c}}}}$$
6.4

Damit gibt die Norm eine Gleichung vor, die unabhängig vom Querschnitt einer gezogenen Bewehrung ist und ermöglicht somit einen Nachweis für völlig überdrückte Querschnitte.

Die Gleichung darf dann zur Anwendung kommen, wenn die Betonzugspannungen kleiner sind als $f_{ctk; 0.05} / \gamma_c$. Um diese Voraussetzung zu verifizieren, werden wieder die Definitionspunkte des Betonquerschnitts betrachtet. Erhält keiner von ihnen eine Zugkraft, so kommt die Gleichung (6.2a) bzw. (6.2b) zur Anwendung.

2.6.3 Querkrafttragfähigkeit mit Querkraftbewehrung

Die Querkrafttragfähigkeit der Querkraftbewehrung (Zugstrebe) wird gemäß EN 1992-1-1:2010, Gleichung (6.8) bzw. (6.9) bestimmt.

Bauteile mit Winkel der Querkraftbewehrung von 90°:

$V_{Rd.s} = (A_{sw} / s) \cdot z$	$r \cdot f_{vwd} \cdot \cot \theta$	6.8
-----------------------------------	-------------------------------------	-----

bzw. bei geneigter Querkraftbewehrung:

$$V_{Rd,s} = (A_{sw} / s) \cdot z \cdot f_{ywd} \cdot (\cot \theta + \cot \alpha) \cdot \sin \alpha$$
6.13

mit

A_{sw} :	Querschnittsfläche der Querkraftbewehrung
s :	Bügelabstand
z:	Hebelarm der inneren Kräfte
f_{ywd} :	Bemessungswert der Streckgrenze der Querkraftbewehrung
θ:	Winkel zwischen Betondruckstreben und der rechtwinklig zur Querkraft verlaufenden Bauteilachse
α:	Winkel zwischen Querkraftbewehrung und der rechtwinklig zur Querkraft verlaufenden Bauteilachse

Diese Neigung der Betondruckstrebe darf in Abhängigkeit von der Beanspruchung innerhalb bestimmter Grenzen gewählt werden – siehe Gleichung (6.7). Damit soll der Tatsache Rechnung getragen werden, dass ein Teil der Querkraft über die Rissreibung abgetragen wird und somit das Fachwerk nicht belastet.

1, 0 \leq cot $\theta \leq$ 2, 5

6.7

Im deutschen nationalen Anhang DIN EN 1992-1-1/NA:2011-01 ist die Neigung der Betondruckstrebe wie folgt geregelt.

$$1,0 \le \cot \theta \le \frac{1,2+1,4 \cdot \frac{\sigma_{cd}}{f_{cd}}}{1-\frac{V_{Rd,cc}}{V_{Ed}}} \le 3,0$$

$$6.7aDE$$

Bei geneigter Querkraftbewehrung darf cot θ bis 0,58 ausgenutzt werden

mit

$$V_{Rd,cc} = c \cdot 0,48 \cdot f_{ck}^{-\frac{1}{3}} \cdot \left(1 - 1,2 \cdot \frac{\sigma_{cd}}{f_{ck}}\right) \cdot b_{w} \cdot z$$
 6.7bDE

 σ_{cd} : Bemessungswert der Betonlängsspannung in Höhe des Querschnittsschwerpunkts

c = 0,5

Die Druckstrebenneigung $\boldsymbol{\theta}$ kann also für EN1992-1-1:2010 zwischen folgenden Werten schwanken:

	Mindestneigung	Höchstneigung
θ	21,80°	45,00°
cotθ	2,50	1,00

Bild 2.45: Druckstrebeneigung θ

Eine flachere Betondruckstrebe bedeutet geringere Zugkräfte in der Querkraftbewehrung und somit ein geringerer erforderlicher Bewehrungsquerschnitt. Im Programm entscheidet der Benutzer darüber, welche Neigung die Druckstrebe haben soll.

Wie im obigen Teil gezeigt wurde, hängt die Größe des minimalen Druckstrebenneigungswinkels bei der Bemessung nach dem deutschen nationalen Anhang noch von den einwirkenden Schnittgrößen V_{Ed} und N_{Ed} ab, die dem Programm erst zum Zeitpunkt der Berechnung bekannt sind. Die Überprüfung des vom Benutzer definierten minimalen Druckstrebenwinkels findet also erst während der Berechnung statt. Wurde er zu klein gewählt, so nimmt das Programm automatisch den minimalen Druckstrebenneigungswinkel nach Norm. Sollte allerdings selbst der maximale benutzerdefinierte Neigungswinkel kleiner sein als der Mindestdruckstrebenneigungswinkel nach Norm, bricht das Programm die Berechnung mit der entsprechenden Fehlermeldung ab.

Während der Berechnung wird zunächst mit der minimalen Untergrenze der Druckstrebenneigung die Tragfähigkeit V_{Rd,max} der Betondruckstrebe bestimmt. Ist sie kleiner als die einwirkende Querkraft V_{Ed}, so muss eine steilere Druckstrebenneigung gewählt werden. Die Druckstrebenneigung θ wird dann so lange erhöht, bis gilt:

 $V_{\text{Ed}} \leq V_{\text{Rd,max}}$

Der so gefundene Druckstrebenneigungswinkel führt zur kleinsten Querkraftbewehrung.

Querkrafttragfähigkeit der Betondruckstrebe gemäß [1] Gl. (6.9)

Bauteile mit Winkel der Querkraftbewehrung von 90°:

$$V_{\text{Rd,max}} = \frac{b_{\text{w}} \cdot z \cdot \alpha_{\text{cw}} \cdot v_1 \cdot f_{\text{cd}}}{\cot \theta + \tan \theta}$$
6.9

bzw. bei geneigter Querkraftbewehrung:

$$V_{\text{Rd,max}} = \frac{b_{\text{w}} \cdot z \cdot \alpha_{\text{cw}} \cdot v_1 \cdot f_{\text{cd}} \cdot (\cot \theta + \cot \alpha)}{1 + \cot \theta^2}$$
6.14

mit

b _w :	Querschnittsbreite
z:	Hebelarm der inneren Kräfte
$\alpha_{\sf cw}$:	Beiwert zur Berücksichtigung des Spannungszustandes im Druckgurt
	α_{cw} = 1,0 für nicht vorgespannte Tragwerke
v_1 :	Abminderungsbeiwert für die Betonfestigkeit bei Schubrissen
	$v_1 = 0,6 \text{ für } f_{ck} \le 60 \text{ N/mm}^2$
	$v_1 = max(0,5; 0,9-f_{ck}/200)$ für $f_{ck} > 60 \text{ N/mm}^2$
f_{cd} :	Bemessungswert der Betondruckfestigkeit
θ:	Winkel zwischen Betondruckstreben und der rechtwinklig zur Querkraft verlaufenden Bauteilachse
α:	Winkel zwischen Querkraftbewehrung und der rechtwinklig zur Querkraft verlaufenden Bauteilachse

2.6.4 Varianten des Querkraftnachweises

Die vorgestellten Querkraftnachweise sind in erster Linie für einachsig querkraftbeanspruchte Rechteckquerschnitte gedacht, die weder völlig gerissen noch völlig überdrückt sind.

Ein Querschnitt wird vom Programm dann als völlig gerissen ausgewiesen, wenn alle Punkte, die zu seiner Definition verwendet werden, eine Zugkraft erhalten. Als völlig überdrückt kann ein Querschnitt aus zweierlei Gründen betrachtet werden: Zum einen dann, wenn sämtliche Bewehrungsstäbe eine Druckkraft erhalten, und zum anderen, wenn die Querkrafttragfähigkeit V_{Rd,c} ohne Querkrafttragfähigkeit einen negativen Wert liefert.

Die folgende Tabelle zeigt einen Überblick über die Formen des Querkraftnachweises für den **rechteckigen** Querschnitt.

Verformung bzw. Be-	EN 1992-1-1:2010			
lastung des Quer- schnitts	Einachsig	Zweiachsig		
Querschnitt komplett aufgerissen	Keine Bemessung möglich	Keine Bemessung möglich		
Negative Querkraft- tragfähigkeit	Keine Bemessung möglich	Keine Bemessung möglich		
Querschnitt völlig	Nachweis:	Nachweis:		
überdrückt	$V_{\text{Rd},c} \geq V_{\text{Ed}}$	$zul\;\tau \ge vorh\;\tau$		
	V _{Rd,c} nach (6.4) in 6.2.2	zul τ abgeleitet von (6.4) in 6.2.2		
Querschnitt normal	Nachweis:	Nachweis:		
aufgerissen	$V_{\text{Rd},c} \geq V_{\text{Ed}}$	$V_{\text{Rd},c} \geq V_{\text{Ed}}$		
(keine Querkraft- bewehrung)	V _{Rd,c} nach (6.2) in 6.2.2	V _{Rd,c} nach (6.2) in 6.2.2		
		b _w und d ermitteln		
Querschnitt normal	Nachweis:	Nachweis:		
aufgerissen	$V_{\text{Rd,max}} \!\geq \! V_{\text{Ed}}$	$V_{\text{Rd},\text{max}} \geq V_{\text{Ed}}$		
(Querkraftbewehrung)	V _{Rd,max} nach (6.9) oder (6.14)	V _{Rd,max} nach (6.9) oder (6.14)		
	$V_{\text{Rd},s} \geq V_{\text{Ed}}$	$V_{\text{Rd},s} \geq V_{\text{Ed}}$		
	V _{Rd,s} nach (6.8) oder (6.13)	V _{Rd,s} nach (6.8) oder (6.13)		
	z = 0,9·d	z und b _w ermitteln		

Bild 2.46: Formen des Querkraftnachweises für rechteckigen Querschnitt.

Bei einem kreisförmigen Querschnitt liegt quasi immer eine einachsige Querkraftbeanspruchung vor, da aus den einwirkenden Querkräften V_z und V_y eine resultierende Querkraft V_{Ed} gebildet wird. Die folgende Tabelle zeigt einen Überblick über die Formen des Querkraftnachweises für den **kreisförmigen** Querschnitt.

Verformung bzw. Be-	EN 1992-1-1:2010
lastung des Quer- schnitts	Ein- oder zweiachsig
Querschnitt komplett aufgerissen	Keine Bemessung möglich
Negative Querkraft- tragfähigkeit	Keine Bemessung möglich
Querschnitt völlig	Nachweis:
überdrückt	$\operatorname{zul} \tau \ge \operatorname{vorh} \tau$
	zul τ abgeleitet von (6.4)
	in 6.2.2
Querschnitt normal	Nachweis:
aufgerissen	$V_{\text{Rd},c} \geq V_{\text{Ed}}$
(keine Querkraft- bewehrung)	V _{Rd,c} nach (6.2) in 6.2.2
	b _w und d ermitteln
Querschnitt normal	Nachweis:
aufgerissen	$V_{\text{Rd,max}} \geq V_{\text{Ed}}$
(Querkraftbewehrung)	V _{Rd,max} nach (6.9) oder (6.14)
	$V_{\text{Rd},s} \geq V_{\text{Ed}}$
	V _{Rd,s} nach (6.8) oder (6.13)
	z und b _w ermitteln

Bild 2.47: Überblick über die Formen des Querkraftnachweises für kreisförmigen Querschnitt

2.6.5 Querkraftnachweis Rechteckquerschnitt

In diesem Kapitel werden die Nachweise für eine zweiachsige Querkraftbeanspruchung bei rechteckförmigen Querschnitten vorgestellt. Diese schließen die Ermittlung von **d**, **b**_w und **z** mit ein.

2.6.5.1 Gerissener Querschnitt

Wird ein Querschnitt gleichzeitig durch die Querkräfte $V_{Ed,y}$ und $V_{Ed,z}$ beansprucht, so ergibt sich die einwirkende Querkraft V_{Ed} durch quadratische Überlagerung.

$$V_{Ed} = \sqrt{V_{Ed,y}^2 + V_{Ed,z}^2}$$

Diese einwirkende Querkraft V_{Ed} ist mit der Querkrafttragfähigkeit zu vergleichen.

In den im Kapitel 2.6.1 genannten Gleichungen tauchen die Größen Nutzhöhe **d**, Bauteilbreite **b**_w und Hebelarm **z** auf. Dies sind jedoch nicht so offensichtliche Größen wie bei einem einachsig beanspruchten Rechteckquerschnitt.

Die statische Nutzhöhe d, Bauteilbreite bw und der Hebelarm z der inneren Kräfte sind deshalb zunächst gesondert zu ermitteln. Bei einem zweiachsig beanspruchten Rechteckquerschnitt könnte sich folgender Verlauf der Betondruckzone einstellen:

Bild 2.48: Rechteckquerschnitt unter zweiachsiger Biegung

Die statische Nutzhöhe d wird dann ermittelt als der Abstand zwischen der Schwerpunktslage der gezogenen Bewehrungsstäbe und der am weitesten davon entfernten Ecke des Querschnitts, die eine Druckspannung erhält.

Bild 2.49: Statische Nutzhöhe

Um die statische Nutzhöhe **d** bestimmen zu können, ist zunächst die Schwerpunktslage der Zugkräfte aller gezogenen Bewehrungsstähle zu ermitteln. Dessen Koordinaten werden mit y_{st} und z_{st} bezeichnet.

Die Kraft in einem Bewehrungsstab wird mit F_{st,i} bezeichnet. Der Index "i" steht für die Nummer des betrachteten Bewehrungsstabes. Demzufolge werden die Koordinaten eines Bewehrungsstabes mit y_{st,i} und z_{st,i} bezeichnet. Die Schwerpunktslage der Zugkräfte aller gezogenen Bewehrungsstähle bestimmt sich zu:

$$y_{st} = \frac{\sum_{i=0}^{n} y_{st,i} \cdot F_{st,i}}{\sum_{i=0}^{n} F_{st,i}}$$
$$z_{st} = \frac{\sum_{i=0}^{n} z_{st,i} \cdot F_{st,i}}{\sum_{i=0}^{n} F_{st,i}}$$

Dabei werden nur jene Kräfte in den Bewehrungsstäben berücksichtigt, die positiv sind (also die Zugkräfte).

Für das Rechteckquerschnitt-Beispiel stellt der Hebelarm z die Verbindung zwischen der Stelle der resultierenden Betondruckkraft und der Schwerpunktslage der Zugkräfte aller gezogenen Bewehrungsstähle dar.

Bild 2.50: Hebelarm der inneren Kräfte

Um die Lage der resultierenden Betondruckkraft F_c zu bestimmen, ist zunächst die Kraft F_c aus den in den Bewehrungsstäben vorhandenen Zug- und Druckkräften sowie der einwirkenden Normalkraft zu ermitteln.

$$F_{C} = N_{Ed} - \left(\sum_{i=0}^{n} F_{st,i} + \sum_{i=0}^{n} F_{sc,i}\right)$$

Nun lassen sich die Koordinaten yc und zc der resultierenden Betondruckkraft Fc bestimmen:

$$y_{c} = \frac{M_{z} - \sum_{i=0}^{n} y_{sc,i} \cdot F_{sc,i}}{F_{c}}$$
$$z_{c} = \frac{M_{y} - \sum_{i=0}^{n} z_{sc,i} \cdot F_{sc,i}}{F_{c}}$$

Damit kann der Hebelarm **z** ermittelt werden:

$$z = \sqrt{(y_c - y_{st})^2 + (z_c - z_{st})^2}$$

Um die eingangs dieses Kapitels vorgestellten Formeln verwenden zu können, muss noch die Bauteilbreite \mathbf{b}_w bestimmt werden.

Bild 2.51: Bauteilbreite bw

Diese steht stets lotrecht auf dem vorher ermittelten Hebelarm z und schneidet zwei Ränder des rechteckigen Querschnitts.

Wenn diese geschnittenen Ränder wie im obigen Beispiel gegenüberliegen, so ist die anzusetzende Querschnittsbreite bw entlang des Hebelarms z konstant. Bei zwei aufeinander senkrecht stehenden geschnittenen Rändern ändert sich die anzusetzende Querschnittsbreite entlang des Hebelarms. Es wird die kleinste Querschnittsbreite bw verwendet.

2.6.5.2 Völlig überdrückter Querschnitt

Bemessung nach EN 1992-1-1:2010

Im Falle des völlig überdrückten Querschnitts ergibt sich zwar für die Querkrafttragfähigkeit V_{Rd,c} ohne Querkraftbewehrung ein positiver Wert, jedoch sind die Voraussetzungen für die empirische Formel nicht mehr gegeben. In [1] Absatz 6.2.2 findet sich die Gleichung (6.4) für unbewehrten Beton.

$$V_{Rd,c} = \frac{I \cdot b_{w}}{S} \cdot \sqrt{\left(\frac{f_{ctk;0,05}}{\gamma_{c}}\right)^{2} - \alpha_{I} \cdot \sigma_{cp} \cdot \frac{f_{ctk;0,05}}{\gamma_{c}}}$$

Damit gibt diese Norm eine Formel vor, die unabhängig vom Querschnitt einer gezogenen Bewehrung ist und somit einen Nachweis für völlig überdrückte Querschnitte ermöglicht.

Sie darf dann angewandt werden, wenn die Betonzugspannungen kleiner sind als f_{ctk0.05} / γ_{c} . Um diese Voraussetzung zu verifizieren, werden wieder die Definitionspunkte des Betonquerschnitts betrachtet. Erhält keiner von ihnen eine Zugkraft, so kommt die Gleichung (6.4) zur Anwendung.

Allerdings muss sie modifiziert werden, um für die zweiachsige Querkraftbeanspruchung anwendbar zu sein. Ersetzt man in der obigen Formel die Querkrafttragfähigkeit V_{Rd,c} durch den Betrag der einwirkenden Querkraft V_{Ed} und stellt die Gleichung wie folgt um, so ergibt sich auf der linken Seite der Gleichung eine Schubspannung, während auf der rechten Seite die zulässige Schubspannung zu finden ist.

$$\frac{\left|V_{Ed}\right| \cdot S}{I \cdot b_{w}} \leq \sqrt{\left(\frac{f_{ctk;0,05}}{\gamma_{c}}\right)^{2} - \alpha_{I} \cdot \sigma_{cp}} \cdot \frac{f_{ctk;0,05}}{\gamma_{c}}$$

Da der Querschnitt ungerissen ist, zeigt Beton ein isotropes Werkstoffverhalten wie Stahl.

Rechteckquerschnitt

Es kann nun, wie sonst im Stahlbau üblich, die zu vergleichende Schubspannung durch einfache Überlagerung bestimmt werden, sodass sich der Nachweis wie folgt gestaltet.

$$\sqrt{\left(\frac{\left|\mathsf{V}_{\mathsf{Ed},\mathsf{z}}\right|\cdot\mathsf{S}_{\mathsf{y}}}{\mathsf{I}_{\mathsf{y}}\cdot\mathsf{y}}\right)^{2}} + \left(\frac{\left|\mathsf{V}_{\mathsf{Ed},\mathsf{y}}\right|\cdot\mathsf{S}_{\mathsf{z}}}{\mathsf{I}_{\mathsf{z}}\cdot\mathsf{z}}\right)^{2} \leq \sqrt{\left(\frac{\mathsf{f}_{\mathsf{ctk};0,05}}{\gamma_{\mathsf{c}}}\right)^{2} - \alpha_{\mathsf{l}}\cdot\sigma_{\mathsf{cp}}\cdot\frac{\mathsf{f}_{\mathsf{ctk};0,05}}{\gamma_{\mathsf{c}}}}{\gamma_{\mathsf{c}}}}$$

Führt man für die beiden Seiten der Gleichung die Variablen vorh τ und zul τ ein, so erhält man folgende Gleichungen:

vorh
$$\tau = \sqrt{\left(\frac{|V_{Ed,z}| \cdot S_y}{|_y \cdot y}\right)^2 + \left(\frac{|V_{Ed,y}| \cdot S_z}{|_z \cdot z}\right)^2}$$

$$zul \tau = \sqrt{\left(\frac{f_{ctk;0,05}}{\gamma_c}\right)^2 - \alpha_l \cdot \sigma_{cp} \cdot \frac{f_{ctk;0,05}}{\gamma_c}}$$

Kreisquerschnitt

Für den Kreisquerschnitt hingegen wird die vorhandene Schubspannung vorh τ (siehe oben) mit folgender Formel ermittelt:

$$vorh \ \tau = \sqrt{\left(\frac{\left|V_{Ed,z}\right| \cdot S_{y}}{I_{y} \cdot d}\right)^{2} + \left(\frac{\left|V_{Ed,y}\right| \cdot S_{z}}{I_{z} \cdot d}\right)^{2}}$$

Die zulässige Schubspannung zul τ ist die gleiche wie beim Rechteckquerschnitt.

Damit kann für Rechteck- und Kreisquerschnitte in gleicher Weise das Querkraft-Nachweiskriterium für einen völlig überdrückten querkraftbeanspruchten Querschnitt wie folgt formuliert werden:

Nachweiskriterium = $\frac{\text{vorh }\tau}{\text{zul }\tau}$

2.6.6 Querkraftnachweis Kreisquerschnitt

2.6.6.1 Gerissener Querschnitt

Wird ein Querschnitt ausschließlich durch die Querkraft in Richtung einer Querschnittsachse beansprucht, so ist die einwirkende Querkraft V_{Ed} gleich dieser Schnittgröße.

Wird ein Querschnitt gleichzeitig durch die Querkräfte $V_{Ed,y}$ und $V_{Ed,z}$ beansprucht, so ergibt sich die einwirkende Querkraft V_{Ed} durch quadratische Überlagerung.

$$V_{Ed}=\sqrt{{V_{Ed,y}}^2+{V_{Ed,z}}^2}$$

Diese einwirkende Querkraft VEd ist mit der Querkrafttragfähigkeit zu vergleichen.

Sämtliche in der Norm angegebenen Gleichungen zur Ermittlung der Querkrafttragfähigkeit gehen von einem rechteckförmigen Querschnitt aus. In den Gleichungen werden die Größen Nutzhöhe **d**, Bauteilbreite **b**w und der Hebelarm **z** verwendet. Sie müssen für den Kreisquerschnitt entsprechend ermittelt werden.

Exemplarisch wird folgender Verlauf der Betondruckzone im Querschnitt angenommen:

Bild 2.52: Kreisquerschnitt mit Betondruckzone

Die statische Nutzhöhe **d** wird ermittelt als der Abstand zwischen dem Schwerpunkt der gezogenen Bewehrungsstäbe und dem am weitesten davon entfernten Rand des Querschnitts, der eine Druckspannung erhält.

2 Theoretische Grundlagen

Bild 2.53: Statische Nutzhöhe

Für die Bestimmung der statischen Nutzhöhe d ist zunächst die Schwerpunktlage der Zugkräfte aller gezogenen Bewehrungsstähle zu ermitteln. Dessen Koordinaten werden mit y_{st} und z_{st} bezeichnet.

Die Kraft in einem Bewehrungsstab wird mit F_{sti} bezeichnet. Der Index "i" steht für die Nummer des betrachteten Bewehrungsstabs. Demzufolge werden die Koordinaten eines Bewehrungsstabes mit y_{sti} und z_{sti} bezeichnet. Die Schwerpunktslage der Zugkräfte aller gezogenen Bewehrungsstähle bestimmt sich zu:

$$y_{st} = \frac{\sum_{i=0}^{n} y_{st,i} \cdot F_{st,i}}{\sum_{i=0}^{n} F_{st,i}}$$
$$z_{st} = \frac{\sum_{i=0}^{n} z_{st,i} \cdot F_{st,i}}{\sum_{i=0}^{n} F_{st,i}}$$

Dabei werden nur jene Kräfte in den Bewehrungsstäben berücksichtigt, die positiv sind (also die Zugkräfte).

Für das obige Beispiel des Kreisquerschnitts stellt der Hebelarm **z** die Verbindung zwischen der Stelle der resultierenden Betondruckkraft und der Schwerpunktslage der Zugkräfte aller gezogenen Bewehrungsstähle dar.

Bild 2.54: Hebelarm der inneren Kräfte

Um die Lage der resultierenden Betondruckkraft F_c zu bestimmen, ist zunächst diese Kraft F_c mithilfe der in den Bewehrungsstäben vorhandenen Zug- und Druckkräfte sowie der einwirkenden Normalkraft zu ermitteln.

$$F_{C}=N_{Ed}-\sum_{i=0}^{n}F_{st,i}$$

Nun kann man die Koordinaten y_c und z_c der resultierenden Betondruckkraft F_c ermitteln.

$$y_{c} = \frac{M_{z} - \sum_{i=0}^{n} y_{st,i} \cdot F_{st,i}}{F_{c}}$$
$$z_{c} = \frac{M_{y} - \sum_{i=0}^{n} z_{st,i} \cdot F_{st,i}}{F_{c}}$$

Schließlich kann der Hebelarm z bestimmt werden zu:

$$z = \sqrt{(y_c - y_{st})^2 + (z_c - z_{st})^2}$$

Um die eingangs dieses Kapitels vorgestellten Formeln verwenden zu können, muss noch die Bauteilbreite \mathbf{b}_w bestimmt werden.

Bild 2.55: Bauteilbreite bw

Diese steht stets lotrecht auf dem vorher ermittelten Hebelarm z und schneidet zwei Ränder des Kreisquerschnitts. Es ergibt sich eine Querschnittbreite durch die Schwerpunktslage der Betondruckzone und durch die Lage des Schwerpunkts der gezogenen Bewehrungsstäbe. Die kleinste Querschnittsbreite bw wird verwendet.

2.6.6.2 Völlig überdrückter Querschnitt

Im Falle des völlig überdrückten Querschnitts ergibt sich zwar für die Querkrafttragfähigkeit V_{Rd,c} ohne Querkraftbewehrung ein positiver Wert, jedoch sind die Voraussetzungen für die empirische Formel nicht mehr gegeben. In [1], Absatz 6.2.2 findet sich die Gleichung (6.4) für unbewehrten Beton.

$$V_{Rd,c} = \frac{I \cdot b_{w}}{S} \cdot \sqrt{\left(\frac{f_{ctk;0,05}}{\gamma_{c}}\right)^{2} - \alpha_{I} \cdot \sigma_{cp} \cdot \frac{f_{ctk;0,05}}{\gamma_{c}}}$$

Damit gibt die Norm eine Gleichung vor, die unabhängig vom Querschnitt einer gezogenen Bewehrung ist. Sie ermöglicht somit einen Nachweis für völlig überdrückte Querschnitte.

Diese Formel darf dann zur Anwendung kommen, wenn die Betonzugspannungen kleiner als $f_{ctk; 0.05}$ / γ_c sind. Um diese Voraussetzung zu verifizieren, werden wieder die Definitionspunkte des Betonquerschnitts betrachtet. Erhält keiner von ihnen eine Zugkraft, so kommt die Gleichung (6.4) zur Anwendung.

2.6.7 Querkraftbewehrung

Die Längsbewehrung von Stützen muss durch Querbewehrung umschlossen werden. Es gelten gemäß [1], Absatz 9.5.3 (1) hinsichtlich des Mindestdurchmessers dieser Querbewehrung folgende Bedingungen:

- Größer als ein Viertel des Stabdurchmessers der vorhandenen Längsbewehrung
- ≥6 mm

Hinsichtlich der Bügelabstände schreibt [1], Absatz 9.5.3(3) vor, dass diese Abstände nicht größer sein dürfen als s_{cl,tmax}. s_{cl,tmax} ist in den nationalen Anhängen geregelt. Der Eurocode empfiehlt für s_{cl,tmax} den kleinsten Wert aus folgenden Abständen:

- das 20fache des kleinsten Durchmessers der Längsstäbe
- die kleinste Seitenlänge der Stütze
- 400mm

[1] Absatz 9.5.3(4) ist zu entnehmen, dass diese Abstände an nachfolgenden Stellen mit dem Faktor 0,6 zu vermindern sind:

- Unmittelbar über und unter Balken oder Platten über eine Höhe gleich der größeren Abmessung des Stützenquerschnitts.
- Bei Übergreifungsstößen der Längsstäbe, wenn deren größter Durchmesser größer als 14 mm ist. Dabei sind mindestens 3 gleichmäßig auf der Stoßlänge angeordnete Stäbe erforderlich.

Das Programm kontrolliert deshalb, ob die Endpunkte von Stäben und die Zwischenpunkte von Stabzügen zusätzlich Bestandteil einer Platte oder eines Balkens sind. Dem Benutzer wird dann der Vorschlag unterbreitet, die Bügelabstände in diesen Bereichen zu verringern.

Lässt der Benutzer eine Verringerung der Bügelabstände zu, ergeben sich über die Stütze Bereiche mit unterschiedlichen Bügelabständen, sofern die Mindestquerkraftbewehrung maßgebend ist.

2 Theoretische Grundlagen

Bild 2.56: Vorhandene Bügelbewehrung

Ein Bereich ist durch einen x-Wert für den Beginn und einen x-Wert für das Ende gekennzeichnet. Jeder Bereich beginnt mit einem Bügel und endet mit einem Abstand. Schließt an diesen Bereich ein weiterer Bereich an, beginnt dieser wieder mit einem Bügel. Schließt kein weiterer Bereich an, endet dieser Bereich mit einem Abstand. Innerhalb eines jeden Bereichs haben alle dort befindlichen Bügel den gleichen Abstand. Die Bügel innerhalb eines Bereichs werden unter einer so genannten Positionsnummer zusammengefasst. Der erste Bügel ist mindestens um die vom Benutzer definierte Betondeckung versetzt vom Stützenanfang angesetzt. Schließt zudem noch eine Platte oder ein Riegel an den Stützenanfang an, so ist der erste Bügel zusätzlich um die halbe Dicke dieses Bauteils zu versetzen.

2 Theoretische Grundlagen

Der x-Wert für den Anfang bzw. das Ende eines Bereichs ist in der späteren Ausgabemaske abänderbar. Dabei besteht ein wesentlicher Unterschied, ob der Anfangswert des ersten Bereichs bzw. der Endwert des letzten Bereichs oder ein Wert dazwischen abgeändert wird: Wird der Anfangswert des ersten Bereichs so abgeändert, so beginnt dieser Bereich genau an diesem definierten Wert. Wird hingegen der Anfangs- bzw. Endwert eines Bereichs dazwischen abgeändert und deckt sich dieser nicht mit dem Anfangs- bzw. Endwert des benachbarten Bereichs, so wird ein neuer Zwischenbereich eingefügt.

Bild 2.58: Veränderte Bügelbereiche

Für Stützen spielt die Querkraftbemessung eine untergeordnete Rolle. In der gängigen Literatur finden sich ausschließlich konstruktiv bewehrte Stützen. Eine Abstufung der Querkraftbewehrung findet nur in Lagernähe durch die konstruktiven Vorschriften gemäß [1] statt.

Auf eine x-stellenweise Querkraftbemessung wird deshalb verzichtet. Vielmehr werden zunächst die beiden Stellen untersucht, für die sich pro Stab bzw. pro Stabzug die absolut größten Werte für V_y und V_z ergeben. Die Gleichungen (6.8) und (6.9) nach [1] beinhalten beide den Hebelarm z, dessen Größe von den Schnittgrößen N, M_y und M_z abhängt. Da dieser Hebelarm z wesentlicher Bestandteil der Formel der aufnehmbaren Querkraft ist, werden auch die Stellen untersucht, an der

- die Normalkraft N maximal
- die Normalkraft N minimal
- das Moment M_y maximal
- das Moment M_y minimal
- das Moment M_z maximal
- das Moment M_z minimal

wird.

Die Bemessung findet mit den Schnittgrößen nach Theorie I. Ordnung statt.

2.6.8 Programmablauf zur Querkraftbemessung

Nachdem die zu verwendeten Formeln und Schnittgrößen vorgestellt sind, soll abschließend ein Blick auf den Programmablauf zur Querkraftbemessung geworfen werden.

Für die zuvor ermittelte Längsbewehrung werden zunächst für die betrachteten Schnittgrößen die Spannungen in den Ecken des Betonquerschnitts (Kreis durch ein Polygon abgebildet) und in den Bewehrungspunkten selbst ermittelt. Die dort ermittelten Spannungen entscheiden darüber, ob das Programm aufgrund einer Unbemessbarkeit abgebrochen wird oder wie die Querkrafttragfähigkeit zu bestimmen ist.

2.6.8.1 Teil 5.1: Bestimmung der Quertragfähigkeit

Programm RF-BETON Stützen © 2018 Dlubal Software GmbH

2 Theoretische Grundlagen

Ist der Querschnitt völlig gerissen, dann wird das Programm hier beendet. Bei völlig überdrücktem Querschnitt wird die Querkrafttragfähigkeit V_{Rd,ct} für den unbewehrten Beton ermittelt. Unabhängig davon, ob sie ausreichend ist oder nicht, wird das Programm beendet, weil eine Querkraftbewehrung bei völlig überdrücktem Querschnitt nicht wirksam werden würde.

Sind weder alle Ecken des Betonquerschnitts überdrückt noch gerissen, wird die Querkrafttragfähigkeit ohne Querkraftbewehrung gemäß den Forderungen des Eurocode bestimmt. Auch hier kann es sich noch ergeben, dass eine entsprechend große Längszugkraft den Wert der Querkrafttragfähigkeit kleiner als Null werden lässt. In diesem Fall wird das Programm ebenfalls abgebrochen.

Im zweiten Teil des Programmablaufplans zur Querkraftbemessung werden zunächst die Grenzen der veränderlichen Druckstrebenneigung bestimmt. Diese werden dann mit den vom Benutzer vorgegebenen Neigungsgrenzen verglichen.

2.6.8.2 Teil 5.2: Bestimmung der Druckstrebenfestigkeit

Findet sich keine Schnittmenge zwischen dem von der Norm vorgeschriebenen Bereich der Druckstrebenneigung und dem vom Benutzer definierten Bereich, so wird die Bemessung erfolglos beendet.

Anschließend wird mit der kleinstmöglichen Druckstrebenneigung der Bemessungswert der durch die Druckstrebenfestigkeit begrenzten aufnehmbaren Querkraft bestimmt. Ist er nicht ausreichend, wird die Druckstrebenneigung so lange erhöht, bis er entweder ausreichend ist oder die vom Benutzer maximal zulässige Betondruckstrebenneigung erreicht wird. Die maximal sinnvolle Druckstrebenneigung beträgt 45°, weil ab diesem Wert der Bemessungswert der durch die Druckstrebenfestigkeit begrenzten aufnehmbaren Querkraft wieder abfällt.

Ist der kleinere der beiden Werte (maximale Druckstrebenneigung laut Benutzer oder 45°) überschritten, wird das Programm erfolglos beendet. Stellt sich bereits vorher ein ausreichender Bemessungswert der durch die Druckstrebenfestigkeit begrenzten aufnehmbaren Querkraft ein, wird mit der Ermittlung der erforderlichen Bewehrung fortgefahren.

2.6.8.3 Teil 5.3: Bestimmung der Querbewehrung

Mit der vorhandenen Bewehrung wird anschließend der Bemessungswert der durch die Tragfähigkeit der Querkraftbewehrung begrenzten aufnehmbaren Querkraft bestimmt.

Abschließend wird die vorhandene Querkraftbewehrung dieses Schleifendurchlaufs mit der vorhandenen Querkraftbewehrung des vorherigen Schleifendurchlaufs verglichen.

Die größte Querkraftbewehrung aller Schleifendurchgänge weist dann auf die maßgebende Stelle zur Bemessung der Querkrafttragfähigkeit mit Querkraftbewehrung hin. Für diese wird vom Programm das Nachweiskriterium ausgegeben.

Nachweiskriterium = $\frac{V_{Ed}}{V_{Rd,max}}$

Es wird nur das Kriterium für die Stelle der maßgebenden Querkraft ohne Querkraftbewehrung ausgegeben, wenn im kompletten Stab nur eine Mindestquerkraftbewehrung erforderlich war.

Nachweiskriterium =
$$\frac{V_{Ed}}{V_{Rd,c}}$$

Das Nachweiskriterium bestimmt sich als das größere Nachweiskriterium in die Richtungen y und z.

Nachweiskriterium = $\frac{V_{Ed}}{V_{Rd,c}} = \max\left\{\frac{V_y}{V_{Rd,c,y}}; \frac{V_z}{V_{Rd,c,z}}\right\}$

2.7 Übergreifungsstöße

2.7.1 Anschlusselemente an eine Stütze

In RFEM können Stützen an verschiedene Elemente anschließen, die in folgender Abbildung dargestellt sind. RSTAB hingegen bietet nur Anschlussmöglichkeit für Auflager und Stäbe.

Bild 2.59: a = Auflager, b = Weiterführende Stütze, c =Riegel, d = Platte, e = Platte und weiterführende Stütze

Schließt an die Stütze ein Auflager an, so wird eine mögliche Anschlussbewehrung aus dem Auflager kommen. Sie ist deshalb nicht Bestandteil der ermittelten Stützenlängsbewehrung. Der Benutzer kann jedoch optional entscheiden, ob die Bügelabstände zur Aufnahme der Querzugkräfte auf 60 % der sonst gewählten Bügelabstände zu verringern sind.

Schließt an die Stütze eine weiterführende Stütze an, ist es für den Benutzer möglich, neben der Verringerung der Bügelabstände einen Übergreifungsstoß ausbilden zu lassen. Dabei wird die Längsbewehrung der betrachteten Stütze um die Übergreifungslänge l₀ verlängert. Die Ermittlung dieser Übergreifungslänge wird im Anschluss vorgestellt.

Bildet ein Riegel oder eine Platte das Anschlusselement, so kann der Bügelabstand ebenfalls auf Benutzerwunsch verändert werden.

Um einen Übergreifungsstoß ausbilden zu können, ist die Übergreifungslänge lo zu bestimmen.

2 Theoretische Grundlagen

Bild 2.60: Übergreifungslänge lo

Der Bemessungswert der Übergreifungslänge I₀ wird ermittelt aus dem erforderlichen Grundwert der Verankerungslänge I_{b,rqd} gemäß [1] Absatz 8.4.3.

Der erforderliche Grundwert der Verankerungslänge $I_{b,rqd}$ zur Verankerung der Kraft $A_s \cdot \sigma_{sd}$ eines geraden Stabes unter Annahme einer konstanten Verbundspannung f_{bd} folgt aus der Gleichung:

 $I_{b,rgd} = (\phi/4) \cdot (\sigma_{sd}/f_{bd})$

Dabei ist ϕ Stabdurchmesser und σ_{sd} die vorhandene Stahlspannung im GZT des Stabes am Beginn der Verankerungslänge. Werte für f_{bd} sind in [1] 8.4.2 angegeben.

 $f_{\text{bd}} = 2,25 \cdot \eta_1 \cdot \eta_2 \cdot f_{\text{ctd}}$

- η1 ein Beiwert, der die Qualität der Verbundbedingungen und die Lage der
 Stäbe während des Betonierens berücksichtigt
- η₂ ein Beiwert zur Berücksichtigung der Stabdurchmessers
- f_{ctd} der Bemessungswert der Betonzugfestigkeit gemäß [1] 3.1.6(2)P

Ist der erforderliche Grundwert der Verankerungslänge I_{b.rqd} bestimmt, kann der Bemessungswert der Übergreifungslänge I₀ gemäß [1] Absatz 8.7.3 ermittelt werden:

$$I_0 = \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_4 \cdot \alpha_5 \cdot \alpha_6 \cdot I_{b,rqd} \ge I_{0,min}$$

mit

Ib,rqd der erforderliche Grundwert der Verankerungslänge

 $I_{0,min} \geq max (0,3 \cdot \alpha_6 \cdot I_{b,rqd}; 15 \cdot \emptyset; 200mm)$

 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ Beiwerte (siehe [1] Tabelle 8.2)

 $\alpha_6 = (\rho_1 / 25)^{0.25} \le 1.5$ bzw. 1,0

 $\begin{array}{l} \rho_1 \text{ ist der Prozentsatz der innerhalb von } 0,65 \cdot I_0 (gemessen ab der \\ Mitte der betrachteten Übergreifungslänge) gestoßenen Bewehrung. \\ Die Werte für \alpha_6 sind in [1] Tabelle 8.3 enthalten. \end{array}$

2.7.2 Gestaltung von Übergreifungsstößen

Die konstruktive Gestaltung von Übergreifungsstößen ist in [1] Absatz 8.7.2 beschrieben.

(3) Die Anordnung der gestoßenen Stäbe muss in der Regel Bild 8.7 entsprechen und folgende Bedingungen erfüllen:

- Der lichte Abstand zwischen sich übergreifenden Stäben darf in der Regel nicht größer als 4 Ø oder 50 mm sein, andernfalls ist die Übergreifungslänge um die Differenz zwischen dem lichten Abstand und 4 Ø oder 50 mm zu vergrößern.
- Der Längsabstand zweier benachbarter Stöße darf in der Regel die 0,3fache Übergreifungslänge l₀ nicht unterschreiten.
- Bei benachbarten Stößen darf in der Regel der lichte Abstand zwischen benachbarten Stäben nicht weniger als 2 Ø oder 20 mm betragen.

Bild 2.61: Gestaltung von Übergreifungsstößen

(4) Wenn die Anforderungen aus Absatz (3) erfüllt sind, dürfen 100 % der Zugstäbe in einer Lage gestoßen sein. Für Stäbe in mehreren Lagen ist in der Regel dieser Anteil auf 50 % zu reduzieren. Alle Druckstäbe sowie die Querbewehrung dürfen in einem Querschnitt gestoßen sein.

Bedenkt man die Wahl einer unterschiedlichen Bewehrungsanordnung, unterschiedlicher Stützenabmessungen und die sich aus der Berechnung ergebenden unterschiedlichen Anzahlen und Durchmesser der zu stoßenden Stäbe, so erscheint die Einhaltung dieser Vorschriften nahezu unmöglich. Es müssen deshalb für die automatische, konstruktive Gestaltung eines Bewehrungsstoßes durch das Programm folgende Voraussetzungen gegeben sein:

- Die Querschnittsabmessungen der zu stoßenden Stützen sind gleich.
- Für beide Stützen wurde die gleiche Bewehrungsanordnung gewählt.
- Die vorhandene Bewehrung verteilt sich in beiden Stützen nur über eine Lage.

Der Durchmesser und die Anzahl der Bewehrungsstäbe können in beiden Stützen unterschiedlich sein. Nachdem die Koordinaten der abgekröpften Bewehrungsstäbe bestimmt sind, ist zu kontrollieren, ob sich im Umkreis von weniger als 4ds eines jeden dieser Stäbe mindestens ein Bewehrungsstab der anschließenden Stütze befindet. Ist dies nicht der Fall, wird der Benutzer informiert, dass bei dieser Konstellation der Bewehrungsstäbe in den zu stoßenden Stützen kein Übergreifungsstoß möglich ist.

Bei runden Stützenquerschnitten ist ein Übergreifungsstoß uneingeschränkt möglich.

Bild 2.62: Übergreifungsstoß für runden Stützenquerschnitt

2 Theoretische Grundlagen

Bei rechteckigen Querschnitten entscheidet die Anordnung der Bewehrung darüber, ob ein Übergreifungsstoß zulässig ist.

Bild 2.63: Übergreifungsstoß bei rechteckigem Stützenquerschnitt - zweiseitig

ю	8	8	8	0
0				
••				•
••				
••				
•0				•
•0				•
e O				0
•	8	8	8	9

Bild 2.64: Übergreifungsstoß bei rechteckigem Stützenquerschnitt - umlaufend

Bild 2.65: Übergreifungsstoß bei rechteckigem Stützenquerschnitt – in den Ecken

Bei zweiseitiger und umlaufender Bewehrungsanordnung ist ein Übergreifungsstoß uneingeschränkt möglich. Bei einer Bewehrungsanordnung in den Ecken sind nur Stöße bei Stützen zulässig, die nicht mehr als einen Bewehrungsstab pro Ecke besitzen. Sonst würde es zu einer Bewehrungskonzentration kommen, die kein Verdichten des Betons mehr zulässt.

Bild 2.66: Kein Übergreifungsstoß bei konzentrierter Eckbewehrung

3. Arbeit mit RF-/BETON Stützen

3.1 RF-/BETON Stützen starten

Das Zusatzmodul RF-/BETON Stützen bzw. BETON Stützen kann gestartet werden über Menü

Zusatzmodule \rightarrow Stahlbetonbau \rightarrow RF-/BETON Stützen.

Zus	atzmodule <u>F</u> enster <u>F</u>	<u>H</u> ilfe		
4 00	Aktuelles Modul		瞬 瞬	
	Querschnittswerte	Þ	🕏 🃅 • 🛂 • 🚳 • 🤅 17 🖘 🎿 🗇 🚳 🚏 🛹 🚼 • 🚑 🗄 🗐 😫	🏂 - 🔀 -
	Stahlbau	►		
	Stahlbetonbau	•	RF-BETON Flächen Stahlbetonbemessung von Flächen	
	Holzbau	►	I RF-BETON Stäbe Stahlbetonbemessung von Stäben	
	Aluminiumbau	►	RF-BETON Stützen Stahlbetonbemessung von Stützen	
	Dynamik	►	Image: RF-STANZ Nachweis von Flächen gegen Durchstanzen	
	Verbindungen	►		
	Fundamente	Þ		
	Stabilität	►		
	Gittermasten	►		
	Sonstige	►		
	Externe Zusatzmodule	Þ		

Bild 3.1: Starten von RF-BETON Stützen über das RFEM-Menü Zusatzmodule

Alternativ kann das Zusatzmodul im Daten-Navigator durch einen Doppelklick auf den Eintrag **RF-BETON Stützen** bzw. **BETON Stützen** geöffnet werden.

Projekt-Navigator - Daten 🛛	×
RFEM	
🗄 🖓 Beispiel_Stütze	
🗄 🖳 🛅 Modelldaten	
🗄 💼 Lastfälle und Kombinatorik	
🚋 🗝 🛅 Lasten	
Ergebnisse	
Schnitte	
🛅 Glättungsbereiche	
Ausdruckprotokolle	
🗄 💼 Hilfsobjekte	
🚊 🛅 Zusatzmodule	
RF-BETON Flächen - Stahlbetonbemessung von Flächen	
RF-BETON Stäbe - Stahlbetonbemessung von Stäben	
RF-BETON Stützen - Stahlbetonbemessung von Stützen	
RF-STANZ - Nachweis von Flächen gegen Durchstanzen	
🔁 Daten 📓 Zeigen 🔏 Ansichten	

3.2 Masken

Es existieren fünf Eingabemasken, die im Modul linksseitig im Navigator angezeigt werden.

RF-BETON Stützen - [Beispiel 10	- Randstütze (Gesamtsystem)]
Datei Einstellungen Hilfe	
FA1 🔻	
Eingabedaten	
Materialien	1.2.6.10.11.13
Querschnitte	
Bewenrung	
Parameter - stabweise	

Bild 3.3: Eingabemasken im Navigator

Die Maske *Bewehrung* unterteilt sich wiederum in verschiedene Untermasken für die einzelnen, vom Benutzer angelegten Bewehrungssätze.

Auf der linken Seite stellt der Navigator in einer Liste alle verfügbaren Masken dar. Oberhalb befindet sich eine Liste mit den eventuell bereits vorhandenen Bemessungsfällen.

Unterhalb des Navigators befinden sich drei Schaltflächen.

Bild 3.4: Schaltfläche [Hilfe]

[Hilfe] beziehungsweise die Taste [F1] aktivieren die Online-Hilfe.

Bild 3.5: Vorherige Maske – Nächste Maske

Die Ansteuerung aller Masken kann wahlweise durch Anklicken des entsprechenden Eintrags im Navigator oder sequentielles Durchblättern geschehen. Geblättert werden kann mit den Tasten [F2] und [F3] oder durch Anklicken der oben abgebildeten Schaltflächen.

Berechnung

Bild 3.6: Schaltfläche [Berechnung]

Mit der Schaltfläche [Berechnung] wird nach Abschluss aller Eingaben die Berechnung gestartet.

1	Gr	af	ik	
	а	aı	IN	

Bild 3.7: Schaltfläche [Grafik]

Mit der Schaltfläche [Grafik] kann in die grafische Ergebnisanzeige gewechselt werden. Es wird automatisch der aktuelle **RF-/BETON Stützen**-Fall eingestellt. Weitere Informationen zu den Themen Ergebnisanzeige und -ausgabe finden Sie im Kapitel 4 dieses Handbuchs.

Bild 3.8: Schaltfläche [OK]

[OK] sichert vor dem Verlassen des Moduls alle Eingaben und Ergebnisse.

Abbrechen

Bild 3.9: Schaltfläche [Abbrechen]

Mit [Abbrechen] wird RF-/BETON Stützen verlassen, ohne zuvor die Daten zu sichern.

3.3 Eingabemasken

3.3.1 Maske 1.1 Basisangaben

Nach dem Aufruf des Moduls RF-/BETON Stützen erscheint die Maske 1.1 Basisangaben.

RF-BETON Stützen - [Beispiel] Datei Bearbeiten Einstellung	en Hilfe		×
FA1 V	1.1 Basisangaben		
FA1 V Engabedaten —Basiangaben —Metralen Querschritte —Querschritte —Revehrung — 1 — Parameter - stabweise	1.1 Basisangaben Als Stitze bemessen Stäbe: 1.9,18,31,40 Stabate: Tragfähgkeit Kriecherzeugende Dauerlast Brandschutznachw Vorhandene Lasfälle / Konzinationen GL LF1 Begengewicht GD LF2 Verkerhalast GL LF4 Dachlasten GD LF3 Rendlast LF4 Dachlasten GD LF3 Rendlast LF2 g-edr LK3 g-e-edr LK3 g-e-edr-dachl	es	
			Stahlbetonbemessung von Staben nach dem Modelistizzenverfahren
	Mile (7) . 84 DH	84 04	
	Optionen 🗹 Kriechen berücksichtigen	Einstellungen	4
	Kommertar		
2 4 5	Berechnung Kontrolle Details	Grafik	OK Abbrechen

Bild 3.10: Maske 1.1 Basisangaben, Register Tragfähigkeit

In dieser Maske befinden sich Listen der existierenden Lastfälle (LF), Lastkombinationen (LK) und Ergebniskombinationen (EK). Die Lastfälle, Last- oder Ergebniskombinationen (letztere nach **Theorie I. Ordnung** zu berechnen!), für die eine Bemessung erfolgen soll, werden durch Anklicken markiert und mit der Schaltfläche [▶] in die rechte Liste gebracht.

Bild 3.11: Schaltfläche [Selektiertes übernehmen]

Die Schaltfläche [▶▶] überträgt alle Einträge in die rechte Liste.

Bild 3.12: Schaltfläche [Alles übernehmen]

Analog können mit der Schaltfläche [] einzelne oder mit der Schaltfläche [] alle Einträge aus der rechten Liste entfernt werden.

4
-

Bild 3.13: Schaltflächen [Selektiertes zurücksetzen] und [Alles zurücksetzen]

Im Textfeld Kommentar kann jeder Bemessungsfall mit Anmerkungen versehen werden.

Mein Kommentar	~
	~

Über das Menü Datei können die einzelnen Bemessungsfälle verwaltet werden.

		-	Neuer RF-BETON Stützen-Fall
RF-BETON Stützen - [Beispiel 10	J - Kandstütze		Nr. Bezeichnung
Neuer Fall	Strg+N		
Fall umbenennen Fall kopieren			OK Abbrechen
Fall löschen			RF-BETON Stützen-Fall umbenennen
Speichern Speichern unter	Strg+S		Nr. Bezeichnung 1 Meine neue Bezeichnung
Tabellen exportieren	-+		OK Abbrechen
			RF-BETON Stützen-Fall kopieren
			Kopieren von Fall FA1
Export - MS Excel	×	η	Nr.: Bezeichnung:
Einstellungen Tabelle	Applikation		2 Meine Kopie von FA1 🗸
Mit Tabellenkopf	Microsoft Excel		
Nur markierte Zeilen	OpenOffice.org Calc		OK Abbrechen
		A 1	Fall löschen
Einstellungen			Vatandana Filla
Tabelle in die aktive Tabelle exp	ortieren		Nr Bezeichnung
Existierende Tabelle überschreib	en		1
Selektierte Tabellen			
 Aktuelle Tabelle 	🔄 Export-Tabellen mit Details		
🔘 Alle Tabellen			
Eingabetabellen			
	OK Abbrechen		OK Abbrechen

$\textbf{Datei} \rightarrow \textbf{Neuer Fall} \textbf{...}$

Ein neuer Bemessungsfall kann auch über die Tastenkombination [Strg]+[N] angelegt werden. Es öffnet sich folgender Dialog:

Neuer RF-	BETON Stützen-Fall
Nr. 2	Bezeichnung Mein neuer Fall
Ø	OK Abbrechen

Bild 3.16: Dialog Neuer RF-BETON Stützen-Fall

Für den neuen Bemessungsfall muss eine *Nummer* und eine *Bezeichnung* vergeben werden. In der Liste befinden sich alle bereits verwendeten Bezeichnungen. Sie wird sichtbar, wenn man auf den Pfeil am rechten Rand des Textfeldes klickt, in dem die Bezeichnung des Bemessungsfalls steht.

$\textbf{Datei} \rightarrow \textbf{Fall umbenennen } ...$

Mit dieser Funktion kann der aktuelle Bemessungsfall umbenannt werden. Dazu muss die Bezeichnung geändert und eventuell auch eine andere Nummer gewählt werden.

RF-BETO	N Stützen-Fall umbenennen
Nr.	Bezeichnung
1	Meine neue Bezeichnung 🗸
	OK Abbrechen

Bild 3.17: Dialog RF-BETON Stützen-Fall umbenennen

$\textbf{Datei} \rightarrow \textbf{Fall kopieren ...}$

Mit dieser Funktion kann ein bereits angelegter Bemessungsfall kopiert werden. Dazu ist zunächst dieser in der oberen Liste auszuwählen. In das Eingabefeld *Bezeichnung* ist dann der Name einzutragen, den die Kopie erhalten soll.

DETC	in Stutzen-Fail kopieren	
Kopiere	n von Fall	
FA1		-
Neuer I Nr.: 2	Fall Bezeichnung: Meine Konie von FA1	•
		Abbrooks

Bild 3.18: Dialog RF-BETON Stützen-Fall kopieren

$Datei \rightarrow Fall \, löschen \dots$

In der Liste kann der zu löschende Fall markiert werden. Nach dem Beenden des Dialogs mit [OK] wird der Fall gelöscht. Wenn mehrere Fälle markiert werden sollen, so muss beim Klicken die [Strg]-Taste gedrückt gehalten werden.

Vorhanden	e Fälle			
Nr.	Be	zeichnun	g	-
1				

Bild 3.19: Dialog Fall löschen

$\textbf{Export} \rightarrow \textbf{MS Excel ...}$

In der Liste kann der Bemessungsfall in die MS Excel-Tabelle exportiert werden.

3 Arbeit mit RF-/BETON Stützen

Export - MS Excel	×		
Einstellungen Tabelle	Applikation		
📝 Mit Tabellenkopf	Microsoft Excel		
🔲 Nur markierte Zeilen	OpenOffice.org Calc		
	CSV file format		
Einstellungen			
📃 Tabelle in die aktive Arbeitsmap	pe exportieren		
Tabelle in die aktive Tabelle exportieren			
📝 Existierende Tabelle überschreit	ben		
Selektierte Tabellen			
Aktuelle Tabelle	📄 Export-Tabellen mit Details		
💿 Alle Tabellen			
🔽 Eingabetabellen			
Ergebnistabellen			
	OK Abbrechen		

Bild 3.20: Dialog Export - MS Excel

 $\ddot{\text{U}}\text{ber Men}\ddot{\text{u}} \text{ Einstellungen} \rightarrow \textbf{Einheiten und Dezimalstellen} \dots$

Datei Einstellungen Hilfe	RF-BETC	DN Stützen - [Beispiel 10 - Randstütze (Gesamtsystem)]
Einheiten und Dezimalstellen	Datei	Einstellungen Hilfe
enniciten and bezimustellerin		Einheiten und Dezimalstellen

Bild 3.21: Aufruf des Dialogs

.... werden die Einheiten für die Bemessung festgelegt.

Programm / Modul RF-BETON Rächen RF-BETON Stäbe	*	RF-BETON Stützen			Ergebnisse		
- RF-BETON Stutzen RF-STANZ		Längen: Querschnittsmaße: Flächen: Massen:	Einheit m • mm • cm^2 • kg •	DezStellen 3 1 2 2 v 2 v	Kräfte: Momente: Spannungen: Nachweise: Einheitenlose:	Einheit Dez kN kNn kNm kn	Stellen 3 2 4 4
	ш						
	Ŧ						

Bild 3.22: Dialog Einheiten und Dezimalstellen

Am linken unteren Rand dieses Dialogs finden sich verschiedene Schaltflächen, über die die Einheiten und die Anzahl ihrer Dezimalstellen als Profile verwaltet werden können.
3 Arbeit mit RF-/BETON Stützen

Bild 3.23: Verwaltung der Einheiten

Unter dem Menü Hilfe findet der Benutzer Informationen zu diesem Zusatzmodul.

RF-BETON Stützen - [Beispiel 10 - Randstütze (
--

 Hilfe		
	Index	
	Autorenteam	
	Update-Berichte	

Im Abschnitt **Als Stütze bemessen** der Maske *1.1 Basisangaben* sind zunächst jene Elemente des RFEM/RSTAB-Modells festzulegen, die nach dem Verfahren mit Nennkrümmung bemessen werden sollen.

.1 Basisan	gaben		
Als Stütze	bemessen		Bemessung nach
Stäbe:	1,2,6,10,11,13	🚺 🚺 🗆 Alle	🔯 EN 1992-1-1:2004/AC 🛛 🔻
Stabsätze		🔨 🎦 🗸 Alle	💻 DIN 🔻 🐼

Bild 3.25: Auswahl der zu bemessenden Stützen

Im Eingabefeld *Stäbe* ist die Nummer eines Stabes anzugeben. Alternativ kann man über die rechts davon befindliche Schaltfläche in das RFEM- bzw. RSTAB-Arbeitsfenster wechseln und die gewünschte Stütze per Mausklick zur Berechnung auswählen:

*Ъ	Mehrfachauswahl Stäbe picken
Ausgev	vählt
1,2,6,1	0,11,13
Lee	ren OK Abbrechen

Bild 3.24: Menüpunkt [Hilfe]

In diesem Dialog erscheinen die Nummern der ausgewählten Stäbe. Mit [OK] werden sie in das Modul übernommen.

Stäbe wählen
Stäbe nach Kriterien wählen
☑ Alle Stäbe
✓ Alle Stabsätze
Optionen:
Vur vertikale Stäbe
Zulässige Abweichung von Ebenenormale XY 🛛 0.0 📑 [*]
🔽 Nur Stäbe mit zulässigen Materialien
📝 Nur Stäbe mit zulässigen Querschnitten
OK Abbrechen

Bild 3.27: Dialog zur Auswahl der Stäbe nach Kriterien

In diesem Dialog erscheinen die Kriterien zur Auswahl der Stäbe. Mit [OK] werden sie in das Modul übernommen.

Soll der Großteil der Stäbe der Struktur ausgewählt werden, so empfiehlt es sich, das Kontrollfeld [Alle] anzuklicken und dann auf die oben beschriebene Weise die nicht relevanten Stäbe aus der Liste zu entfernen.

Analog wird die Auswahl von bereits definierten Stabsätzen vorgenommen. Wurde noch kein Stabsatz angelegt, so sind das Textfeld für die Stabsätze und die zugehörigen Schaltflächen nicht verfügbar.

Im Modul RF-/BETON Stützen kann der Dialog zum Anlegen eines neuen Stabsatzes über folgende Schaltfläche gestartet werden:

*		e
	-	1
		J.

Neuen Stabsatz anlegen...

Bild 3.28: Schaltfläche zum Anlegen eines neuen Stabsatzes

Es erscheint der aus RFEM bzw. RSTAB bekannte Dialog Neuer Stabsatz:

Neuer Stabsatz	×
Nr. Bezeichnung	
Тур	
Stabzug	
Stabgruppe	
Stäbe Nr.	
10,11	
Kommentar	
	OK Abbrechen

Bild 3.29: Dialog zum Anlegen eines neuen Stabsatzes

In Maske 1.1 Basisangaben ist im Abschnitt Bemessung nach Norm / NA die Norm festzulegen, nach der bemessen werden soll. Für die Norm EN 1992-1-1 ist zusätzlich der Nationale Anhang anzugeben.

ung nach Nor	m / NA
1992-1-1:200	4/A1:2014 ~
2015	
	•
	EU
2011	Bulgarien
005	Vereinigtes Königreich
:2016	Tschechien
2009	Zypern
2015	Deutschland
2011	Litauen
2014	Lettland
2010	Malaysia
2010	Belgien Niederlande
2016 2016	Frankreich
2010	Portugal
2008	Norwegen
2010	Polen
2007	Finnland
aporeS:2008	Singapur
:2006	Slowenien
2008	Rumänien
2008	Slowakei
nskS:2008	Schweden
2009	Weißrussland
:2013	Spanien
2007	Italien
км:2018	Usterreich

Bild 3.30: Auswahl der Norm und des Nationalen Anhangs

Ferner kann im Abschnitt *Optionen* das Kontrollfeld *Kriechen berücksichtigen* aktiviert werden, falls diese Einflüsse bemessungsrelevant sind.

Dies hat zur Folge, dass das Register *Kriecherzeugende Dauerlast* für den Benutzer verfügbar wird (siehe folgendes Bild). Dort können dann jene Lasten ausgewählt werden, die ständig wirken und somit zu einer Vergrößerung der Zusatzausmitte e₂ infolge Kriechen führen.

Kriecherzeugende Dauerlast

Die näherungsweise Vergrößerung der Zusatzausmitte e₂ infolge Kriecheffekte ist gemäß EN 1992-1-1, Abs. 5.8.4 so zu bestimmen, dass die vorhandene Ausmitte e₂ nach Theorie II. Ordnung mit dem Faktor (1+ M_{OEqp} / M_{OEd}) multipliziert wird. Das Moment M_{OEqp} kommt dabei aus jenen Lasten, die im Register *Kriecherzeugende Dauerlast* der Maske 1.1 ausgewählt werden (siehe folgendes Bild). Die Lastfälle werden als ständig wirkend angenommen. Ihr Einfluss wird nacheinander überprüft.

Stütze ber	nessen					Bemessung nach Norm / NA	
ibe:	1,9,18,31,40	3	1	X	Alle	EN 1992-1-1:2004/A1:2014	
absätze:		To	2	×	🗹 Alle	💻 DIN:2015 🗸 🎦 🐷 🔽	
agfähigkei	t Kriecherzeugende Dauerlast Brandschutzna	chwe	eis				
orhandene	Lastfälle / Kombinationen			Z	u bemessen		
Qv LF2	Verkehrslast				G LF1	Eigengewicht	
G LF3	Erdruck						ZA
Qn LF4	Dachlasten						
Qn LF5	Randlast		>				
LK1	g+p						
LK2	g+edr		>>				
LK3	g+p+edr+dachl						
			4	r II.			
			~				
			4				
							Stablbetonbemessung
							von Stäben nach dem
Alle ((7) ~ 🛃					3.4	Modellstützenverfahren
ptionen							
Begrenz	ung des Verhältnisses vom		•				
quasista	ndigen zum Bemessungsmoment: 1.0	00 -	~				Firm
nmentar							

Bild 3.31: Maske 1.1 Basisangaben, Register Kriecherzeugende Dauerlast

Die Option Begrenzung des Verhältnisses vom quasiständigen zum Bemessungsmoment ermöglicht es, das Verhältnis M_{0Eqp} / M_{0Ed} zur Berechnung der effektiven Kriechzahl auf den definierten Wert (Standard ist 1,00) zu begrenzen. Damit soll verhindert werden, dass im Fall $M_{0Eqp} > M_{0Ed}$ die effektive Endkriechzahl nicht erhöht wird.

Brandschutznachweis

Basisangab	ben				
Vs Stütze ben	nessen			Bemessung nach Norm / NA	
täbe:	1,9,18,31,40	5 \Lambda 🗙	Alle	EN 1992-1-1:2004/A1:2014	
tabsätze:		5 殆 🗙	🗸 Alle	💻 DIN:2015 🗸 🎦 🖾 🍸	
Tragfähigkei	t Kriecherzeugende Dauerlast Brandschutzna	chweis			
Vorhandene	Lastfälle / Kombinationen	Zub	emessen		
G LF3 Qn LF4 Qn LF5 LK1 LK2 LK3	Erdnuck Dachlasten Randlast 9+9 g+edr g+p+edr+dachl		LF1 LF2	Egengewicht Verkehrslast	RF-BETON Stützen
Alle (6) 🗸 🖉			2v 80	von Stäben nach dem Modellstützenverfahren
Optionen				Einstellungen	
Kriechen 🗸	berücksichtigen			Abminderungsfaktor nach 2.4.2(2) η fi: 1.00 ÷	A
ommentar					
			0		
			V		

Bild 3.32: Maske 1.1 Basisangaben, Register Brandschutznachweis

Die Option Abminderungsfaktor nach 2.4.2(2) ermöglicht es, vereinfacht Beanspruchungen aus der Bemessung für Normaltemperatur zu übernehmen und diese mit dem Reduktionsfaktor $\eta_{\rm fi}$ zu berücksichtigen. Der Reduktionsfaktor ist wie in EN 1992-1-2 vorgeschlagen gemäß 2.4.2(3) zu ermitteln. Als Vereinfachung kann der empfohlene Wert $\eta_{\rm fi} = 0,7$ verwendet werden.

3.3.2 Maske 1.2 Materialien

Bild 3.33: Maske 1.2 Materialien

In der zweiten Eingabemaske werden die Materialdaten der zu bemessenden Stäbe angezeigt. Diese Maske ist zweigeteilt: Im oberen Teil werden die Werkstoffe für den Beton und für den Bewehrungsstahl festgelegt. Die Betonfestigkeitsklassen werden von RFEM bzw. RSTAB übernommen, können hier jedoch auch geändert werden.

Beton-Bibliothek

Bild 3.34: Beton-Bibliothek

Mit der Schaltfläche [Beton-Bibliothek] unterhalb der Spalte *Beton-Festigkeitsklasse* kann die Betongüte ausgewählt werden. Es erscheint der in folgendem Bild dargestellte Dialog.

4
Dlubal

Material aus Bibliothek übernehme	n					×
Filter	Material zum Übernehmen					
Materialkategorie-Gruppe:	Materialbezeichnung		Norm			^
Beton	Beton C12/15		🔳 DIN EN	1992-1-1/NA/A	1:2015-12	
	Beton C16/20		TIN EN	1992-1-1/NA/A1	1:2015-12	
Material-Kategorie:	Beton C20/25		DIN EN	1992-1-1/NA/A1	1:2015-12	
Alle	Beton C25/30			1007-1-1/NA/A	1.2015-12	
	Beton C20/27			1992-1-1/NA/A	1.2015-12	
Norm-Gruppe:	Beton C30/37			1992-1-1/NA/A		
🔳 DIN EN 🗸	Beton C35/45		DIN EN	1992-1-1/NA/A	1:2015-12	
	Beton C40/50		DIN EN	1992-1-1/NA/A	1:2015-12	
Norm:	Beton C45/55		M DIN EN	1992-1-1/NA/A	1:2015-12	
🔳 DIN EN 1992-1-1/NA/A1:2(🗸	Beton C50/60		💻 DIN EN	1992-1-1/NA/A	1:2015-12	
	Beton C55/67		🔳 DIN EN	1992-1-1/NA/A	1:2015-12	
	Beton C60/75		🔳 DIN EN	1992-1-1/NA/A	1:2015-12	
	Beton C70/85		🔳 DIN EN	1992-1-1/NA/A	1:2015-12	
	Beton C80/95		🔳 DIN EN	1992-1-1/NA/A	1:2015-12	
	Beton C90/105		🔳 DIN EN	1992-1-1/NA/A	1:2015-12	
	Beton C100/115		🔳 DIN EN	1992-1-1/NA/A	1:2015-12	
	Leichtbeton LC12/13		DIN EN	1992-1-1/NA/A	1:2015-12	
Inklusive ungültiger	Leichtbeton LC16/18		TIN EN	1992-1-1/NA/A1	1:2015-12	
Favoritengruppe:	Leichtheton I C20/22		DIN EN	1992-1-1/NA/A1	1:2015-12	~
	Suchen:]		\times
Materialkennwerte		Betor	n C30/37 DI	N EN 1992-1-1/N	A/A1:2015	i-12
Haupt-Kennwerte						<u>^</u>
Elastizitätsmodul		E		33000.0	N/mm ²	
- Schubmodul	\	(i	13750.0	N/mm ²	-
Poissonsche Zahl (Querdennzahl)	\	/	0.200	LNI /m 3	-
Temperaturdebozabl (M/armedebi	nzabl)	1	/ v	1 0000E 05	1/°C	-
E Zusätzliche Kennwerte	izani)			1.0000E-05	1/ 0	
Charakteristische Zvlinderdruckfe	stiakeit	F	ck	30.0	N/mm ²	
- Charakteristische Würfeldruckfest	tigkeit	f	cu,k	37.0	N/mm ²	
Mittelwert der Zylinderdruckfestig	keit	f	cm	38.0	N/mm ²	1
 Mittelwert der zentrischen Zugfes 	tigkeit	f	ctm	2.9	N/mm ²	
 5%-Quantil der zentrischen Zugfe 	stigkeit	f	ctk;0.05	2.0	N/mm ²	
95%-Quantil der zentrischen Zugf	estigkeit	f	ctk;0.95	3.8	N/mm ²	¥
2				ОК	Abbrech	en

Bild 3.35: Beton-Bibliothek

Der Dialog besteht aus drei Abschnitten. Links befinden sich so genannte *Filter*. Sie sind beim Aufruf über das Modul jedoch nicht zugänglich, da aus den getroffenen Eingaben die geeigneten Materialien voreingestellt werden.

Im Abschnitt *Material zum Übernehmen* werden alle infrage kommenden Materialien aufgelistet, von denen eines durch Anklicken ausgewählt werden kann. Im *Suchen*-Feld ist eine Volltextsuche nach einem bestimmten Material möglich.

Die Tabelle im Abschnitt *Materialkennwerte* gibt Aufschluss über sämtliche Eigenschaften des Materials, die für die RFEM/RSTAB-Berechnung und die Bemessung relevant sind.

A
↑ ↑
Benutzerdefiniertes Material bearbeiten
Neues Material anlegen

Bild 3.36: Materialbibliothek-Schaltflächen

Über die Schaltfläche [Neues Material anlegen ...] unterhalb der Materialliste kann ein eigener Beton definiert werden. Es erscheint der in folgendem Bild dargestellte Dialog.

laterial-Bezeichnung	Materialkennwerte			
Poton C20/27	Haupt-Kennwerte			
Belon C30/3/	Elastizitätsmodul	E	3300.00	kN/cm ²
ilter	Schubmodul	G	1370.00	kN/cm ²
inco i	 Poissonsche Zahl (Querdehnzahl) 	v	0.200	
faterialkategorie-Gruppe:	 Spezifisches Gewicht 	γ	25.00	kN/m ³
🗖 Beton 🚽 🍋 📼	 Temperaturdehnzahl (Wärmedehnzahl) 	α	1.0000E-05	1/K
	Teilsicherheitsbeiwert	γM	1.000	
faterial-Kategorie:	Zusätzliche Kennwerte			
	 Charakteristische Zylinderdruckfestigkeit 	fok	3.00	kN/cm ²
Beton 🔻 🛄 🗠	 Charakteristische Würfeldruckfestigkeit 	f _{ou,k}	3.70	kN/cm ²
lorm-Gruppe:	 Mittelwert der Zylinderdruckfestigkeit 	fom	3.80	kN/cm ²
	Mittelwert der zentrischen Zugfestigkeit	fctm	0.29	kN/cm ²
💻 DIN EN 🛛 👻 🛅 📴	 5%-Quantil der zentrischen Zugfestigkeit 	fctk;0.05	0.20	kN/cm ²
	 95%-Quantil der zentrischen Zugfestigkeit 	fctk;0.95	0.38	kN/cm ²
Norm:	Mittelwert des Elastizitätsmoduls	Ecm	3300.00	kN/cm ²
💻 DIN EN 1992-1-1/NA:201* 👻 🎦 🔤	Grenzdehnung bei zentrischem Druck	Sc1	-2.200E-03	
	Bruchdehnung	€c1u	-3.500E-03	
	Exponent der Parabel	n	2.000	
Favorit	 Grenzdehnung bei zentrischem Druck 	εc2	-0.002	
	- Bruchdehnung	εc2u	-3.500E-03	
	 Grenzdehnung bei zentrischem Druck 	8c3	-1.750E-03	
	Bruchdehnung	Ec3u	-3.500E-03	
	Kommentar:			

Bild 3.37: Dialog Neues Material

In diesem Dialog können neben der Materialbezeichnung sämtliche Materialkennwerte in der rechtsseitigen Tabelle erfasst werden. Mit dem Verlassen dieses Dialogs über [OK] wird das neu angelegte Material zu der Liste der bereits bestehenden Materialien hinzugefügt.

Aus der Beton-Bibliothek wird der selbstdefinierte Beton oder ein Beton mit einer bestimmten Festigkeitsklasse markiert und mit [OK] in das Eingabefeld der Maske 1.2 übernommen.

Jeder Betonfestigkeitsklasse muss eine Bewehrungsstahlsorte zugewiesen werden. Die Auswahl der Betonstahlgüte erfolgt wie oben für die Betonfestigkeitsklasse beschrieben. Mit der Schaltfläche [Betonstahl-Bibliothek] wird die Bibliothek der Betonstahlgüten aufgerufen.

\mathbf{n}	

Betonstahl-Bibliothek...

Bild 3.38: Betonstahl-Bibliothek

Es erscheint der in folgendem Bild darstellte Dialog.

Filter	Material zum Übernehmen			
Materialkategorie-Gruppe:	Materialbezeichnung	Norm		
Metal	B 550 S (A)	💻 DIN EN	1992-1-1/NA/A1	1:2015-12
	B 550 M (A)	IN EN	1992-1-1/NA/A1	1:2015-12
Aaterial-Kategorie:	B 550 S (B)	TIN EN	1992-1-1/NA/A1	1:2015-12
Betonstahl ~	B 550 M (B)		1992-1-1/NA/A1	1.2015-12
	B 500 S (A)		1992-1-1/NA/A1	1.2015-12
Norm-Gruppe:	B 500 M (A)		1002 1 1/NA/A1	1.2015-12
🔳 DIN EN 🗸	B 500 M (A)		1992-1-1/NA/A1	1:2015-12
	B 500 S (B)		1992-1-1/NA/A	1:2015-12
Norm:	B 500 M (B)	DIN EN	1992-1-1/NA/A1	1:2015-12
🔳 DIN EN 1992-1-1/NA/A1:2(🗸	B 420 S (B)	DIN EN	1992-1-1/NA/A1	1:2015-12
Inklusive ungültiger 👺 Favoritengruppe:				
Inklusive ungültiger Favoritengruppe:	Suchen:]	
Inklusive ungültiger Favoritengruppe: Favoritengruppe: Materialkennwerte Haunt-Kennwerte	Suchen:	B 500 S (B) DI] N EN 1992-1-1/N	IA/A1:201
Inklusive ungültiger Favoritengruppe: Materialkennwerte Haupt-Kennwerte Bastizitärsmodul	Suchen:	B 500 S (B) DI) N EN 1992-1-1/N 200000 0	IA/A1:201:
Inklusive ungültiger Favoritengruppe: V Materialkennwerte Haupt-Kennwerte Bastizitäsmodul Schubmodul	Suchen:	B 500 S (B) DI E G] N EN 1992-1-1/N 20000.0 76923.1	A/A1:201 N/mm ² N/mm ²
Inklusive ungültiger Favoritengruppe: Materialkennwerte Haupt-Kennwerte Bastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnzal	N)	B 500 S (B) DI E G V	NEN 1992-1-1/N 200000.0 76923.1 0.300	N/mm ² N/mm ²
Inklusive ungültiger Favoritengruppe: Materialkennwerte Haupt-Kennwerte Bastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnzal Spezifisches Gewicht	N)	B 500 S (B) DI E G V γ	N EN 1992-1-1/N 200000.0 76923.1 0.300 78.50	N/mm ² N/mm ² kN/m ³
Inklusive ungültiger Favoritengruppe: Materialkennwerte Haupt-Kennwerte Bastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnzal Spezifisches Gewicht Temperaturdehnzahl (Wärmedel	h)	B 500 S (B) DI E G V γ α	N EN 1992-1-1/N 200000.0 76923.1 0.300 78.50 1.0000E-05	N/mm ² N/mm ² kN/m ³ 1/°C
Inklusive ungültiger	hnzahl)	B 500 S (B) DI E G V γ α	N EN 1992-1-1/N 200000.0 76923.1 0.300 78.50 1.0000E-05	N/mm ² N/mm ² kN/m ³ 1/°C
Inklusive ungültiger	hl)	B 500 S (B) DI E G V γ α Es	NEN 1992-1-1/N 200000.0 76923.1 0.300 78.50 1.0000E-05 200000.0	A/A1:201 N/mm ² N/mm ² kN/m ³ 1/°C N/mm ²
Inklusive ungültiger Favoritengruppe: ✓ <	hl)	B 500 S (B) DI E G V γ α α Es ftk	200000.0 76923.1 0.300 78.50 1.0000E-05 200000.0 540.0	N/mm ² N/mm ² kN/m ³ 1/°C N/mm ² N/mm ²
Inklusive ungültiger	hl)	B 500 S (B) DI E G V γ α Es ftk Es ftk ξuk	200000.0 76923.1 0.300 78.50 1.0000E-05 200000.0 540.0 0.050	N/mm ² N/mm ² kN/m ³ 1/°C N/mm ² N/mm ²

Bild 3.39: Betonstahl-Bibliothek

Über die Schaltfläche [Neu] kann ein eigener Betonstahl definiert werden.

Neues Material anlegen...

Bild 3.40: Betonstahlbibliothek: Schaltflächen

Es erscheint der in folgendem Bild dargestellte Dialog.

TON CANA 3

Ne

Arbeit mit RF-/B	BETO	N Stützen		_	\sim
				D	luba
es Material					
terial-Bezeichnung		Materialkennwerte			
- 500 S (P)		⊟ Haupt-Kennwerte			
	ľ	- Elastizitätsmodul	E	20000.00	kN/cm ²
ar		- Schubmodul	G	7700.00	kN/cm ²
•		Poissonsche Zahl (Querdehnzahl)	v	0.300	
terialkategorie-Gruppe:		 Spezifisches Gewicht 	γ	78.50	kN/m ³
Metall 🗸 🌳	1 🚳 🛛	Temperaturdehnzahl (Wärmedehnzahl)	α	1.0000E-05	1/K
		Teilsicherheitsbeiwert	7M	1.000	
terial-Kategorie:		Zusätzliche Kennwerte			
Rotonstahl - 🏵	. 📼 [Elastizitätsmodul	Es	20000.00	kN/cm ²
		Charakteristische Zugfestigkeit	ftk	54.00	kN/cm ²
m-Gruppe:		Grenzdehnung	δuk	0.050	
		Charakteristische Streckgrenze	fyk	50.00	kN/cm ²
DIN EN 👻 🗖					
rm:					
📕 DIN EN 1992-1-17NA:201* 👻 🛅	1 🖭 🛛				
F					
Favorit					
		Kommentar: Hohe Duktilität.			
				OK	Abbreck

Bild 3.41: Material-Kennwerte

Die Vorgehensweise ist identisch wie beim Beton.

Im unteren Teil der Maske 1.2 befindet sich eine Tabelle mit Detailangaben zu den Materialeigenschaften des Betons und des Betonstahls, der in der oberen Tabelle ausgewählt wurde.

	A	B		C	D	
/laterial	Material-Be	ezeichnung		Anmer-		
Nr.	Beton-Festigkeitsklasse	Beton	stahl	kung	Kommenta	ar
3	Beton C30/37	B 500 S (B)				
					۲	5
/laterial	kennwerte					
Betor	n-Festigkeitsklasse: Bet	ton C30/37				
— Cha	rakteristische Zylinderdruck	festigkeit	fck	30.	00 N/mm ²	1
— Mitte	elwert der Zylinderdruckfesti	igkeit	fom	38.	00 N/mm ²	
 Mitte 	elwert der zentrischen Zugfe	estigkeit	fctm	2.	90 N/mm ²	
- 5%-(Quantil der zentrischen Zug	festigkeit	fctk;0.05	2.	00 N/mm ²	
- 95%	-Quantil der zentrischen Zu	gfestigkeit	fctk;0.95	3.	80 N/mm ²	
— Mitte	elwert des Elastizitätsmoduls	8	Ecm	33000.	00 N/mm ²	
🕀 Cha	rakteristische Dehnungen fi	ür nichtlineare B	Berechnungen	1		
— G	irenzdehnung bei zentrische	em Druck	Sc1	-2.	20 ‰	
B	ruchdehnung		Sc1u	-3.	50 ‰	
🖃 Cha	rakteristische Dehnungen fi	ür Parabel-Recl	nteck-Diagram	ากก		
— G	irenzdehnung bei zentrische	em Druck	Ec2	-2.	00 ‰	
— B	ruchdehnung		€c2u	-3.	50 ‰	
- E	xponent der Parabel		n	2.00	00	
Beton	stahl: B 500 S (B)					
- Elas	tizitätsmodul		Es	200000.	00 N/mm ²	
— Cha	rakteristische Streckgrenze		fyk	500.	00 N/mm ²	
Cha	roktoriatioobo Zuafoatiakoit		Eas.	540	00 NI/mm2	

Bild 3.42: Materialkennwerte der ausgewählten Beton- und Betonstahlgüten

Im rechten Bereich der Maske 1.2 Materialien wird angezeigt, für welche Querschnitte und Stäbe das aktuelle Material verwendet wird.

In dieser Maske können zwar die Materialien geändert werden, aber die Bemessung erfolgt mit den Schnittgrößen, die mit den in RFEM bzw. RSTAB definierten Steifigkeiten ermittelt wurden. Wenn in RF-/BETON Stützen die Steifigkeiten geändert werden und es sich um ein statisch unbestimmtes System handelt, so müssen zur genauen Bemessung die geänderten Materialien auch in RFEM/RSTAB angepasst und die Schnittgrößen nochmals berechnet werden!

3.3.3 Maske 1.3 Querschnitte

vater emstendingen mine		1					
FA1	■ 1.3 Que	schnitte					
Eingabedaten - Basisangaben - Materialien - Querschnitte - Bewehrung Parameter - stabweise	Quersch. Nr.	A Material Nr. 3	B Querschnittsbezeichnun Rechteck 300/500	C Anmer- kung	D Kriechzahl 3.0869	E Kommentar	Rechteck 300/500
							Querschnitt Nr. 1 angewendet in Stabe: 1 Sitab- sätze: - Σ Länge: 3.000 χ Masse: 1125.00
						چ ا	Material: 3 - Beton C30/37
	Berechr	nung	Nachweis	Mel	lungen	Grafik	OK Abbrech

In dieser Maske werden alle Querschnitte aufgelistet, aus denen die Stäbe und Stabsätze bestehen, die zuvor in der Maske 1.1 Basisangaben zur Bemessung ausgewählt wurden. Für jeden Querschnitt können hier auch die Vorgaben zur Kriechzahl getroffen werden (siehe Markierung im Bild oben). Mit dem Anklicken der Schaltfläche [...] öffnet sich folgender Dialog:

tk	Alter 27393	
t _k	27393	
tk .	27393	-
		lage
		-
Ac	0.150	m²
u	1.600	m
ho	0.188	m
ZArt	N	
RH	50	%
	Emitteln	
	Nein	
tτ	7.000	Tage
	Ja	
to	7.000	Tage
φ(t.t o)	3.087	
-		
	h₀ ZAt RH t⊤ t₀ (¢(t₀)	h0 0.188 ZAt N RH 500 Emitteln Nein tr 7.000 φt.to) 3.087

Bild 3.44: Dialog Einstellungen für Kriechen

Bild 3.43: Maske 1.3 Querschnitte

Links unten in Maske 1.3 befindet sich eine Schaltfläche, über die der in der Liste selektierte Querschnitt verändert werden kann.

-			
-			
- 63	ε.	-0	
_	_	-	

Querschnitts-Bibliothek...

Bild 3.45: Schaltfläche [Querschnittsbibliothek]

Der Klick auf diese Schaltfläche öffnet die Querschnittsbibliothek von RFEM bzw. RSTAB.

Querschnitts-Bibliothek			X
Gewalzte	Parametrische - Dünnwandig	Parametrische - Massiv	Parametrische - Holz
ILTL			
	TLL		
1			ΤΤΠΠ
	Ο Π Π	TL	
Zusammengesetzte	ΠΠΠΠ		
II I T T	Ţ ¹ Ť ¹ + ●		
TIII	- İ l J		
IIII	ΤΣ		
••			
		Benutzerdefiniert	Vom Querschnittsprogramm
2			Abbrechen

Bild 3.46: Querschnittbibliothek

In der Bibliothek sind nur jene Querschnitte verfügbar, die vom Modul **RF-/BETON Stützen** unterstützt werden. Dies sind zum gegenwärtigen Zeitpunkt Kreis- und Rechteckquerschnitte der Profilkategorie *Parametrische - Massiv*.

Im rechten Bereich der Maske 1.3 wird die Querschnittsgrafik des aktuellen Profils dargestellt. Unterhalb der Grafik ist die Zuordnung dieses Querschnitts zu bestimmten Materialien und Stäben ersichtlich.

Eine Querschnittsänderung in dieser Maske führt nicht automatisch zu einer Änderung der Querschnitte innerhalb von RFEM bzw. RSTAB. Wie für die Materialien gilt: Die Bemessung erfolgt mit den Schnittgrößen, die mit den in RFEM bzw. RSTAB definierten Steifigkeiten ermittelt wurden. Wenn in RF-/BETON Stützen die Steifigkeiten geändert werden und es sich um ein statisch unbestimmtes System handelt, so müssen zur genauen Bemessung die geänderten Querschnitte auch in RFEM/RSTAB angepasst und die Schnittgrößen nochmals berechnet werden!

3.3.4 Maske 1.4 Bewehrung

A1	 1.4 Bewehrung 		
ingabedaten Basisangaben Materialien Querschnitte 	Bewehrungssatz Nr.: Bezeichnung:	Angewendet auf Stabe: 1.2 Stabsätze:	Alle
Parameter - stabweise	Längsbewehrung Bigel Konstruktive Ber Bewehrung Bewehrungsverteilung	wehrung Bewehrungsanordnung DIN EN 1992-1-1	1 - Rechteck 300/500 Rechteck 300/500
	Burchmesser: Bewehrungslagen 12.0 14.0 15.0 22.0 28.0 30.0 32.0 Minimaler lichter Bewehrung - Lageentfermung e: -	▼ ngsabstand 20.0 ☆ [mm] 20.0 ☆ [mm] 20.0 ☆ [mm]	
	[mm] The Stahloberfläche: Gerippt	• •	

Bild 3.47: Maske 1.4 Bewehrung, Register Längsbewehrung

In den Registern Längsbewehrung, Bügel, Konstruktive Bewehrung, Bewehrungsanordnung, ,Norm' und ggf. Brandschutz werden verschiedene Angaben zur Bewehrung erfasst. Die Angaben sind für die einzelnen Stäbe oder Stabsätze oft unterschiedlich. Aus diesem Grund ist es möglich, verschiedene so genannte "Bewehrungssätze" anzulegen, denen dann bestimmte Stäbe oder Stabsätze zugeordnet werden können. Die Vorgaben des jeweiligen Bewehrungssatzes werden dann auf die relevanten Stäbe oder Stabsätze angewendet.

Ein Bewehrungssatz ist im Abschnitt *Bewehrungssatz* durch eine Nummer und eine frei wählbare *Bezeichnung* definiert.

Bewehru	ngssatz	
Nr.:	Bezeichnung:	
1 -	Mein Bewehrungssatz	ĉ 🔁 🔁

Bild 3.48: Abschnitt Bewehrungssatz

Im Abschnitt *Angewendet auf* rechts daneben ist festzulegen, für welche Stäbe oder Stabsätze dieser Bewehrungssatz gültig ist.

Angewendet	auf		
Stäbe:	1,2	3	🔳 Alle
Stabsätze:		To	🗸 Alle

Bild 3.49: Abschnitt Angewendet auf

Die Nummern der Stäbe oder Stabsätze können in die Eingabefelder eingetragen oder über die Schaltfläche [⁵] grafisch ausgewählt werden. Es erscheint das Arbeitsfenster von RFEM bzw. RSTAB, in dem die gewünschten Stäbe oder Stabsätze per Mausklick festlegt werden können.

Bild 3.50: Stäbe im RFEM/RSTAB-Arbeitsfenster grafisch auswählen

Ein Bewehrungssatz kann auch auf alle Stäbe bzw. Stabsätze angewendet werden. Dies wird erreicht, indem im Abschnitt *Angewendet auf* das Kontrollfeld [Alle] angehakt wird. Damit ist jedoch folgende Einschränkung verbunden: Da in diesem Bewehrungssatz bereits alle Stäbe bzw. Stabsätze enthalten sind, kann kein anderer Bewehrungssatz mehr definiert werden – es gibt keinen Stab oder Stabsatz mehr, auf den er angewendet werden könnte. Dies ist auch daran zu erkennen, dass im Abschnitt *Bewehrungssatz* die Schaltfläche zum Anlegen eines neuen Bewehrungssatzes nicht verfügbar ist.

Wird das Häkchen beim Kontrollfeld *Alle* entfernt, so wird die Schaltfläche [Neuer Bewehrungssatz] zugänglich:

1.4 Bewehrung		
Bewehrungssatz	Angewendet auf	
N <u>r</u> .: <u>B</u> ezeichnung:	<u>S</u> täbe: 1,2	
1 🔹 Mein Bewehrungssatz	Stabsätze:	🚺 📝 Alle

Bild 3.51: Bewehrungssatz angewendet auf bestimmte Stäbe

Ein bereits definierter Bewehrungssatz kann über die Schaltfläche [X] wieder gelöscht werden:

Aktuellen Bewehrungssatz löschen

Bild 3.52: Schaltfläche [Bewehrungssatz löschen]

Dabei ist zu beachten, dass für die Stäbe oder Stabsätze, die in diesem gelöschten Bewehrungssatz enthalten waren, keine Bemessung stattfindet. Sollen diese dennoch bemessen werden, müssen sie einem bestehenden oder neuen Bewehrungssatz zugeordnet werden. Anderenfalls erscheint im Programm folgende Fehlermeldung:

	RF-BETON Stützen Fehler Nr. 1728
Unzuläs Stab Nr. Korrigier	sige Eingabe! 1,2,5,7-13 Bewehrung nicht definiert. en Sie bitte in Tabelle 1,4.

Bild 3.53: Fehlermeldung

Um Änderungen in einem bereits angelegten Bewehrungssatz vorzunehmen, muss dieser zunächst ausgewählt werden. Dies kann auf zweierlei Arten erfolgen:

FA1 -	 1.4 Bewehrung
Eingabedaten - Basisangaben - Materialien - Querschnitte Bewehrung - 1 - 1. Bewehrungssatz - 2 - 2. Bewehrungssatz - 3 - 3. Bewehrungssatz - Parameter - stabweise	Bewehrungssatz Nr.: Bezeichnung: 2 2 2 Bewehrungssatz 1 2 3

Im Abschnitt *Bewehrungssatz* kann die Nummer eines Bewehrungssatzes aus der Auswahlliste gewählt werden. Alternativ wird der gewünschte Bewehrungssatz über einen Doppelklick auf den entsprechenden Navigatoreintrag eingestellt.

Im unteren Teil der Maske 1.4 kann der aktuelle Bewehrungssatz dann über die fünf bzw. sechs Register Längsbewehrung, Bügel, Konstruktive Bewehrung, Bewehrungsanordnung, "Norm" und ggf. Brandschutz definiert werden.

3.3.4.1 Längsbewehrung

Bewehrung	Bewehrungsverteil	lung		
Mögliche Durchmesser: 8.0 10.0 12.0	Zweiseitig - paralle	I zur y-Achse	•	
14.0	Bewehrungslagen			
20.0 25.0 28.0	<u>M</u> aximale Anzahl der Lagen:	1 •	ſ	••••
30.0	Minimaler lichter Be	wehrungsabstan	d	
	- Erste Lage	a: 20.0 🚔	[mm]	a
	- Weitere Lagen	b: 20.0 🛬	[mm]	
	- Lageentfernung	e: 20.0 🛨	[mm]	
	Verankerungsart			
	Gerade		•	

Bild 3.55: Register Längsbewehrung

Im Abschnitt *Bewehrung* stehen verschiedene Bewehrungsdurchmesser zur Auswahl, die für die Längsbewehrung infrage kommen. Durch Anhaken der Einträge werden dem Programm bestimmte Durchmesser zur Verfügung gestellt. Es wird dann ausschließlich mit den vorgegebenen möglichen Bewehrungsstäben eine Lösung gesucht.

Über die Auswahlliste im Abschnitt *Bewehrungsverteilung* wird über die vier Möglichkeiten der Bewehrungsverteilung entschieden:

- Zweiseitig parallel zur y-Achse
- Zweiseitig parallel zur z-Achse
- Nur in den Ecken
- Gleichmäßig umlaufend

Im Abschnitt *Bewehrungslagen* kann in einer weiteren Auswahlliste die *Maximale Anzahl der Lagen* vorgegeben werden. Für diese Bewehrungslagen kann dann über die Abstände *a*, *b* und *e* fest-gelegt werden, wie deren Anordnung erfolgen soll.

Den Abschluss dieses Registers bilden zwei Auswahllisten im Abschnitt *Verankerungsart,* die für die Ermittlung der Verankerungslängen bedeutsam werden. In der kleinen Grafik rechts daneben werden die jeweiligen Parameter dynamisch veranschaulicht.

3.3.4.2 Bügel

In diesem Register sind die Angaben zur Querkraftbewehrung vorzunehmen.

Längsbewehrung	Bügel Konstruktive Bewehrung Bewehrungsanordnung DIN EN 1992-1-1
Bewehrung	Bügelparameter
Mögliche 8.0 ✓ 10.0 12.0 14.0 16.0 20.0 25.0 28.0 30.0 32.0	Anzahl Schnitte: 2 V In Richtung y V In Richtung z Minimale Schubbewehrung: Setzen Min asw: 0.00 (cm²/m) Nach Norm Verankerungsart Haken
[mm] 🔯	

Bild 3.56: Register Bügel

Die für die Bemessung infrage kommenden Stabdurchmesser der Bügelbewehrung sind im Abschnitt *Bewehrung* auszuwählen. Wie oben für die Längsbewehrung beschrieben, wird dann ausschließlich mit den vorgegebenen möglichen Bügeldurchmessern eine Lösung gesucht

Im Abschnitt *Bügelparameter* kann die Anzahl der Schnitte sowie die Mindestschubbewehrung *Min a*_{sw} manuell oder nach Norm festgelegt werden. Unterschreitet die statisch erforderliche Querkraftbewehrung oder die Mindestquerkraftbewehrung nach Norm den hier vorgegebenen Wert, so wird *Min a*_{sw} als erforderliche Bügelbewehrung verwendet.

Den Abschluss dieses Registers bildet ein Auswahlfeld im Abschnitt *Verankerungsart*, das für die Ermittlung der Verankerungslängen bedeutsam ist. In der kleinen Grafik rechts daneben wird die jeweilige Verankerungsart veranschaulicht. Die geometrische Form der Verankerung kann nach der Bemessung noch in Maske *4.2 Vorhandene Bügelbewehrung* beeinflusst werden (siehe Kapitel 3.5.5, Seite 127).

3.3.4.3 Konstruktive Bewehrung

Längsbewehrung Bügel	Konstruktive Bewehrung	Bewehrungsanordnung	DIN EN 1992-1-1
Maximaler Bewehrungsabs	stand		
🔘 Gleichgültig			
Oefinieren			
Maximaler Bewehrungsabstand	e _{max} : 300.0 🚔 [r	nm]	
Bewehrungsdurchmesser			
Identisch mit der Längs- bewehrung			
Oefinieren			
Durchmesser der konstruktiven Bewehru	ng ds: <mark>12.0 ▼</mark> [mm	1	

Bild 3.57: Register Konstruktive Bewehrung

Neben der statisch erforderlichen Bewehrung sind (außer bei umlaufender Bewehrung) Zwischenstäbe entlang einer Querschnittsseite anzuordnen, damit der Abstand zwischen den Stäben der statisch erforderlichen Bewehrung nicht zu groß wird. Der maximal zulässige Abstand ist in den einzelnen Normen genau geregelt. Durch Anklicken der Option *Gleichgültig* wird ein gleichmäßiger Abstand angesetzt. Die Option *Definieren* ermöglicht es, den maximal zulässigen Abstand manuell festzulegen.

Der Abschnitt *Bewehrungsdurchmesser* steuert, ob für die konstruktive Bewehrung der gleiche Stabdurchmesser wie für die statisch erforderliche Bewehrung verwendet wird. Über die Option *Definieren* kann ein anderer Durchmesser vorgegeben werden.

3.3.4.4 Bewehrungsanordnung

Bild 3.58: Register Bewehrungsanordnung

In diesem Register kann die *Betondeckung* in Richtung der jeweiligen Achse des Querschnitts festgelegt werden. Für rechteckige Querschnitte sind somit in zwei Richtungen verschiedene Betondeckungen möglich, die in den Eingabefeldern u_y und u_z bzw. c_y und c_z festzulegen sind.

Einem Kreisquerschnitt hingegen kann nur eine Betondeckung zugewiesen werden.

Abhängig vom aktiven Auswahlfeld im Abschnitt *Betondeckung* beziehen sich die Deckungen auf den Schwerpunkt (Achsmaß) oder den Rand der Bewehrung:

Bild 3.59: Art der Betondeckung

Beim Ansatz der *Betondeckung nach Norm* ist über die Schaltfläche [Bearbeiten] ein Dialog aufrufbar, in dem die Angaben zur Ermittlung des Nennmaßes der Betondeckung c_{nom,längs} nach der gewählten Norm, wie z. B. EN 1992-1-1, Abs. 4.4.1.1, getroffen werden können.

Betondeckung nach Norm DIN EN 1992-1-1				
Cy Cz				
Parameter zur Bestimmung der Betondeckung				
Europäinneklasse nach (4.1.2 (E)		_]	L1	
Expusitionskiasse nach 4.4.1.2 (3)	Keine		ы ы	a
Verschliebklasse Hach 4.4.1.2 (13)				
Herstellungsart nach 4.4.1.3 (4)	Ortbeton	•	[•]	
Nenndurchmesser des Größtkorns größer als 32mm nach 4.4	.1.2 (3) Tabelle 4.2			
Maximaler Bügeldurchmesser	dea :	8.0	[mm]	
			[11111]	
Mindestbetondeckung aus				
Verbundanforderungen nach 4.4.1.2 (3)	Crnin.b.:	20.0	քատյ	
Dauerhafigkeitsanforderungen nach 4.4.1.2 (5)	Cmin,dur:	10.0	[mm]	
Aditives Sicherheitselement nach 4.4.1.2 (6)	∆C dur, v :	0.0	 [mm]	
Verringerung der Mindestbetondeckung				
auf Grund Verwendung rostfreien Stahls nach 4.4.1.2 (7)	∆C dur,st :	0.0 🔺	[mm]	
📄 auf Grund zusätzlicher Schutzmaßnahmen nach 4.4.1.2 (8)	∆C dur,add :	0.0	[mm]	
Mindestbetondeckung nach 4.4.1.2 (2)	Cmin :	20.0	[mm]	
Benutzerdefiniertes Vorhaltemaß nach 4.4.1.3	∆C dev :	10.0 🔹	[mm]	0
Nennmaß der Betondeckung für Längsbewehrung nach 4.4.1.1	Cnom,längs,y :	38.0	[mm]	
		ОК	Abh	rechen

Bild 3.60: Dialog Betondeckung nach Norm

Mit [OK] werden die ermittelten Betondeckungen für die Bemessung übernommen.

In einem separaten Eingabefeld im Register *Bewehrungsanordnung* ist anzugeben, welcher Stabdurchmesser zur Vorbemessung angenommen werden soll. Damit wird die Lage der Bewehrungsschwerpunkte bestimmt.

Der Abschnitt *Einstellungen* steuert, welche Schnittgrößen bei der Bemessung berücksichtigt werden. Das Deaktivieren einer Komponente sollte nur in Ausnahmefällen erfolgen!

3.3.4.5 "Norm"

Im Registerreiter-Titel wird die Norm angezeigt, die in Maske 1.1 Basisangaben eingestellt ist.

EN 1992-1-1

Längsbewehrung	Bügel	Konstruktive Be	ewehrung	Bewehru	ngsanordnung	EN 1992-1-1	Brandschutz	
Längsbewehrung					Faktoren			
Minimaler Läng	sbewehn	ungsgrad gemäß	Norm		Teilsicherheits (NA Parameter	beiwerte für Ma r)	terialien nach 2.4	4.2.4
Maximaler Läng	jsbewehr	ungsgrad gemäß	Norm				Ständig und vorübergehend	Außergewöhnl.
					- für Beton	γc:	1.50 🜲	1.20 🜩
Benutzerdefinie	rte minim	ale und maximale	e Langsbev	vehrung	- für Bewehrun	lg γs:	1.15 ≑	1.00 ≑
Bewehrungsgr min ρs : max ρs : Bewehrungsflä min As :	ad 0.00 4.00 che 0.00	 ★ [%] ★ [%] ★ [cm²] 	[&]		Abminderungsi Langzeitauswi (NA Parameter - für Druck - für Zug	faktor zur Berüc rkungen auf die) α _{cc} : α _{ct} :	ksichtigung der Druckfestigkeit Ständig und vorübergehend 1.00 ÷	nach 3.1.6 Außergewöhnl. 1.00 🗢
					Schubbewehr	ung		
					Bemessungsve	erfahren nach (5.2.3	
					Neigung der B (NAD-Paramet	etonstrebe er)		
					- Minimum:	21.8	≑ [*]	
					- Maximum:	45.0	÷ [*]	
								60
								U§.

Bild 3.61: Register EN 1992-1-1

Der Abschnitt *Längsbewehrung* steuert, ob die maximalen und minimalen Bewehrungsgrade der Norm verwendet werden. Alternativ kann ein benutzerdefinierter Höchst- oder Mindestbewehrungsgrad angegeben werden.

Die Mindestbewehrung ist in EN 1992-1-1, Abs. 9.5.2 (2) als nationaler Parameter geregelt.

Der empfohlene Wert ist

 $A_{s,min} = max (0,10 \cdot N_{Ed} / f_{yd}; 0,002 \cdot A_c)$

Die Maximalbewehrung ist in EN 1992-1-1, Abs. 9.5.2 (3) als nationaler Parameter geregelt.

Der empfohlene Wert ist

 $A_{s,max} = 0,04 \cdot A_c$ (außerhalb von Stoßbereichen)

 $A_{s,max} = 0.08 \cdot A_c$ (im Bereich von Stößen)

Im Abschnitt *Faktoren* können die Teilsicherheitsbeiwerte γ für Stahl und Beton sowie der Abminderungsbeiwert α für Druck und Zug eingegeben werden.

Der Abschnitt *Schubbewehrung* verwaltet die Unter- und Obergrenzen des Druckstrebenwinkels. Das Modul ermittelt die Schnittmenge aus diesem benutzerdefinierten Bereich und dem Bereich, der sich nach EN 1992-1-1 ergibt. Sollte die benutzerdefinierte minimale Druckstrebenneigung jedoch größer sein als die maximale Druckstrebenneigung nach Norm, wird eine Unbemessbarkeit ausgegeben.

DIN EN 1992-1-1

Längsbewehrung Bügel Konstruktive Bewehrung	Bewehrungsanordnung DIN EN 1992-1-1 Brandschutz
Längsbewehrung	Faktoren
Minimaler Längsbewehrungsgrad gemäß Norm	Teilsicherheitsbeiwert für Materialien nach 2.4.2.4 (NA Parameter)
Für Brückenbau	Ständig und Außergewöhnl. vorübergehend
Maximaler Längsbewehrungsgrad gemäß Norm	- für Beton γc: 1.50 😴 1.30 荣
	- für Bewehrung γs: 1.15 🜩 1.00 🜩
Benutzerdefinierte minimale und maximale Längsbewehrung Bewehrungsgrad	Abminderungsfaktor zur Berücksichtigung der Langzeitauswirkungen auf die Druckfestigkeit nach 3.1.6 (NA Parameter)
max ρ _s : 9.00 ↓ [%]	Ständig und Außergewöhnl. vorübergehend
	- für Druck α _{cc} : 0.85 🜩 0.85 🜩
Bewehrungsfläche	- für Zug α _{ct} : 0.85 🖨 0.85 🖨
min A _s : 0.00 숮 [cm ²]	- für Verbund αct : 1.00 🖨 1.00 🖨
Diverses	Schubbewehrung
Ansatz der Mindestexzentrizität nach 6.1 (4)	Bemessungsverfahren nach 6.2.3
	Neigung der Betonstrebe
	(NAD-Parameter)
	- Minimum: 18.4 🚔 [°]
	- Maximum: 45.0 🔷 [*]

Bild 3.62: Register DIN EN 1992-1-1

Der Abschnitt *Bewehrungsgrad* steuert, ob die maximalen und minimalen Bewehrungsgrade der Norm [1] verwendet werden sollen. Alternativ kann ein benutzerdefinierter Höchst- oder Mindestbewehrungsgrad angegeben werden.

DIN EN 1992-1-1 schreibt für die Stütze folgende Mindestbewehrung vor:

 $A_{s,min} = 0,15 \cdot N_{ed} / f_{yd}$

^r f_{yd} 9.5.2 (2)

Die Maximalbewehrung darf auch im Bereich von Stößen nicht größer sein als:

 $A_{s,max} = 0,09 \cdot A_c$ 9.5.2 (3)

Im Abschnitt *Diverses* kann festgelegt werden, ob die in DIN EN 1992-1-1 Abs. 6.1 (4) beschriebene Mindestausmitte bei der Bemessung angesetzt werden soll:

 $e_0 = h / 30 \ge 30 \text{ mm}$ (mit h : Querschnittshöhe)

Im Abschnitt *Beiwerte* können die Teilsicherheitsbeiwerte γ für Stahl und Beton sowie der Abminderungsbeiwert α für Druck, Zug und Verbund eingegeben werden.

Der Abschnitt Schubbewehrung verwaltet die Unter- und Obergrenzen des Druckstrebenwinkels. Das Modul ermittelt die Schnittmenge aus diesem benutzerdefinierten Bereich und dem Bereich, der sich nach dem Nationalen Anhang ergibt. Sollte die benutzerdefinierte minimale Druckstrebenneigung jedoch größer sein als die maximale Druckstrebenneigung nach Nationalem Anhang, wird eine Unbemessbarkeit ausgegeben.

3.3.4.6 Brandschutz

EN 1992-1-2 [2]

OG.

Das letzte Register der Maske ist verfügbar, wenn in Maske 1.1 Basisangaben eine Eingabe für die Heißbemessung getätigt wurde (siehe Bild 3.10, Seite 69). Hier erfolgen die brandschutzspezifischen Bemessungsvorgaben.

Im unteren Bereich des Registers steht die Schaltfläche [Standard] zur Verfügung, mit der die Ausgangswerte wiederhergestellt werden können. Die Brandschutzbemessung erfolgt nach dem vereinfachten Rechenverfahren gemäß EN 1992-1-2, Abs. 4.2 (siehe Kapitel 2.5, Seite 36).

A1	 1.4 Bewehrung 		
ingabedaten — Basisangaben Materialien Querschnitte Bewehrung L-1 — Parameter - stabweise	Bewehrungssatz Nr.: Bezeichnung: Image: Second Se	Angewendet auf Stäbe: 6 Stabesätze: Stabesätze: anordnung EN 1992-1-1 Brandschutz Materialfaktoren für Brandsel Teilsicherheitsbeiwerte nach 2.3(2) [NA-Parameter] für Beton: Yo.fi: 1.00 🐡 für Beton: Yo.fi: 1.00 🐡 für Bevehrung: Ys.fi: 1.00 🐡 Abminderungsfaktur zur Berücksichtigung der Langzeiteinwirkungen 1.00 🐡 für Druck: beanspruchung αco.fi: 1.00 🐡 wärmedehrung des Betons und des Bewehrungsstahls berücksichtigen Wärmedehrung des Betons und des Bewehrungstahls berücksichtigen Nachweis berücksichtigen Querkraftnachweis 1.00 🐡	
		E	

Bild 3.63: Register Brandschutz

Daten für Brandschutznachweis

Fünf Listen regeln die Parameter, die den Brandschutznachweis entscheidend beeinflussen:

- Brandschutzklasse (Feuerwiderstandklasse gemäß EN 1992-1-2, 1.6.1 (1))
- Anzahl der Zonen (Zonenmethode gemäß EN 1992-12, Anhang B.2)
- Typ des Betonzuschlags (siehe Bild 2.38, Seite 37 und Bild 2.40, Seite 39)
- Klassifizierung der Bewehrung (siehe Bild 2.43, Seite 41)
- Produktionstyp des Betonstahls (siehe Bild 2.44, Seite 42)

Die Bedeutung dieser Parameter ist im Kapitel 2.5 ab Seite 36 beschrieben.

In diesem Abschnitt sind auch die dem *Brand ausgesetzten Querschnittsseiten* festzulegen. Falls nicht *Alle Seiten* einem Abbrand unterliegen, ist das entsprechende Kontrollfeld zu deaktivieren. Damit werden die Kontrollfelder um das Querschnittssymbol zugänglich, die gezielte Vorgaben ermöglichen. Die Richtungen beziehen sich auf die lokalen Stabachsen.

Materialfaktoren für Brandfall

Die beiden oberen Eingabefelder legen jeweils den *Teilsicherheitsbeiwert* für Beton γ_c und für Betonstahl γ_s fest, der für den Brandschutznachweis Verwendung findet. Es sind die in EN 1992-1-2, Abs. 2.3 (2) empfohlenen Werte voreingestellt.

Der Abminderungsfaktor α zur Berücksichtigung von Langzeitauswirkungen auf die Betonfestigkeit im Brandfall kann getrennt für Druck- und Zugbeanspruchungen angegeben werden. In beiden Feldern sind die in EN 1992-1-1, Abs. 3.1.6 empfohlenen Werte mit 1,0 voreingestellt.

Die Option Wärmedehnung des Betons und des Bewehrungsstahls berücksichtigen ermöglicht es, die Differenz zwischen der Dehnung der "heißen" Bewehrung und der regulären Wärmedehnung des Betonquerschnitts in Form einer Vorstauchung des Bewehrungsstabes zu erfassen: Bei Temperaturbelastung stellen sich thermische Längsdehnungen im Beton und Bewehrungsstahl ein, die aufgrund der unterschiedlichen Temperaturverteilung im Querschnitt differieren. Die Wärmedehnungen können sich nicht überall im Querschnitt frei einstellen, da diese durch die benachbarten Bereiche beeinflusst werden. In der Regel darf von einem Ebenbleiben der Querschnitte ausgegangen werden. Da die Wärmeausdehnung der Bewehrung im Randbereich des Querschnitts behindert ist, erfährt diese eine Vorstauchung. Das Zonenverfahren nach [2] setzt nur eine Bauteilberechnung um, d. h. die thermischen Zusatzdehnungen im Schwerpunkt sind in der Norm nicht berücksichtigt. Nach HOSSER [5] jedoch dürfen für Berechnungen nach Theorie II. Ordnung diese thermischen Wärmedehnungen nicht vernachlässigt werden. Die Wärmedehnung des Betons wird dabei mit dem Mittelwert der Temperatur über den gesamten Betonquerschnitt berechnet.

Nachweis berücksichtigen

Der Anhang D zu EN 1992-1-2 beinhaltet eine Berechnungsmethode für den Querkraftnachweis brandbeanspruchter Bauteile. Diese Berechnungsmethode ist im Modul RF-/BETON Stützen implementiert und kann separat aktiviert werden.

Da in Deutschland diese Berechnungsmethode für den Schubnachweis nicht zugelassen ist, ist die Auswahlmöglichkeit für den Nachweis nach deutschem Nationalen Anhang inaktiv.

RF-BETON Stützen - [Beispiel 10 - Randstütze (Gesamtsystem)] Datei Einstellungen Hilfe 1.5 Stützenparameter - stabweise FA1 B C D E Achr F G H Т J Knicken u K LM Ν Eingabedaten Länge Kr Länge Knicken um Achse y Knicken I [m] Möglich Verschieb. Auto βy [-] Ιο,y [m] λy [-] Möglich Verschieb. Auto ĸ Stab Nr. Basisangahen βz [-] | l_{0,z} [m] | λ_z [-] tar Materia V V 1.000 3.000 20.8 V 1.000 3.000 Querschnitte 3.000 Bewehrung Parameter - stabweis Konstruktionstyp: () Monolitisch 16 7 💿 🖍 Aus Fertigteiler Einstellungen für Stab Nr. 1 Rechteck 300/500 Querschnitt 1 - Rechteck 300/500 Allgemeine Eigenschaften um die y-Achse Knicken möglich Knicken, ☑ System verschieblich Verschieb Stützenlänge 3.000 ly 🖃 um die z-Achse Knicken möglich Knicken,z V System verschieblich Verschieb,z Stützenlänge 3.000 l_z ⊞ Knicklänge E Schlankheit Belastungsverteilung E Stützenabschluss Belastung definiere ientar [mm] Eingaben zuordnen Stäben Nr.: 🐴 🗌 <u>A</u>lle A 🎽 🚰 🕰 ۵ 🗗 🔍 Berechnung <u>N</u>achweis Grafik OK Abbrechen

3.3.5 Maske 1.5 Stützenparameter - stabweise

Bild 3.64: Maske 1.5 Stützenparameter - stabweise

Diese Maske ist für Eingaben vorgesehen, die speziell das Verfahren mit Nennkrümmung betreffen. Es existieren zwei Varianten der Maske – je nachdem, ob Stäbe oder Stabsätze für die Bemessung vorgesehen sind. Die Überschrift ist entsprechend angepasst.

In der oberen Tabelle sind die in Maske *1.1 Basisangaben* selektierten Stäbe bzw. Stabsätze aufgelistet. Zur Information wird in Spalte A die Länge des betrachteten Stabes bzw. Stabsatzes angegeben. Die Spalten B bis J enthalten diverse Kontroll- und Eingabefelder zur Erfassung der detaillierten Stützenparameter.

-												*			
		A	B	С	D	E	F	G	H		J	K	L	M	N
	Stab	Länge		Kn	icken	um Achse y				Kn	iicken	um Achse z			Kommen-
	Nr.	l [m]	Möglich	Verschieb.	Auto	βy[-]	10,y [m]	λy[-]	Möglich	Verschieb.	Auto	βz [-]	10,z [m]	λ _z [·]	tar
	1	3.000	V		2	1.000	3.000	20.8	V		2	1.000	3.000	34.6	
	2	3.000			✓	-	-	-			\checkmark	-	-	-	

Bild 3.65: Obere Tabelle der Maske 1.5 Stützenparameter - stabweise

In der oberen Tabelle werden nur die Grundeinstellungen getätigt. Weitere Eingaben, die sich aus dieser Grundeinstellung ergeben, sind in der *Einstellungen*-Tabelle unterhalb vorzunehmen.

Die Einstellmöglichkeiten der beiden Tabellen sind synchronisiert. Im Folgenden werden daher nur die Eingabemöglichkeiten der *Einstellungen*-Tabelle beschrieben, die die Systemparameter betreffen. Sie entsprechenden den Einträgen der Spalten B bis J in der oberen Tabelle.

	A	В	С	D	E	F	G	H		J	K	L	M	N
Stab	Länge		Kn	icken	um Achse y				Kn	icken	um Achse z			Kommen-
Nr.	l [m]	Möglich	Verschieb.	Auto	βy[-]	10,y [m]	λy [·]	Möglich	Verschieb.	Auto	βz [-]	10,z [m]	λ _z [-]	tar
6	6.200		V		2.100	13.020	100.2				-	-	-	

Bild 3.66: Allgemeine Eigenschaften

Es ist getrennt für die y-Achse und z-Achse festzulegen, ob eine Knickgefährdung der Stütze oder eine Verschieblichkeit des Systems vorliegt. Als Systemlänge der Stütze wird bei Stäben der Abstand von Anfangs- und Endknoten angenommen. Bei Stabzügen ist dies der Abstand zwischen dem Anfangsknoten des ersten Stabes und dem Endknoten des letzten Stabes im Stabzug. Die Systemlänge kann jedoch nach Belieben abgeändert werden.

Damit sind die Eingabemöglichkeiten abgeschlossen, die in der unteren Tabelle unter dem Eintrag *Allgemeine Eigenschaften* verwaltet werden.

In diesem Zusammenhang soll kurz das Prinzip der Informationsverdichtung erläutert werden, nach dem viele Tabellen im Programm aufgebaut sind: Am Zeilenanfang finden Sie bei Zeilen, die auf einer untergeordneten Ebene weitere Zeilen enthalten, ein Kästen. Dieses Kästchen enthält entweder ein [-] oder ein [+]. Wenn Sie das Minus mit der linken Maustaste anklicken, können Sie Zeilen aller tieferen Ebenen ausblenden. Ein Plus hingegen bedeutet, dass sich unter dieser Zeile eine oder mehrere Ebenen mit weiteren Zeilen befinden. Diese werden durch einen Klick auf das Plus sichtbar.

Schließt man nun in der unteren Tabelle wie beschrieben den Eintrag *Allgemeine Eigenschaften*, so rückt der nächste Eintrag **Ersatzlänge** in den Fokus.

Zur Eingabe des Knicklängenbeiwerts β ist es möglich, einen Dialog mit Euler-Fällen zu nutzen (siehe folgendes Bild). Dort kann der geeignete Fall ausgewählt und in die Tabelle übernommen werden. Bei Stäben ist es auch möglich, den Knicklängenbeiwert zu übernehmen, der mit dem Zusatzmodul RF-STABIL bzw. RSKNICK ermittelt wurde.

3 Arbeit mit RF-/BETON Stützen

4 Diubal

Jatei Einstellungen Hilfe															
FA1 - Stabilitätsanalyse	▼ 2.2 K	nicklä	ngen un	d kritiscł	ne Lasten										
Fingabedaten			A	B	С	D	E	1	F		G	H		1	at 600 600 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Basisangaben	Sta	ab	Knoten	Nr.	Stablänge	E-Figur	K	nicklän	ge [m]	Kn	icklänge	enbeiwert [-]	Kritiso	che Last	
Eraebnisse	Nr	r. Au	nfang	Ende	L [m]	Nr.	Lor,	y	Lor,z	k	cr.y	k or,z	No	r [kN]	
Verzweigungslastfaktoren	1		1	2	8.000	1	15	5.954	15.95	54	1.994	1.994	4	2481.600)
 Knicklängen und kritische La 	asten					2	15	5.954	15.95	54	1.994	1.994	l :	2481.600)
Eigenformen knotenweise			2												
Eigenformen stabweise						2									
F-BETON Stützen - [Schlanke	_Stutze]														×
Datei Einstellungen Hilfe															
FA1	 1.5 Stütz 	zenpara	ameter -	stabwei	se										
Eingabedaten	_	A	B	C	D	E	F	G	H		J	K	L	M	N
Basisangaben	Stab	Länge			Knicken um	Achse y				1	Knicken	um Achse z			Kommen-
- Materialien	INF.	1 (m)	Moglich	Verschie	b. Auto	βy[·]	10.y [m]	λy[·]	Moglich \	/erschiet	o. Auto	βz[·]	10,z [m]	λz [-]	tar
Querschnitte		8.000	×	×	U	2.000	16.000	138.6	×	×	U.	1.994 🗄	15.952	138.1	
Bewehrung						·									
L-1										/					
Parameter - stabweise			· ,	C C						DE					
			(Knickl	ängenbeiw	ert wähle	en			■ / Ki	nicklän	genbeiwert	wählen		— ×
				. Kalat						חוור	Weisland				
				Knick	en um y-Ac	nse					Knicken	um z-Achse			
) 🔘 E	ingespannt	- Frei	l len				C Eing	espannt - Fre	ei		
				E	y = 2.0		T _v				βz=	= <u>2</u> .0		T _z	
				00	elenkia - Ge	lenkia					C Gele	nkia - Gelenki	ia		
				ß	y = 1.0		Ť.		······ <u>A</u>		βz =	= <u>1</u> .0	-	Ť	······
				0-	incompany	Colordia					O Firm	consent of	lookia		
				G	v = 0.7	- Gelerikig		******	<u>R</u>		B ₇ =	espannit - Ge = 0.7	enkig		·····
					· · · ·		'Y					-		*z	
				© E	ingespannt	-	- P	*******			C Eing	espannt -			
				E	ingespannt	$\beta \gamma = 0.5$	- y				Eing	espannt β _z =	= 0. <u>5</u>	z	
								ortiona	-		A	Zuestanodul	DE CTA	TI import	laran
				Ő	ius zusatzm Eigenwert-A	nalvse)	ADIL IMP	oruere	"		(Eio	enwert-Analy	se)	orr impor	ueren
											0	,	/		
				E	RF-STABIL-F	all;					RF-	STABIL-Fall:			
					FA1 - Stabi	itätsanaly	se		-		FA	1 - Stabilitäts	analyse		•
				k P	(nickfigur dr.:	1 *	\$				Knic Nr.:	kfigur 1		3	

Bild 3.67: Knicklängenbeiwert wählen

Die Ersatzlänge kann auch direkt angegeben werden. Hierzu ist entweder das Verhältnis β für jede der Stabachsen y und z zu definieren. Das Programm errechnet daraus die Ersatzlänge.

Querschnitt		1 - Rechteck	300/500
∃ Allgemeine Eigenschaften			
- Ersatzlänge			
🖃 um die y-Achse			
Knicklängenemittlung automatisch	Ermit-β		
 Definiertes Knicklängenbeiwert 	βγ	1.000	
Ersatzlänge	10.y	3.000	m
🖃 um die z-Achse			
Knicklängenermittlung automatisch	Ermit-β		
Definiertes Knicklängenbeiwert	βz	1.000	
Ersatzlänge	10.z	3.000	m

Bild 3.68: Verhältnis β definieren

Alternativ kann das Verhältnis β durch das Programm bestimmt werden, indem das Kontrollfeld in der Zeile *Knicklängenermittlung automatisch* aktiviert wird.

Querschnitt		1 - Rechteck	300/500
Algemeine Eigenschaften			
Ersatzlänge			
🖃 um die y-Achse			
Knicklängenermittlung automatisch	Ermit-β	Image: Second	
⊕ k _A - Steifigkeit in Einspannung			
⊕ k B - Steifigkeit in Einspannung			
Emittelter Knicklängenbeiwert	βγ	1.000	
Ersatzlänge	10.y	3.000	m
🖃 um die z-Achse			
Knicklängenemittlung automatisch	Ermit-β	Image: Second	
- ⊞ k A - Steifigkeit in Einspannung			
Emittelter Knicklängenbeiwert	βz	1.000	
Ersatzlänge	10.z	3.000	m

Bild 3.69: Verhältnis $\boldsymbol{\beta}$ automatisch ermitteln

Beispiel: Ermittlung des Knicklängenbeiwerts β

Bild 3.70: Stützenmodell

Untersucht wird die Stütze "S1". In der obigen Abbildung ist das yz-Stabachsensystem dargestellt. Im System werden nur Rechteckquerschnitte 30/40 cm verwendet.

Bild 3.71: Gerenderte Darstellung der Stütze

In Maske 1.5 Stützenparameter werden bei den Einstellungen folgende Angaben zum System getroffen:

Allgemeine Eigenschaften			
🖃 um die y-Achse			
 Knicken möglich 	Knicken,y	V	
 System verschieblich 	Verschieb,y		
Stützenlänge	ly	3.000	m
🖃 um die z-Achse			
 Knicken möglich 	Knicken,z	V	
 System verschieblich 	Verschieb,z		
Stützenlänge	I _z	3.000	m

Bild 3.72: Allgemeine Eigenschaften des Systems

Für die Ermittlung der Knicklänge *um die y-Achse* wird das Kontrollfeld *Ermit-* β aktiviert.

		_
E	Knicklänge	2
-		

🖃 um die y-Achse			
Knicklängenemittlung automatisch	Ermit-β	\checkmark	

Bild 3.73: Knicklängenermittlung automatisch

Bei den nun erscheinenden Einträgen k_A und k_B können Angaben zu den am Stützenanfang und -ende anschließenden Balken und Stützen getätigt werden. Die Objekte lassen sich in den jeweiligen Untereinträgen festgelegen.

Knicklänge			
🖃 um die y-Achse			
Knicklängenemittlung automatisch	Ermit-β	V	
□ k _A - Steifigkeit in Einspannung			
Wert manuell eingeben			
 Anschließende Stütze 		Image: Second	
⊟ Stütze			
Definieren	Def-Stab		
- Stab	Nr.		
Stützenlänge	lool	0.000	m
 Trägheitsmoment 	ly	0.0	mm ⁴
E-Modul	E	0.00	N/mm ²
Anzahl der Stäbe		0	
Steifigkeit in Einspannung	k	00	

Bild 3.74: Eingabe für Stützenanfang k_A

Klickt man beispielsweise in die Zelle der Stützen-Stabnummer, erscheint eine Schaltfläche mit drei Punkten [...]. Diese ermöglicht den Wechsel in das Arbeitsfenster von RFEM bzw. RSTAB, um den entsprechenden Stab auszuwählen. Systemlänge, Trägheitsmoment und E-Modul werden dann automatisch in die anschließenden Zeilen übernommen.

Die anschließenden Stäbe werden wie folgt zugeordnet:

Knicklange			
🗇 um die y-Achse			-
 Knicklängenermittlung automatisch 	Ermit-β		
🕞 k 🗛 - Steifigkeit in Einspannung			
 Wert manuell eingeben 			
Anschließende Stütze			
Anzahl der Stäbe		0	
Steifigkeit in Einspannung	k A	0.100	
🕞 k 🛛 - Steifigkeit in Einspannung			
Wert manuell eingeben			
Anschließende Stütze		V	
⊟ Stütze			
Definieren	Def-Stab		
— Stab	Nr.	2	
Stützenlänge	lool	1.500	m
Trägheitsmoment	ly	160000.0	cm ⁴
Elastizitätsmodul	E	33000.00	N/mm ²
Anzahl der Stäbe		2	
– 🖂 1. Balken			
Definieren	Def-Stab		
- Stab	Nr.	3	
Trägerlänge	l _b	3.000	m
Trägheitsmoment	ly	160000.0	cm ⁴
Elastizitätsmodul	E	33000.00	N/mm ²
Benutzerdefinierter Beiwert der Einspannung	def.α		
Beiwert Einspannung	α	Gelenkig	
- □ 2. Balken			
Definieren	Def-Stab		
- Stab	Nr.	4	
- Trägerlänge	lb	2.000	m
Trägheitsmoment	ly	160000.0	cm ⁴
Elastizitätsmodul	E	33000.00	N/mm ²
Benutzerdefinierter Beiwert der Einspannung	def.α		
Beiwert Einspannung	α	Fest	
Steifigkeit in Einspannung	k	0.333	
Ermittelter Knicklängenbeiwert	βy	0.649	
Ersatzlänge	10.y	1.947	m

Bild 3.75: Automatische Ermittlung der Knicklänge

Diese Angaben entsprechen den Eigenschaften der im System vorhandenen Stäbe.

Bild 3.76: System für Knicken um die y-Achse

Damit kann der bezogene Einspanngrad *k* durch das Programm ermittelt werden. Dieser Wert wird durch eine Handrechnung überprüft:

$$k_{1} = \frac{\sum E_{cm} \cdot I_{col} / I_{col}}{\sum E_{cm} \cdot \alpha \cdot I_{b} / I_{b}} = \frac{E_{cm} \cdot I_{S1} / I_{col,S1} + E_{cm} \cdot I_{S2} / I_{col,S2}}{E_{cm} \cdot \alpha_{1} \cdot I_{B1-z} / I_{B1-z} + E_{cm} \cdot \alpha_{2} \cdot I_{B2-z} / I_{B2-z}} =$$

$$=\frac{32000 \cdot 90000 / 3 + 32000 \cdot 90000 / 1,5}{32000 \cdot 4 \cdot 90000 / 2 + 32000 \cdot 3 \cdot 90000 / 3} = 0,\overline{33}$$

mit

 $\alpha_2 = 3$ abliegendes Ende frei drehbar gelagert

Am Auflager der Stütze S1 liegt keine Einspannung vor. Im Programm wird wie im Bild 3.75 dargestellt der Beiwert $k_A = 0,1$ verwendet, da eine starre Einspannung in der Realität kaum zu erreichen ist.

Folgende Abbildung zeigt den Knicklängenbeiwert β_y = 0,649, den das Programm aus den Werten k_A = 0,33 und k_B = 0,1 ermittelt:

Knicklänge			
- ⊟ um die y-Achse			
Knicklängenemittlung automatisch	Emit-β	V	
—			
→ k B - Steifigkeit in Einspannung			
Emittelter Knicklängenbeiwert	βγ	0.649	
Ersatzlänge	10,y	1.947	m

Bild 3.77: Knicklängenbeiwert β_y

Dies wird anhand des Nomogramms für unverschiebliche Systeme überprüft.

3 Arbeit mit RF-/BETON Stützen

Bild 3.78: Grafische Ermittlung von β_y

$$I_{col,v} = 3 \text{ m}$$

 $I_{0,y} = I_{col,y} \cdot \beta_y = 3 \cdot 0,65 = 1,95 \, \text{m}$

Alternativ kann β bzw. l₀ nach DIN EN 1992-1-1, Gleichung (5.15) berechnet werden:

$$I_{0} = 0.5I \cdot \sqrt{\left(1 + \frac{k_{1}}{0.45 + k_{1}}\right) \cdot \left(1 + \frac{k_{2}}{0.45 + k_{2}}\right)} = 0.5 \cdot 3 \cdot \sqrt{\left(1 + \frac{0.33}{0.45 + 0.33}\right) \cdot \left(1 + \frac{0.1}{0.45 + 0.11}\right)} = 1.95m$$

Die Ersatzlänge $I_{0,z}$ für das Knicken um die z-Achse wird analog ermittelt.

icklänge			
um die y-Achse			
um die z-Achse			
Knicklängenermittlung automatisch	Ermit-β	V	
🗆 k A - Steifigkeit in Einspannung			
Wert manuell eingeben			
Anschließende Stütze			
Anzahl der Stäbe		0	
Steifigkeit in Einspannung	k _A	0.100	
🗆 k 🛚 - Steifigkeit in Einspannung			
Wert manuell eingeben			
 Anschließende Stütze 		V	
⊟ Stütze			
Definieren	Def-Stab		
- Stab	Nr.	2	
- Stützenlänge	lool	1.500	m
 Trägheitsmoment 	Iz	90000.0	cm ⁴
Elastizitätsmodul	E	33000.00	N/mm ²
Anzahl der Stäbe		2	
1. Balken			
- Definieren	Def-Stab		
- Stab	Nr.	9	
- Trägerlänge	lb	5.000	m
- Trägheitsmoment	ly	160000.0	cm ⁴
- Elastizitätsmodul	E	33000.00	N/mm ²
Benutzerdefinierter Beiwert der Einspannung	def.α		
Beiwert Einspannung	α	Fest	
□ 2. Balken			
- Definieren	Def-Stab		
— Stab	Nr.	10	
- Trägerlänge	lb	1.000	m
- Trägheitsmoment	ly	160000.0	cm ⁴
Elastizitätsmodul	Ē	33000.00	N/mm ²
Benutzerdefinierter Beiwert der Einspannung	def.α		
Beiwert Einspannung	α	Frei	
Steifigkeit in Einspannung	k	0.469	
Emittelter Knicklängenbeiwert	βz	1.440	
Ersatzlänge	07	4,320	m

Bild 3.79: Ermittlung der Ersatzlänge I_{0,z}

Als Nächstes wird beschrieben, wie das Gesamtsystem bei der Auswahl der Stützen und Balken an einem Knoten der betrachteten Stütze berücksichtigt wird. Für jeden Stab vom Materialtyp "Beton", der vertikal verläuft, werden die Knotensteifigkeiten in die Achsrichtung y und z des lokalen Stabsystems der Stütze berechnet. Die Auflager oder anschließenden Stäbe werden automatisch erkannt, wenn sie dieselbe Richtung haben wie die Achsen des lokalen Stabkoordinatensystems. Weitere Bedingungen können dem Programmablaufplan entnommen werden.

Teil 1:

Hauptstruktur zur Ermittlung der Endknotensteifigkeiten

/ `` Dlubal

Teil 2:

Analyse der anschließenden Stützen

´ | ` ` Dlubal

Teil 3:

Analyse der anschließenden Balken

In nächsten zwei Tabellen ist ersichtlich, wie die Auflager hinsichtlich Lagerungsart eingeteilt werden. Diese Einteilung ist für das Modellstützenverfahren erforderlich.

Tabelle 1: Auflagereigenschaften zur Bestimmung von kA bzw. kB

Auflager	Fest in z-Achse	Fest in y-Achse	Fest in y- und z-Achse	Gelenk in z-Achse	Gelenk in y-Achse	Gelenk in y- und z-Achse
u _x	beliebig	beliebig	beliebig	beliebig	beliebig	beliebig
uy	beliebig	beliebig	beliebig	beliebig	beliebig	beliebig
Uz	beliebig	beliebig	beliebig	beliebig	beliebig	beliebig
ϕ_x	beliebig	х	x	beliebig	0	0
φ _y	х	beliebig	х	0	beliebig	0
φz	beliebig	beliebig	beliebig	beliebig	beliebig	beliebig
κ_{A} bzw. κ_{B}	0,4	0,4	0,4	∞	∞	∞

x = starr oder durch Feder gelagert

o = nicht gelagert

Tabelle 2: Auflagereigenschaften zur Bestimmung von α

Auflager	Fest in z-Achse	Fest in y-Achse	Fest in y- und z-Achse	Gelenk in z-Achse	Gelenk in y-Achse	Gelenk in y- und z-Achse	Frei
u _x	beliebig	beliebig	beliebig	beliebig	beliebig	beliebig	beliebig
Uy	beliebig	beliebig	beliebig	beliebig	beliebig	beliebig	beliebig
Uz	х	х	х	х	х	х	0
ϕ_{x}	beliebig	х	х	beliebig	0	0	beliebig
φ	х	beliebig	х	0	beliebig	0	beliebig
φz	beliebig	beliebig	beliebig	beliebig	beliebig	beliebig	beliebig
α	1,0	1,0	1,0	0,5	0,5	0,5	0

x = starr oder durch Feder gelagert

o = nicht gelagert

Es kann der Fall eintreten, dass für einige Stützen nicht automatisch die Knicklänge ermittelt werden kann. Dies sind Stützen, die entweder nicht aus Beton sind oder ein freies Ende ohne anschließende Konstruktion oder Auflager haben.

Wenn an das Stützenende mehrere Stäbe anschließen, dann sucht das Programm unter den anschließenden Stäben immer den Stab mit dem kleinsten Elastizitätsmodul und dem kleinsten Trägheitsmoment heraus, um auf der sicheren Seite zu sein.

Ob eine Stütze zu einem verschieblichen oder unverschieblichen System gehört, muss der Benutzer selbst entscheiden. Die Voreinstellung ist unverschieblich.

Unterhalb der Tabelle, die die Liste von analysierten Stützen enthält, besteht bei Stäben eine Auswahlmöglichkeit zwischen monolithischen und vorfertigten Konstruktionstypen.

Konstruktionstyp: 💿 Monolitisch 🛛 💿 Aus Fertigteilen

Bild 3.80: Konstruktionstypen (nur für Stäbe)

Diese Vorgabe beeinflusst maßgeblich die Steifigkeiten am Endknoten der anschließenden Stäbe. Wenn die *Monolithische* Konstruktion ausgewählt ist, wird die Steifigkeit der Verbindungen auf "fest" eingestellt. Wenn die Konstruktion *Aus Fertigteilen* besteht, wird die Steifigkeit der Verbindungen auf "gelenkig" gesetzt. Deshalb ist es wichtig zu beurteilen, ob alle Gelenke schon in der Konstruktion berücksichtigt und modelliert sind. Bei Systemen aus Fertigteilen liegen die Resultate auf der sicheren Seite.

4 Dlubal

Rechts unterhalb der Tabelle befinden sich mehrere Schaltflächen.

Bild 3.81: Schaltflächen

Die Schaltfläche [Standardwerte] stellt die Voreinstellung her, die dem Konstruktionsmodell in RFEM bzw. RSTAB entspricht.

Die Schaltfläche [Filter] zeigt dem Benutzer alle Stützen an, die noch definiert werden müssen. Sie werden rot dargestellt. Die nicht vollständig eingestellten Steifigkeiten können unten im Abschnitt *Einstellungen* manuell angegeben werden.

Die Schaltfläche [Ansichtsmodus] ermöglicht den Wechsel in das Arbeitsfenster von RFEM bzw. RSTAB, um z. B. die Lage einer Stütze zu überprüfen. Mit der Schaltfläche [^K] kann ein Stab zur Definition der Einstellungen grafisch ausgewählt werden.

Die Mindestendknotensteifigkeiten k_A bzw. k_B werden bei automatischer Ermittlung von β nach Empfehlung der Norm auf 0,4 gesetzt. Bei der manuellen Eingabe können auch kleinere Werte als 0,4 eingegeben werden.

Im gleichen Sinn ist der Beiwert β bei verschieblichen Systemen auf 2 und bei unverschieblichen Systemen auf 1 gesetzt. Durch manuelle Eingaben können ebenfalls kleinere Werte eingegeben werden.

Der nächste Eintrag **Schlankheit** zeigt in den untergeordneten Zeilen die für beide Richtungen getrennt ermittelten Schlankheiten λ_y und λ_z an.

] Schlankheit		
🖃 um die y-Achse		
Schlankheit	λγ	76.705
🖃 Grenzschlankheit		
- Faktor Ay bestimmen	Bestm-Ay	Image: Second
Bestimmter Faktor Ay	Faktor-Ay	0.700
Faktor By bestimmen	Bestm-By	
Bestimmter Faktor By	Faktor-By	1.100
Faktor Cy bestimmen	Bestm-Cy	
Bestimmter Faktor Cy	Faktor-Cy	0.700
🖃 um die z-Achse		
Schlankheit	λz	107.387
 Grenzschlankheit 		
Faktor Az bestimmen	Bestm-Az	
Bestimmter Faktor Az	Faktor-Az	0.700
Faktor Bz bestimmen	Bestm-B _z	
Bestimmter Faktor Bz	Faktor-Bz	1.100
Faktor Cz bestimmen	Bestm-C _z	
Bestimmter Faktor Cz	Faktor-Cz	0.700

Bild 3.82: Darstellung der ermittelten Schlankheit

3.4 Details

Details...

Über die Schaltfläche [Details] sind weitere Einstellungen zugänglich, die sich auf die Berechnung auswirken. Diese Schaltfläche steht in allen Eingabemasken zur Verfügung, sofern die Bemessung nach EN 1992-1-1 oder GB 50010 erfolgt.

Details	×		
Zweiachsige Biegung	Krümmung		
Getrennte Bemessung in beiden Hauptachsenrichtungen nach 5.8.9	Faktor Kr nach Norm		
Vereinfachten Nachweis nach Gl. 5.39 verwenden	O Benutzerdefinierter Wert von Kr Kr:		
	O Berechnung von Kr mit		
	Benutzerdefiniertem Wert von nbal		
	nbal : 0.4000 🜩		
	O nbal vom M-N-Interaktionsdiagramm		
	Max. Anzahl der Iterationsschritte: 100 🜩		
	·		
$\langle \mathfrak{D} \rangle$	OK Abbrechen		

Bild 3.83: Dialog Details für EN 1992-1-1

Zweiachsige Biegung

Ein zweiachsig beanspruchter Querschnitt (M_y/M_z) kann nach einem vereinfachten Verfahren separat für beide Hauptachsenrichtungen nach Abschnitt 5.8.9 bemessen werden. In diesem Fall wird überprüft, ob die Bedingungen der Gleichungen (5.38a) und (5.38b) eingehalten sind.

$$\frac{\lambda_y}{\lambda_z} \le 2,0 \text{ und } \frac{\lambda_z}{\lambda_y} \le 2,0$$

$$\text{und}$$

$$\frac{e_y / h_{eq}}{e_z / b_{eq}} \le 0,2 \text{ oder } \frac{e_z / b_{eq}}{e_y / h_{eq}} \le 0,2$$
(5.38b)

Sind diese Voraussetzungen erfüllt, so wird die getrennte Bemessung in Richtung der Hauptachsen jeweils mit der gesamten im Querschnitt angeordneten Bewehrung durchgeführt.

Getrennte Bemessung in beiden Hauptachsenrichtungen nach 5.8.9
Vereinfachten Nachweis nach Gl. 5.39 verwenden

Werden die Bedingungen nach (5.38) nicht erfüllt, so erlaubt die Norm alternativ den Nachweis nach Gleichung (5.39):

$$\left(\frac{M_{Edz}}{M_{Rdz}}\right)^a + \left(\frac{M_{Edy}}{M_{Rdy}}\right)^a \le 1,0$$
(5.39)

Generell gilt: Bei Nichteinhaltung der Bedingungen nach (5.38) bzw. (5.39) wird eine Regelbemessung unter Berücksichtigung der beiden einwirkenden Momente M_y/M_z, durchgeführt.

Krümmung

Krümmung Faktor K_r nach Norm

Die genäherte Ermittlung der Krümmung 1/r ist mit Gleichung (5.34) nach dem Verfahren mit Nennkrümmung durchzuführen (Voreinstellung). Da sich die Verkrümmung des Querschnitts in Abhängigkeit von der eingelegten Bewehrung ändert, ist die Ermittlung von K_r ein iterativer Vorgang, den das Programm automatisch ausführt. Im ersten Schritt ist die Bewehrung noch nicht bekannt. Daher wird K_r auf der sicheren Seite liegend zu 1,0 angenommen. Da die aktuelle Krümmung nie größer sein kann als die Krümmung bei maximaler Momentenbeanspruchung, ist K_r stets kleiner oder gleich 1,0.

Eine Optimierung des Werts K_r und somit die Reduzierung der Verkrümmung ist nur möglich, wenn die bezogene Normalkraft n größer ist als n_{bal} (bezogene Normalkraft bei maximaler Biegetragfähigkeit). Ist die einwirkende bezogene Normalkraft kleiner als n_{bal} (rot markierter Bereich in folgender Grafik), so ergibt sich K_r zu 1,0 und die Iteration wird nach dem ersten Schritt abgebrochen.

Ist die einwirkende bezogene Normalkraft größer als die bezogene Normalkraft bei maximaler Biegetragfähigkeit, so ist eine Optimierung über Iterationen möglich. Gerade bei stark normalkraftbeanspruchten Bauteilen kann hier eine deutliche Reduzierung der Verkrümmung und somit Optimierung der einzulegenden Längsbewehrung erfolgen.

Folgende Grafik veranschaulicht den vereinfachten Ansatz zur Ermittlung der Verkrümmung.

3 Arbeit mit RF-/BETON Stützen

Benutzerdefinierter Wert von Kr

Kr: 1.0000 ≑

Falls ein Ergebnis aus einem anderen Programm oder einer Handrechnung vorliegt, in dem der Wert K_r vereinfacht mit 1,0 angenommen wurde, kann K_r fest auf 1,0 gesetzt werden. Dadurch wird die Iteration deaktiviert. Die Ergebnisse von RF-/BETON Stützen sind dann vergleichbar.

Berechnung von Kr mit			
Benutzerdefiniertem Wert von n bal			
n bal :	0.4000 🚔		

Die modifizierte Berechnung von K_r ermöglicht es, die bezogene Längskraft n_{bal} benutzerdefiniert vorzugeben. Nach Abschnitt 5.8.8.3 (3) darf für n_{bal} der Wert 0,4 verwendet werden. Dieser Wert gilt für Normalbetone (C12/15 bis C50/60) unter Annahme eines zweiseitig-symmetrisch bewehrten Rechteckquerschnitts, dessen d₁/h- Verhältnis im Bereich von 0,05 und 0,20 liegt. Andere Festigkeitsklassen, Querschnittsgeometrien bzw. d₁/h- Verhältnisse zeigen, dass der angegebene Wert für n_{bal} = 0,4 nicht geeignet ist und zu unwirtschaftlichen Ergebnissen führen können. Falls die Querschnittsform, das d₁/h-Verhältnis und/oder die Betonfestigkeitsklasse nicht den Voraussetzungen entspricht, ist es ratsam, die modifizierte Berechnung von K_r zu verwenden und den Wert n_{bal} manuell zu definieren.

Folgende Grafik zeigt eine Konstellation, in der der Normwert $n_{bal} = 0,4$ ungeeignet ist.

3 Arbeit mit RF-/BETON Stützen

) Berechnung von Krmit			
O Benutzerdefiniertem Wert von n bal			
n faef : 0.4000 🔷			
● n bal vom M-N-Interaktionsdiagramm			

6

Die letzte Möglichkeit zur Ermittlung der Krümmung stellt die genaueste Variante dar. Sie ist jedoch nicht in der Norm hinterlegt. In diesem Fall wird keine lineare Interpolation, sondern eine direkte Krümmungsberechnung durchgeführt, welche die "bauchige" Form der Momenten-/Normalkraft-Interaktion berücksichtigt.

Betrachtet man die im Diagramm eingezeichneten Linien, wird klar, dass gerade bei allseitig bewehrten Querschnitten die Vernachlässigung bzw. der in der Norm zugrundegelegte lineare Zusammenhang auf der unsicheren Seite liegt. In der Realität wird sich ein größeres Moment bzw. eine größere Krümmung einstellen.

Der Bereich, der von der Norm nicht abgedeckt wird, ist in der Grafik rot eingefärbt.

3.5 Ergebnismasken

	2.1 Nach	weis Stäbe										
Eingabedaten		A	В	C	D	1			E			
- Basisangaben	Stab	Stelle	Maßgebender	Nach	weis							_
- Materialien	Nr.	x [m]	Lastfall	Ausnutzung	Kriterium			Kommen	tar zum Nachweis			
Querschnitte	1	Querschnitt N	Ir. 7 - Rechteck 24/24		^·····							
Bewehrung		3.740	LK1 - min N	0.7313	≦1	100) Nachv	weis im kritische	en Querschnitt der M	odellstütze nach Abs. 5.8	.8		
-1		3.740	LK1 - min N	0.1745	≤1	202) Querk	raftnachweis (\	/ _{Ed} / V _{Rd,o} ≤ 1) gen	näß 6.2.2(1)			
Parameter - stabweise												
gebnisse	9	Querschnitt N	Ir. 7 - Rechteck 24/24									
Nachweis		3.310	LK1 - min N	0.2031	≤1	100) Nach	weis im kritische	en Querschnitt der M	odellstütze nach Abs. 5.8	.8		
Erfordorlicho Rowohrung		3.310	LK1 - min N	0.1452	≤1	202) Querk	raftnachweis (\	/Ed / VRd,c≦1) gen	naß 6.2.2(1)			
Charachaittewaica												
Stabwaica	18	Querschnitt N	r. 7 - Rechteck 24/24			1000 01 1						
Vorbandene Bewehrung		3.310	LK1 - min N	0.2316	51	100) Nach	weis im kritische	en Querschnitt der M	delistutze nach Abs. 5.8	.8		
Längsbewehrung		0.000	LKT-max My	0.0346	51	201) Querk	raftnachweis (\	/Ed / VRd,c ≤ 1) gem	als 6.2.2(2) mit (6.4)			
Bügelbewehrung	21	O	5 7 Deckerch 24/24									_
Stahlliste	31		Vr. / • Nechteck 24/24									
	Alle L	.astfälle	Ma	x: 0.7479	≤1	۲				5	ج 😫	
	Details -	- Stab Nr. 1 - ebende Belast	x: 3.740 m - LK1						Rechteck 24/24 Beton : Dehnung	L	K1 / Dehnung	ļszu:
	No	malkraft	-		1	V	-136.294	kN	Bewehrung : Dehnun	g		
	Mo	ment um die y-	Achse		1	M _V	5.517	kNm				
	Mo	ment um die z-	Achse		1	Иz	-2.958	kNm		0.2000000		
	🖃 Ersatz	dänge nach 5.	8.3.2									
	🖃 Ers	atzlänge um di	e y-Achse		1	0.y	8.153	m				
		Stützenlänge			1	y .	3.740	m			-•y	
		Knicklängenbei	iwert		ſ	3y	2.1800					
	🖃 Ers	atzlänge um di	e z-Achse		1	0,z	8.153	m				
		Stützenlänge			1	z	3.740	m				
		Knicklängenbei	iwert		1	Bz	2.1800			•		
	🖃 Schla	nkheit nach 5.	8.3.2									
	E Sch	hlankheit um di	e y-Achse		2	y	117.6810		Beton	Max	Min: 2.24 /	-1.8
	- 1	Ersatzlänge			1	0.y	8.153	m	Bewehrung	Max	Min: 1.73 /	-1.3
		Trägheitsradius			i	у	69.3	mm	🕤 🔍 🛛		1.0	
		hlankheit um di	e z-Achse		2	z	117.6810					. 1
	E Sch				U	0,z	8.153	m	Beton:	6 σ 🔤	ПП	
	E Sch	Ersatzlänge										
	E Sch	Ersatzlänge Trägheitsradius			i	z	69.3	mm	Development 3	3 32 33	3.6 30.6	

Bild 3.84: Maske 2.1 Nachweis Stäbe

Diese Maske besteht aus einer oberen Tabelle sowie einer unteren Detailtabelle und einem Grafikfenster, die sich beide verändern, sobald in der oberen Tabelle eine andere Zeile ausgewählt wird.

In der oberen Tabelle wird in der ersten Spalte die Nummer des Stabes angegeben, für den dann rechts mehrere Zeilen stehen. In jeder Zeile findet sich das Ergebnis eines Nachweises.

Die Anzahl der Zeilen kann sich in Abhängigkeit davon ändern, welcher Nachweis für einen Stab notwendig ist. Um welchen Nachweis es sich handelt, wird in der Spalte *Kommentar zum Nachweis* angegeben. Der Nachweis der Biegebruchsicherheit mit der vorhandenen Bewehrung ist für jeden Stab obligatorisch. Er wird im maßgebenden kritischen Querschnitt des zur Modellstütze idealisierten Stabes mit den einwirkenden Momenten nach Theorie II. Ordnung geführt. Falls keine Stabilitätsuntersuchung erforderlich ist, erfolgt der Nachweis mit den unveränderten RFEM-Schnittgrößen an der Stelle, für die sich die kleinste Sicherheit ergibt.

An welcher Stelle dieser und alle anderen Nachweise geführt wurden, findet der Anwender indirekt in der ersten Spalte der oberen Tabelle. Dort steht, welche Belastung (Lastfall, Last- oder Ergebniskombination) maßgebend sind und zudem, welche Schnittgröße für diese Belastung an der maßgebenden Stelle einen maximalen oder minimalen Wert annimmt. Die Stelle, an der die oben angeführte Schnittgröße maßgebend wird, findet der Anwender durch einen Blick in die Detailtabelle. Diese Stelle ist als Abstand *x* vom Stabanfang angegeben.

Die Spalten **B** und **C** der oberen Tabelle zeigen das vorhandene Nachweiskriterium, das für einen erfolgreichen Nachweis stets kleiner als 1 sein muss. Dieses Nachweiskriterium wird gebildet, indem die Beanspruchung durch die Beanspruchbarkeit geteilt wird.

Die vorhandene Sicherheit γ wird mit einer vorhandenen Bewehrung als Dividend für die erforderliche Sicherheit von 1 berechnet. Somit ergibt sich bei einer ausreichenden Sicherheit ($\gamma \ge 1$) ebenfalls ein Nachweiskriterium, das kleiner als 1 ist.

In der oberen Tabelle finden sich weitere Zeilen für diverse Nachweise, beispielsweise die verschiedenen Querkraftnachweise an den maßgebenden Stellen. Je nach Belastung kann die Anzahl der zu führenden Nachweise und damit die Anzahl der Zeilen der oberen Tabelle variieren. Welche Nachweise geführt werden, hängt von der Norm und der Art der Belastung ab. Eine genaue Beschreibung ist im Kapitel 2 des Handbuchs zu finden.

Abhängig davon, welche Zeile in der oberen Tabelle durch Anklicken ausgewählt wird, erscheinen die Zwischenergebnisse dieses Nachweises in den *Details* unterhalb. Sie sind aufgebaut wie eine Handrechnung und zeigen so sukzessive alle Zwischenergebnisse bei der Ermittlung des Nachweiskriteriums. Da die Inhalte der Detailtabelle in den Handbuchbeispielen anschaulich dargestellt sind, werden hier nur die Haupteinträge der Zwischenergebnisse erläutert.

Wurden die Momente nach Theorie II. Ordnung für das Nachweisverfahren mit Nennkrümmung bestimmt, weisen die *Details* für den Nachweis der Biegebruchsicherheit folgende Haupteinträge auf:

Bemessung nach		Bemessung nach
EN 1992 1 1-	2004/AC	EN 1992 1 1/2004 /AC -
EN 1332-1-1.	2004/AC +	EN 1332-1-1.2004/AC +
CEN	-	🔳 DIN 👻 💽
Details - Stab N	r. 1 - x: 0.000 m - LF1	
🕀 Maßgebende	Belastung	
🗄 Ersatzlänge i	nach 5.8.3.2	
Schlankheit	nach 5.8.3.2	
Grenzschlan	kheit nach 5.8.3.1 (1)	
∃ Art der Berne	ssung	
Ausmitten		
Homente nac	sh Theorie I. Ordnung	
Momente nac	ch Theorie II. Ordnung	
Vorhandene	Bewehrung	
Dehnungszus	stand	
Bruchzustan	d	
Nachweis		

Bild 3.85: Details bei Bemessung mit Momenten nach Theorie II. Ordnung (EN und DIN EN 1992-1-1)

Wenn eine Regelbemessung ausreichend ist, verkürzen sich die *Details* um die Haupteinträge *Momente nach Theorie I. Ordnung* und *Momente nach Theorie II. Ordnung*. Die Bemessung findet dann mit den unveränderten Schnittgrößen von RFEM bzw. RSTAB statt.

Bemessung nach			Bemessung nach	Bemessung nach			
EN 1992-1-1:2004/AC	-		🔯 EN 1992-1-1:20	04/AC 🔻			
CEN -			DIN	-			
Details - Stab Nr. 1 - x:	0.000 m -	LF1					
🗄 Maßgebende Belast	ung						
Ersatzlänge nach 5.	8.3.2						
Schlankheit nach 5.	.8.3.2						
Grenzschlankheit na	ach 5.8.3.1	(1)					
Ausmitten							
Einwirkendes Momen	nt aus maß	gebender Ausmitte					
Vorhandene Bewehr	ung						
Dehnungszustand							
Bruchzustand							
Nachweis							

Bild 3.86: Details bei Regelbemessung

Maßgebende Belastung

Zwischenergebnisse Rechteck 300/400 - LF1						
□ Maßgebende Belastung						
Belastung		LF1				
 Maßgebende Schnittgröße 		min My				
— An Stelle	x	0.000	m			
Normalkraft	N	-875.000	kN			
 Moment um die y-Achse 	My	-90.000	kNm			
Moment um die z-Achse	Mz	60.000	kNm			

Bild 3.87: Maßgebende Belastung

In der ersten Zeile wird der maßgebende Lastfall bzw. die maßgebende Last- oder Ergebniskombination angegeben.

Diese Belastung bewirkt entlang des Stabes einen spezifischen Verlauf der Normalkraft und der Momente sowie Querkräfte bezogen auf die lokalen Stabachsen y und z.

An einer bestimmten Stelle des Stabes erreicht der Verlauf jeder Schnittgröße ein Maximum oder ein Minimum. Diese Extremwerte werden wie im Kapitel 2 beschrieben untersucht. Die *Maßgebende Schnittgröße* kann in der zweiten Zeile abgelesen werden. Die nächste Zeile gibt dann an, in welchem Abstand vom Stabanfang dieser Extremwert auftritt. Neben der maßgebenden Schnittgröße existieren an dieser Stelle die zugehörigen Schnittgrößen, die in den weiteren Zeilen angegeben werden. Die Bemessung erfolgt mit diesen Schnittgrößen.

Ersatzlänge / Schlankheit

Die Haupteinträge *Ersatzlänge*, *Schlankheit* und *Grenzschlankheit* dienen ausschließlich der Unterscheidung, ob ein Nachweis mit den Momenten nach Theorie II. Ordnung oder eine Regelbemessung mit den Schnittgrößen aus RFEM bzw. RSTAB erfolgt.

Zwischenergebnisse Rechteck 40/45 - LK4			
Ersatzlänge nach 5.8.3.2			
Ersatzlänge um die y-Achse	10.y	13.020	m
Stützenlänge	ly	6.200	m
Knicklängenbeiwert	βy	2.100	
Ersatzlänge um die z-Achse	10,z	6.200	m
Keine Stabilitätsuntersuchung in diese Ric	htung laut Be	nutzervorgabe	
Schlankheit nach 5.8.3.2			
Schlankheit um die y-Achse	λy	100.2280	
Ersatzlänge	lo,y	13.020	m
Trägheitsradius	iy	129.9	mm
Schlankheit um die z-Achse	λz	0.0000	
Keine Stabilitätsuntersuchung in diese Ric	htung laut Be	nutzervorgabe	
Grenzschlankheit nach 5.8.3.1 (1)			
Parameter	VEd	0.2068	< 0.41
Normalkraft	N	-632.850	kN
Betonquerschnitt	Ac	1800.00	cm ²
Bemessungswert der Betonfestigkeit	fed	17.00	N/mm ²
 Charakteristische Betondruckfestigkeit 	fok	30.00	N/mm ²
Abminderungsbeiwert	α	0.8500	
 Teilsicherheitsbeiwert 	γc	1.5000	
Streungsbeiwert der Betonfestigkeit	γc'	1.0000	
Grenzschlankheit	λmax	35.1828	

Bild 3.88: Angaben zu Ersatzlänge, Schlankheit und Grenzschlankheit nach EN 1992-1-1

Art der Bemessung

Unter diesem Eintrag wird dargestellt, ob es erforderlich ist, die Schnittgrößen nach Theorie II. Ordnung zu bestimmen.

P			
Details - Stab Nr. 1 - x: 0.000 m - LF1			
Art der Bemessung			
Voraussetzungen Regelbemessung nach 5.8	3.3.1 (1)		
Voraussetzung um die y-Achse	λy≤λlim,y	Nicht erfüllt	
 Vorhandene Schlankheit 	λy	25.9808	
Grenzschlankheit um die y-Achse	λlim.y	25.0000	
Voraussetzung um die z-Achse	$\lambda_z \leq \lambda_{\lim,z}$	Nicht erfüllt	
 Vorhandene Schlankheit 	λz	34.6410	
Grenzschlankheit um die z-Achse	λlim,z	25.0000	
Voraussetzung für Regelbemessung erfüllt	?	Nicht erfüllt	
Voraussetzungen Regelbemessung nach 5.8	3.3.1 (1)		
System unverschieblich?		Ja	
Kein Lastmoment/-e am Stützenende?		Nein	
 Stütze nicht durch Querlast beansprucht² 		Nein	
Normalkraftverlauf konstant?		Nein	
— Normalkraft ist keine Druckkraft?		Nein	
Voraussetzungen f ür Regelbemessung erf ül		Nein	
Knicknachweis erforderlich			

Bild 3.89: Art der Bemessung nach EN 1992-1-1

Wenn die Voraussetzungen für eine Regelbemessung um die y-Achse und um die z-Achse nicht erfüllt sind, müssen die Schnittgrößen nach Theorie II. Ordnung ermittelt werden.

Momente nach Theorie I. Ordnung

Ob die Voraussetzungen für eine Regelbemessung erfüllt sind, ist in der letzten Zeile des Eintrags *Art der Bemessung* ersichtlich. Ist dort ein *Nein* zu finden, lautet der nächste Haupteintrag *Momente nach Theorie I. Ordnung*.

Zwischenergebnisse Rechteck 300/400 - LF1							
⊡ Momente nach Theorie I. Ordnung							
Momente nach Theorie I. Ord.							
Einwirkende Normalkraft	NEd	-875.000	kN				
Moment um die y-Achse	MEd,1,y	-96.563	kNm				
Rechnerische Gesamtausmitte in z-Ric	e calc 1,z	-110.4	mm				
Planmäßige Ausmitte	e0,z	-102.9	mm				
Ausmitte durch Imperfektionen	ei,z	-7.5	mm				
Moment um die z-Achse	MEd,1,z	66.563	kNm				
Rechnerische Gesamtausmitte in y-Ric	e calc 1,y	76.1	mm				
Planmäßige Ausmitte	e0,y	68.6	mm				
Ausmitte durch Imperfektionen	ei,y	7.5	mm				

Bild 3.90: Momente nach Theorie I. Ordnung

Die Momente nach Theorie I. Ordnung werden aus dem Produkt von Normalkraft und der planmäßigen Ausmitte plus der ungewollten Ausmitte bestimmt. Die Ermittlung dieser Exzentrizitäten wird in den folgenden Zeilen ausgewiesen.

Momente nach Theorie II. Ordnung

Zwischenergebnisse Rechteck 300/400 - LF1						
Momente nach Theorie II. Ordnung						
Ausmitte durch Th. II. Ord. nach 5.8.8.2(3)						
- → Ausmitte durch Th. II. Ord. in z-Richtung	e2,z	-11.9	mm			
	e _{2,y}	21.9	mm			
Momente nach Theorie II. Ord.						
Einwirkende Normalkraft	NEd	-875.000	kN			
⊕ Moment um die y-Achse	MEd,y2	-106.957	kNm			
⊞ Moment um die z-Achse	MEd,z2	85.723	kNm			

Bild 3.91: Momente nach Theorie II. Ordnung

Die Ermittlung der *Momente nach Theorie II. Ordnung* beginnt mit der Bestimmung der Ausmitten durch Theorie II. Ordnung. In der obigen Abbildung sind nicht alle Ergebniszeilen dargestellt. In den folgenden Zeilen wird beispielsweise noch die vorhandene Bewehrung ausgegeben, die die Ausmitten nach Theorie II. Ordnung maßgebend beeinflusst.

Sind diese Ausmitten bekannt, können mithilfe der Normalkraft die Momente nach Theorie II. Ordnung um die Achsen des Stabkoordinatensystems bestimmt werden. Daraus resultieren dann die Schnittgrößen, mit denen die vorhandene Biegebruchsicherheit zu bestimmen ist.

Vorhandene Bewehrung

Um die Biegebruchsicherheit bestimmen zu können, muss zuvor eine vorhandene Längsbewehrung ermittelt werden. Diese findet sich im Haupteintrag *Vorhandene Bewehrung*.

🗆 Vorhandene Bewehrung			
– 🖂 aus Position	Nr.	1	
 Position statisch wirksam 		Ja	
 Bewehrungsstabdurchmesser 	ds	0.020	m
 Querschnittsfläche pro Bewehrungsstab 	as	3.14	cm ²
— Anzahl	ns	8	
Gesamte Querschnittsfläche	vorh As	25.12	cm ²
- 🖃 aus Position	Nr.	2	
 Position statisch wirksam 		Ja	
 Bewehrungsstabdurchmesser 	ds	0.020	m
 Querschnittsfläche pro Bewehrungsstab 	as	3.14	cm ²
— Anzahl	ns	2	
Gesamte Querschnittsfläche	vorh As	6.28	cm ²
Vorhandene Bewehrung	vorh As	31.42	cm ²

Bild 3.92: Vorhandene Bewehrung

Hier zeigt sich – nach Positionsnummern geordnet – die aktuelle Bewehrung, die nach der ersten Berechnung vom Programm vorgeschlagen wird. Sie kann bei Bedarf in Maske 3.1 *Vorhandene Längsbewehrung* angepasst werden.

Dehnungszustand

Die nächsten vier Bilder zeigen, wie sich Dehnungen und Spannungen unter den zuvor ermittelten Schnittgrößen im Beton und in der Bewehrung einstellen.

Details - Stab Nr. 1 - x: 0.000 m - LF1					Rechteck 300/500 LF1 / Dehnungszustand
	∃ Vorhandene Bewehrung				
Dehnungszustand					Bewehrung : Dehnung
–					
- ⊞ Krümmungen					0.34
Querschnittspunkte					
Anzahl der Querschnittspunkte	nc	4			•····
Querschnittspunkt	Nr.	1			
y-Koordinate	Уc	150.0	mm		-1.04 -0.18
z-Koordinate	Zc	250.0	mm		2 1
Dehnung	εc	-0.18	‰		*
Spannung	σο	-2.91	N/mm ²	=	Beton Max/Min: 0.34 / -1.04 ‰
	Nr.	2		-	Bewehrung Max/Min: 0.22 / -0.92 ‰
	Nr.	3			
	Nr.	4			
					Beton: 🔤 🖸 🔤 🛄 🎞
Bruchzustand	∃ Bruchzustand				Perushawar 🔝 🐼 💷 💌
Nachweis	Nachweis				Bewenrung: 🔛 🔝 📖

Bild 3.93: Dehnung - Beton

Details - Stab Nr. 1 - x: 0.000 m - LF1					Rechteck 300/500 LF1 / Dehnungszustand
Vorhandene Bewehrung	🕀 Vorhandene Bewehrung				
Dehnungszustand					Bewehrung : Dehnung
⊞ Einwirkende Schnittgrößen					-0.46
- 🕀 Krümmungen					2 1 8
					N N
Bewehrungsstäbe					••••••••••
Anzahl der Bewehrungsstäbe	ns	4			-0.92 0.02
 Bewehrungsstab 	Nr.	1			-0.23
y-Koordinate	y s	-120.0	mm		1 4
z-Koordinate	Zs	220.0	mm		.
Dehnung	εs	-0.92	‰	=	Beton Max/Min: 0.34 / -1.04 ‰
Spannung	σs	-184.45	N/mm ²		Bewehrung Max/Min: 0.22 / -0.92 ‰
⊕ Bewehrungsstab	Nr.	2			10 🕅 👩 👼 🕅
—	Nr.	3			
⊞ Bewehrungsstab	Nr.	4			Beton: 🐱 🗗 🔤 🔲 🎞
Bruchzustand					
Nachweis				Ŧ	Bewenrung:

Bild 3.94: Dehnung - Bewehrung

Details - Stab Nr. 1 - x: 0.000 m - LF1					Rechteck 300/500 LF1 / Dehnungszustand
	∃ Vorhandene Bewehrung				
Dehnungszustand					Bewehrung : Spannung
-					-7.68
- ⊕ Krümmungen					
- Querschnittspunkte					
Anzahl der Querschnittspunkte	n _e	4			•
Querschnittspunkt	Nr.	1			-13.08 У
y-Koordinate	y c	150.0	mm		-2.91
z-Koordinate	Zc	250.0	mm		2 1
Dehnung	εc	-0.18	%		• • • • • • • • • • • • • • • • • • •
Spannung	σο	-2.91	N/mm ²	=	Beton Max/Min: 0.00 / -13.08 N/mm
⊕ Querschnittspunkt	Nr.	2		-	Bewehrung Max/Min: 44.73 /-184.45 N/mm
	Nr.	3			
	Nr.	4			
⊞ Bewehrungsstäbe					Beton: 🛛 🗖 🔤 🔲 🎞
Bruchzustand					
Nachweis				-	Bewehrung: 🔛 🔝 🔝

Bild 3.95: Spannung – Beton

Details - Stab Nr. 1 - x: 0.000 m - LF1					Rechteck 300/500 LF1 / Dehnungszustand			
Vorhandene Bewehrung					Beton : Spannung			
Dehnungszustand					Bewehrung : Spannung			
					-92.91			
- 🕀 Krümmungen					2 0 70			
⊕ Querschnittspunkte	- ⊕ Querschnittspunkte							
Bewehrungsstäbe					•···			
Anzahl der Bewehrungsstäbe			46 81					
 Bewehrungsstab 	Bewehrungsstab Nr. 1							
y-Koordinate	y s	120.0	mm		1 4			
z-Koordinate	Zs	220.0	mm		*			
Dehnung	εs	-0.23	‰	=	Beton Max/Min: 0.00 / -13.08 N/mm			
Spannung	σs	-46.81	N/mm ²	-	Bewehrung Max/Min: 44.73 /-184.45 N/mm			
⊕ Bewehrungsstab	Nr.	2						
⊕ Bewehrungsstab	-							
Bewehrungsstab	⊞ Bewehrungsstab Nr. 4							
Bruchzustand								
				Ŧ	Deweniung. 🔝 🔛 📖			

Bild 3.96: Spannung – Bewehrung

Grafik und Schaltflächen

Rechtsseitig stellt eine Grafik den Verlauf von Dehnungen und Spannungen dar. Unterhalb der Grafik befinden sich diverse Schaltflächen, mit denen die Anzeige gesteuert werden kann.

Details - Stab Nr. 1 - x: 0.000 m - LF1				Rechteck 300/500 LF1 / Dehnungszustand	
Dehnungszustand			*	Beton : Dehnung	ji ji
-				Bewehrung : Dehnung	E B
					v. d
Querschnittspunkte					P2 2
 Anzahl der Querschnittspunkte 	ne	4			en le
	Nr.	1		••••••••••••••••••••••••••••••••••••••	eid lel
	Nr.	2			anz
	Nr.	3			erg
	Nr.	4			8 6
Bewehrungsstäbe		· · ·			ara ara
Anzahl der Bewehrungsstäbe	ns	4		Beton Max/Min: 0.34 / -1.04 ‰	
⊕ Bewehrungsstab	Nr.	1	=	Bewehrung Max/Min: 0.22 / -0.92 ‰	5
⊕ Bewehrungsstab	Nr.	2			e
→ Bewehrungsstab	Nr.	3			ert
⊕ Bewehrungsstab	Nr.	4		Beton: 🖪 🗗 🛄 🎞	3
Bruchzustand		· · ·			
Nachweis			*	Bewehrung: 🔛 🔝 🔜	

Bild 3.97: Grafikbereich mit Schaltflächen

Die Schaltflächen sind auf den folgenden Seiten näher beschrieben.

Mit der Schaltfläche [Info] können die Informationen über den Querschnitt dargestellt werden.

Info über Querschnitt Rechteck 300/500				×
Querschnittswert-Bezeichnung	Symbol	Wert	Einheit	Rechteck 300/500
Profilbreite	Ь	300.0	mm	
Profilhöhe	h	500.0	mm	
Querschnittsfläche	A	1500.00	cm ²	
Schubfläche	Ay	1250.00	cm ²	300.0
Schubfläche	Az	1250.00	cm ²	4
Trägheitsmoment (Flächenmoment 2. Grades)	ly	312500.00	cm ⁴	
rägheitsmoment (Flächenmoment 2. Grades)	l _z	112500.00	cm ⁴	
rägheitsradius	iy	144.3	mm	
Trägheitsradius	iz	86.6	mm	
Querschnittsgewicht	G	375.0	kg/m	
fantelfläche	U	1.600	m²/m	
orsionsträgheitsmoment	lt	281720.00	cm ⁴	G Y
Widerstandsmoment für Torsion	Wt	11070.00	cm ³	
Widerstandsmoment	Wy	12500.00	cm ³	
Widerstandsmoment	Wz	7500.00	cm ³	
Plastisches Widerstandsmoment	Wpl,y,max	18750.00	cm ³	
Statisches Moment	S _{y,max}	9375.00	cm ³	
Statisches Moment	S _{z,max}	5625.00	cm ³	2 i 1
				[mm
				📰 💽 Spannungspunkte 🔛 🚰 🗖
				Schließen

Bild 3.98: Dialog Info über aktuellen Querschnitt

Mit der Schaltfläche [Werte] werden die Werte des Diagramms dargestellt. Diese Schaltfläche öffnet ein Fenster, in dem die Werte der Dehnungen und Spannungen dargestellt werden, die im Beton und Bewehrungsstahl existieren.

Bild 3.99: Ausgabe der Dehnungen und Spannungen

0

Im linken Bereich des Fensters befinden sich die Abschnitte *Stab*, *Spannungen* und *Bewehrung*; rechts werden die Ergebnisse grafisch dargestellt.

Im Abschnitt *Stab* kann der Stab ausgewählt werden, dessen Dehnungs-/Spannungsverlauf dargestellt werden soll. Im Feld *x* rechts davon wird dann die bemessungsrelevante Stelle der Stütze angezeigt.

In den Tabellen der *Spannungen* und *Bewehrung* werden die Koordinaten der Spannungs- und Bewehrungspunkte angegeben. Die Koordinaten beziehen sich auf das Stabkoordinatensystem, das in der rechtseitigen Grafik dargestellt ist.

In den Spalten C und D werden die jeweiligen Dehnungen und Spannungen aufgelistet. Deren Extremwerte sind getrennt für die Bewehrung und den Beton unterhalb der Grafik zu finden. Die Zahl in Klammern am Ende der Extremwert-Zeile bezeichnet die Nummer des Spannungsoder Bewehrungspunktes, wie er in der Spalte Punkt-Nr. der beiden Tabellen zu finden ist.

Unterhalb des Grafikfensters befinden sich diverse Schaltflächen, mit denen die Darstellung beeinflusst werden kann.

1.0 🚖			
Beton:	%	σ	1.0 🚔
Bewehrung:			1.0 🚔

Bild 3.100: Schaltflächen zur Steuerung der grafischen Darstellung

Die Schaltflächen in der Zeile Beton bedeuten von links nach rechts:

- Füllung des Querschnitts ein- oder ausblenden Für *Beton* und *Bewehrung* zusammen:
- Dehnungsdiagramm anzeigen
- Spannungsdiagramm anzeigen
- Werte des Diagramms anzeigen
- Punkte anzeigen
- Nummerierung der Punkte anzeigen

Über die Drehfeld-Schaltfläche am Ende der Zeile kann die Größe der Darstellung verändert werden.

Des Weiteren sind unterhalb der Grafik folgende Schaltflächen verfügbar:

Bild 3.101: Schaltflächen

b

Über die Schaltfläche [Drucken] kann ein weiterer Dialog aufgerufen werden, mit dem der Ausdruck der Spannungs-Dehnungsgrafik aus dem Modul gesteuert wird (siehe folgendes Bild).

Info über Querschnitt drucken			×
Ausdruck-Typ Sofort ausdrucken In AusdruckProtokoll: In Zwischenablage	Ausdruck-Selektion Grafikbild des Querschnitts Achsen Bemaßung Spannungspunkte Nummerierung Crt-Teile Nummerierung Querschnittswerte Info-Bild	 Silhouette Schubmittelpunkt Spannungsverlauf Werte 	Spannungspunkte Info-Bild Info-Bild C./t-Teile Info-Bild Info-Bil
Ausdruckprotokoll nach [OK] anzeigen	Rechteck 300/500		
		(OK Abbrechen

Bild 3.102: Drucken der Querschnittsdetails

Wird der Dialog mit [OK] bestätigt, erscheint das Ausdruckprotokoll mit der Grafik der Dehnungen oder Spannungen. Mit [Abbrechen] erfolgt die Rückkehr zum aufrufenden Dialog.

Mit der Schaltfläche [Zoomen] wird der Mauszeiger in eine Hand verwandelt, mit der die grafische Darstellung verschoben, vergrößert oder verkleinert werden kann.

Über die Schaltfläche [Zoom aufheben] lässt sich der ursprüngliche Zustand der Grafik nach einer Veränderung wiederherstellen.

Die zuletzt vorgestellten Schaltflächen zum Anpassen der grafischen Darstellung sind auch in Maske 2.1 Nachweis Stäbe verfügbar.

Bruchzustand

Q

Q

Im nächsten Haupteintrag *Bruchzustand* der Detailtabelle wird der Verlauf der Dehnung und der Spannung für die Bruchschnittgrößen dargestellt. Die Bruchschnittgrößen ergeben sich, indem die einwirkenden Schnittgrößen mit der ermittelten Sicherheit γ multipliziert werden.

🕀 Art der Bemessung				
Ausmitten				
Momente nach Theorie I. Ordnung				
Momente nach Theorie II. Ordnung	1			
• Vorhandene Bewehrung				
Dehnungszustand				
Bruchzustand				
- 🖃 Bruchschnittgrößen				
Bruchnormalkraft	Nu	-1738.360	kN	
Bruchmoment um die y-Achse	M _{y,u}	-101.304	kNm	
Bruchmoment um die z-Achse	M _{z,u}	99.864	kNm	
- 🖃 Bruchkrümmungen				
Bruchkrümmung in z-Ebene	1/r _{z,u}	-0.004	1/m	
Bruchkrümmung in y-Ebene	1/r _{V.u}	-0.010	1/m	
FI Bewehrungsstäbe				

Bild 3.103: Bruchzustand

Nachweis

Im letzten Haupteintrag *Nachweis* wird das Nachweiskriterium ermittelt. Dieses wird auch in der oberen Tabelle in der Zeile dieses Nachweises ausgegeben.

Details - Stab Nr. 1 - x: 0.000 m - LF1			
Momente nach Theorie I. Ordnung			
Momente nach Theorie II. Ordnung			
Vorhandene Bewehrung			
Dehnungszustand			
Bruchzustand			
Nachweis			
 Erforderliche Bruchsicherheit 	erf γ	1.0	
Vorhandene Bruchsicherheit	vorh γ	1.9615	
Einwirkende Schnittgrößen			
Normalkraft	NEd	-886.250	kN
 Moment um die y-Achse nach Th. II. O 	MEd,y2	-51.647	kNm
Moment um die z-Achse nach Th. II. O	M Ed,z2	50.913	kNm
🖃 Bruchschnittgrößen			
Bruchnormalkraft	Nu	-1738.360	kN
Bruchmoment um die y-Achse	M _{y,u}	-101.304	kNm
Bruchmoment um die z-Achse	M _{z,u}	99.864	kNm
 Nachweiskriterium (erf v / vorh v) 	Kriterium	0.5098	

Bild 3.104: Nachweis

Das maximale Nachweiskriterium wird unterhalb der Tabelle 2.1 Nachweis Stäbe dargestellt und mit dem Grenzwert verglichen.

2.1 Na	chweis Stäbe					
	A	В	C	D	E	
Stab	Stelle	Maßgebender	Nachwe	is		
Nr.	x [m]	Lastfall	Ausnutzung		Kommentar zum Nachweis	Ξ
1	Querschnitt	Nr. 1 - Rechteck	c 300/500			
	0.000	LF1 - min My	0.5098	≤1	100) Nachweis im kritischen Querschnitt der Modellstütze nach Abs. 5.8.8	
	3.000	LF1 - min N	0.0800	≤1	201) Querkraftnachweis (V _{Ed} / V _{Rd,c} ≤ 1) gemäß 6.2.2 (2) mit (6.4)	1
	0.000	LF1 - min My	0.3180	≤1	202) Querkraftnachweis (V _{Ed} / V _{Rd,c} ≤ 1) gemäß 6.2.2 (1)	
						-
🔽 Alle	Lastfälle	Max:	0.5098	≤1	🖺 🍢 😂 💿	3

Bild 3.105: Maximales Nachweiskriterium

Die Schaltflächen unterhalb der Tabelle sind mit folgenden Funktionen belegt:

Schaltfläche	Bezeichnung	Funktion
	Relationsbalken	Blendet die farbigen Bezugsskalen in den Ergebnis- masken ein und aus
7,1	Überschreitung	Stellt nur Zeilen dar, in denen das Nachweiskriterium größer als 1 ist
2	Ergebnisverläufe	Öffnet das Diagramm Ergebnisverläufe im Stab
۲	Sichtmodus	Ermöglicht den Wechsel in das RFEM- bzw. RSTAB- Arbeitsfenster, um die Ansicht zu ändern
3	Stabauswahl	Ermöglicht die grafische Auswahl eines Stabes, um dessen Ergebnisse in der Tabelle anzuzeigen

Tabelle 3.1: Schaltflächen in Ergebnismaske 2.1

Unterhalb der Tabelle befindet sich das Kontrollfeld *Alle Lastfälle*. Ist diese Option angehakt, so erscheinen in der oberen Tabelle für einen Stab nicht nur die Nachweise mit der maßgebenden Belastung, sondern alle Nachweise für jeden Lastfall bzw. jede Last- oder Ergebniskombination, die in Maske *1.1 Basisangaben* zur Bemessung vorgegeben wurde.

FA1	- 3.1 Erfor	derliche Bewe	hrung o	uerschr	ittsweise	2						
Fingahedaten		A	В	C	D	E	F	G	H		Rechteck 300/500	
- Basisangaben	Querschn	Bewehrung	Stab	Stelle	LF / LK		Bewehrung	S-	Fehlermeldur	ng	Beton : Dehnung	
Materialien	Nr.		Nr.	x [m]	EK		Fläche	Einheit	bzw. Hinwei	s	Bewehrung : Dehnung	
- Querschnitte	1	Rechteck 300	/500									
- Bewehrung		Längs	1	0.000	LF1	As	8.60	cm ²				
L 1		Querkraft	1	-	-	asw	6.98	cm ² /m				
Parameter - stabweise												
Ergebnisse											N	
🖨 Nachweis												
- Stäbe	ا مالہ 💷	astfälle	()		Tour all							
😑 Erforderliche Bewehrung		asualle				3						
- Querschnittsweise	Zurizalaa			200/E0/		_						
Stabweise	zwische	nergebnisse k	echteck	500/500) - LFI						У	
😑 Vorhandene Bewehrung		ebende Bela	stung					1.54		^		
— Längsbewehrung	Bela	astung						LFI		Ξ		
Bügelbewehrung	Mai	sgebende Schr	ittgroße					min My			New York Contraction of the Internet of the In	
i Stahlliste	- An I	stelle			,	с ч		0.000	m IaN		↓ · · ·	
	Memoria un die us Anhae		aikrait				-8/5.000 KIN			Z		
	Mor	nent um die y-A	chise			My		-90.000	k Nm			
	- Freat	zlānge nach	5832			M Z		00.000	KINIII			
	E Ersa	atzlänge um die	v-Achse		1	0.2		3 000	m			
		tützenlänne	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		i	<u>v.y</u>		3,000	m			
	K	nicklängenbeiv	vert			y By		1 000			Rates Max/Min: 2 E0 / 2 E0 %	
	E Ersa	atzlänge um die	z-Achse		1	07		3,000	m		Bewehrung Max/Min: 2.90 / -2.81 %	
	- 5	tützenlänge			- i	z.		3.000	m			
	K	nicklängenbeiv	vert			37		1 000				
Schlankheit nach 5.8.3.2											Beton: 🛐 🗖 🔤 🚺	
	⊡ Sch	lankheit um die	y-Achse	•	3	ly		20.7846				
	- E	rsatzlänge			1	0 v		3 000	m	÷	Bewehrung: 🔛 🔯 🔛 🕻	

3.5.2 Maske 3.1 Erforderliche Bewehrung querschnittsweise

Bild 3.106: Maske 3.1 Erforderliche Bewehrung querschnittsweise

Im Aufbau ist diese Maske identisch mit der folgenden Maske 3.2 Erforderliche Bewehrung stabweise. In der oberen Tabelle wird die erforderliche Längsbewehrung A_s sowie die erforderliche Querkraftbewehrung a_{sw} ausgegeben. Alle Zwischenergebnisse zu ihrer Bestimmung sind in der Detailtabelle unterhalb einsehbar, wenn die entsprechende Zeile in der oberen Tabelle ausgewählt wird.

Die obere Tabelle gibt in der ersten Spalte die Nummer des betrachteten Querschnitts an. Rechts daneben ist die Querschnittsbezeichnung zu finden. Die Spalte A gibt Aufschluss, ob es sich in dieser Zeile um die erforderliche Längs- oder Querkraftbewehrung handelt.

3.1 Erfor	3.1 Erforderliche Bewehrung querschnittsweise													
	A	B C D E F G												
Querschn	Bewehrung	Stab	Stelle	LF / LK	B	ewehrung	8-	Fehlermeldung						
Nr.		Nr.	x [m]	bzw. Hinweis										
1	Rechteck 300/500													
	Längs	1	0.000	LF1	As	8.60	cm ²	28)						
	Querkraft	aft 1		-	asw	6.98	cm ² /m							

Bild 3.107: Obere Tabelle

In Spalte **B** wird die Nummer des Stabes angegeben, der diesen Querschnitt verwendet. Es folgen in Spalte **C** die bemessungsrelevante x-Stelle und in Spalte **D** die maßgebende Belastung. Die erforderliche Bewehrungsfläche findet sich in Spalte **F**. In der letzten Spalte **H** kann die Nummer eines Hinweises angezeigt werden. Dieser Programmhinweis ist in der Statuszeile der Maske näher erläutert.

Die Details zur Ermittlung der erforderlichen Längsbewehrung A_s unterscheiden sich bis zum Eintrag *Momente nach Theorie II. Ordnung* nicht von den Details zur Ermittlung der vorhandenen Sicherheit in Maske *2.1 Nachweis Stäbe* (gleiche Belastung vorausgesetzt).

	Δ	l p	C		1				Δ	- D		D	(E		G	1 1
Chab	Stelle	D	Nachw	Dia				Duemohn	Rewebrung	Stab	Stelle			F	<u>u</u>	Feblemeld
Nr.	y [m]	Lastfall	Ausnutzung				Kommer	Nr.	Dewenirung	Nr	x [m]	FK		Eiäche	s- Finheit	bzw. Hinw
1	A [iii]	Nr. 1. Deebteel	200/E00				rominer	1	Rechteck 30	0/500	× ford	LIN		Hiddhid	Linnon	DZW. THIN
<u> </u>		I E1 - min M	0 0 277	<1	100\	Nachweie im k	tiechen Quemeh		Lange	1 1	0.000	1.51	Δ.,	0.00	om2	20)
	2,000	LE1 min N	0.3377	21	201)	Quadvestina A			Quadrat	1	0.000	LFI	7.5	0.00	om2/m	20)
	3.000	LE1 min M	0.1003	21	201)	Querkraftnach	veis (VEd / VRd,		QUEINIAIL		-		asw	0.30	Cill=/III	
	0.000	LFT-min My	0.4113	121	202)	Querkrannach	veis (VEd / VRd									
🗖 Alla I	astfälle	Mav	0.9377	<1					astfälla							
	detraile	inda.	0.0011						dillo dillo							
Details ·	- Stab Nr. 1	- x: 0.000 m	- LF1					Zwische	nergehnisse F	Rechteck	300/500	- F1				
🗄 Maßg	jebende Be	elastung						CWISCHE		techieci	. 500/ 500					
🕀 Ersat	zlänge nac	sh 5.8.3.2					1991		jebende Bela	stung						
Schla	ankheit nao	ch 5.8.3.2							ziange nach	5.8.3.2						
🗄 Gren:	zschlankhe	eit nach 5.8.3.	.1 (1)					H Schla	Inkneit nach	1 3.8.3.4	0.2.1.0	0				
🕀 Art de	er Bemessu	ing						⊞ Gren	zschlankheit	nach 5	.8.3.1 (0	_	_		
🗄 Ausm	itten							⊞Artd	er Bernessun	g		_				_
🗄 Mome	ente nach '	Theorie I. Ord	nung						itten							
🗆 Mome	ente nach	Theorie II. Or	dnung					H Mom	ente nach II	neorie I.	Ordnur	g				
🖃 Aus	mitte durch 1	Th. II. Ord. nach	5.8.8.2(3)						ente nach II	neorie II	. Ordnu	ng				
÷ A	usmitte durch	h Th. II. Ord. in z	-Richtung	e _{2,z}		0.0	mm	E Aus	mitte durch Th	. II. Ord. r	ach 5.8.	8.2(3)				
ΞA	usmitte durch	h Th. II. Ord. in y	-Richtung	e2.y		18.4	mm		usmitte durch	In. II. On	1. in z-Ric	ntung e	2,z		0.0	mm
E	Beiwert			k1.y		0.0000			usmitte durch	Th. II. On	d. in y-Ric	htung e	2.y		19.9	mm
	Schlankt	heit um die z-Ach	ise	λz		34.6410		E	Beiwert			k	1.y		0.0000	
E	Krümmung i	in y-Ebene		1/ry		0.020	1/m		Schlankhe	it um die	z-Achse	λ	z		34.6410	
	🖃 Gewählte	er Beiwert (Norma	alkraft)	gew K	r,y	1.0000		- 6	3 Krümmung in	y-Ebene		1	/ry		0.022	1/m
	Errech	nneter Beiwert (N	lomalkraft)	K _{r.y}		1.0754			Gewählter	Beiwert (Normalkra	aft) g	ew K _{r,y}		1.0000	
	🖂 Gre	nztragfähigkeit		nu		1.1543			Errechne	eter Beiw	ert (Norm	alkraft) H	(r,y		1.0762	
	ΞV	/erhältnis		ω		0.1543		L	Grenz	tragfähig	keit	п	lu 👘		1.1467	
	E	Vorhandene Be	ewehrung	vorh A	s	9.05	cm ²		E Ver	mältnis		0	0		0.1467	
		Aus Position	-	Nr.		1		-	Ξ,	Vorhande	ne Bewel	hrung v	ronh A _s		8.60	cm ²
		Bemessungswe	ert Streckqi	fyd		434.78	N/mm ²			Als vor	nandene	Bewehrur	ng wurde d	ie erforderl	iche Bew	ehrung ange
	_	Querschnittsflä	che	Ac		1500.00	cm ²			Bemessur	ngswert S	treckgi f	yd		434.78	N/mm ²
		Bemessungswe	ert der Betc	Fod		17.00	N/mm ²		- (Querschn	ittsfläche	ŀ	lo lo		1500.00	cm ²
	FI Rela	ative Normalkraft	1	n		-0.3431				Bemessur	ngswert d	er Betc f	cd		17.00	N/mm ²
	Aufr	nehmbare Norma	alkraft (Biec	Dhal		-0.4000			⊞ Relati	ive Norma	alkraft	п			-0.3431	
	Gewählte	er Beiwert (Kriech	hen)	gew K	m.V	1.0000			Aufne	ehmbare I	Normalkra	ft (Bieg n	bal		-0.4000	
	FI Krümmun	na in v-Ebene		1/го ч	ψŋ	0.020	1/m		Gewählter	Beiwert (Kriechen)	g	ew K _{φ.y}		1.0000	
-	Knicklänge			10 7		3 000	m		🕀 Krümmung	in y-Eber	ne	1	/ro.y		0.022	1/m
	Beiwert (Knii	immungsverlauf)		C		2000.0			Knicklänge			1	0,z		3.000	m
H Mor	mente nach 1	Theorie II Ord		-		0.0000			Beiwert(Krüm	mungsve	rlauf)	c	:		9.8696	
	andene Rei	wehrung						🕀 Mor	mente nach Th	eorie II. C)rd.					
Dehn		nd		_	_			E Stati	sch erforderli	iche Be	wehrung	,				
	angazuatan azuetand							🕀 Mind	estbewehrun	g nach	Norm					
. oraci			_		-			Erfor	derliche Bew	rehruna						

Bild 3.108: Vergleich der Details

Während bei der Ermittlung der Grenzschlankheit λ_{lim} und der Momente nach Theorie II. Ordnung in den Details der Maske 2.1 die tatsächliche zuvor ermittelte Bewehrung angesetzt wird, wird in den Details der Maske 3.1 die statisch erforderliche Bewehrung verwendet.

Danach nehmen die Detailtabellen der beiden Ausgabemasken unterschiedliche Verläufe. In der Detailtabelle der Maske 3.1 wird mit den Momenten nach Theorie II. Ordnung oder den einwirkenden Schnittgrößen aus RFEM bzw. RSTAB die statisch erforderliche Bewehrung ermittelt. Dies geschieht unter dem Haupteintrag *Statisch erforderliche Bewehrung*. Dieser gibt in den einzelnen Zeilen die Dehnungen und Spannungen in den Spannungs- und Bewehrungspunkten an, die sich bei der Bemessung ergeben.

Die Bewehrungspunkte sind die angenommenen Lagen der Schwerpunkte der später eingelegten Bewehrungsstäbe. Diese angenommene Lage wird maßgeblich von der Benutzervorgabe in Maske *1.3 Bewehrung* beeinflusst (siehe folgendes Bild).

Bild 3.109: Anordnung der Bewehrungspunkte

Zur Betrachtung der Spannungen und Dehnungen in tabellarischer Form stehen die gleichen Möglichkeiten zur Verfügung wie in Maske *2.1 Nachweise Stäbe*.

Nach der Ermittlung der statisch erforderlichen Bewehrung erfolgt unter dem Haupteintrag *Mindestbewehrung* die Bestimmung dieser Mindestbewehrung. Wie groß diese ausfällt, hängt von den Benutzervorgaben in Maske *1.4 Bewehrung*, Register *"Norm"* ab.

Bügel Konstruktive Bewehrung Bewehr	rungsanordnung 🛛 DIN EN 1992-1-1 🛛 Brandschutz 🔝 🚵				
Längsbewehrung	Faktoren				
Minimaler Längsbewehrungsgrad gemäß Norm	Teilsicherheitsbeiwert für Baustoffe nach 2.4.2.4 (NA Parameter)				
🔲 für Brückenbau	GR AU				
Maximaler Längsbewehrungsgrad	- für Beton: γ₀: 1.5000 🚔 1.3000 🚔				
gemals Norm	- für Bewehrung: γs: 1.1500 ➡ 1.0000 ➡				
Benutzerdefinierte minimale und maximale Längsbewehrung	Abminderungsfaktor zur Berücksichtigung der Langzeitauswirkungen auf die Druckfestigkeit nach 3.1.6. (NA Parameter)				
min ps: 0.00 [*]	GR AU - für Druck: αcc: 0.8500 ↔ 0.8500 ↔				
maxρs: 9.00 🔶 [%]	Schubbewehrung				
Bewehrungsfläche	Bemessungsverfahren nach 6.2.3				
min As: 0.00 (m ²)	Neigung der Betonstrebe (NAD-Parameter) - Minimum: 18.434 (♣) [*] - Maximum: 45.000 (♣) [*]				
	P				

Bild 3.110: Festlegen der Mindestbewehrung in Maske 1.4

Werden die Kontrollfelder im markierten Bereich angehakt, so wird die Mindestbewehrung mit den einwirkenden Schnittgrößen nach folgenden Formeln der einzelnen Normen bestimmt.

DIN EN 1992-1-1 schreibt für die Stütze folgende Mindestbewehrung vor:

 $A_{s,min} = max (0,10 N_{ed} / f_{yd}, 0,002 A_c)$ 9.5.2(2)

EN 1992-1-1 schreibt folgende Mindestbewehrung vor:

$$A_{s,min} = 0.15 \cdot \frac{N_{Ed}}{f_{yd}}$$

Je nach Norm erscheinen in der Detailtabelle folgende Zwischenergebnisse zur Bestimmung der Mindestbewehrung:

Mindestbewehrung nach Norm			
Einwirkende Normalkraft	NEd	-875.000	kN
 Bemessungswert Streckgrenze 	fyd	434.78	N/mm ²
Mindestbewehrung	erf A _{s,min,1}	3.02	cm ²

Bild 3.111: Mindestbewehrung nach DIN EN 1992-1-1

Mindestbewehrung nach Norm			
Erste Mindestbewehrung			
Einwirkende Normalkraft	NEd	-875.000	kN
 Bemessungswert Streckgrenze 	fyd	434.78	N/mm ²
Mindestbewehrung	erf As,min,1	2.01	cm ²
Zweite Mindestbewehrung			
 Betonquerschnitt 	Ac	1500.00	cm ²
Mindestbewehrung	erf As,min,2	3.00	cm ²
Mindestbewehrung	erf A _{s,min}	3.00	cm ²

Bild 3.112: Mindestbewehrung nach EN 1992-1-1

Zudem besteht die Möglichkeit, den Mindestbewehrungsgrad benutzerdefiniert vorzugeben. Die so ermittelte Mindestbewehrung erscheint dann ebenfalls in den Details.

Mindestbewehrungsgrad durch den Benutzer definiert								
Betonquerschnitt	Ac	1500.00	cm ²					
Mindestbewehrungsgrad	Min As	0.30	%					
Querschnittsfläche	erf A _{s,min}	4.50	cm ²					

Bild 3.113: Benutzerdefinierte Mindestbewehrung

Unter dem letzten Haupteintrag *Erforderliche Bewehrung* der Detailtabelle wird abgewogen, welche die größere Bewehrung aus statisch erforderlicher Bewehrung und Mindestbewehrung ist. Die größere der beiden Bewehrungen wird dann als erforderliche Bewehrung in der entsprechenden Zeile der oberen Tabelle ausgegeben.

Erforderliche Bewehrung			
 Statisch erforderliche Bewehrung 	erf A _{s,stat}	5.65	cm ²
 Benutzerdefinierte Mindestensbewehrung 	erf As,mindef	4.50	cm ²
Erforderliche Bewehrung	erf As	5.65	cm ²

Bild 3.114: Erforderliche Bewehrung

Auch in Maske 3.1 Erforderliche Bewehrung querschnittsweise steht das Kontrollfeld Alle Lastfälle zur Verfügung. Wird dieses angehakt, so erscheint in der oberen Tabelle die erforderliche Bewehrung für jeden Lastfall bzw. jede Kombination. Sie ist nach Querschnitten geordnet.

3.1 Erforderliche Bewehrung querschnittsweise									
	A	B	С	D	E	F	G	H	
Querschn	Bewehrung	Stab	Stelle	LF / LK	B	ewehrung	s-	Fehlermeldung	
Nr.		Nr.	x [m]	EK		Fläche	Einheit	bzw. Hinweis	
1	Rechteck 40/	45							
	Längs	1	6.200	LK2	As	30.78	cm ²		
	Querkraft	1	-	-	asw	4.19	cm ² /m		
1	Rechteck 40/	45							
	Längs	1	0.000	LK3	As	15.21	cm ²		
	Querkraft	1	-	-	asw	4.19	cm ² /m		
							-		
1	Rechteck 40/	45							
	Längs	1	0.000	LK4	As	27.08	cm ²		
	Querkraft	1	-	-	asw	4.19	cm ² /m		
📝 Alle L	V Alle Lastfälle								

Bild 3.115: Anzeigen der Ergebnisse für Alle Lastfälle

Die im Bild oben dargestellte Tabelle zeigt, dass ein Rechteckquerschnitt untersucht wurde. Der Querschnitt *Rechteck 40/45* wird im Stab Nr. 1 verwendet. Dies wird in Spalte **B** ersichtlich. Zur Bemessung wurden in Maske *1.1 Basisangaben* die Lastkombinationen LK2, LK3 und LK4 ausgewählt.

Für jede der drei Lastkombinationen wird eine Zeile mit der jeweils erforderlichen Bewehrung ausgegeben. Diese Bewehrung ist in Spalte **F** zu finden. In diesem Beispiel ist gut zu erkennen, welche Belastung tatsächlich zur höchsten Bewehrung führt und somit maßgebend ist.

Zum Vergleich wird nur die Bewehrung für die maßgebende Belastung dargestellt, indem das Häkchen im Kontrollfeld *Alle Lastfälle* entfernt wird:

3.1 Erforderliche Bewehrung querschnittsweise									
	A	В	С	D	E	F	G	H	
Querschn	Bewehrung	Stab	Stelle	LF / LK	B	ewehrung	S-	Fehlermeldung	
Nr.		Nr.	x [m]	EK		Fläche	Einheit	bzw. Hinweis	
1	Rechteck 40/45								
	Längs	1	6.200	LK2	As	30.78	cm ²		
	Querkraft	1	-	-	asw	4.19	cm ² /m		
🗌 Alle Lastfälle 💿 🐧									

Bild 3.116: Darstellung der maßgebenden Belastung

Die Bemessungsdetails der erforderlichen Querkraftbewehrung können in gleicher Weise in der Detailtabelle unterhalb kontrolliert werden. Eine ausführliche Beschreibung der Querkraftnachweise für die unterschiedlichen Normen finden Sie im Kapitel 2.6 ab Seite 43.

3.5.3 Maske 3.2 Erforderliche Bewehrung stabweise

Diese Maske unterscheidet sich nur dadurch von der vorherigen Maske, dass in der Spalte links anstelle der Querschnittsnummer die Nummer des Stabes angegeben ist. Auf gleicher Höhe erscheint die Bezeichnung des für diesen Stab verwendeten Querschnitts. Ansonsten sind in jeder Zeile die im vorherigen Kapitel 3.5.2 beschriebenen Angaben zu finden.

Bild 3.117: Maske 3.2 Erforderliche Bewehrung stabweise

<u>D</u> atei Einstellungen Hilfe									
FA1	▼ 4.1 Vorh	andene Lä	ngsbewehr	ung					
Eingabedaten Basisangaben Materialien Querschnitte Bewehrung	Position Nr.	A Anzahl Stäbe Stab Nr. 1 4	B ds [mm] - Rechteck	C As [cm ²] 300/500 6.16	D Stelle von -0.461	E x [m] bis 3.461	F Verankerung	G Meldung	
L 1 → Parameter - stabweise Ergebnisse → Nachweis → Stäbe Erforderliche Bewehnung								•	e
Querschnittsweise Stabweise Vorhandene Bewehrung Digelbewehrung Digelbewehrung Stahlliste	Längsbe 3.000/I Länge 3	wehrung-J . Verank .923 m	ibmessunge irung 0.46:	n: //II. Verar	ukerung 0.4	1)4 × \$14	.0 mm		(1)4 × 814.0 mm, 1 = 3.92
	Gesamti Gesamti	.änge: 15. rewicht: 1	592 m. 3.96 kg				0.0		

3.5.4 Maske 4.1 Vorhandene Längsbewehrung

Bild 3.118: Maske 4.1 Vorhandene Längsbewehrung

Diese Maske enthält einen Vorschlag, wie die erforderliche Bewehrung als Längsbewehrung in den Stützen realisiert werden kann. In einer Tabelle werden für jeden Stab die erforderlichen "Positionen" angeben. Eine durchgehende, eingefärbte Zeile enthält die Nummer des Stabes und den verwendeten Querschnitt. Unterhalb dieser Zeile befinden sich dann die zugehörigen Positionen dieses Stabes.

Die vom Programm vorgeschlagene Längsbewehrung kann bei Bedarf angepasst werden.

Die Positionsnummer befindet sich in der ersten, grau hinterlegten Spalte dieser Tabelle. Die Spalte **A** gibt Auskunft über die Anzahl der Stäbe, die diese Position enthält. Klickt man in eine Zelle dieser Spalte, so erscheint eine Schaltfläche mit drei Punkten.

	A	B	С	D	E	F	G				
Position	Anzahl	ds	As	Stelle	x [m]						
Nr.	Stäbe	[mm]	[cm ²]	von	bis	Verankerung	Meldung				
	Stab Nr. 1 - Rechteck 300/500										
1	4	14.0	6.16	-0.461	3.461	V					

Bild 3.119: Anzahl der Stäbe einer Position

Klickt man auf diese Schaltfläche, so öffnet sich der Dialog *Längsbewehrung bearbeiten*. Dieser Dialog wird auf der nächsten Seite vorgestellt.

Die Spalte **B** enthält in jeder Zelle eine Liste, aus der ein anderer Stabdurchmesser *d*₅ für die aktuelle Position ausgewählt werden kann (siehe folgendes Bild).

	A	В	C	D	E	F	G
Position	Anzahl	ds	As	Stelle	x [m]		
Nr.	Stäbe	[mm]	[cm ²]	von	bis	Verankerung	Meldung
	Stab Nr. 1	- Rechteck	300/500				
	4	14.0 🔳	6.16	-0.461	3.461		
		8.0					
		10.0					
		12.0					
		14.0					
		16.0					
		20.0					a
		25.0					
		28.0					
		30.0					
		32.0					

Bild 3.120: Ändern des Stabdurchmessers einer Position

Die Ausgabe der Spalten **C** und **D** ist unveränderbar. Dort finden sich die Stellen *x* als Längen der Bewehrung, die sich aus der Verankerung ergeben. Sie sind auf den Stützenanfang bezogen.

Das Kontrollfeld in Spalte **E** steuert, ob eine *Verankerung* der Längsbewehrung berücksichtigt werden soll. Diese Option ist für den Bewehrungsvorschlag voreingestellt. Beim Klick auf die Schaltfläche [▼] erscheint die links dargestellt Liste. Über den Eintrag *Details* kann der Dialog *Längsbewehrung bearbeiten* aufgerufen werden, der u. a. die Angaben zu den Verankerungen verwaltet.

Bild 3.121: Dialog Längsbewehrung bearbeiten

Im Abschnitt *Durchmesser der Bewehrung* befindet sich eine Liste, über die ein anderer Durchmesser für die Bewehrungsstäbe dieser Position bestimmt werden kann. Diese Eingabe ist identisch mit der Auswahl in Spalte **B** der Maske *4.1 Vorhandene Längsbewehrung*.

Während des Auslegungsprozesses wird neben der statisch erforderlichen Bewehrung oft noch eine konstruktive Zwischenbewehrung ermittelt, um den Abstand zwischen den einzelnen Bewehrungsstäben nicht größer als zulässig werden zu lassen. Für den Nachweis der Biegebruchsicherheit in Maske 2.1 Nachweis Stäbe wird diese konstruktive Bewehrung vom Programm automatisch mit angesetzt. Es können aber auch bestimmte Positionen für den Nachweis der vorhandenen Sicherheit deaktivier werden, indem der Haken im Kontrollfeld Bewehrungsstäbe statisch wirksam entfernt wird.

Um die Änderungen wirksam werden zu lassen, ist der Dialog mit [OK] zu bestätigen. Dabei erscheint folgende Meldung:

Berechnung neu starten	×
Die vorhandene Bewehrung wurde geändert. Daher muss die vorhandene Sicherheit neu berechnet werden. Wollen Sie die vorhandene Sicherheit neu berechnen oder sol alle gemachten Änderungen zurückgenommen werden?	len
Neu berechnen Zurücknehmen A	bbrechen

Bild 3.122: Dialog Berechnung neu starten

Mit [Neu berechnen] werden sämtliche Nachweise der Maske 2.1 Nachweise Stäbe erneut mit der geänderten Längsbewehrung (und der vorhandenen Querkraftbewehrung der Maske 4.2 Vorhandene Querkraftbewehrung) geführt.

Über [Zurücknehmen] werden alle Veränderungen, die im Dialog Längsbewehrung bearbeiten vorgenommen wurden, zurückgesetzt.

Mit [Abbrechen] erscheint die Maske 4.1 Vorhandene Längsbewehrung erneut. Alle Eingaben im Dialog Längsbewehrung bearbeiten sind unverändert vorhanden.

Im Dialog Längsbewehrung bearbeiten ist noch der Abschnitt Verankerungen zu erläutern.

Veranker	rungen			
	Veranker	ungsart	Verbund	Verankerter Anteil
<u>A</u> nfang:	Gerade	•	gut 🔻	100.00 🔶 [%]
Ende <u>:</u>	Gerade	•	gut 🔻	100.00 🖨 [%]
	Veran I-1	kerungslänge I-2	Gesamt	Biegerollendurchmesser d-br
An <u>f</u> ang:	0.461	0.000	0.461 [m]	0.000 [m]
Ende:	0.461	0.000	0.461 [m]	0.000 [m]

Bild 3.123: Abschnitt Verankerungen

Es stehen zwei identische Listen zur Bestimmung der Verankerungsart jeweils für den Stützenanfang und das Stützenende zur Verfügung:

(Gerade 🗾 👻
0)hne Verankerung
0	aerade 👘 👘
ŀ	laken
١	√inkelhaken
C	Gerade mit Stab
ŀ	Haken mit Stab
Q	aerade mit zwei Stäben
l)bergreifungsstoß
Ì)bergreifungsstoß

Bild 3.124: Verankerungsart

Je nach gewählter Verankerungsart werden die erforderlichen Längen *I-1, I-2* und *I-3* der Verankerungen in den grau unterlegten Textfeldern ausgeben. Die Verankerung wird zudem zur besseren Verständlichkeit in der rechtseitigen Grafik dargestellt.

Ferner kann in diesem Dialog die Lage der vorhandenen Bewehrungsstäbe angepasst werden. Im Abschnitt **Lage des Bewehrungsstabes** können in einer Tabelle die y- und z-Koordinaten eines jeden Bewehrungsstabes sowie dessen Drehung um die Längsachse geändert werden.

Bild 3.125: Abschnitt Lage des Bewehrungsstabes

Rechts neben der Tabelle befindet sich eine interaktive Grafik. Jeder Bewehrungsstab, dessen Zeile durch Anklicken in der Tabelle markiert wird, wird in der Grafik rot hervorgehoben.

3.5.5 Maske 4.2 Vorhandene Bügelbewehrung

Bild 3.126: Maske 4.2 Vorhandene Bügelbewehrung

In einer Tabelle werden für jeden Stab zeilenweise Positionen der Bügelbewehrung ausgegeben.

Eine *Position* wird durch die Anzahl der Bügel (Spalte A), den Bügeldurchmesser d_s (Spalte B), den Bügelabstand s_{sw} (Spalte E) und die Schnittigkeit (Spalte F) definiert.

Besondere Bedeutung kommen den Spalten **C** und **D** *Stelle x* zu. In Spalte D wird der Abstand des ersten Bügels vom Stützenanfang in Metern angegeben. In Spalte E findet sich die x-Stelle

des letzten Bügels. Die Stellen x beziehen sich auf die x-Achse des lokalen Stabkoordinatensystems, das an einem Knoten des Stabes seinen Anfang hat.

Die Bügelanordnung lässt sich anhand eines Beispiels erklären.

Bild 3.127: Darstellung einer Stütze im Rendering und im Schwerelinienmodell

An die zur Bemessung ausgewählte Stütze schließt links ein Balken an. Bügel werden deshalb nur vom Stützenanfang (Auflager) bis zur Unterkante des Balkens geführt. Der Balken besitzt eine Höhe von 100 cm. Bügel sind demnach auf einer effektiven Länge von 5,70 m zu verteilen. Diese Länge ergibt sich, indem von der Systemlänge der Stütze (6,20 m) die halbe Balkenhöhe (0,50 m) abgezogen wird.

Beginnend am Stützenanfang (Auflager) werden die Bügel im maximal zulässigen Abstand angeordnet. Der erste Bügel wird dabei in einem Abstand positioniert, der der größten seitlichen Betondeckung entspricht.

Nun werden nacheinander weitere Bügel im gleichen Abstand angeordnet, bis die zuvor ermittelte effektive Länge von 5,70 m überschritten wird. Da der letzte Bügel nicht möglich ist, wird dieser dann wieder zurückgenommen. Es ergibt sich folgende Bügelverteilung:

Bild 3.128: Darstellung der Bügelverteilung

Die Bügelverteilung kann bereits bei der Eingabe in Maske 1.5 Stützenparameter - stabweise beeinflusst werden.

RF-BETON Stützen - [P_3_8NMM	/]														×	
Datei Einstellungen Hilfe																
FA1 -	1.5 Stüt	zenpara	meter -	stabweise												
Eingabedaten		A	В	С	D	E	F	G	H		J	К	L	M	N	
Basisangaben	Stab	Länge		Kr	nicken	um Achse y				Kn	icken i	um Achse z			Kommen-	
Materialien	Nr.	[m]	Möglich	Verschieb.	Auto	βy[-]	10.y [m]	λy [·]	Möglich	Verschieb.	Auto	βz [·]	10,z [m]	λz [·]	tar	
Querschnitte	1	3.000	☑			1.000	3.000	20.8	☑		V	1.000	3.000	34.6		
Bewehrung																
-1																
- Parameter - stabweise																
	Konstruk	ktionstyp	: 💿 <u>M</u> o	nolitisch	🔘 Au	s <u>F</u> ertigteilen								B V		
	Einstellu	ungen f	ür Stab I	Nr. 1							Re	chteck 300/	500			
	Quer	schnitt						1-	Rechter	k 300/500	-					
		meine	Eigenso	haften					noontoo	1000/000	_	300.0				
		tzlänge	-								_					
	E Schl	ankhei	t													
	🗄 Bela	stungs	verteilur	ng												
	🗆 Stütz	zenabs	chluss													
	🗆 am	Knoten				Nr.			1	Ц						
	Bügelabstand reduzieren						V	1	8							
	Auflager			Nr.			2	2		S S	Y					
	🗆 am	Knoten				Nr.			2	2						
		Bügelab	stand red	uzieren				_		1	_					
	- 1	Auflager				Nr.			1							
	Bela	stung o	letiniere	n				_			_	+				
	Kom	mentar						_			_		2			
															[mm]	
	Eing	aben zu	ordnen SI	täben Nr.:						S Alle		9		×) 🗂 🕅	
	Berech	nung	Nach	weis					<u>G</u> rafik			(OK		Abbrechen	

Bild 3.129: Maske 1.5 Stützenparameter - stabweise

Wird wie im Bild oben gezeigt für einen Stab am Stützenabschluss (Knoten) die Option *Bügelabstand reduzieren* aktiviert, so wird auf einer bestimmten Länge an dieser Stabseite der zuvor ermittelte Bügelabstand mit dem Faktor 0,6 multipliziert. Damit erhält die Bügelbewehrung eine zusätzliche Position mit reduziertem Abstand im auflagernahen Bereich:

Bild 3.130: Maske 4.1 Vorhandene Bügelbewehrung

In den Spalten D und E ist zu sehen, dass das Ende des Verlegebereichs für Position 1 an derselben Stelle x ist wie der Anfang des Verlegebereichs der Position 2.

4.2 Vorhandene Bügelbewehrung						
	A	В	С	D		
Position	Anzahl	ds	Stelle	x [m]		
Nr.	Bügel	[mm]	von	bis		
	Stab Nr.	1 - Rechte	ck 300/500			
1	4	8.0	0.034	0.538		
2	8	8.0	0.538	2.778		

Bild 3.131: Anfang und Ende des Verlegebereichs

Ändert man nun das Ende des Verlegebereichs der Position 2 von 2,778 m auf 2,00 m (ergibt umgerechnet 1,938 m), so wird der restliche Bereich mit einer weiteren Position gefüllt. In Spalte G wird die Meldung *29* angezeigt, dass die vorhandene Bewehrung geändert wurde.

RF-BETON Stützen - [P_3_8NM	M]										×
<u>D</u> atei Einstellungen Hilfe											
FA1	4.2 Vorh	andene B	ügelbew	ehrung							
Eingabedaten	=	A	В	С	D	E	F		G		
Basisangaben	Position	Anzahl	ds	Stelle	x [m]	Abstand	Anzahl				
Materialien	Nr.	Bügel	[mm]	von	bis	s _{sw} [mm]	Schnitte		Meldung		
- Querschnitte		Stab Nr.	1 - Rechte	ck 300/500							
🖻 Bewehrung	2	4	8.0	0.034	0.538	168.0	2	29)			
	3	5	8.0	0.538	1.938	280.0	2	29)			
Parameter - stabweise	4	3	8.0	1.938	2.442	168.0	2	29)			
Ergebnisse											
🖨 Nachweis										÷ 🛏	
									۵ 🎝	Зж0.168	(4)3 x \$8.0 mm
Stabweise											
Vorbandene Bewebrung										5x0.280	(3)5 x \$8.0 mm
- Längsbewehrung											Ŭ
Bügelbewehrung											
Stahlliste				_		_				+ -	
					•	٦				4x0.168	24 x \$8.0 mm
										+ =	
							Da as		- 0.158 m		
							35	3 0 mm	- 0.280 m	0.254	
							43.0	3 0 mm	- 0.168 m		be 20.
										AAA STI	-P-
										0.254	
					•	9					
	Bugelal	omessung:	en :	0.050 -							
	Bügella	inge: 1.51	L6 m	0.030 m							
	Bügelge	wicht:0.	60 kg								
	Gesant	Länge:6.0	064 m.						X 		(
	Gesamt	gewicht::	2.39 kg								
	Berechr	nung	<u>N</u> achweis	3D Ar	nsicht <u>M</u>	eldungen.		<u>G</u> rafik		OK	Abbrechen
Die vorhandene Bewehrung wurde	geändert. E	s muss de	shalb die v	orhandene S	icherheit ne	u berechn	et werden.				

Bild 3.132: Maske 4.2 Vorhandene Bügelbewehrung

Über die Schaltfläche [Bearbeiten] ist es möglich, verschiedene Veränderungen einer Position vornehmen.

2	
Bear	beiten

Bild 3.133: Schaltfläche [Bearbeiten]

Es erscheint der Dialog *Bügelbewehrung bearbeiten*, in dem der Abstand, der Durchmesser und die Schnitte der aktuellen Position angepasst werden können (siehe folgendes Bild).

ügelbewehrun	g bearbeiten Stab I	Nr. 1, Position Nr. 2
Länge		Bügelabmessungen:
x-Stelle <u>v</u> on:	0.610 [m]	<u>H</u> öhe: 456.0 [mm]
bjs:	1.954 [m]	Breite: 256.0 [mm]
Länge:	1.344 [m]	V <u>e</u> rankerungs- länge: 50.0 [mm]
Bügelparameter		
Ab <u>s</u> tand:	0.192 🌲 [m]	Anzahl Bügel: 7
<u>D</u> urchmesser:	8.0 🔻 [mm]	Anzahl Schnitte: 2 💌
٢		OK Abbrechen

Bild 3.134: Dialog Bügelbewehrung bearbeiten

3D Ansicht

In den Masken 4.1 Vorhandene Längsbewehrung und 4.2 Vorhandene Bügelbewehrung wird am unteren Rand die Schaltfläche [3D Ansicht] angeboten. Sie ruft ein neues Fenster auf, in dem die Längs- und Querkraftbewehrung in dreidimensionaler Darstellung zu sehen sind.

Mit den Schaltflächen in der Symbolleiste kann die Grafik angepasst werden. Deren Funktion ist im Bild 3.138 kurz erklärt.

Datei Extras	Ansicht	
🚭 🖲 🔍 🧕	\ ᠿ テ₄ テϡ テ¿ ♂ ♂ ♂ ⑦ ⑦	2

Bild 3.136: Schaltflächen

Über die Schaltfläche [Drucken] wird der Dialog Grafikausdruck aufgerufen:

Grafikausdruck		×				
Basis Optionen						
Grafikbild Image: Sofort ausdrucken Image: Imag	Welche Fenster Image: Welche Fenster	Grafikgröße				
Grafikbild-Größe ♥ ①ber gesamte Seitenbreite ● 0ber gesamte Seitenhöhe ● Höhe: 100 束 [% der Seite] Drehung: 0 🚖 [*]	Optionen Im Ergebnisverlauf Werte an gewünschter x-Stelle ausgeben Grafikbild sperren (ohne Aktualisierung)					
Grafik-Überschrift Bewehrung		OK V Abbrechen				

Bild 3.137: Dialog Grafikausdruck

Dieser Dialog ist aus RFEM bzw. RSTAB bekannt. Mit den beiden Möglichkeiten im Abschnitt *Grafikbild* kann festgelegt werden, ob die 3D-Grafik sofort ausgedruckt oder in das Ausdruckprotokoll übernommen werden soll.

Für jede Schaltfläche zur Steuerung der 3D-Ansicht gibt es eine kontextsensitive Hilfe. Sie erscheint, wenn man mit der Maus eine Weile über einer Schaltfläche verweilt.

Struktur gesamt anzeigen (F8)	ometrische Ansich	nt Einen Bew	ehrungsschub a	nzeigen I	
Zo <mark>om mit Maus Letzte Ansich</mark>	ht Pers	spektivische Ansia	:ht		
		Schubbewehrun	ig einsehen		
Datei Extras Ansicht					
Drucken — 🎒 🕐 🔍 🍳 🗄 🗖	🗗 🗗 🔁 🕞	100 🗖 🖻			
XZ-Ansicht	XY-Ansicht		Achse zeigen		
Funktion zum Bewegen, Dreben und Zoomen	Drah				
- and contract can be regen, brenen and coonen			Einen Bewehru	ngsstock anze	eigen
V7. A	n sisht	Volimodell			
12-4	Bieget	bewehrung einsel	hen		

Bild 3.138: Funktion der Schaltflächen (kontextsensitive Hilfe)

Am einfachsten probiert man diese Schaltflächen aus und beobachtet die Veränderungen in der grafischen Darstellung.

4. Ergebnisauswertung

4.1 Ergebnisdarstellung in RFEM/RSTAB

Um die Ergebnisse im Arbeitsfenster von RFEM bzw. RSTAB an den Stützen darzustellen, muss zunächst in der Liste der Bemessungsfall von **RF-/BETON Stützen** ausgewählt werden.

E <u>x</u> tras	<u>T</u> abelle	<u>O</u> ptionen	Developers	<u>Z</u> usatzmo	dule
<u>≎</u> _ L	F1 - g-k (Ei	gengewicht Sl	tütze	- < >	<u>@</u>
9 f <mark>.</mark>	F1 - g-k (Ei F2 - g-k,w (gengewicht SI Wind)	tütze + Binder)	t 🔍 (X (
	F3 - q-k,s (\$ G1 - LF1 + G2 - 1 25*i	Schneelast Bir 0.9*LF2 E1 ± 0.9*LE2	nder) ±1.5≊LE2		
Ŭ	G3 - LF1 + G4 - 1.35*L	1.5*LF2 F1 + 1.5*LF2	+ 0.75*LF3		
L	K1 - LF1/S K2 - 1.35*L	+ 0.9*LF2/S F1/S + 0.9*LF	2/S + 1.5*LF3	/S	
	КЗ - LF1/S К4 - 1.35*L Б РЕТОМ (+ 1.5*LF2/S F1/S + 1.5*LF Stillson FA1	² 2/S + 0.9 [×] LF3	/s	

Bild 4.1: Bemessungsfall von RF-BETON Stützen in RFEM auswählen

Zudem ist sicherzustellen, dass im Zeigen-Navigator ein Haken zur Darstellung der Ergebnisse und somit des Ergebnisse-Navigators gesetzt ist.

Projekt-Navigator - Zeigen	д	×
🖽 🗹 💓 Modell		
🗄 🗹 🛃 Belastung		
🗄 🗹 🌠 Ergebnisse		
🗄 🗹 🏢 FE-Netz		
🗄 🔳 🚅 Schnitte		
🗄 🗹 📣 Glättungsbereiche		
🗄 🔲 🗬 Hilfsobjekte		
🛓 🗐 🛃 Allgemein		
🗄 🗹 💷 Nummerierung		
🛓 🖩 🔛 Farben in Rendering nach		
🗄 🗉 🔟 🥸 Rendering		
🗄 🔲 🔛 Vorselektion		
🗄 🖩 🖪 🛃 Zusatzmodule		
🛱 Daten 🛛 Zeigen 🖉 Ansichten 🗢 Ergebnisse	ż	

Bild 4.2: Darstellen der Ergebnisse

Anschließend ist der Ergebnisse-Navigator zu aktivieren.

Projekt-Navigator - Ergebnisse	д	×
🖃 💷 📲 Nachweiskriterium		
🔤 🚽 Größtes Nachweiskriterium aller Nachwe	eise	
🔤 📲 Querkraft - Querschnitt völlig überdrück	t	
🖃 🔳 📲 Zwischenergebnisse		
Here Biegung		
🗄 🔲 📲 Querkraft - Querschnitt völlig überdi	rücl	đ
🖶 🔲 📲 Querkraft - Ohne Querkraftbewehru	ng	
🖃 💷 🖬 Erforderliche Bewehrung	-	
🖃 🔲 📲 Zwischenergebnisse		
🕰 Daten 📺 Zeigen 🔬 Ansichten 🐤 Ergebnisse		

Bild 4.3: Ergebnisse-Navigator

4 Ergebnisauswertung

Auf den obersten Darstellungsebenen dieses Navigators existieren die Haupteinträge Nachweiskriterium und Erforderliche Bewehrung.

Unter dem Eintrag *Nachweiskriterium* finden sich die Ergebnisse der beiden Ausgabemasken 2.1 Nachweis Stäbe bzw. 2.2 Nachweis Stabsätze.

Der Haupteintrag Erforderliche Bewehrung enthält die Ergebnisse der Ausgabemasken 3.1 Erforderliche Bewehrung querschnittsweise bzw. 3.2 Erforderliche Bewehrung stabweise.

Auf der nächsten Darstellungsebene sind zunächst die einzelnen Nachweise aufgeführt. Wird eines der Kontrollfelder aktiviert, so erscheint das Nachweiskriterium dieses Nachweises für die zur Bemessung ausgewählten Stützen.

Bild 4.4: Darstellung des Nachweiskriteriums und der Zwischenergebnisse

Unter dem Eintrag *Zwischenergebnisse* finden sich getrennt für die einzelnen Nachweise die gleichen Werte wie in der Detailtabelle des jeweiligen Nachweises.

In der RFEM- bzw. RSTAB-Grafik wird der ausgewählte Wert – z. B. das Nachweiskriterium für die Biegebruchsicherheit – als einzelner Strich senkrecht zur Stütze an jeder Stelle dargestellt, an der der Nachweis geführt wurde.

Bild 4.5: Darstellung des Nachweiskriteriums

4 Ergebnisauswertung

Es können auch mehrere Ergebnisarten im Arbeitsbereich von RFEM dargestellt werden. Dem Ergebnis, das man im Navigator durch Anhaken zur Darstellung auswählt, wird dann im *Panel* eine Farbe zugeordnet.

Bild 4.6: Zusammenhang zwischen Ergebnisse-Navigator und Panel

Gleichzeitig können bis zu acht verschiedene Werte als farbliche Verläufe angezeigt werden. Im mittleren Register des Steuerpanels ist für die Stabverläufe ein Drehfeld verfügbar.

Panel	×
Anzeigefaktoren	
Verformung:	
Stabverläufe:	
Elächenverläufe:	
S <u>c</u> hnitte:	
Lagerkräfte:	
Trajektorien:	
L 20 1	

Bild 4.7: Steuerpanel-Register Anzeigefaktoren

Damit kann die Skalierung des grafischen Werteverlaufs angepasst werden.

Im letzten Register des Steuerpanels besteht die Möglichkeit, die Anzahl der dargestellten Stäbe zu reduzieren.

Bild 4.8: Steuerpanel-Register Filter

In das Textfeld oberhalb der Liste können die Nummern der Stäbe eingetragen werden, deren Ergebnisverläufe angezeigt werden sollen. Diese Vorgabe wird mit der Schaltfläche [Anwenden] wirksam. Damit werden die ausgewählten Stäbe auch in die Liste der übrigen Selektionen übernommen. Es werden ausschließlich die Ergebnisverläufe an diesen Stützen dargestellt.

Sind im Arbeitsfenster von RFEM bzw. RSTAB bereits eine oder mehrere Stützen selektiert, so können diese mit der Schaltfläche [Von der Selektion übernehmen] ebenfalls in die Liste übernommen werden.

Mit den Schaltflächen [Markierte Zeile(n) löschen] und [Alle Zeilen löschen] können eine, beliebig viele bzw. alle vom Benutzer angelegten Zeilen gelöscht werden.

4.2 Ausdruck

Es gibt drei Möglichkeiten, das Ausdruckprotokoll zu öffnen:

• Schaltfläche [Aktives Ausdruckprotokoll] in der Symbolleiste

Bild 4.9: Schaltfläche [Aktives Ausdruckprotokoll]

• Menü Datei -> Ausdruckprotokoll öffnen

: 415	Date	Bearbeiten	Ansicht	Einfügen			
:		Neu		Strg+N			
-	2	Öffnen	Strg+O				
-	2	Schließen	Strg+W				
		Speichern		Strg+S			
	F	Speichern unter		F12			
	P	Als Vorlage spei	chern				
		Selektion speich	ern unter.				
		Kopie speichern					
	٢	Alle speichern					
	P	Versenden					
	۵	Grafik drucken	Strg+P				
		Drucker einricht	en				
		Ausdruckprotok	oll öffnen				
	3	Projektmanager.					
		Modelldaten					
	3	Blockmanager					
	5	Speichern als Bl	ock	Strg+B			
	3	Block einfügen		Strg+K			
	-	Importieren		Strg+I			
		Exportieren		Strg+E			

Bild 4.10: Datei \rightarrow Ausdruckprotokoll öffnen

• Kontextmenü Ausdruckprotokolle im Daten-Navigator

Bild 4.11: Kontextmenü im Daten-Navigator

Dieses Kontextmenü wird durch einen Klick mit der rechten Maustaste auf den Eintrag *Ausdruckprotokolle* aktiviert.

Es erscheint folgender Dialog:

Neues Auso	Iruckprotokoll
Nr.	Bezeichnung
	Eingabedaten und reduzierte Ergebnisse
1 - Eingab	edaten und reduzierte Ergebnisse 🔹 🏹 🛜
	OK Abbrechen

Bild 4.12: Dialog Neues Ausdruckprotokoll

Die Nummer des Protokolls wird automatisch vergeben, kann aber im Eingabefeld *Nr*. geändert werden. Im Eingabefeld *Bezeichnung* lässt sich ein Name für das Protokoll angeben, der die Auswahl in den Listen erleichtert. Diese Bezeichnung erscheint nicht im Ausdruck.

Aus der Liste unter *Voreinstellung übernehmen von Muster* kann ein bestimmtes Musterprotokoll als Vorlage gewählt werden. Die Beschreibung der Musterprotokolle finden Sie im Kapitel 10.1.7 des RFEM-bzw. RSTAB-Handbuchs.

Nach [OK] erscheint die Vorschau auf den zu erwartenden Ausdruck. Das Ausdruckprotokoll enthält sämtliche Ein- und Ausgabedaten, wie sie auch im Modul zu finden sind. Es ist wie in folgender Abbildung dargestellt aufgebaut.

Bild 4.13: RFEM-Ausdruckprotokoll mit Daten von RF-BETON Stützen

Die allgemeine Funktionsweise des Ausdruckprotokolls ist im Kapitel 10 des Handbuchs von RFEM bzw. RSTAB beschrieben. Hier sei nur die Selektion der zu druckenden Daten erläutert, die über die Schaltfläche [Themen für Ausdruckprotokoll wählen] erreicht werden kann:

ò	Ausdr	uckprotok	coll - AP1	l: Eing	abe und	l reduzi	ierte E	rgebn	isse*					
1	Datei	Ansicht	Bearbei	iten	Einstell	ungen	Einfi	ügen	Hilfe					
	1	🗐 📎	℃ ⊲			-	<u></u>	S. 🧯	- 1		🖻	🗅 💰) 🍃	2
										1				
					bemen f	ür Auco	drucko	rotok	والطقيب الم					

Bild 4.14: Schaltfläche [Themen für Ausdruckprotokoll wählen]

Im Dialog *Ausdruckprotokoll-Selektion* ist in der linken Spalte das Modul RF-/BETON Stützen auszuwählen, um dessen Ein- bzw. Ausgabedaten für den Ausdruck aufzubereiten.

Bild 4.15: Dialog Ausdruckprotokoll-Selektion, Register Globale Selektion

Für das Modul RF-/BETON Stützen stehen drei Register zur Verfügung.

Im oben abgebildeten Register **Globale Selektion** finden sich im Bereich Anzeigen von drei Kontrollfelder. Wird das Häkchen von Daten des Moduls entfernt, so erscheinen keine Daten von RF-/BETON Stützen im Ausdruckprotokoll.

Sollen nur die Eingabedaten bzw. nur die Ausgabedaten ausgegeben werden, so sind die Kontrollfelder *Ergebnisse* bzw. *Eingabedaten* zu deaktivieren.

Im Abschnitt *Zu zeigende Fälle* können die Daten jener Bemessungsfälle ausgewählt werden, die im Ausdruck erscheinen sollen. Ist das Häkchen im Kontrollfeld *Alle Fälle anzeigen* gesetzt, so ist ein Verschieben der vorhandenen Bemessungsfälle von der linken Tabelle nach rechts in

die Tabelle der darzustellenden Bemessungsfälle nicht möglich. Erst nach dem Entfernen des Häkchens können Bemessungsfälle mit den Schaltflächen [▶] und [▶▶] übertragen werden.

Das Register Eingabedaten bietet die in folgendem Bild dargestellten Auswahlmöglichkeiten:

Ausdruckprotokoll-Selektion	- AP1	×
Programm / Modul	Globale Selektion Eingabedaten Ergebnisse	
RF-BETON Stützen	Anzeigen von	
	♥ 1.1 Basisangaberi NrSelektion (z.B. 1-5,20)	
	V 1.2 Materialien Materialien: Alle	
	✓ 1.3 Querschnitte Querschnitte: Alle	
	I.4 Bewehrung Bewehrungssätze: Alle ▼	
	V 1.5 Parameter punktweise Stäbe: Alle	
	VI. <u>6</u> Parameter stabsatzweise Stabsätze: Alle	
	Eingabedetails anzeigen	
Anzeigen		
Deckblatt		
Info-Bilder		
	OK Abbr	echen

Bild 4.16: Dialog Ausdruckprotokoll-Selektion, Register Eingabedaten

Anhand der Kontrollfelder kann festgelegt werden, welche Eingabedaten aus den einzelnen Masken im Ausdruckprotokoll erscheinen.

Jede der Eingabemasken enthält wiederum Datensätze, die durch Nummern identifiziert sind. So werden beispielsweise in Maske *1.2 Material* verschiedene Materialien geführt, die durch die Materialnummer bestimmbar sind. Die Materialnummer kann im Eingabefeld der entsprechenden Zeile eingetragen oder ausgewählt werden. Damit erscheinen nur die Materialien mit dieser Nummer im Ausdruckprotokoll.

Gleiches gilt für die Auswahl von Querschnittsnummern, den Nummern von Bewehrungssätzen sowie den Nummern von Stäben und Stabsätzen. Stäbe oder Stabsätze können über die Schaltfläche [^k] auch grafisch im Arbeitsfenster von RFEM bzw. RSTAB ausgewählt werden.

									1	3		M St	eh äbe	rfa e p	ick	en	184	va	hl							
									Au 5,8	sge }	ew.	ahl	:					_								
									C	Le	ere	en)		114	C	(эк)	0	АЬ	bre	ch	en	ŀ
								Ļ						-	-			_								1
											•															
Ċ,																										
t :																										
	-	_	K	 	 _	 _	 				1				_			_	_							

Bild 4.17: Grafische Auswahl von Stäben für Ausdruckprotokoll

4 Ergebnisauswertung

Die selektierten Stäbe werden im *Mehrfachauswahl*-Fenster angegeben. Im Modell sind sie in der Selektionsfarbe dargestellt. Nach [OK] werden die Nummern in das Eingabefeld des Dialogs *Ausdruckprotokoll-Selektion* übernommen.

Im Register *Ergebnisse* lassen sich die Bemessungsergebnisse für den Ausdruck auswählen.

Programm / Modul	Charles and the Freeboice	
BEEM	Globale Selektion Lingabedaten Ligebnisse	
RF-BETON Stützen	Anzeigen von	
	Nr. Selektion (z.B. 1-5.20)	
	Z.1 Nachweise stabweise	
	2 2 Nachweise stabsatzweise Stabsätze: Alle	
	Zwischenergebnisse anzeigen	
	Erforderliche Bewehrung	
	🛛 🕼 3.1 querschnittweise	
	▼ 3.2 stabweise	
	▼ 3.3 stabsatzweise Stabsätze: ▲lle ▼ 15	
	V zwischenergebnisse anzeigen	
	Vorhandene Bewehrung	
	🔽 4.1 Längsbewehrung Stäbe: 📶 🗸 Stäbe: 🗐	
	🕼 4.2 Schubbewehrung Stäbe: Alle 👻	
	☑ 5.1 Stückliste	
A		
Anzeigen		
Deckolatt		
V Info-Bilder		

Bild 4.18: Dialog Ausdruckprotokoll-Selektion, Register Ergebnisse

Jede mit einem Kontrollfeld versehene Zeile repräsentiert eine Ausgabemaske. Wird der Haken von einem Kontrollfeld entfernt, so erscheinen von dieser Maske keine Daten im Ausdruck.

Die Ergebnisse sind stab-, stabsatz- oder querschnittsweise organisiert. Durch Eingabe der Stab-, Stabsatz- oder Querschnittsnummer(n) im jeweiligen Eingabefeld am Zeilenende lassen sich die Ergebnisse weiter reduzieren.

Die Schaltfläche [^{*}] ermöglicht die oben beschriebene grafische Auswahl von Stäben oder Stabsätzen im Arbeitsfenster von RFEM bzw. RSTAB.

5. Beispiele

5.1 Randstütze

5.1.1 System und Belastung

Untersucht wird eine Stütze nach DIN EN 1992-1-1, die Teil des folgenden Systems ist (vgl. [4], Seite 10-2).

In RFEM bzw. RSTAB werden drei Lastfälle mit folgenden Lasten definiert:

Bild 5.2: Lastfall 1: g-k (Eigengewicht Stütze + Binder)

Bild 5.3: Lastfall 2: q-k,w (Wind)

Winddruck und Windsog werden abweichend zur Literatur in einem Lastfall zusammengefasst.

Bild 5.4: Lastfall 3: q-k,s (Schneelast Binder)

5.1.2 Bemessungswerte Tragfähigkeit

Die Teilsicherheitsbeiwerte in den Grenzzuständen der Tragfähigkeit sind wie folgt:

Einwirkungen	günstig	ungünstig
ständige	$\gamma_G = 1,0$	$\gamma_{\rm G} = 1,35$
veränderliche	$\gamma_Q = 0$	$\gamma_Q = 1,50$

Die Kombinationsbeiwerte in den Grenzzuständen der Tragfähigkeit betragen:

Einwirkungen	günstig	ungünstig
Ständige und veränderliche	$\psi_{0,i} = 0,5$	$\psi_{0,i} = 0,6$

Die allgemeine Grundkombination formuliert sich zu:

$$\boldsymbol{G}_{d} + \boldsymbol{Q}_{d} = \boldsymbol{\gamma}_{\boldsymbol{G}} \cdot \boldsymbol{G}_{k} + \boldsymbol{\gamma}_{\boldsymbol{Q},1} \cdot \boldsymbol{Q}_{k,1} + \sum \boldsymbol{\gamma}_{\boldsymbol{Q},i} \cdot \boldsymbol{\psi}_{0,i} \cdot \boldsymbol{Q}_{k,j}$$

Wie in der verwendeten Literatur ersichtlich, ergibt sich der maßgebende Schnittgrößenverlauf an der Stütze, die Windsog erhält. Zur Ermittlung dieses maßgebenden Schnittgrößenverlaufs werden die Lastkombinationen LK1, LK2, LK3 und LK4 gebildet.

Für diese Lastkombinationen ergeben sich verschiedene Verläufe der Schnittgrößen N und M_y entlang der Stütze. Wie im Kapitel 2.2 des Handbuchs beschrieben, findet eine Bemessung für die Stellen der minimalen Normalkraft N, des maximalen Biegemoments M_y und des minimalen Biegemoments M_y statt.

Bei den zur Bemessung ausgewählten Lastkombinationen LK2, LK3 und LK4 werden deshalb im folgenden Abschnitt die zu untersuchenden Stellen mit einem Pfeil markiert.

1. Grundkombination: Leiteinwirkung Schneelast q_{k,s}

<u>Günstig:</u>

$$\begin{split} g_{d} &= \gamma_{G} \cdot g_{k} = 1,0 \cdot g_{k} \\ q_{d,s} &= \gamma_{Q,1} \cdot q_{k,s} = 0,0 \cdot q_{k,s} = 0 \\ q_{d,w} &= \sum \gamma_{Q,2} \cdot \psi_{0,2} \cdot q_{k,w} = 1,50 \cdot 0,6 \cdot q_{k,w} = 0,9 \cdot q_{k,w} \end{split}$$

Für die erzeugte Lastkombination LK1 ergibt sich folgender Schnittgrößenverlauf:

	A	B				
Stab	Knoten	Stelle	Kräfte	• [kN]	Momente [kNm]	
Nr.	Nr.	x [m]	N	Vz	My	
6	6	0.000	-431.000	23.036	-60.546	1 - Rechteck 40/45
	7	6.200	-403.100	7.970	35.573	
	Max N	6.200	-403.100	7.970	35.573	
	Min N	0.000	-431.000	23.036	-60.546	
	Max Vz	0.000	-431.000	23.036	-60.546	
	Min Vz	6.200	-403.100	7.970	35.573	
	Max My	6.200	-403.100	7.970	35.573	
	Min M _V	0.000	-431.000	23.036	-60,546	

Gesamt Knoten - Lagerkräfte Knoten - Verformungen Stäbe - Lokale Verformungen Stäbe - Globale Verformungen Stabe - Schnittgrößen

Diese Stellen der Stütze werden vom Programm untersucht

Bild 5.5: Ergebnisse LK1

<u>Ungünstig:</u>

 $g_d = \gamma_G \cdot g_k = 1.5 \cdot g_k$

 $q_{d,s} = \gamma_{Q,1} \cdot q_{k,s} = 1,50 \cdot q_{k,s} = 1,50 \cdot q_{k,s}$

 $q_{d,w} = \sum \gamma_{Q,2} \cdot \psi_{0,2} \cdot q_{k,w} = 1,50 \cdot 0,6 \cdot q_{k,w} = 0,9 \cdot q_{k,w}$

Für die erzeugte Lastkombination LK2 ergibt sich folgender Schnittgrößenverlauf:

	Δ	B	C	D	F	
Stab	Knoten	Stelle	Kräfte	[kN]	Momente [kNm]	
Nr.	Nr.	x [m]	N	Vz	My	
6	6	0.000	-683.860	28.865	-72.497	1 - Rechteck 40/45
	7	6.200	-646.190	13.799	59.759	
	Max N	6.200	-646.190	13.799	59.759	
	Min N	0.000	-683.860	28.865	-72.497	
	Max Vz	0.000	-683.860	28.865	-72.497	
	Min Vz	6.200	-646.190	13.799	59.759	
	Max My	6.200	-646.190	13.799	59.759	
	Min M _V	0.000	-683.860	28.865	-72.497	

Gesamt Knoten - Lagerkräfte Knoten - Verformungen Stäbe - Lokale Verformungen Stäbe - Globale Verformungen Stäbe - Schnittgrößen

Bild 5.6: Ergebnisse LK2

Diese Stellen der Stütze werden vom Programm untersucht-

2. Grundkombination: Leiteinwirkung Wind

<u>Günstig:</u>

$$\begin{split} g_{d} &= \gamma_{G} \cdot g_{k} = 1, 0 \cdot g_{k} \\ q_{d,w} &= \gamma_{Q,1} \cdot q_{k,w} = 1, 50 \cdot q_{k,w} = 1, 5 \cdot q_{k,w} \\ q_{d,s} &= \sum \gamma_{Q,2} \cdot \psi_{0,2} \cdot q_{k,s} = 0, 0 \cdot 0, 5 \cdot q_{k,s} = 0, 0 \end{split}$$

Für die erzeugte Lastkombination LK3 ergibt sich folgender Schnittgrößenverlauf:

	🔟 🔄 🔄 🛃 🔛 🎒 😜 🔛 🔛 LK3 - LF1 + 1.5*LF2 💉 🔍 🔉 🖓 🛃 🔜								
	A	В	С	D	E				
Stab	Knoten	Stelle	Kräfte	e [kN]	Momente [kN	lm]			
Nr.	Nr.	x [m]	N	Vz	My				
6	6	0.000	-431.000	31.974	-87.7	47	1 - Rechteck 40/45		
	7	6.200	-403.100	6.864	32.6	49			
	Max N	6.200	-403.100	6.864	32.6	49			
	Min N	0.000	-431.000	31.974	-87.7	47			
	Max Vz	0.000	-431.000	31.974	-87.7	47			
	Min Vz	6.200	-403.100	6.864	32.6	49			
	Max My	6.200	-403.100	6.864	32.6	49			-
	Min My	0.000	-431.000	31.974	-87.7	47			-
Gesamt	Knoten - Lager	kräfte Knote	n - Verformungen	Stäbe - Lokale V	/erformungen	Stä	be - Globale Verformungen	Stäbe - Schnittgr	ößen]

Diese Stellen der Stütze werden vom Programm untersucht

Bild 5.7: Ergebnisse LK3

Ungünstig:

 $\mathbf{g}_{\mathbf{d}} = \boldsymbol{\gamma}_{\mathbf{G}} \cdot \mathbf{g}_{\mathbf{k}} = \mathbf{1}, \mathbf{35} \cdot \mathbf{g}_{\mathbf{k}}$

 $q_{d,w} = \gamma_{Q,1} \cdot q_{k,w} = 1,50 \cdot q_{k,w} = 1,5 \cdot q_{k,w}$

 $q_{d,s} = \sum \gamma_{Q,2} \cdot \psi_{0,2} \cdot q_{k,s} = 1.5 \cdot 0.5 \cdot q_{k,s} = 0.75 \cdot q_{k,s}$

Für die erzeugte Lastkombination LK4 ergibt sich folgender Schnittgrößenverlauf:

4.6 Stäb	4.6 Stäbe - Schnittgrößen							
4	🔟 📴 🛄 🚍 🛃 🎒 🧲 📰 🔐 🛛 LK4: 1.35*LF1 + 1.5*LF2 + 0.75*LF3 🔹 < >							
	A	В	С	D	E			
Stab	Knoten	Stelle	Kräfte	e [kN]	Momente [kN	n]		
Nr.	Nr.	x [m]	N	Vz	My			
6	6	0.000	-632.850	36.573	-97.1	77 1 - Rechteck 40/45		
	7	6.200	-595.190	11.463	51.7	34		
	Max N	6.200	-595.190	11.463	51.7	34		
	Min N	0.000	-632.850	36.573	-97.1	77		
	Max Vz	0.000	-632.850	36.573	-97.1	77		
	Min Vz	6.200	-595.190	11.463	51.7	34		
	Max My	6.200	-595.190	11.463	51.73	34		
	Min My	0.000	-632.850	36.573	-97.1	7		
Gesamt	Knoten - Lager	kräfte Knote	n - Verformungen	Stäbe - Lokale V	/erformungen	Stäbe - Globale Verformungen Stäbe - Schnittgrößen 🛛		

Diese Stellen der Stütze werden vom Programm untersucht-

Bild 5.8: Ergebnisse LK4

5

Wichtig ist in diesem Zusammenhang, dass beim Anlegen der einzelnen Lastkombinationen die *Berechnungstheorie* zur Schnittgrößenermittlung nach **Theorie I. Ordnung** gewählt wird!

Lastfälle und Kombinatorik bearbeiten								
.astfälle Lastk	ombinationen Ergebniskombinationer	n						
Existierende La LK1 LK2 LK3 LK4	Elgenisterioriationel stkombinationen LF1 + 0.9°LF2 1.35°LF1 + 0.9°LF2 + 1.5°LF3 LF1 + 1.5°LF2 1.35°LF1 + 1.5°LF2 + 0.75°LF3	LK-Nr. Lastkombination-Bezeichnung 4 Basis Berechnungsparameter Berechnungstheorie I. Ordnung (geometrisch linear) II. Ordnung (P-Delta) III. Ordnung (große Verformungen) Durchschlaproblem						
	tfälle und Kor astfälle Lastk Existierende La LK1 LK2 LK3 LK3	tfälle und Kombinatorik bearbeiten astfälle Lastkombinationen Ergebniskombinatione LK1 LF1 + 0.9°LF2 LK2 1.35°LF1 + 0.9°LF2 + 1.5°LF3 LK3 LF1 + 1.5°LF2 LK4 1.35°LF1 + 1.5°LF2 + 0.75°LF3						

Bild 5.9: Berechnungsparameter für LK – Berechnung nach Theorie I. Ordnung

Damit sind die zu bemessenden Lastkombinationen LK2, LK3 und LK4 vorgestellt. Im Gegensatz zum Literaturbeispiel wird nicht nur der Einspannpunkt der Stütze untersucht, an dem die Schnittgrößen N und M_y minimal werden, sondern auch die Stelle des maximalen Moments M_y am Stützenkopf. Welchen Einfluss die systematische Untersuchung der Stellen mit maximalen und minimalen Schnittgrößen auf den Gesamtnachweis der Stütze hat, soll nun durch einen Vergleich mit dem Literaturbeispiel herausgearbeitet werden.

Kriechverformungen müssen bei der Bemessung von schlanken Druckgliedern berücksichtigt werden, wenn sie die Standsicherheit des Tragwerks ungünstig beeinflussen. Daher ist das kriecherzeugende Moment infolge quasi-ständiger Einwirkungen (= charakteristischer Wert der ständigen Einwirkung g_k) am Fuß der Windsogstütze zu bestimmen. Es ergibt sich zu:

Bild 5.10: Kriecherzeugendes Moment aus LF1

5.1.3 Räumliche Steifigkeit und Stabilität

Die Hallenlängsrichtung verläuft in die y-Achse, die Hallenquerrichtung in die z-Achse der Stütze. Die Stabilität in Hallenlängsrichtung ist durch andere Bauteile gesichert.

Damit kann die Stütze um die Achse y (d. h. in Achse z = Hallenquerrichtung) knicken, aber nicht um die Achse z (d. h. in Achse y = Hallenlängsrichtung).

In Maske *1.5 Stützenparameter - stabweise* sind daher folgende Einstellungen für die jeweilige Richtung zu treffen:

	A	В	C	D	E	F	G	H		J	K	L	М	N
Stab	Länge		Kn	icken	um Achse y				Kn	icken	um Achse z			Kommen-
Nr.	l [m]	Möglich	Verschieb.	Auto	βy[-]	10.y [m]	λy[-]	Möglich	Verschieb.	Auto	βz [-]	1 _{0,z} [m]	λ _z [-]	tar
6	6.200		V		2.100	13.020	100.2				-	-	-	

Bild 5.11: Eingabe in Maske 1.5 Stützenparameter - stabweise

5.1.4 Ersatzlänge und Schlankheit

Die Ersatzlänge und Schlankheit werden getrennt für jede Achse der Stütze bestimmt.

Bild 5.12: Achsen der Stütze

Wie im vorherigen Kapitel beschrieben, zeigt im Gegensatz zur Literatur der Index im Programm stets die Richtung an, in die ein mögliches Ausknicken der Stütze untersucht wird.

Ersatzlänge für Biegung um die y-Achse (in z-Richtung = Hallenquerrichtung)

Der Ersatzlängenbeiwert wird in der angegebenen Literatur für eine elastisch eingespannte Kragstütze auf $\beta_z = 2,1$ geschätzt. Dieser Wert ist unter dem Haupteintrag *Ersatzlänge* um die y-Achse in der Zeile *Definierter Knicklängenbeiwert* einzugeben.

Querschnitt	1 - Rechteck	40/45					
Allgemeine Eigenschaften							
🖂 Ersatzlänge							
🗆 um die y-Achse							
 Knicklängenemittlung automatisch 	Ermit-β						
 Definierter Knicklängenbeiwert 	βγ	2.100					
Ersatzlänge	10.y	13.020	m				

Bild 5.13: Ersatzlänge für Biegung um die y-Achse (in Hallenquerrichtung)

Die Systemlänge $I_{col,y}$ für das Ausknicken entspricht hier der Stützenlänge $I_{col} = 6,20$ m zwischen den idealisierten Einspannstellen.

Damit kann die Ersatzlänge lo, y für das Knicken um die y-Achse wie folgt bestimmt werden:

 $I_{0,y} = \beta_y \cdot I_{col,y} = 2,1 \cdot 6,20 \text{ m} = 13,02 \text{ m}$

Die zugehörige Schlankheit λ_y um y-Achse bestimmt sich dann zu:

$$\lambda_{y} = \frac{I_{0,y}}{I_{y}} = \frac{1302}{12,99} = 100,23$$

Dieser Wert ist auch in der Detailtabelle der Ausgabemasken zu finden.

⊞ Maßgebende Belastung								
⊞ Ersatzlänge nach 5.8.3.2								
⊡ Schlankheit nach 5.8.3.2								
Schlankheit um die y-Achse	λγ	100.2280						
Ersatzlänge	10,y	13.020	m					
Trägheitsradius	iy	129.9	mm					

Bild 5.14: Schlankheit für Knicken um die y-Achse (in Hallenquerrichtung)

Ersatzlänge für Biegung um die z-Achse (in y-Richtung = Hallenlängsrichtung)

Eine Stabilitätsuntersuchung in diese Richtung wird nicht durchgeführt.

Querschnitt	1 - Rechteck 40/45						
Allgemeine Eigenschaften							
- ⊕ um die y-Achse							
um die z-Achse							
Knicken möglich	Knicken,z						
System verschieblich	Verschieb,z						

Bild 5.15: Einstellungen für Biegung um die z-Achse (in Hallenlängsrichtung)

Maßgebende Belastung								
Ersatzlänge nach 5.8.3.2								
	10.y	13.020	m					
Ersatzlänge um die z-Achse	lo,z	6.200	m					
Keine Stabilitätsuntersuchung in d	Keine Stabilitätsuntersuchung in diese Richtung laut Benutzervorgabe							
Schlankheit nach 5.8.3.2								
⊕ Schlankheit um die y-Achse	λγ	100.2280						
Schlankheit um die z-Achse	λz	0.0000						
Keine Stabilitätsuntersuchung in diese Richtung laut Benutzervorgabe								

Bild 5.16: Keine Stabilitätsuntersuchung um die z-Achse (in Hallenlängsrichtung)

5.1.5 Weitere Eingaben im Modul

Um die Eingabe zu vervollständigen, werden noch die Auswahl der Belastung und die Vorgaben zur Bewehrung dargestellt.

Bild 5.17: Auswahl der Belastung in Maske 1.1 Basisangaben, Register Tragfähigkeit

Die im Register *Tragfähigkeit* ausgewählten Lastkombinationen werden zunächst einzeln untersucht. Für die maßgebende Lastkombination wird dann die Bewehrung ermittelt. Mit dieser Bewehrung wiederum wird für alle hier ausgewählten Lasten die vorhandene Sicherheit bestimmt. Für die Belastung, für die sich die geringste Sicherheit ergibt, wird dann der vollständige Nachweis ausgegeben.

Im Register *Kriecherzeugende Dauerlast* der Maske *1.1 Basisangaben* wird die Belastung festgelegt, die zu einer kriecherzeugenden Dauerlast führt. Von diesen Lasten wird angenommen, dass zwar jede für sich ständig wirkt, jedoch keine von ihnen gleichzeitig. Es wird also für jede dieser Belastungen untersucht, ob sie zusammen mit den ausgewählten Lasten für die Tragfähigkeit zu der größten Bewehrung führt.

FA1	 1.1 Basisangaben 	
ingabedaten — Basiangaben — Materialien — Querschnitte ⇒ Bewehrung — 1 — Parameter - stabweise	Als Stütze bemessen Bemessung nach Ştäbe: 6 Ale EN 1992-1-1:2004/AC:2 Stabsatze: Image: Constraint of the state of th	RF-BETONAL Stützen Land

Bild 5.18: Auswahl der Belastung in Maske 1.1 Basisangaben, Register Kriecherzeugende Dauerlast

Die Materialien (Beton C30/37, B 500 S(B)) wurden bereits in RFEM bzw. RSTAB beim Anlegen des Modells definiert. Sie werden für die Bemessung der Stütze automatisch in das Modul übernommen.

5 Beispiele

In Maske *1.4 Bewehrung* sind die möglichen Stabdurchmesser für die *Längsbewehrung* anzugeben. Für das Beispiel werden Stäbe mit Durchmesser 16 mm vorgegeben.

Bewehrungssatz		Angewende	et auf	
Nr.: Bezeich	inung:	Stäbe: Stabsätze:	6	Alle
Längsbewehrung] Bügel Konstruktive Bewehrung Be	wehrungsand	rdnung DIN EN 1992-1-1	1 - Rechteck 40/45
Bewehrung	Bewehrungsverteilung			Rechteck 40/45
Mögliche Durchmesser: 8.0 10.0 12.0 14.0 ✓ 16.0 20.0 25.0 28.0 30.0 32.0	Zweiseitig - parallel zur y-Achse Bewehrungslagen Maximale Anzahl der Lagen: Minimaler lichter Bewehrungsabstand - Erste Lage a: 20.0 ÷ [mm] - Lageentfernung e: 20.0 ÷ [mm] Verankerungsat Gerade •		- <u>115</u>	т.
[mm] 💽	Stahloberfläche: Gerippt 🔹			

Bild 5.19: Vorgaben zur Bewehrung in Maske 1.4 Bewehrung, Register Längsbewehrung

Im Register *Längsbewehrung* ist ferner festzulegen, wie die Bewehrung anzuordnen ist, wie viele Bewehrungslagen maximal möglich sind und wie die Bewehrungsstäbe zu verankern sind.

Im nächsten Register Bügel werden die Durchmesser der Bügel mit 10 mm vorgegeben.

1.4 Bewehrung			
Bewehrungssatz		Angewendet auf	
N <u>r</u> .: <u>B</u> ezeich	nung:	Stäbe: 6 Stabsätze:	Image: Alle Image: Alle Image: Alle
Längsbewehrung	Bügel Konstruktive Bewehrung Be	ewehrungsanordnung DIN EN 1992-1-1	1 - Rechteck 40/45 🔹
Bewehrung	Bügelparameter		Rechteck 40/45
Mögliche Durchmesser: 8.0 10.0 12.0 14.0 16.0 20.0 25.0 28.0 30.0 32.0	Anzahl Schnitte: 2 V In Richtu Winimale Schubbewehrung: Setzen Min asw: 0.00 (c Nach Norm Verankerungsart Haken V	ung y ung z cm² /m]	+y
[mm] 💽			

Bild 5.20: Vorgaben zu den Bügeln in Maske 1.4 Bewehrung, Register Bügel

5 Beispiele

Im Register *Konstruktive Bewehrung* wird festgelegt, dass der maximale Abstand zwischen zwei Bewehrungsstäben 300 mm nicht überschreiten darf.

1.4 Bewehrung			
Bewehrungssatz	Angewende	et auf	
Nr.: Bezeichnung:	<u>S</u> täbe: Stabsätze:	6	Image: Alle Image: Alle Image: Alle
Längsbewehrung Bügel Konstruktive Bewehrung Be	wehrungsand	rdnung DIN EN 1992-1-1	1 - Rechteck 40/45 🔹
Maximaler Bewehrungsabstand			Rechteck 40/45
 Gleichgültig Definieren Maximaler Bewehrungsabstand e_{max}: 300.0 (mm) Bewehrungsdurchmesser Identisch mit der Längsbewehrung Definieren Durchmesser der konstruktiven Bewehrung d_s: 12.0 (mm) 			

Bild 5.21: Konstruktive Vorgaben in Maske 1.4 Bewehrung, Register Konstruktive Bewehrung

Ergibt sich geometrisch ein größerer Abstand als 300 mm, so sieht das Programm einen Zwischenstab vor. Im Register *Konstruktive Bewehrung* wird zudem festgelegt, dass der Zwischenstab den gleichen Durchmesser besitzen soll wie die statisch erforderliche Bewehrung.

Die Betondeckung wird im Register *Bewehrungsanordnung* der Maske 1.4 mit einem Achsmaß von 38 mm festgelegt.

Bild 5.22: Angaben zur Betondeckung in Maske 1.4 Bewehrung, Register Bewehrungsanordnung

5.1.6 Erforderliche Bewehrung

Mit den oben gezeigten Eingaben kann die Berechnung gestartet werden.

Das Programm überprüft, ob eine Regelbemessung ausreichend ist oder ob eine Stabilitätsuntersuchung vorgenommen werden muss. Danach wird die erforderliche Bewehrung ermittelt, die in den Masken 3.1 Erforderliche Bewehrung querschnittsweise und 3.2 Erforderliche Bewehrung stabweise in den oberen Tabellen ausgegeben wird.

	A	В	С	D	E	F	G	H
Quersch.	Bewehrung	Stab	Stelle	LF / LK	B	ewehrung	S-	Fehlermeldung
Nr.		Nr.	x [m]	EK		Fläche	Einheit	bzw. Hinweis
1	Rechteck 40/	45						
	Längs	6	0.000	LK4	As	15.54	cm ²	
	Querkraft	6	-	-	asw	8.18	cm ² /m	
🗖 Alle L	۵lle Lastfälle 💿 🖏							

Bild 5.23: Maske 3.1 Erforderliche Bewehrung querschnittsweise

Die vom Programm ermittelte Längsbewehrung A_s von 15,54 cm² unterscheidet sich vom Wert 16,20 cm² des Literaturbeispiels. Die Ursache für diesen Unterschied ist der Wert ω_{tot} , der in der Literatur etwas ungenau aus dem Diagramm mit 0,23 abgelesen wurde.

In der unteren Tabelle Zwischenergebnisse finden sich sämtliche Zwischenschritte. Diese Detailtabelle beginnt mit der Benennung der maßgebenden Belastung.

Zwischenergebnisse Rechteck 40/45 - LK4			
Maßgebende Belastung			
Belastung		LK4	
 Maßgebende Schnittgröße 		min N	
- An Stelle	x	0.000	m
- Normalkraft	N	-632.850	kN
 Moment um die y-Achse 	My	-97.177	kNm
Moment um die z-Achse	Mz	0.000	kNm
Ersatzlänge nach 5.8.3.2			
Grenzschlankheit nach 5.8.3.1 (1)			
Momente nach Theorie I. Ordnung			
Momente nach Theorie II. Ordnung			
Statisch erforderliche Bewehrung			
Mindestbewehrung nach Norm			
Erforderliche Bewehrung			

Bild 5.24: Tabelle Zwischenergebnisse zur Ermittlung der erforderlichen Bewehrung

Die maßgebende Belastung stellt wie im Literaturbeispiel die Lastkombination LK 4 dar. Dort wird mit den Werten N = -633 kN und My = 100 kNm gerechnet.

Wenn das Kontrollfeld *Alle Lastfälle* unterhalb der Tabelle aktiviert wird, wird erkennbar, dass sich für die LK4 eine größere Bewehrung ergibt als für die übrigen Lastkombinationen.

📝 <u>A</u>lle Lastfälle

Bild 5.25: Anzeige der Bemessungsergebnisse für sämtliche Belastungen

Die obere Tabelle weist dann für alle Belastungen die jeweils erforderliche Bewehrung aus (siehe folgendes Bild).

5.1 LITOI	derliche Bewe	hrung q	luerschn	ittsweise				
	A	В	С	D	E	F	G	H
Quersch.	Bewehrung	Stab	Stelle	LF / LK	B	ewehrung:	S-	Fehlemeldung
Nr.		Nr.	x [m]	EK		Fläche	Einheit	bzw. Hinweis
1	Rechteck 40/45							
	Längs	6	0.000	LK2	As	13.17	cm ²	
	Querkraft	6	-	-	asw	8.18	cm ² /m	
1	Rechteck 40/	45						
	Längs	6	0.000	LK3	As	12.41	cm ²	
	Querkraft	6	-	-	asw	8.18	cm ² /m	
1	Rechteck 40/	45						
	Längs	6	0.000	LK4	As	15.54	cm ²	
	Querkraft	6	-	-	asw	8.18	cm ² /m	

Bild 5.26: Erforderliche Bewehrung für sämtliche Belastungen

Zum Vergleich sind in [4] für LK2 $A_s = 13,4 \text{ cm}^2$, für LK3 $A_s = 12,7 \text{ cm}^2$ und für LK4 $A_s = 16,2 \text{ cm}^2$ angegeben.

Die Ersatzlängen und Schlankheiten, wie sie durch die Eingabe in Maske 1.5 Stützenparameter bestimmt wurden, finden sich für die vollständige Bemessungsausgabe auch unter den entsprechenden Haupteinträgen in den Zwischenergebnissen.

Maßgebende Belastung			
Ersatzlänge nach 5.8.3.2			
Ersatzlänge um die y-Achse	10,y	13.020	m
- Stützenlänge	ly	6.200	m
Knicklängenbeiwert	βy	2.100	
Ersatzlänge um die z-Achse	10,z	6.200	m
Keine Stabilitätsuntersuchung in dies	e Richtung laut Benut	zervorgabe	
Schlankheit nach 5.8.3.2			
Schlankheit um die y-Achse	λγ	100.2280	
- Ersatzlänge	10,y	13.020	m
Trägheitsradius	iy	129.9	mm
Schlankheit um die z-Achse	λz	0.0000	

Bild 5.27: Ersatzlänge und Schlankheit

5.1.7 Grenzschlankheit

Die Schnittgrößen der minimalen Normalkraft haben folgende Zwischenergebnisse bei der Bestimmung der Grenzschlankheit:

Zwischenergebnisse Rechteck 40/45 - 1 K2			
Bezogene Normalkraft	n	0.2235	< 0.41
Normalkraft	N	-683.860	kN
Betonquerschnitt	Ac	1800.00	cm ²
 Bemessungswert der Betonfestigkeit 	fed	17.00	N/mm ²
 Charakteristische Betondruckfestigkeit 	fek	30.00	N/mm ²
 Abminderungsbeiwert 	α	0.8500	
 Teilsicherheitsbeiwert 	γo	1.5000	
Streungsbeiwert der Betonfestigkeit	Ye'	1.0000	
Grenzschlankheit	λmax	33.8452	
Zwischenergebnisse Rechteck 40/45 - LK3			
Grenzschlankheit nach 5.8.3.1 (1)			
🖃 Bezogene Normalkraft	n	0.1408	< 0.41
Normalkraft	N	-431.000	kN
Betonquerschnitt	Ac	1800.00	cm ²
Bemessungswert der Betonfestigkeit	fed	17.00	N/mm ²
 Charakteristische Betondruckfestigkeit 	fek	30.00	N/mm ²
Abminderungsbeiwert	α	0.8500	
 Teilsicherheitsbeiwert 	γc	1.5000	
Streungsbeiwert der Betonfestigkeit	γo'	1.0000	
Grenzschlankheit	λmax	42.6326	
Zwischenergebnisse Rechteck 40/45 - LK4			
Grenzschlankheit nach 5.8.3.1 (1)			
Bezogene Normalkraft	n	0.2068	< 0.41
- Normalkraft	N	-632.850	kN
 Betonquerschnitt 	Ac	1800.00	cm ²
Bemessungswert der Betonfestigkeit	fed	17.00	N/mm ²
Charakteristische Betondruckfestigkeit	fck	30.00	N/mm ²
Abminderungsbeiwert	α	0.8500	
Teilsicherheitsbeiwert	Ye	1.5000	
Streungsbeiwert der Betonfestigkeit	Ye	1.0000	
Grenzschlankheit	λmax	35,1828	

Bild 5.28: Grenzschlankheiten für LK2 bis LK4

Die Schlankheit λ_y um y-Achse ist mit 100,23 größer ist als die lastfallbezogenen Grenzschlankheiten. Daher ist gemäß 8.6.2 (4) für jede der vorgestellten Belastungen eine Stabilitätsuntersuchung durchzuführen.

Zwischenergebnisse Rechteck 40/45 - 1 K4

zwischenergebnisse Nechteck 40/45 - EK4			
□ Art der Bemessung			
- Voraussetzungen Regelbemessung nach 5.8.3	.1 (1)		
Voraussetzung um die y-Achse	λy≦λlim,y	Nicht erfüllt	
Vorhandene Schlankheit	λy	100.2280	
Grenzschlankheit um die y-Achse	λlim,y	35.1828	
Voraussetzung um die z-Achse	$\lambda_z \leq \lambda_{lim,z}$	Erfüllt	
Keine Stabilitätsuntersuchung in diese Ric	htung laut Benutz	ervorgabe	
Voraussetzung für Regelbemessung erfüllt?		Nicht erfüllt	
— → Voraussetzungen Regelbemessung nach 5.8.3	.1 (1)		
— Normalkraft ist keine Druckkraft?		Nein	
Voraussetzungen f ür Regelbemessung erf üllt?		Nein	
Knicknachweis erforderlich			

Bild 5.29: Art der Bemessung

5.1.8 Ausmitten

Die planmäßige Ausmitte, die Ausmitte durch Imperfektion und die Mindestausmitte wurden gemäß DIN EN 1992-1-1 berechnet. Sie sind bei den *Zwischenergebnissen* dargestellt.

Ausmitten			
Planmäßige Ausmitte nach 5.8.8.2			
Planmäßige Ausmitte in z-Richtung	e0,z	-153.6	mm
Momentenverlauf über die Stütze	Verlauf My	Beliebig	
Moment um die y-Achse	My	-97.177	kNm
Absolute Normalkraft	[N]	632.850	kN
	e0.y	0.0	mm
Ausmitte durch Imperfektionen gemäß 5.2			
- Ausmitte durch Imperfektionen in z-Ebene	ei,z	-26.1	mm
- Neigung	0 _{i,z}	0.0040	
Grundwert der Neigung	00	0.0040	
- Stützenlänge	ly	6.200	m
Abminderungsbeiwert für Stützenanzahl	αm	1.0000	
Stütze wird laut Benutzervorgabe wie ei	ne Einzelstütze nac	hgewiesen.	
Knicklänge	lo,y	13.020	m
Ausmitte durch Imperfektionen in y-Ebene	ei,y	0.0	mm
Mindestausmitte gemäß 6.1 (4)			
Mindestausmitte in z-Richtung	e min,z	-20.0	mm
Bauteilhöhe	h _{w,z}	450.0	mm
Mindestwert der Mindestausmitte	e 20 mm,z	20.0	mm
Mindestausmitte in y-Richtung	e _{min.y}	0.0	mm

Bild 5.30: Ausmitten für LK4

Mit den beiden Ausmitten können die Momente nach Theorie I. Ordnung bestimmt werden.

5.1.9 Momente nach Theorie I. Ordnung

Schnittgrößen der minimalen Normalkraft am Stützenfuß (Stelle x = 0,00 m)

Das Moment nach Theorie I. Ordnung um die y-Achse durch Ausmitten in z-Richtung (Hallenquerrichtung) ist jeweils:

	LK2	LK3	LK4
N _{Ed}	-683,860 kN	-431,000 kN	-632,850 kN
e _{0,z}	-10,60 cm	-20,36 cm	-15,36 cm
e _{i,z}	-2,61 cm		
M _{Ed,1,y}	-90,37 kNm	-99,02 kNm	-113,72 kNm

Für die Schnittgrößen der minimalen Normalkraft in der LK4 werden an der maßgebenden Stelle am Stützenfuß folgende *Zwischenergebnisse* ausgewiesen:

Zwischenergebnisse Rechteck 40/45 - LK4			
Momente nach Theorie I. Ordnung			
Momente nach Theorie I. Ord.			
Einwirkende Normalkraft	NEd	-632.850	kN
Moment um die y-Achse	MEd,1.y	-113.723	kNm
Rechnerische Gesamtausmitte in z-Richtung	e calc 1,z	-179.7	mm
Planmäßige Ausmitte	e0,z	-153.6	mm
Ausmitte durch Imperfektionen	ei,z	-26.1	mm
Moment um die z-Achse	MEd,1,z	0.000	kNm
Keine Knickgefährdung laut Benutzervorgabe			

Bild 5.31: Momente nach Theorie I. Ordnung für LK4

5.1.10 Momente nach Theorie II. Ordnung

Schnittgrößen der minimalen Normalkraft am Stützenfuß (Stelle x = 0,00 m)

Das Moment nach Theorie II. Ordnung um die y-Achse durch Ausmitten in z-Richtung (Hallenquerrichtung) ist jeweils:

	LK2	LK3	LK4
N _{Ed}	-683,860 kN	-431,000 kN	-632,850 kN
e _{2,tot,z}	-33,09 cm	-42,85 cm	-37,85 cm
M _{Ed,y2}	-226,308 kNm	-184,686 kNm	-239,52 kNm

Für die Schnittgrößen der minimalen Normalkraft in der LK4 werden an der maßgebenden Stelle am Stützenfuß folgende *Zwischenergebnisse* ausgewiesen:

Zwischenergebnisse Rechteck 40/45 - LK4			
Momente nach Theorie II. Ordnung			
Ausmitte durch Th. II. Ord. nach 5.8.8.2(3)			
Ausmitte durch Th. II. Ord. in z-Richtung	e2,z	-198.8	mm
Beiwert	k1,z	0.0000	
Schlankheit um die y-Achse	λy	100.2280	
Krümmung in z-Ebene	1/rz	0.012	1/m
Gewählter Beiwert (Normalkraft)	gew K _{r,z}	1.0000	
 Errechneter Beiwert (Normalkraft) 	K _{r,z}	1.2354	
 Grenztragfähigkeit 	nu	1.2208	
Verhältnis	ω	0.2208	
Vorhandene Bewehrung	vorh As	15.54	cm ²
Bemessungswert Streckgrenze	fyd	434.78	N/mm ²
Querschnittsfläche	Ac	1800.00	cm ²
Bemessungswert der Betonfestigkeit	fed	17.00	N/mm ²
	n	-0.2068	
Aufnehmbare Normalkraft (Biegung)	n bal	-0.4000	
Gewählter Beiwert (Kriechen)	gew K _{φ,z}	1.0000	
	1/ro,z	0.012	1/m
Knicklänge	10.y	13.020	m
Beiwert(Krümmungsverlauf)	С	9.8696	
	e _{2,y}	0.0	mm
Momente nach Theorie II. Ord.			

Bild 5.32: Ausmitte nach Theorie II. Ordnung in z-Richtung (LK4)

Zwi	Zwischenergebnisse Rechteck 40/45 - LK4							
	Momente nach Theorie II. Ordnung							
B	-							
E	Momente nach Theorie II. Ord.							
	Einwirkende Normalkraft	NEd	-632.850	kN				
	Moment um die y-Achse	MEd,y2	-239.515	kNm				
	Gesamtausmitte in z-Richtung	e2,tot,z	-378.5	mm				
	 Ausmitte durch Th. II. Ord. 	e2,z	-198.8	mm				
	— → Ausmitte (Th. I. Ord.) in z-Richtung	e1,z	-179.7	mm				
	 Mindestausmitte in z-Richtung 	e min,z	-20.0	mm				
	. ⊕ Moment um die z-Achse	M Ed,z2	0.000	kNm				

Bild 5.33: Momente nach Theorie II. Ordnung in z-Richtung (LK4)

5.1.11 Statisch erforderliche Bewehrung

Zwischenergebnisse Rechteck 40/45 - 1 K4			
Enwirkende Schniugroben	M-	C22.050	LINI
	INEd	-632.850	KIN
 Moment um die y-Achse nach Th. II. Ord. 	MEd,y2	-239.515	KINM
 Moment um die z-Achse nach Th. II. Ord. 	MEd,z2	0.000	kNm
🕀 Krümmungen			
- ⊕ Bewehrungsstäbe			
Statisch erforderliche Bewehrung	erf A _{s,stat}	15.54	cm ²
Mindestbewehrung nach Norm	1		
Erste Mindestbewehrung			
Einwirkende Normalkraft	NEd	-632.850	kN
 Bemessungswert Streckgrenze 	fyd	434.78	N/mm ²
Mindestbewehrung	erf As,min,1	2.18	cm ²
Zweite Mindestbewehrung			
Betonquerschnitt	Ac	1800.00	cm ²
Mindestbewehrung	erf As,min,2	5.40	cm ²
Mindestbewehrung	erf A _{s,min}	5.40	cm ²
Erforderliche Bewehrung			
Statisch erforderliche Bewehrung	erf A _{s,stat}	15.54	cm ²
Mindestbewehrung	erf A _{s,min}	5.40	cm ²
Erforderliche Bewehrung	erf As	15.54	cm ²

Bild 5.34: Zwischenergebnisse

Als Statisch erforderliche Bewehrung wird erf $A_{s,stat} = 15,54$ cm² ausgegeben.

5.1.12 Vorhandene Bewehrung

Der gesamte Bewehrungsquerschnitt darf gemäß DIN EN 1045-01, Abs. 9.5.2 (3) den maximal zulässigen Wert von 0,09 A_c nicht überschreiten:

 $A_{s,max} = 0.09 \cdot A_c = 0,09 \cdot 1800 \text{ cm}^2 = 162 \text{ cm}^2$

Durch die Benutzervorgabe wurde ausschließlich der Bewehrungsstahl mit Durchmesser von 16 mm zugelassen, um die gleichen Ergebnisse wie im Literaturbeispiel zu erhalten.

Mit diesen Bewehrungsstählen sucht das Programm die wirtschaftlichste Lösung. Es gilt, dass der vorhandene Bewehrungsquerschnitt möglichst nahe, jedoch größer dem erforderlichen Bewehrungsquerschnitt von 15,54 cm² ist.

Es werden pro Seite parallel zur y-Achse des Querschnitts in Hallenlängsrichtung vier Bewehrungsstäbe mit Stabdurchmesser 16 mm angeordnet.

Bild 5.35: Gewählte Längsbewehrung

Dem Absatz 9.5.2 (4) der DIN EN 1992-1-1 ist zu entnehmen, dass bei polygonal umrandeten Querschnitten der maximale Längsstababstand nicht größer als 300 mm sein darf. Deshalb muss an den beiden Seiten parallel zur z-Achse ein konstruktiver Zwischenstab eingefügt werden, der mindestens den Durchmesser 12 mm haben muss. Da dieser Durchmesser jedoch nicht zur Verfügung gestellt wurde, wird ein Stab ebenfalls mit Durchmesser 16 mm angesetzt.

Der maximale Abstand wurde in Maske 1.4 Konstruktive Bewehrung auf 300 mm eingestellt.

Bild 5.36: Gewählte Längsbewehrung mit konstruktiver Bewehrung

Die konstruktive Bewehrung wird bei der Bestimmung der vorhandenen Sicherheit berücksichtigt.

5.1.13 Vorhandene Sicherheit

In Maske 2.1 Nachweis Stäbe ergibt sich für die LK4 folgende vorhandene Bruchsicherheit:

	LK4
γ	1,1128

Ein anderer Wert der Sicherheit ergibt sich, wenn in Maske 4.1 Vorhandene Längsbewehrung die vorhandene Längsbewehrung verändert wird.

Eingabedaten Bessandsben Materialen Guerschnitte Bewehrung L 1 Parameter - stabweise Ergebnisse Nactweise Ergebnisse Vorhandene Bewehrung Bügelbewehrung Stabliste	FA1 🗖	4.1 Vorh	andene Läi	ngsbewehr	ung						
Basisangaben Anzahl da As Stelle x [m] Von bis Verankerung Meldung Materialen Nr. Stabe [mn] [cm²] von bis Verankerung Meldung Querschnitte 1 8 16.0 16.08 0.448 6.648 2 Parameter - stabweise 2 2 16.0 4.02 0.448 6.648 2 Parameter - stabweise Ergebnisse Vorhandene Bewehrung 2 2 16.0 4.02 0.448 6.648 2 Uerschnittsweise Stabe Efforderliche Bewehrung Image: Stabliese Image: Stablie	Eingabedaten		A	В	C	D	E	F	G		
Meterialien Querschnitte Querschnitte Stab Nr. 6- Rechteck 40/45 Bewehrung 1 1 8 16.0 1 8 16.0 2 2 16.0 4.02 - Parameter - stabweise - - Stabe - - Stabweise - - Stabiliste - - Worthandene Bewehrung - - Stabiliste -	- Basisangaben	Position	Anzahl	ds	As	Stelle	k [m]			1 111	
Querschnite Bewehrung 1 8 16.0 16.08 0.448 6.648 0 1 2 2 16.0 4.02 0.448 6.648 0 Parameter - stabweise - - - - - - - Nachweis -	- Materialien	INF.	Stäbe	[mm]	[cm ²]	von	bis	Verankerung	Meldung		
Bewehnung 1 8 16.0 16.08 -0.448 5.548 2 Parameter - stabweise 2 2 16.0 4.02 -0.448 6.648 2 Nachweis -	- Querschnitte		Stab Nr. 6	 Rechteck 	40/45			_			
La construise construit subset in the state of the state	Bewehrung	1	8	16.0	16.08	-0.448	6.648				
Parameter - stabweise igebrisse - Stabe - Stabe	1	2	2	16.0	4.02	-0.448	6.648	⊻			
igebnise Nachweis Stabe Erforderliche Bewehrung Guerschnitzweise Stabweise Worthandene Bewehrung Längsbewehrung Stabiliste Stabiliste Stabiliste Gesam tlänge: 70, 960 m Gesam tjärgi oht: 112.00 kg	- Parameter - stabweise										
Nachweis Stäbe Efroderliche Bewehrung Querschnittsweise Stabweise Vorhandene Bewehrung Bigelbewehrung Stabiliste Gesamtlänge: 70.960 m Gesamtlänge: 70.960 m Gesamtlänge: 70.960 m Gesamtlänge: 70.960 m	rgebnisse										
L Stabe E Gradelicke Bewehrung Längsbewehrung Stahliste Gesam tjernicht: 112.00 kg Gesam tjernicht: 112.00 kg E Gradelicke Bewehrung Stahliste Gesam tjernicht: 112.00 kg E Gesam tjernicht: 112.00 kg E Gradelicke Bewehrung Stahliste E Gradelicke Bewehrung Stahliste E Gradelicke Bewehrung Stahliste E Gesam tjernicht: 112.00 kg E Gesam tjernicht: 112.00 kg E Gradelicke Bewehrung E Gradelicke Be	Nachweis									× —	8
3 Efrideriche Bewehrung Querschnitzweise 3 Vorhandere Bewehrung Längsbewehrung 5 Stabeliste 3 Stabeliste 9 Gesam tlänge: 70.960 m Gesam tlänge: 70.960 m Gesam tlänge: 70.960 m	I Stäbe								۵ 🐧	, i i i i i i i i i i i i i i i i i i i	ě.
Querschnittsweise Stabweise Vorhanderne Bewehrung Bigelbewehrung Stahliste Q 2 x \$16.0 mm Q 2 x \$16.0 mm Gesamtlänge: 70.960 m Gesamtlänge: 70.960 m Gesamtgericht: 112.00 kg	Erforderliche Bewehrung										
- Stabweise Vorbandene Bewehrung - Bügebewehrung - Stahliste	Querschnittsweise	-									-
Ochandene Bewehrung Längsbewehrung Bügebewehrung Stahliste Qesam tlänge: 70.960 m. Gesam tjängt int: 112.00 kg	- Stabweise									2 +++	2
Längsbewehrung Bigelbewehrung Stahiliste Gesam tlänge: 70.960 m Gesam tgergt cht: 112.00 kg	Vorhandene Bewehrung										
Bigebewehrung Stahliste	Längsbewehrung										
Stahliste	 Längsbewehrung 									e 🗕	0.0
Gesantlänge: 70.960 n Gesantlange: 70.960 n Gesantgericht: 112.00 kg	Längsbewehrung Bügelbewehrung									\$16.0	\$16.0 m
Gesantlänge: 70.960 n Gesantgevicht: 112.00 kg	– Längsbewehrung – Bügelbewehrung – Stahlliste						~			× \$16.0	ж \$16.0 m
Gesantlänge: 70.960 n Besantgevicht: 112.00 kg	Längsbewehrung Bügelbewehrung Stahlliste				_		1°×	51 6.0 mm)2 x \$16.0) 8 × \$16.0 m
Gesan tlänge: 70.960 n Gesan tjavicht: 112.00 kg	– Längsbewehrung – Bügelbewehrung – Stahlliste						(1 ° ×	816.0 mm		2 x \$16.0	(1)8 × \$16.0 m
Gesantlänge: 70.960 m Gesantgavicht: 112.00 kg	Längsbewehrung Bügelbewehrung Stahlliste				[•	(1 ° ×	\$1 6.0 mm		2 × \$16.0	(1)8 x \$16.0 m
Besan.tlänge: 70.950 n Besan.tgevz.cht: 112.00 kg	– Längsbewehrung – Bügelbewehrung – Stahlliste				[(1) ×	816.0 mm		()2 × 116.0	1)8 × \$15.0 m
Gesam tlänge: 70. 960 m Gesam tgevicht: 112. 00 kg	– Längsbewehrung – Bügelbewehrung – Stahlliste				[(1) 8 ж (2) 2 ж	816.0 mm 816.0 mm		©2 × 816.0	1 × \$15.0 m
Gesantlänge: 70.960 n. Gesantgevicht: 112.00 kg	– Längsbewehrung – Bügelbewehrung – Stahiliste				-		(1)8 ж (2)2 ж	816.0 mm 816.0 mm		©2 x \$15.0	(1)8 × \$16.0 m
Gesantlänge: 70.960 m Gesantgevicht: 112.00 kg	– Längsbewehrung – Bügelbewehrung – Stahlliste				-		(1)8 ж (2)2 ж	516.0 mm 516.0 mm		©2 × 555.0	(1)8 × \$16.0 m
Gesantlänge: 70.960 m. Gesantgevicht: 112.00 kg	- Längsbewehrung - Bügelbewehrung - Stahliste						(1) в ж (2) 2 ж	51 6.0 mm 51 6.0 mm		()2 x 225.0	1)8 x \$15.0 T
Gesantlänge: 70.960 n. Gesantgevicht: 112.00 kg	- Längsbewehrung - Bügelbewehrung - Stahlliste						(1) 8 ж (2) 2 ж	516.0 mm 516.0 mm		(), 2 × 815.0	(1)8 × \$15.0 m
Gesamtlänge: 70.960 m Gesamtgevicht: 112.00 kg	– Längsbewehrung – Bügelbewehrung – Stahlliste						(1) 8 × (2) 2 ×	\$16.0 mm		3 x \$35.0	10.318 × 818.0 m
Gesant Galaxye 10, 200 m Gesant gevicht : 112.00 kg	– Längsbewehrung – Bügelbewehrung – Stahliste						() 8 x (2 2 x	516.0 mm		©2 × 856.0	10.318 × 818.0 m
	- Längsbewehrung - Bügelbewehrung - Stahlliste	5		£0 -			()8 x	816.0 mm 816.0 mm		©2 × 835.0	0.318 × 8(1)
	- Längsbewehrung - Bügebewehrung - Stahiliste	Gesam.t] Gesam.to	Länge: 70.9	60 m. 2.00 kg			()8 x	816.0 mm 816.0 mm	X	32 x 885.0	- 0.318 × 8(1)

Bild 5.37: Maske 4.1 Vorhandene Längsbewehrung

Die obere Tabelle zeigt zwei Positionen für die Stütze an: *Position 1* ist die statisch erforderliche Bewehrung, *Position 2* die konstruktive Bewehrung. Letztere ist erforderlich, damit der Abstand zwischen zwei Bewehrungsstäben nicht größer als 300 mm wird. Die Position 2 wird durch Anklicken mit der linken Maustaste markiert. Dann wird die Schaltfläche zum Bearbeiten dieser Position gedrückt (siehe folgendes Bild).

Bild 5.38: Ändern einer Position über Schaltfläche [Bearbeiten]

Es erscheint folgender Dialog.

Bild 5.39: Dialog Längsbewehrung bearbeiten

Das Kontrollfeld Bewehrungsstäbe statisch wirksam im Abschnitt Nachweis wird durch Entfernen des Häkchens deaktiviert und der Dialog dann über [OK] verlassen.

Es erscheint folgender Dialog:

Berechnung n	eu starten		×
Die vorhande vorhandene S Wollen Sie di alle gemachte	ne Bewehrung wurde (Sicherheit neu berechn e vorhandene Sicherhe en Änderungen zurück(geändert. Daher muss et werden. eit neu berechnen ode genommen werden?	die r sollen
Ð	Neu berechnen	Zurücknehmen	Abbrechen

Bild 5.40: Dialog Berechnung erneut starten

Über die Schaltfläche [Neu berechnen] wird die Berechnung neu gestartet. Anschließend kann man die veränderten Sicherheiten in Maske 2.1 Nachweis Stäbe ablesen.

Für die LK4 ergibt sich nun ohne die konstruktive Bewehrung eine reduzierte Sicherheit:

	LK4
γ	1,0278

5.2 Schlanke Stütze

Um das in [4] nach nichtlinearem Verfahren vorgestellte Beispiel nachrechnen zu können, muss zunächst in RFEM bzw. RSTAB folgendes Modell erzeugt werden.

Bild 5.41: Modell zum Beispiel

Ein eingespannter Stab erhält am Ende seines waagrechten Schenkels (Länge 5 cm) die vorgegebene Last von 1059,50 kN. Da der waagrechte Schenkel in z-Richtung des Stabkoordinatensystems des lotrechten Stabes läuft, ergibt sich ein konstanter Verlauf des Moments um die y-Achse von –52,975 kNm. Auch der Normalkraftverlauf ist mit –1059,500 kN konstant (siehe folgendes Bild).

Bild 5.42: Verläufe des Moments M_v und der Normalkraft N

5.2.1 Räumliche Steifigkeit und Stabilität

Um die gleichen Ergebnisse wie in der Literatur zu erhalten, wird um die z-Achse des Querschnitts eine Stabilitätsuntersuchung durch Benutzervorgabe ausgeschlossen.

er an eventuria			
Einstellungen für Stab Nr. 1			
Querschnitt		1 - Rechteck	400/400
Allgemeine Eigenschaften			
🖃 um die y-Achse			
 Knicken möglich 	Knicken,y	V	
 System verschieblich 	Verschieb,y	V	
Stützenlänge	ly	8.000	m
🖃 um die z-Achse			
Knicken möglich	Knicken,z		
System verschieblich	Verschieb,z		

Bild 5.43: Vorgabe der knickgefährdeten Richtungen in Maske 1.5

Wie die obige Abbildung zeigt, wird um die y-Achse vorgegeben, dass das System innerhalb dieser Richtung verschieblich ist. Die Systemlänge $I_{col,y}$ für diese Richtung wird vom Programm automatisch aus der Länge des definierten Stabes Nr. 1 ermittelt.

5.2.2 Ersatzlänge und Schlankheit der Stütze

Der Ersatzlängenbeiwert wird für einen einseitig eingespannten Stab zu β = 2,0 angenommen. Dieser Wert ist unter **Ersatzlänge** \rightarrow **um die y-Achse** \rightarrow **Definierter Knicklängenbeiwert** anzugeben.

Einstellungen für Stab Nr. 1							
Querschnitt 1 - Rechteck 400/400							
Algemeine Eigenschaften							
🗆 Ersatzlänge							
🖃 um die y-Achse							
Knicklängenemittlung automatisch	Ermit-β						
Definiertes Knicklängenbeiwert	Definiertes Knicklängenbeiwert βy 2.000						
Ersatzlänge	lo.y	16.000	m				

Bild 5.44: Ersatzlänge

Die Systemlänge $I_{col,y}$ für Ausknicken um y-Achse entspricht der Stützenlänge $I_{col} = 8,0$ m.

Damit kann die Ersatzlänge lo, für das Knicken um die y-Achse wie folgt bestimmt werden:

$$I_{0,y} = \beta \cdot I_{col,y} = 2,0 \cdot 8,0 \text{ m} = 16,0 \text{ m}$$

Die zugehörige Schlankheit λ_y um die y-Achse bestimmt sich dann zu:

$$\lambda_y = \frac{I_{0,y}}{I_y} = \frac{16000}{115,47} = 138,564$$

Der Wert $\lambda_y = 138,564$ ist unter dem Eintrag *Schlankheit* ausgewiesen.

Einstellungen für Stab Nr. 1								
Querschnitt	Querschnitt 1 - Rechteck 400/400							
Allgemeine Eigenschaften	HIgemeine Eigenschaften							
Schlankheit								
🗆 um die y-Achse								
Schlankheit	λγ	138.564						
Grenzschlankheit								

Bild 5.45: Schlankheit λ_{y}

Der Vollständigkeit halber werden vor der Berechnung die übrigen Eingaben vorgestellt. In Maske 2.1 Materialien findet sich der aus RFEM bzw. RSTAB übernommene Beton. Dazu wird ein passender Bewehrungsstahl ausgesucht.

	A	B	C	D
Material	Material-Be	ezeichnung	Anmer-	
Nr.	Beton-Festigkeitsklasse	Betonstahl	kung	Kommentar
1	Beton C20/25	B 500 S (B)		

Bild 5.46: Maske 1.2 Materialien

In Maske 1.4 Bewehrung werden folgende Stabdurchmesser für die Längsbewehrung zugelassen:

Längsbewehrung	Bügel Konstruktive Bewehrung Bewehrungsanordnung DIN EN 1992-1-1
Bewehrung	Bewehrungsverteilung
Mögliche Durchmesser: 8.0 10.0 V 12.0	Zweiseitig - parallel zur y-Achse 🔹
✓ 14.0 ✓ 16.0	Bewehrungslagen
 ✓ 20.0 ✓ 26.0 ✓ 28.0 	Maximale Anzahl der Lagen: 1
30.0	Minimaler lichter Bewehrungsabstand
	- Erste Lage a: 20.0 🚔 [mm]
	- Weitere Lagen b: 20.0 🚔 [mm]
	- Lageentfernung e: 20.0 🚔 [mm]
	Verankerungsart
	Gerade
[mm] 💽	Stahloberfläche: Gerippt

Bild 5.47: Maske 1.4 Bewehrung, Register Längsbewehrung

Im Register *Bewehrungsanordnung* wird das gleiche Achsmaß der Betondeckung vorgeben wie im Literaturbeispiel.

Längsbewehrung Bügel	Konstruktive Bewehrung	Bewehrungsanordnung	DIN EN 1992-1-1
Betondeckung			
Beziehen auf:			
Stabstahl-Schwerpunkt	су: 40.0 🚔 [mm]		→ P ^C y
	c₂: 40.0 🚔 [mm]	‡ [••	
💿 Stabstahl-Rand	cy: 27.5 ♣ [mm]	<u>لي</u>	• • • y
	c₂: 27.5 🚔 [mm]		N.
🔲 Betondeckung nach No	rm 🔯	C _{v II}	
Stabdurchmesser für Vorbemessung d _s :	[mm]		Z
		Einstellungen	
		Zu berücksicht größen bei der	igende Schnitt- Bemessung:
		V N	MT
		Vy V	My
		▼ ∀z	Mz

Bild 5.48: Maske 1.4 Bewehrung, Register Bewehrungsanordnung

Damit sind alle relevanten Eingaben vorgestellt.

Bei der Berechnung wird zunächst überprüft, ob eine Regelbemessung ausreichend ist oder ob eine Stabilitätsuntersuchung vorgenommen werden muss.

5.2.3 Grenzschlankheit gemäß 5.8.3.1 (1)

Zunächst muss für die Belastung eine erforderliche Bewehrung bestimmt werden. Diese ergibt sich in den Ausgabemasken 3.1 Erforderliche Bewehrung querschnittsweise und 3.2 Erforderliche Bewehrung stabweise zu 51,34 cm²/m.

3.1 Erfor	3.1 Erforderliche Bewehrung querschnittsweise							
	A	В	С	D	E	F	G	Н
Quersch.	Bewehrung	Stab	Stelle	LF / LK	B	ewehrung	S-	Fehlemeldung
Nr.		Nr.	x [m]	EK		Fläche	Einheit	bzw. Hinweis
1	Rechteck 400	/400						
	Längs	1	0.000	LF1	As	51.34	cm ²	

Bild 5.49: Erforderliche Bewehrung

Die Ausgabe der Zwischenergebnisse beginnt mit folgenden drei Überpunkten:

Details - Stab Nr. 1 - x: 0.000 m - LF	1			
Maßgebende Belastung				
 Normalkraft 	N	-1059.500	kN	
 Moment um die y-Achse 	My	-52.975	kNm	
Moment um die z-Achse	Mz	0.000	kNm	
Ersatzlänge nach 5.8.3.2				
Ersatzlänge um die y-Achse	lo.y	16.000	m	
Stützenlänge	ly	8.000	m	
Knicklängenbeiwert	βγ	2.0000		
🖃 Ersatzlänge um die z-Achse	10,z	8.000	m	
Keine Stabilitätsuntersuchung in di	ese Richtung laut B	lenutzervorgabe		
Schlankheit nach 5.8.3.2				
Schlankheit um die y-Achse	λγ	138.5640		
Ersatzlänge	10.y	16.000	m	
Trägheitsradius	iy	115.5	mm	
Schlankheit um die z-Achse	λz	0.0000		
Keine Stabilitätsuntersuchung in di	iese Richtung laut P	lenutzen/orrahe		

Bild 5.50: Darstellung der Zwischenergebnisse

Um die Grenzschlankheit ermitteln zu können, muss die bezogene Druckkraft bestimmt werden. Hierzu werden folgende Gleichungen verwendet:

$$n = \frac{N_{Ed}}{A_c \cdot f_{cd}}$$

mit :

$$A_{c} = y \cdot z = 40 \cdot 40 = 1600 \text{ cm}^{2}$$

$$f_{cd} = \frac{\alpha \cdot f_{ck}}{\gamma_{c}} = \frac{0.85 \cdot 2.0}{1.5} = 1.133 \text{ kN/ cm}^{2}$$

$$n = \frac{|N_{Ed}|}{A_{c} \cdot f_{cd}} = \frac{|1059.5|}{1600 \cdot 1.133} = 0.584 > 0.41$$

$$\lambda_{lim} = 25 \text{ für } |\mathbf{n}| > 0.41$$

Im Programm finden sich diese Parameter unter dem Punkt Grenzschlankheit nach 5.8.3.1 (1).

Details - Stab Nr.1 - x: 0.000 m - LF1			
Ersatzlänge nach 5.8.3.2			
Schlankheit nach 5.8.3.2			
Grenzschlankheit nach 5.8.3.1 (1)			
Bezogene Normalkraft	n	0.5843	> 0.41
 Normalkraft 	NEd	-1059.500	kN
Betonquerschnitt	Ac	1600.00	cm ²
Bemessungswert der Betonfestigkeit	fed	11.33	N/mm ²
 Charakteristische Betondruckfestigkeit 	fok	20.00	N/mm ²
Abminderungsbeiwert	α	0.8500	
Teilsicherheitsbeiwert	γo	1.5000	
 Grenzschlankheit um die y-Achse 	λlim,y	25.0000	
Grenzschlankheit um die z-Achse	λlim,z	25.0000	

Bild 5.51: Grenzschlankheit nach 5.8.3.1 (1)

Die Schlankheit λ_y um die y-Achse ist mit 138,564 größer als die Grenzschlankheit von 25. Somit müssen gemäß Abs. 5.8.3.1(1) die Auswirkungen nach Theorie II.Ordnung berücksichtigt werden.

Details - Stab Nr. 1 - x: 0.000 m - LF1		
Maßgebende Belastung		
⊞ Ersatzlänge nach 5.8.3.2		
Schlankheit nach 5.8.3.2		
Grenzschlankheit nach 5.8.3.1 (1)		
Art der Bemessung		
□ Voraussetzungen Regelbemessung nach 5.8.3.1 (1)		
Voraussetzung um die y-Achse	λy≤λlim,y	Nicht erfüllt
Vorhandene Schlankheit	λγ	138.5640
Grenzschlankheit um die y-Achse	λlim,y	25.0000
Voraussetzung um die z-Achse	$\lambda_z \le \lambda_{lim,z}$	Erfüllt
Keine Stabilitätsuntersuchung in diese Richtung	laut Benutzervorgabe	•
Voraussetzung für Regelbemessung erfüllt?		Nicht erfüllt
Voraussetzungen Regelbemessung nach 5.8.3.1 (1)		
— System unverschieblich?		Nein
— Kein Lastmoment/-e am Stützenende?		Nein
— Stütze nicht durch Querlast beansprucht?		Ja
Normalkraftverlauf konstant?		Ja
— Normalkraft ist keine Druckkraft?		Nein
Voraussetzungen f ür Regelbemessung erf üllt?		Nein
Knicknachweis erforderlich		

Bild 5.52: Art der Bemessung

5.2.4 Planmäßige Ausmitte gemäß 5.8.8.2

Die planmäßige Ausmitte gemäß DIN EN 1992-1-1 bestimmt sich zu:

$$e_0 = \frac{M}{N} = \frac{-52,97 \text{ kNm}}{-1059,50 \text{ kN}} = 0,05 \text{ m}$$

Details - Stab Nr. 1 - x: 0.000 m - LF1				
Ersatzlänge nach 5.8.3.2				
Gehlankheit nach 5.8.3.2 Schlankheit nach 5.8.3.2				
Grenzschlankheit nach 5.8.3.1 (1)				
Art der Bemessung				
🗆 Ausmitten				
Planmäßige Ausmitte nach 5.8.8.2				
Planmäßige Ausmitte in z-Richtung	e0,z	-50.0	mm	
Momentenverlauf über die Stütze	Verlauf My	Konstant		
Moment um die y-Achse	My	-52.975	kNm	
Absolute Normalkraft	INI	1059.500	kN	
Planmäßige Ausmitte in y-Richtung	e0,y	0.0	mm	
 Momentenverlauf über die Stütze 	Verlauf Mz	Konstant		
 Moment um die z-Achse 	Mz	0.000	kNm	
Absolute Normalkraft	INI	1059.500	kN	

Bild 5.53: Planmäßige Ausmitte nach 5.8.8.2

5.2.5 Ausmitte durch Imperfektionen gemäß 5.2

Die Imperfektionen dürfen als Schiefstellung nach 5.2 (5) berechnet werden.

 $\theta_i = \theta_0 \cdot \alpha_h \cdot \alpha_m = 1/200 \cdot 2/\sqrt{8} \cdot \sqrt{(0,5 \cdot (1+1/1))} = 0,003536$

 $e_i = I \cdot \theta_i = 8000 \cdot 0,003536 = 28,3 \text{ mm}$

Details - Stab Nr. 1 - x: 0.000 m - LF1			
⊞ Ersatzlänge nach 5.8.3.2			
⊞ Grenzschlankheit nach 5.8.3.1 (1)			
🖃 Ausmitten			
-			
Ausmitte durch Imperfektionen gemäß 5.2			
Ausmitte durch Imperfektionen in z-Ebene	ei,z	-28.3	mm
Neigung	Θi,z	0.0035	
Grundwert der Neigung	Θ0	0.0035	
Stützenlänge	ly	8.000	m
Abminderungsbeiwert f ür St ützenanzahl	αm	1.0000	
Stütze wird laut Benutzervorgabe wie e	ine Einzelstütze	nachgewiese	n.
Knicklänge	10.y	16.000	m
Ausmitte durch Imperfektionen in y-Ebene	ei,y	0.0	mm
 Keine Ausmitte durch Imperfektionen, da kei 	ine Knickgefähn	dung laut Beni	uzervorgabe

Bild 5.54: Ausmitte durch Imperfektionen nach 5.2

5.2.6 Mindestausmitte gemäß 6.1 (4)

Für Querschnitte mit Drucknormalkraft ist in der Regel eine Mindestausmitte von $e_{min} = h/30 \ge 20 \text{ mm}$ anzusetzen (mit *h* als Querschnittshöhe):

 $e_{min} = 400 / 30 = 13,33 \text{ mm} => 20 \text{ mm}$

Details - Stab Nr. 1 - x: 0.000 m - LF1			
Maßgebende Belastung			
Ersatzlänge nach 5.8.3.2			
Grenzschlankheit nach 5.8.3.1 (1)			
🖂 Ausmitten			
—			
—	2		
Mindestausmitte gemäß 6.1 (4)			
Mindestausmitte in z-Richtung	e min,z	-20.0	mm
Bauteilhöhe	h _{w,z}	400.0	mm
Mindestwert der Mindestausmitte	e 20 mm,z	20.0	mm
Mindestausmitte in y-Richtung	e _{min,y}	0.0	mm
Kein Ansatz der Mindestausmitte, da	keine Knickgefäl	hrdung laut Ber	nutzervorgabe.

Bild 5.55: Mindestausmitte nach 6.1 (4)

5.2.7 Momente nach Theorie I. Ordnung

Die Momente nach Theorie I. Ordnung ermitteln sich auf folgende Weise:

 $M_{Ed,1} = N_{Ed} \cdot (e_{0,z} + e_{i,z}) = -1059,50 \cdot (0,05 + 0,0283) = -82,94 \text{ kNm}$

Details - Stab Nr.1 - x: 0.000 m - LF1			
Ersatzlänge nach 5.8.3.2			
Grenzschlankheit nach 5.8.3.1 (1)			
Ausmitten			
Momente nach Theorie I. Ordnung			
Momente nach Theorie I. Ord.			
Einwirkende Normalkraft	NEd	-1059.500	kN
Moment um die y-Achse	MEd,1,y	-82.942	kNm
Rechnerische Gesamtausmitte in z-Richtung	e calc 1,z	-78.3	mm
Planmäßige Ausmitte	e0,z	-50.0	mm
Ausmitte durch Imperfektionen	ei,z	-28.3	mm
☐ Moment um die z-Achse	MEd,1,z	0.000	kNm
Keine Knickgefährdung laut Benutzervorgabe			

Bild 5.56: Momente nach Theorie I. Ordnung

5.2.8 Momente nach Theorie II. Ordnung

Das Moment M₂ nach Theorie II. Ordnung nach 5.8.8.2 (3) lautet:

 $M_2 = N_{\text{Ed}} \cdot e_2$

mit :

- N_{Ed} Bemessungswert der Normalkraft
- e_2 Verformung (= weitere Exzentrizität, die durch die Belastung verursacht wird) $e_2 = (1/r) \cdot (I_0)^2 \, / \, c$
- 1/r Krümmung
- l₀ Knicklänge
- c Beiwert, der vom Krümmungsverlauf abhängt = π^2

5 Beispiele

Bei Bauteilen mit konstanten symmetrischen Querschnitten (einschließlich Bewehrung) darf die Krümmung nach 5.8.8.3 (1) wie folgt ermittelt werden:

$$\begin{split} 1/r &= K_r \cdot K_\phi \cdot 1/r_0 \\ K_r &= (n_u - n) / (n_u - n_{bal}) \\ Beiwert in Abhängigkeit von der Normalkraft nach 5.8.8.3 \\ n &= N_{Ed} / (A_e \cdot f_{cd}) = 1059,500 / (1600 \cdot 11,33) \cdot 100 = 0,5843 \\ Bezogene Normalkraft \\ \omega &= A_s \cdot f_{yd} / (A_c \cdot f_{cd}) = 63,71 \cdot 434,78 / (1600 \cdot 11,33) = 1,5280 \\ n_u &= 1 + \omega = 1 + 1,5280 = 2,5280 \\ n_{bal} &= 0,4 \\ K_r &= (n_u - n) / (n_u - n_{bal}) = (2,5280 - 0,5843) / (2,5280 - 0,4) = 0,9134 \le 1,00 \\ K_\phi &= 1 + \beta \cdot \phi_{ef} \\ Beiwert zur Berücksichtigung des Kriechens nach 5.8.8.3(4) \\ \beta &= 0,35 + f_{ck} / 200 - \lambda / 150 = 0,35 + 20 / 200 - 138,564 / 150 = -0,474 \\ \phi_{ef} &= \phi(\infty, t_0) \cdot M_{0Eqp} / M_{0Ed} \\ Effektive Kriechzahl nach 5.8.4 \end{split}$$

 $\varphi(\infty,t_0)$ Endkriechzahl gemäß 3.1.4 gemäß Vorgabe in Maske 1.3 Querschnitte

Bild 5.57: Ermittlung der Kriechzahl in Maske 1.3

 $\phi_{ef} = \phi(\infty, t_0) \cdot M_{0Eqp} / M_{0Ed} = 3,7152 \cdot 82,942 / 82,942 = 3,7152$

Dabei ist M_{OEqp} das Biegemoment nach Theorie I. Ordnung unter der quasi-ständigen Einwirkungskombination, M_{OEd} das Biegemoment nach Theorie I. Ordnung unter der Bemessungseinwirkungskombination. Das Verhältnis kann in Maske *1.1 Basisangaben*, Register *Kriecherzeugende Dauerlast* mit 1,00 begrenzt werden.

$$\begin{split} &K_\phi = 1 + \beta \cdot \phi_{ef} = 1 + (\text{-}0,474) \cdot 3,7152 = \text{-}0,449 \geq 1,0 \\ &1/r_0 = \epsilon_{yd} / (0,45 \cdot d) = 2,17 / (0,45 \cdot 360) = 0,013 \ 1/m \\ &1/r = K_r \cdot K_\phi \cdot 1/r_0 = 0,9134 \cdot 1,0 \cdot 0,013 = 0,012 \end{split}$$

Die zusätzliche Lastausmitte e₂ infolge der Auswirkungen nach Theorie II. Ordnung ermittelt sich dann wie folgt:

 $e_2 = (1/r) \cdot (I_0)^2 / c = 0,012 \cdot 16^2 / \pi^2 = 0,3138m$

Sind die Ausmitten infolge Theorie II. Ordnung bekannt, können die Momente nach Theorie II. Ordnung bestimmt werden zu:

 $M_2 = N_{Ed} \cdot e_2 = 1059,5 \cdot 0,3138 = 332,47 \text{ kNm}$

 $M_{Ed,2} = N_{Ed} \cdot (e_0 + e_i + e_2) = 1059,5 \cdot (0,050 + 0,0283 + 0,3138) = 415,389 \text{ kNm}$

Details - Stab Nr. 1 - x: 0.000 m - LF1			
⊞ Maßgebende Belastung			
Firsatzlange nach 5.8.3.2			
Schlankheit nach 5.8.3.2			
Grenzschlankheit nach 5.8.3.1 (1)			
Art der Bemessung			
⊡ Ausmitten			
■ Momente nach Theorie I. Ordnung			
Momente nach Theorie II. Ordnung			
- Ausmitte durch Th. II. Ord. nach 5.8.8.2(3)			
Ausmitte durch Th. II. Ord. in z-Richtung	e2.z	-313.8	mm
Krümmung in z-Ebene	1/rz	0.012	1/m
 Gewählter Beiwert (Normalkraft) 	gew K _{r,z}	0.9134	
 Errechneter Beiwert (Normalkraft) 	K _{r,z}	0.9134	
Grenztragfähigkeit	nu	2.5276	
	ω	1.5276	
Bezogene Normalkraft	n	-0.5843	
Aufnehmbare Normalkraft (Biegung)	n bal	-0.4000	
Gewählter Beiwert (Kriechen)	gew K _{o,z}	1.0000	
Errechneter Beiwert (Kriechen)	K _{o,z}	-0.7601	
Krümmung in z-Ebene	1/ro,z	0.013	1/m
 Dehnung (Streckgrenze) 	εyd	2.17	%
Bemessungswert Streckgrenze	fyd	434.78	N/mm ²
E-Modul	Es	200000.00	N/mm ²
Statische Höhe	dz	360.0	mm
- Knicklänge	lo.y	16.000	m
Beiwert(Krümmungsverlauf)	с	9.8696	
Ausmitte durch Th. II. Ord. in y-Richtung	e _{2,y}	0.0	mm
Keine Stabilitätsuntersuchung in diese Richtu	ing laut Benutze	rvorgabe	
Momente nach Theorie II. Ord.			
Einwirkende Normalkraft	NEd	-1059.500	kN
Moment um die y-Achse	MEd,y2	-415.389	kNm
Gesamtausmitte in z-Richtung	e2,tot,z	-392.1	mm
Ausmitte durch Th. II. Ord.	e _{2,z}	-313.8	mm
Ausmitte (Th. I. Ord.) in z-Richtung	e1,z	-78.3	mm
Planmäßige Ausmitte	e _{0,z}	-50.0	mm
Ausmitte durch Imperfektionen	ei,z	-28.3	mm
Mindestausmitte in z-Richtung	e _{min,z}	-20.0	mm
Moment um die z-Achse	MEd,z2	0.000	kNm

Bild 5.58: Momente nach Theorie II. Ordnung

Für dieses einwirkende Moment nach Theorie II. Ordnung findet zusammen mit der einwirkenden Normalkraft eine erste Bemessung statt. Im weiteren Programmablauf wird die erforderliche Bewehrung für jede abermalige Bemessung als vorhandene Bewehrung angesetzt. Dann wird nochmals das einwirkende Moment nach Theorie II. gefunden. Für dieses Moment wird erneut eine erforderliche Bewehrung bestimmt, die dann wieder als vorhandene Bewehrung zur Ermittlung eines neuen Moments nach Theorie II. Ordnung angesetzt wird. Dieses Wechselspiel zwischen vorhandener Bewehrung und Moment nach Theorie II. Ordnung wird so lange fortgesetzt, bis sich das Moment nicht mehr wesentlich ändert.

In unserem Fall wird das Moment von 415,389 kNm zu 412,565 kNm geändert. Dieser Wert wird zusammen mit der Normalkraft von 1059,50 kN für die Bemessung verwendet.

Zwischenergebnisse Rechteck 400/400 - LF1			
T Maßgebende Belastung			
Ersatzlänge nach 5.8.3.2			
Schlankheit nach 5.8.3.2			
⊞ Grenzschlankheit nach 5.8.3.1 (1)			
🗄 Momente nach Theorie I. Ordnung			
🕀 Momente nach Theorie II. Ordnung			
Statisch erforderliche Bewehrung			
 Einwirkende Schnittgrößen 			
Normalkraft	NEd	-1059.50	kN
 Moment um die y-Achse nach Th. II. Ord. (Kriechen) 	MEd,y2	-412.565	kNm
Moment um die z-Achse nach Th. II. Ord. (Kriechen)	MEd,z2	0.000	kNm
- 🖂 Krümmungen			
Krümmung in z-Ebene	1/rz	-0.015	1/m
Krümmung in y-Ebene	1/ry	0.000	1/m
-			
-			
			2

Bild 5.59: Statisch erforderliche Bewehrung

Unter dem Überpunkt *Querschnittspunkte* befinden sich für jeden in der rechtseitigen Grafik dargestellten Punkt die Betondehnungen und -spannungen.

- 🖃 Querschnittspunkte			
 Anzahl der Querschnittspunkte 	Πc	4	
Querschnittspunkt	Nr.	1	
y-Koordinate	Уc	20.0	cm
z-Koordinate	Zc	20.0	cm
Dehnung	εc	-3.50	%。
Spannung	σc	-11.33	N/mm ²
	Nr.	2	
	Nr.	3	
-	Nr.	4	

Bild 5.60: Spannungen und Dehnungen der einzelnen Querschnittspunkte

Analog dazu befinden sich unter dem Überpunkt *Bewehrungsstäbe* die Koordinaten der einzelnen Bewehrungsstäbe sowie die in ihnen vorherrschenden Dehnungen und Spannungen.

 Bewehrungsstäbe 			
 Anzahl der Bewehrungsstäbe 	Πs	22	
Bewehrungsstab	Nr.	1	
y-Koordinate	Уs	-16.0	cm
- z-Koordinate	Zs	16.0	cm
Dehnung	٤s	-2.91	%。
Spannung	σs	-434.78	N/mm ²
⊕ Bewehrungsstab	Nr.	2	

Bild 5.61: Spannungen und Dehnungen der einzelnen Bewehrungsstäbe

Sowohl Dehnungen als auch Spannungen werden gemeinsam für Beton und Bewehrung im Grafikfenster auf der rechten Seite dargestellt. Diese Darstellung kann mit den Schaltflächen unterhalb des Grafikfensters angepasst werden. Es kann auch ein eigener Dialog aufgerufen werden, der die Dehnungen und Spannungen übersichtlich in zwei Tabellen für Beton und Stahl zeigt (siehe folgendes Bild).

	I	~]		000		Rechteck 400/400 Beton : Dehnung
Cad INT.:	•		x	000		Bewehrung : Dehnung
pannun	gen					
	A	В	С	D		
Punkt	Koordin	aten [m]	Dehnung	Spannung		
INF.	У	z	[‰]	[N/mm ²]		
1	0.200	0.200	-3.5	-11.33	33	(transverseren over and the
2	0.200	0.0979825	-2.0	0 -11.33	33	
3	0.200	-0.0380407	0.0	0 0.	00	
4	0.200	-0.200	2.3813	5 0.	00	
5	-0.200	-0.200	2.3813	5 0.	00	
6	-0.200	-0.0380407	0.0	D 0.	00	
/	-0.200	0.0979825	-2.0	0 -11.33	33	Y
8	-0.200	0.200	-3.5	J -11.33	33	
ewehru	ing		1			
ewehru	ing A	B	C	D	*	
ewehru Punkt	Ing A Koordina	B aten [m]	C Dehnung	D	* III	
ewehru Punkt Nr.	ng A Koordina y	B aten [m] z	C Dehnung [‰]	D Spannung [N/mm²]	• III	
ewehru Punkt Nr.	A Koordina y -0.160	B aten [m] z 0.160	C Dehnung [%] -2.91186	D Spannung [N/mm ²] -436.716	•	
ewehru Punkt Nr. 1 2	A Koordina y -0.160 -0.151795	B aten [m] z 0.160 0.160	C Dehnung [‰] -2.91186 -2.91186	D Spannung [N/mm ²] -436.716 -436.716	< III	
Punkt Nr.	A Koordina y -0.160 -0.151795 -0.14359	B iten [m] z 0.160 0.160 0.160 0.160	C Dehnung [‰] -2.91186 -2.91186 -2.91186	D Spannung [N/mm ²] -436.716 -436.716 -436.716	4 III	
ewehru Punkt Nr. 1 2 3 4	A Koordina y -0.160 -0.151795 -0.14359 -0.14359 -0.135385	B iten [m] z 0.160 0.160 0.160 0.160 0.160	C Dehnung [%] -2.91186 -2.91186 -2.91186 -2.91186	D Spannung [N/mm ²] -436.716 -436.716 -436.716 -436.716	•	N A
ewehru Punkt Nr. 1 2 3 4 5	A Koordina y -0.160 -0.151795 -0.14359 -0.135385 -0.127179 -0.127179	B ten [m] z 0.160 0.160 0.160 0.160 0.160 0.160	C Dehnung [%] -2.91186 -2.91186 -2.91186 -2.91186 -2.91186	D Spannung [N/mm ²] -436.716 -436.716 -436.716 -436.716 -436.716	< III	Beton Max/Min: 2.38 / -3.50 ‰ (4) / (1)
ewehru Punkt Nr. 1 2 3 4 5 6	A Koordina y -0.160 -0.151795 -0.14359 -0.14359 -0.127179 -0.118974	B tten [m] z 0.160 0.160 0.160 0.160 0.160 0.160 0.160	C Dehnung [‰] -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186	D Spannung [N/mm ²] -436.716 -436.716 -436.716 -436.716 -436.716 -436.716	• III	Beton Max/Min: 2.38 / -3.50 ‰ (4) / (1) Bewehrung Max/Min: 1.79 / -2.91 ‰ (41) / (1)
ewehru Punkt Nr. 1 2 3 4 5 6 7 7	A Koordina y -0.160 -0.151795 -0.14359 -0.135385 -0.127179 -0.118974 -0.110769	B iten [m] z 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	C Dehnung [‰] -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186	D Spannung [N/mm ²] -436.716 -436.716 -436.716 -436.716 -436.716 -436.716	•	Beton Max/Min: 2.38 / -3.50 ‰ (4) / (1) Bewehrung Max/Min: 1.79 / -2.91 ‰ (41) / (1)
ewehru Punkt Nr. 2 3 4 5 6 7 8 8	A Koordina y -0.160 -0.151795 -0.14359 -0.135385 -0.127179 -0.118974 -0.110769 -0.102564 -0.102564	B ten [m] z 0.160 0	C Dehnung [%=] -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186	D Spannung [N/mm ²] -436.716 -436.716 -436.716 -436.716 -436.716 -436.716 -436.716	4 m	Beton Max/Min: 2.38 / -3.50 ‰ (4) / (1) Bewehrung Max/Min: 1.79 / -2.91 ‰ (41) / (1) 1.0 ☆ 🔯
ewehru Punkt Nr. 2 3 4 5 6 7 8 9	A Koordina y -0.160 -0.151795 -0.14359 -0.135385 -0.127179 -0.118974 -0.110769 -0.102564 -0.094359 -0.094359 -0.004552	B [m] z 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	C Dehnung [%-] -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186	D Spannung [N/mm ²] -436.716 -436.716 -436.716 -436.716 -436.716 -436.716 -436.716 -436.716 -436.716 -436.716	< III	Beton Max/Min: 2.38 / -3.50 ‰ (4) / (1) Bewehrung Max/Min: 1.79 / -2.91 ‰ (41) / (1) 1.0 ☆ Ø Beton: ■ Ø ■ 1.0 ☆
ewehru Punkt Nr. 2 3 4 5 6 7 8 9 9 10	A Koordina y -0.160 -0.151795 -0.14359 -0.135385 -0.127179 -0.118974 -0.110769 -0.102564 -0.094359 -0.09451538	B ten [m] z 0.160 0	C Dehnung [%+] -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186 -2.91186	D Spannung [N/mm ²] -436.716 -436.716 -436.716 -436.716 -436.716 -436.716 -436.716 -436.716 -436.716 -436.716	4 W	Beton Max/Min: 2.38 / -3.50 ‰ (4) / (1) Bewehrung Max/Min: 1.79 / -2.91 ‰ (41) / (1) 1.0 ☆ 20

Bild 5.62: Darstellung der Dehnungen und Spannungen von Beton und Bewehrung

Den Abschluss der Zwischenergebnisse in Maske 3.1 Erforderliche Bewehrung querschnittsweise bilden zum einen der Überpunkt zur Ermittlung der Mindestbewehrung nach Norm und zum anderen der Überpunkt für die Erforderliche Bewehrung, die sich als größere Bewehrung aus der statisch erforderlichen Bewehrung und der Mindestbewehrung ergibt.

Zwischenergebnisse Rechteck 400/400 - LF1						
Maßgebende Belastung						
Ersatzlänge nach 5.8.3.2						
Schlankheit nach 5.8.3.2						
Grenzschlankheit nach 5.8.3.1 (1)						
Ausmitten						
Momente nach Theorie I. Ordnung						
Momente nach Theorie II. Ordnung						
Statisch erforderliche Bewehrung						
Mindestbewehrung nach Norm						
Einwirkende Normalkraft	NEd	-1059.500	kN			
Bemessungswert Streckgrenze	fyd	434.78	N/mm ²			
Mindestbewehrung	erf A _{s,min,1}	3.66	cm ²			
Erforderliche Bewehrung						
 Statisch erforderliche Bewehrung 	erf A _{s,stat}	51.34	cm ²			
Mindestbewehrung	erf A _{s,min}	3.66	cm ²			
Erforderliche Bewehrung	erf As	51.34	cm ²			

Bild 5.63: Überpunkte Mindestbewehrung nach Norm und Erforderliche Bewehrung

Die Mindestbewehrung bestimmt sich nach DIN EN 1992-1-1 gemäß 9.5.2 (2) wie folgt:

$$A_{s,min} = 0.15 \cdot \frac{|N_{Ed}|}{f_{vd}} = 0.15 \cdot \frac{|-1059,50|}{43,478} = 3.66 \text{ cm}^2$$

5.2.9 Vorhandene Bewehrung

Der gesamte Bewehrungsquerschnitt darf gemäß DIN EN 1992-1-1, Abs. 9.5.2 (3) den Maximalwert von 0,09 A_c nicht überschreiten:

 $A_{s,max} = 0.09 \cdot A_c = 0.09 \cdot 1600 \text{ cm}^2 = 162 \text{ cm}^2$

Für die Bewehrungsausführung werden folgende Bewehrungsstahl-Durchmesser vorgegeben: 12, 14, 16, 20, 26, 28 und 30 mm (siehe Bild 5.47, Seite 163). Das Programm untersucht, mit welchem dieser Durchmesser die wirtschaftlichste Lösung möglich ist: Der vorhandene Bewehrungsquerschnitt soll möglichst nahe, jedoch größer dem erforderlichen Bewehrungsquerschnitt sein.

Für diese Bewehrung wird eine vorhandene Bruchsicherheit von 1,1094 errechnet.

Details - Stab Nr. 1 - x: 0.000 m - LF1					Rechteck 400/400 LF1 / Dehnungszustand
Momente nach Theorie I. Ordnung				*	Beton : Dehnung
Momente nach Theorie II. Ordnung					Bewenrung : Dennung
Vorhandene Bewehrung					
Dehnungszustand					
Bruchzustand					
Nachweis					Y I
 Erforderliche Bruchsicherheit 	erf γ	1.0			1 + + + + + + 1
Vorhandene Bruchsicherheit	vorh γ	1.1094			
Einwirkende Schnittgrößen					÷
Normalkraft	NEd	-1059.500	kN		z
 Moment um die y-Achse nach Th. II. O 	MEd,y2	-417.074	kNm	Ξ	Beton Max/Min: 2.23 / -2.80 ‰
Moment um die z-Achse nach Th. II. O	MEd,z2	0.000	kNm		Bewehrung Max/Min: 1.73 / -2.30 ‰
Bruchschnittgrößen					
Bruchnormalkraft	Nu	-1175.360	kN		
Bruchmoment um die y-Achse	M _{y,u}	-462.695	kNm		Beton: 📕 🗗 🛄 🎞
Bruchmoment um die z-Achse	M _{z,u}	0.000	kNm		Rewebrung: 📧 📧 📧
 Nachweiskriterium (erf γ / vorh γ) 	Kriterium	0.9014		Ŧ	bewenlung. 🔛 🔛 📖 👞

Bild 5.64: Vorhandene Bruchsicherheit

Das Programm schlägt fünf Bewehrungsstäbe mit Durchmesser 26 mm vor, die für jede Seite parallel zur y-Achse des Querschnitts anzuordnen sind.

Bild 5.65: Längsbewehrung der Stütze

Über den Dialog *Längsbewehrung bearbeiten* kann die konstruktive Bewehrung als statisch nicht wirksam definiert werden.

4.1 Vorhandene Längsbewehrung							
	A	B	С	D	E	F	G
Position	Anzahl	ds	As	Stelle	x [m]		
Nr.	Stäbe	[mm]	[cm ²]	von	bis	Verankerung	Meldung
	Stab Nr. 1	Nr. 1 - Rechteck 400/400					
1	10	26.0	53.09	-1.215	9.215	\checkmark	
2	2	26.0	10.62	-1.215	9.215	V	
۵ 🐧							
Längsbewehrung bearbeiten Stab Nr. 1, Position Nr. 2							
Nachweis Durchmesser der Bewehrung							
Bewehrungsstäbe statisch wirksam D: 26.0 - [mm]							

Bild 5.66: Statische Wirksamkeit der konstruktiven Bewehrung ausschalten

Um die Änderungen für die vorhandende Sicherheit zu erfassen, ist die Berechnung erneut zu starten. Ohne Berücksichtigung der konstruktiven Bewehrung verringert sich die vorhandene Sicherheit von 1,1094 auf 1,0247.

Details - Stab Nr. 1 - x: 0.000 m - LF1					Rechteck 400/400 LF1 / Dehnungszustand
Momente nach Theorie I. Ordnung				*	Beton : Dehnung
⊞ Momente nach Theorie II. Ordnung				Bewenrung : Dennung	
Dehnungszustand					
Bruchzustand					
Nachweis					Y
Erforderliche Bruchsicherheit	erf γ	1.0			1 1 X 1 1
Vorhandene Bruchsicherheit	vorh γ	1.0247			
Einwirkende Schnittgrößen					÷
Normalkraft	NEd	-1059.500	kN		Z
 Moment um die y-Achse nach Th. II. O 	MEd,y2	-411.104	kNm	Ξ	Beton Max/Min: 2.17 / -2.90 ‰
Moment um die z-Achse nach Th. II. O	MEd,z2	0.000	kNm		Bewehrung Max/Min: 1.67 / -2.40 ‰
 Bruchschnittgrößen 					10 🖂 🕅 📑 🐹
Bruchnormalkraft	Nu	-1102.380	kN		
 Bruchmoment um die y-Achse 	M _{y,u}	-432.210	kNm		Beton: 🔟 🔽
Bruchmoment um die z-Achse	M _{z,u}	0.000	kNm		Powebung 📧 😿 🐨
 Nachweiskriterium (erf γ / vorh γ) 	Kriterium	0.9759		Ŧ	beweniung. 🔛 📖 📖 👞

Bild 5.67: Vorhandene Bruchsicherheit ohne konstruktive Bewehrung

Inwieweit eine veränderte vorhandene Längsbewehrung Einfluss auf die Sicherheit hat, zeigt sich an verschiedenen Stellen in den *Zwischenergebnissen*. Zuerst wirkt sich eine veränderte vorhandene Längsbewehrung das einwirkende Moment nach Theorie II. Ordnung aus.

Welche Bewehrung statisch wirksam ist, findet sich in den Details an folgenden Stellen.

Nachweis				Nachweis			
Bewehrungsstäbe statisch	wirksam			Bewehrungsstäbe statis	sch wirksam		
wischenergebnisse Stab Nr. 1 - x: 0.	000 m - LF1			Zwischenergebnisse Stab Nr. 1 - x: 0.	000 m - LF1		
🗆 Vorhandene Bewehrung				Vorhandene Bewehrung			
aus Position	Nr.	1	m	aus Position	Nr.	1	m
 Position statisch wirksam 		Ja		 Position statisch wirksam 		Ja	
 Bewehrungsstabdurchmesser 	ds	0.026	m	 Bewehrungsstabdurchmesser 	ds	0.026	m
 Querschnittsfläche pro Bewehrungsstab 	as	5.31	cm ²	Querschnittsfläche pro Bewehrungsstab	as	5.31	cm ²
— Anzahl	ns	10		Anzahl	ns .	10	
 Gesamte Querschnittsfläche 	vorh As	53.09	cm ²	Gesamte Querschnittsfläche	vorh As	53.07	cm ²
🖃 aus Position	Nr.	2	m	⊟ aus Position	Nr.	2	m
 Position statisch wirksam 		Nein		 Position statisch wirksam 		Ja	
 Bewehrungsstabdurchmesser 	ds	0.020	m	Bewehrungsstabdurchmesser	ds	0.020	m
 Querschnittsfläche pro Bewehrungsstab 	as	3.14	cm ²	 Querschnittsfläche pro Bewehrungsstab 	as	3.14	cm ²
- Anzahl	ns	2		Anzahl	ns	2	
Gesamte Querschnittsfläche	vorh As	6.28	cm ²	Gesamte Querschnittsfläche	vorh As	6.28	cm ²
 Vorhandene Bewehrung 	vorh As	53.09	cm ²	Vorhandene Bewehrung	vorh As	53.09	cm ²

Bild 5.68: Überprüfen der statischen Wirksamkeit einer Position

Bei der Darstellung der Spannungen und Verformungen in Tabelle und Grafik werden auch nur jene Bewehrungsstäbe dargestellt, die statisch wirksam sind.

5.3 Brandschutznachweis

Eine vierseitig brandbeanspruchte Stütze nach dem Beispiel 10 in [3] wird für die Brandschutzklasse R30 untersucht. Im Modul RF-/BETON Stützen sind in Maske *1.4 Bewehrung* folgende Angaben zum *Brandschutz* zu treffen:

RF-BETON Stützen - [Beispiel 10	- Randstütze (Gesamtsystem)]		×
<u>D</u> atei Einstellungen Hilfe			
FA1 💌	1.4 Bewehrung		
Eingabedaten Hasisangaben Materialien Querschnitte Parameter - stabweise Ergebnisse Stabe Ergebnisse Uerschnittsweise Stabweise Vorhandene Bewehrung Längsbewehrung Bigelbewehrung Stabiliste	Bewehrungssatz N;: Bezeichnung: 1 Image: Construktive Bewehrung Bügel Konstruktive Bewehrung Brandschutzklasse: R30 Anzahl der Zonen: 30 Typ des Betonzuschlags: Quarzhaltig Klassifizierung der Bewehrung Klasse N Produktionstyp des Wamgewa Dem Brand ausgesetzte Imagewa Querschnittsseiten: Imagewa Vorkrümmung infolge +2	Angewendet auf Stäbe: 6 Stabe: 6 Stabe: 1 Image: Stabe: 1 Materialfaktoren für Brandschutz Image: Stabe: Stabe	Image: Provide state sta
		Grafik	OK Abbrechen

Bild 5.69: Maske 1.4 Bewehrung, Register Brandschutz

Nach der [Berechnung] erscheinen in Maske 2.1 Nachweis Stäbe folgende Ergebnisse:

Jatel Einstellungen Hilfe	-							
A1	▼ 2.1 Nac	hweis Stäbe						
Eingabedaten		A	В	C	D			E
- Basisangaben	Stab	Stelle	Maßgebender	Nachw	reis			
- Materialien	INF.	x [m]	Lastfall	Ausnutzun	3		Kommenta	r zum Nachweis
Querschnitte	6	Querschnitt	Nr. 1 - Rechteck	k 40/45	1			
🚊 Bewehrung		0.000	LK4 - min N	0.8607	/ ≤1	100) Nachweis im k	ritischen Querschnit	t der Modellstütze nach Abs. 5.8.8
-1		6.200	LK4 - max My	0.0384	≤1	201) Querkraftnach	weis (V _{Ed} / V _{Rd,c} ≤	1) gemäß 6.2.2 (2) mit (6.4)
Parameter - stabweise		0.000	LK3 - min N	0.2263	≤1	202) Querkraftnach	weis (V _{Ed} / V _{Rd,c} ≤	≤ 1) gemäß 6.2.2 (1)
rgebnisse		0.000	LK3 - min N	0.8763	≤1	100) Brandschutzna	chweis - Nachweis i	m kritischen Querschnitt der Modellstütze
- Nachweis								
Stäbe	🗖 Alle I	astfälle	Max:	0.8763	} ≤1			🖺 🍡 🗳 💿
Errordeniche Bewenrung								
Stabweise	Details	 Stab Nr. 6 	- x: 0.000 m	- LK3				Rechteck 40/45
Vorhandene Bewehrung	🖃 Tem	peraturprofi	l im Betonque	rschnitt			*	Beton : Dehnung
Längsbewehrung	🖂 Ha	be Breite der	gleichwertigen \	Nand	w	0.200	m	Bewehrung : Dehnung
Bijgelbewehrung		Brandeinwirku	ingsrichtung			+z/-z/+y/-y		2,10 35.60 2.10
Stabiliste		Bauteil betrad	htet als			Stütze		
o tarimoto	Bra	Brandeinwirkungsdauer			Т	30	min	2
	- Art	Art der Betonzuschläge			•	Quarzhaltig		8
	Zor	Zonendicke			t	0.007	m	4 Y
	An	Anzahl der Zonen				30		
	Geso	hādigte Zo	ne		az	0.021	m	↓
	Ba	uteil betrachte	et als			Stütze		Z
	Re	duktionsfakto	r im Punkt M au:	s 2.3 Tab.	k ₀(0 M) 1.0000		Beton Max/Min: 7.23 / -1.80 ‰
	- Mit	tlerer Redukti	onsfaktor		kom	0.9173		Bewehrung Max/Min: 4.70 / -3.59 ‰
	Ha	be Breite der	gleichwertigen \	Nand	w	0.200	m	10- 🕅 🚳 🙈 👼
	🕀 Abge	minderte B	etoneigensch	aften				
	🗄 Abge	minderte B	etonstahleige	nschaften				Beton: 🐱 🗖 🔤 🛄
	🕀 Tem	peratur-Diff	erenz des Bet	ons und d	es Sta	hls		
	🗆 Maß	jebende Be	astung					Bewenrung: 🔝 🔝 🔛 🤅

Bild 5.70: Maske 2.1 Nachweis Stäbe

Für den Querschnitt werden die maßgebenden Sicherheiten ausgegeben, die bei der Brandschutzbemessung ermittelt wurden. Sie resultieren aus den eingegebenen Parametern für die Brandnachweise, der vorhandenen Bewehrung und den Schnittgrößen der Einwirkungen.

Es wird jeweils die x-Stelle im Stab angegeben, die für die Brandbemessung maßgebend ist. Für die tabellarische Ausgabe werden diese RFEM- bzw. RSTAB-Stabstellen *x* herangezogen:

- Anfangs- und Endknoten
- Teilungspunkte gemäß eventuell vorgegebener Stabteilung
- Extremwerte der Schnittgrößen

In der Spalte *Maßgebender Lastfall* werden die Nummern der Lastfälle, Last- oder Ergebniskombinationen angegeben, die für die jeweiligen Nachweise maßgebend sind.

Die Spalte *Ausnutzung* gibt Auskunft über die kleinsten Sicherheitsfaktoren γ einer jeden Nachweisart. Ist die Sicherheit kleiner als 1, so ist der Brandschutznachweis erfüllt.

Im unteren Teil der Maske werden die *Details* für die oben selektierte Zeile angezeigt. Dadurch ist eine gezielte Auswertung anhand der Zwischenergebnisse möglich. Die Ausgabe dieser Details aktualisiert sich automatisch, sobald oben eine andere Zeile selektiert wird.

Details - Stab Nr. 6 - x: 0.000 m - LK3							
Temperaturprofil im Betonquerschnitt							
- Halbe Breite der gleichwertigen Wand	w	0.200	m				
Brandeinwirkungsrichtung		+z/-z/+y/-y					
Bauteil betrachtet als		Stütze					
Brandeinwirkungsdauer	T	30	min				
 Art der Betonzuschläge 	-	Quarzhaltig					
Zonendicke	t	0.007	m				
Anzahl der Zonen	n	30					
Geschädigte Zone	az	0.021	m				
Bauteil betrachtet als		Stütze					
 Reduktionsfaktor im Punkt M aus 2.3 Tab. 	k _c (OM)	1.0000					
Mittlerer Reduktionsfaktor	kom	0.9173					
Halbe Breite der gleichwertigen Wand	w	0.200	m				
Abgeminderte Betonstahleigenschafter	Abgeminderte Betonstahleigenschaften						
Temperatur-Differenz des Betons und	des Stahls						

Bild 5.71: Angaben zu Temperaturprofil und für Geschädigte Zone

Das Temperaturprofil und die geschädigte Zone werden auch mit Bemaßungen grafisch dargestellt. Die detaillierten Werte der einzelnen Zonen sind über die Schaltfläche [Temperaturprofil] einsehbar.

Bild 5.72: Temperaturprofil und geschädigte Zone - Grafik

Eine Tabelle gibt den *Temperaturverlauf in Zonenmitte* an. Grafisch wird das *Temperaturprofil der Ersatzwand* gemäß EN 1992-1-2, Anhang A dargestellt.

Für die Berechnung werden die abgeminderten Eigenschaften für Beton und Stahl benutzt.

Details - Stab Nr. 6 - x: 0.000 m - LK3							
Temperaturprofil im Betonquerschnitt							
Geschädigte Zone	az	0.021	m				
🗆 Abgeminderte Betoneigenschaften							
Abgeminderte Betondruckfestigkeit	f _{ck} (0)	30.000	N/mm ²				
 Temperatur am Punkt M aus 2.3 Tab. 	ΘΜ	100	°C				
Reduktionsfaktor für Betondruckfestigkei	k₀(Θ _M)	1.0000					
Abgeminderte Betonzugfestigkeit	fck,t(0)	2.900	N/mm ²				
 Reduktionsfaktor f ür Betondruckfestigkei 	kc(ΘM)	1.0000					
Reduktionsfaktor für Betonzugfestigkeit	k _{c,t} (Θ _M)	1000.0000					
Abgeminderter E-Modul	E _{cd} (Θ)	28300.000	N/mm ²				
 Temperatur am Punkt M aus 2.3 Tab. 	ΘΜ	100	۰C				
Reduktionsfaktor für Betondruckfestigkei	k₀(ΘM)	1.0000					
Abgeminderte Betonstahleigenschaften	Ì						
Temperatur-Differenz des Betons und d	lae Stable						

Bild 5.73: Abgeminderte Betoneigenschaften

Details - Stab Nr. 6 - x: 0.000 m - LK3			
Abgeminderte Betoneigenschaften			
Abgeminderte Betonstahleigenschaften			
Abgemind. Zugfestigkeit der Bewehrung	f _{sy,t} (0)	401.000	N/mm ²
 Temperatur in Bewehrungsstabmitte 	Θs	298	٥C
Betonstahldehnung bei Temperatur Ø	ξs,fi	0.250	%
 Reduktionsfaktor f ür die Zugfestigkeit 	k _{s,t} (Θ)	0.8020	
Verwendete Kurve von Bild 4.2		3.0000	
Abgeminderter E-Modul der Zugbewehrung	E _{sy.t} (0)	160400.000	N/mm ²
 Temperatur in Bewehrungsstabmitte 	Θs	298	٥C
Betonstahldehnung bei Temperatur Ø	δs,fi	0.250	%
Reduktionsfaktor für E-Modul	E _{sy.⊕} / E _s	0.8020	
Abgemind. Druckfestigkeit der Bewehrung	f _{sy.c} (Θ)	401.000	N/mm ²
 Temperatur in Bewehrungsstabmitte 	Θs	298	۰C
 Reduktionsfaktor f ür die Druckfestigkeit 	k _{s,c} (Θ)	0.8020	
Verwendete Kurve von Bild 4.2		3.0000	
Abgeminderter E-Modul der Druckbewehrung	Esy.c(0)	160400.000	N/mm ²
 Temperatur in Bewehrungsstabmitte 	Θs	298	°C
Reduktionsfaktor für E-Modul	E _{sy,⊗} /E _s	0.8020	
Abgemind. Stahlzugfestigkeit der Schubbewehrung	f _{sy,sw,T} (0)	412.000	N/mm ²
Referenztemperatur	0P,sw	480	°C
 Reduktionsfaktor f ür die Zugfestigkeit 	k _{s,sw} (Θ)	0.8240	
Verwendete Kurve von Bild 4.2		3.0000	

Bild 5.74: Abgeminderte Betonstahleigenschaften

Temperaturprofil im Betonquerschnit	tt		
🗄 Geschädigte Zone	az	0.021	m
Abgeminderte Betoneigenschaften			
Abgeminderte Betonstahleigenschaf	ten		
Temperatur-Differenz des Betons un	nd des Stahls	•	
 Längenänderung des Betons 	€c,fi	0.153	%
	-	170	00
 Mittelwert der Betontemperatur 	Θc	1/0	-0
 Mittelwert der Betontemperatur Art der Betonzuschläge 	0c -	Quarzhaltig	-0
Mittelwert der Betontemperatur Art der Betonzuschläge Längenänderung der Bewehrung	Θc - δs,fi	Quarzhaltig 0.369	%

Bild 5.75: Temperatur-Differenz des Betons und des Stahls

Am Ende der *Details* werden alle Eingangswerte der Nachweise angegeben. Die vorhandenen Sicherheiten werden aus dem Verhältnis von Bruchschnittgröße im Brandfall zu einwirkender Schnittgröße gebildet. Das *Nachweiskriterium* zeigt, dass der Nachweis erfüllt ist.

Details - Stab Nr. 6 - x: 0.000 m - LK3			
Nachweis			
 Erforderliche Bruchsicherheit 	erf γ	1.0	
Vorhandene Bruchsicherheit	vorh γ	1.1411	
Einwirkende Schnittgrößen			
Normalkraft	NEd	-431.000	kN
 Moment um die y-Achse nach Th. II. O 	MEd,y2	-202.890	kNm
Moment um die z-Achse nach Th. II. O	M _{Ed,z2}	8.620	kNm
🖃 Bruchschnittgrößen			
Bruchnormalkraft	Nu	-491.828	kN
Bruchmoment um die y-Achse	M _{y,u}	-231.522	kNm
Bruchmoment um die z-Achse	M _{z,u}	9.836	kNm
Nachweiskriterium (erf γ / vorh γ)	Kriterium	0.8763	

Bild 5.76: Nachweis

A: Literatur

- [1] DIN EN 1992-1-1:2005 + AC:2010 : Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1 : Allgemeine Bemessungsregeln für den Hochbau. 2005
- [2] DIN EN 1992-1-2:2005: Planung von Stahlbeton- und Spannbetontragwerken Teil 1-2: Allgemeine Regeln – Tragwerksbemessung für den Brandfall. Oktober 2006
- [3] Deutscher Beton- und Bautechnik-Verein E.V.: Beispiele zur Bemessung nach Eurocode 2, Band 1: Hochbau. Ernst & Sohn Verlag, Berlin, 2011
- [4] KLEINSCHMITT, J.: Die Berechnung von Stahlbetonstützen nach DIN 1045-1 mit nichtlinearen Verfahren. Beton- und Stahlbetonbau 2/2005, Ernst & Sohn Verlag, Berlin.
- [5] HOSSER, D. und RICHTER, E.: Überführung von EN 1992-1-2 in EN-Norm und Bestimmung der national festzulegenden Parameter (NDP) im Nationalen Anhang zu EN 1992-1-2. Schlussbericht, Stuttgart, Fraunhofer IRB 2007