

Short Overview

1	Introduction		4
2	Input Data	AA	7
3	Results	88	19
4	Printout	AA	25

Literature

Dlubal

27

Dlubal Software GmbH Am Zellweg 2 93464 Tiefenbach Germany

Telephone: +49 9673 9203-0 Fax: +49 9673 9203-51 E-mail: info@dlubal.com ₪

Dlubal Software, Inc.

The Graham Building 30 South 15th Street 15th Floor Philadelphia, PA 19102 USA

Phone: +1 267 702-2815 E-mail: info@dlubal.com 🗵

All rights, including those of translations, are reserved. No portion of this book may be reproduced - mechanically, electronically, or by any other means, including photocopying - without written permission of Dlubal Software.

Using the Manual

The program description is organized in chapters which follow the order and structure of the input and result tables. The chapters present the individual tables column by column. They help to better understand the functioning of the add-on module. General functions are described in the manuals of the main program RFEM or RSTAB.

Hint

The text of the manual shows the described buttons in square brackets, for example [OK]. In addition, they are pictured on the left. Expressions appearing in dialog boxes, tables, and menus are set in *italics* to clarify the explanation. You can also use the search function for the Knowledge Base 2 and FAQs 2 to find a solution in the posts about add-on modules.

Topicality

The high quality standards placed on the software are guaranteed by a continuous development of the program versions. This may result in differences between program description and the current software version you are using. Thank you for your understanding that no claims can be derived from the figures and descriptions. We always try to adapt the documentation to the current state of the software.

Table of Contents

1	Introduction	4
1.1	RF-/LIMITS Add-on Module	4
1.2	Using the Manual	5
1.3	Open the Add-on Module RF-/LIMITS	5
2	Input Data	 7
 0.1		 -
2.1	General Data	8
2.2	Limit Parameters	11
2.3	Load Duration Class	17
3	Results	19
3.1	Limit Checks by Loading	20
3.2	Limit Checks by Set of Members	20
3.3	Limit Checks by Cross-Section	21
3.4	Limit Checks by Surface (Only RF-LIMITS)	22
3.5	Limit Checks by Member	23
3.6	Limit Checks by Node	24
	,	
 4	Printout	25
4.1	Printout Report	25
5	Literature	27

Т

Introduction

1.1

1

RF-/LIMITS Add-on Module

The add-on modules RF-LIMITS (for RFEM) and LIMITS (for RSTAB) provide active structural engineers a comprehensive overview about the utilization of connecting elements or whether internal forces and deformations are met in the entire model.

In the following, the add-on modules of both main programs are described in one manual and are referred to as **RF-/LIMITS**.

Basically, RF/-LIMITS does not depend on any standard. However, you have the possibility to automatically include the specifications of the timber standards EN 1995 [1] 🖻 and DIN 1052 [2] 🖻 for the designs.

An extensive database offering connecting elements makes it easier to start working with the add-on module. It is also possible to extend the database by any other element. Especially for the design of connecting elements used in timber construction (for example joist hangers) the load influence factors k_{mod} describing long-term effects can be determined conforming to standards.

RF-/LIMITS, like all other add-on modules, is integrated in the main programs RFEM and RSTAB: With the option to access the results of RFEM/RSTAB you can analyze modifications of the model or loading quickly in the add-on module. The results of the limit check can be documented as well in the printout report of RFEM and RSTAB.

Short description:

- Checking internal forces on member ends, members and surfaces (RFEM only)
- Checking deformations of nodes
- Checking forces and moments of nodal supports
- Check of cross-section dimensions
- User-defined design areas are taken into account
- Interaction design for axial force, shear force and torsional moment
- Database with DSTV connections according to EN 1993-1-8 [3]

We hope you will enjoy working with RF-/LIMITS.

Your Dlubal Software team

Т

1.2

1.3

Using the Manual

Topics like installation, graphical user interface, results evaluation, and printout are described in detail in the manuals of the main programs RFEM and RSTAB. The present manual focuses on typical features of the RF-/LIMITS add-on module.

The description of the program follows the sequence and structure of the module's input and results windows. The text of the manual shows the described **buttons** in square brackets, for example [Preset all members]. The buttons are also shown on the left margin. **Expressions** appearing in dialog boxes, tables, and menus are set in *italics* to clarify the explanation.

As usual, a full-text search is possible in the PDF manual with [Ctrl] + [F]. If you do not find what you are looking for, you can also use the search function for the Knowledge Base \square on our website to find a solution among the articles on the RF-/LIMITS product.

Open the Add-on Module RF-/LIMITS

RFEM and RSTAB provide the following options to start the add-on module RF-/LIMITS.

Menu

To start the program on the RFEM or RSTAB menu bar, select

Add-on Modules \rightarrow Connections \rightarrow RF-/LIMITS.

Add	-on Modules Window	<u>H</u> e	р		
-	Current Module			• 🔹 🔌 🖉 🕺	🎬 🖋 📾 🛤 🚟 🧱 🙀 🍄 🏦 🎾
	Design - Steel Design - Concrete Design - Timber Design - Aluminum Dynamic	+ + + +	- !!	¥ € € 0 ₽ 1	x ¥ 12 x • ¥ • ♥ • 17 ⊕ ⊥ •
	Connections		C	RF-END-PLATE	Design of end plate connections for I-beams
	Foundations	•		RF-CONNECT	Design of shear connections
	Stability	•	ę	RF-JOINTS	Design of joints
	Towers	•	P	RF-FRAME-JOINT Pro	Design of bolted frame joints
	Piping	•	P	V-JOINT (not installed)	Design of simple bolted knee connections
	Others		1	RF-DSTV	Design of typified I-beam connections
	External Modules	+	4	RF-DOWEL	Design of dowel connections
	Stand-Alone Programs	•		RF-LIMITS	Comparison of results with defined limit values

Figure 1.1 Menu Add-on Modules → Connections → RF-/LIMITS

Navigator

To start RF-/LIMITS in the Data navigator, select

Add-on Modules \rightarrow RF-/LIMITS.

REFM		^
🛓 🖗 Tes	t [Examples]	
÷	Model Data	
÷	Load Cases and Combinations	
	Loads	
🛅	Results	
🛅	Sections	
🛅	Average Regions	
🛅	Printout Reports	
÷ 🚞	Guide Objects	
÷	Add-on Modules	
.	Tavorites	
	RF-ALUMINUM - Design of aluminum members according to Eurocode 9	
	RF-CONCRETE Surfaces - Design of concrete surfaces	
	RF-LIMITS - Comparison of results with defined limit values	
	RF-STEEL Surfaces - General stress analysis of steel surfaces	
	🗾 RF-STEEL Members - General stress analysis of steel members	
	🛃 RF-STEEL EC3 - Design of steel members according to Eurocode 3	
	RF-STEEL AISC - Design of steel members according to AISC (LRFD or ASD)	
	🛐 RF-STEEL IS - Design of steel members according to IS	~
<		>

Figure 1.2 Data navigator: Add-on Modules → RF-/LIMITS

Τ

Cancel

OK

2 Input Data

When you start the add-on module, a new window opens. In this window, a navigator is displayed on the left, managing the available module windows. The drop-down list above the navigator contains the design cases.

The data that is relevant for the limit values must be defined in two input windows. If you set a timber standard for the analysis, a third input window for the definition of the load duration class is automatically added.

To select a particular module window, click the corresponding entry in the navigator. To go to the previous or subsequent module window, use the buttons shown on the left. You can also use the function keys to select the next [F2] or previous [F3] module window.

To save the entered data, click [OK]. You will exit RF-/LIMITS and return to the main program. Click [Cancel] to exit the add-on module without saving the data.

Units and Decimal Places

The units and decimal places for RFEM and RSTAB and the add-on modules are managed together. To access the dialog box for adjusting the units in RF-/LIMITS, use the menu and click

Settings \rightarrow Units and Decimal Places.

The program opens the following dialog box that you already know from RFEM and RSTAB. RF-/LIMITS is preset in the *Program / Module* list.

Units and Decimal Places				×
Program / Module	RF-LIMITS Dimensionless	 Data		
- HF-DYNAM - RF-DYNAM Pro - RF-DINTS - RF-END-PLATE - RF-CONNECT - RF-FRAMEJOINT Pro - RF-PSTV - RF-DOWEL - RF-HSS - RF-FOUNDATION Pro - RF-FOUNDATION Pro	Dimensionless: Ratios:	praces 2 ↔ Forces: 2 ↔ Moments: Section properties: Moments / lengths: Forces / lengths: Angles:	kN ~ kNm ~ mm ~ kNm/m ~ kN/m ~	2÷ 2÷ 2÷ 3÷ 3÷
R-DEFORM RF-MOVE RF-MOVE-Surfaces RF-IMP - RF-SOILIN - RF-SOILIN - RF-GLASS - RF-LAMINATE - RF-TOWER Structure - RF-TOWER Equipment - RF-TOWER Educing L				
RF-TOWER Design		 	ОК	Cancel

۱

The modified settings can be saved as user profile and reused in other models. The functions are described in chapter 11.1.3 of the RFEM or RSTAB manual.

2.1

Standard / National Annex (NA)
None	~
None	
DIN 1052:2008-12	Germany
EN 1995-1-1:2004-11	European Union
EN 1993-1 -	8

General Data

In module window 1.1 General Data, select the load cases and combinations whose results you want to compare with the limit states. Then, you decide if you want to perform the limit check according to a standard. The European standard EN 1995-1-1 [1] , the German standard DIN 1052:2008 [2] as well as DSTV DIN EN 1993-1-8 [3] reluding different national application documents are available.

						Standard / National Annex (NA)	, E	
						EN 1995-1-1:2004-11	~	
						CEN	A A A A	
xisting Load	Cases / Combinations			Selected for L	imit Checks			
G LC1	Permanent load	^		Qs LC3	Snow	Persistent and	Transient	
IA LC2	Imposed load			Qw LC4	Wind in X+	Persistent and	Transient	
Qw LC5	Wind in -Y+							S
TR CO1	1.35*LC1							E
TR CO2	1.35*LC1 + 1.5*LC2							
IR CO3	1.35*LC1 + 1.5*LC2 + 0.75*LC3							
TR CO4	1.35*LC1 + 1.5*LC2 + 0.75*LC3 +							
TR CO5	1.35*LC1 + 1.5*LC2 + 0.75*LC3 +							
IR CO6	1.35°LC1 + 1.5°LC2 + 0.9°LC4						8	
TR CO7	1.35*LC1 + 1.5*LC2 + 0.9*LC5		\geq				10	
R CO8	1.35°LC1 + 1.5°LC3		>>					
R CO9	1.35°LC1 + 1.05°LC2 + 1.5°LC3						8	
IR COID	1.35°LC1 + 1.05°LC2 + 1.5°LC3 +							
R COTT	1.35°LC1 + 1.05°LC2 + 1.5°LC3 +		1					
R CO12	1.35°LC1 + 1.5°LC3 + 0.9°LC4		~					C
R CO13	1.35°LC1 + 1.5°LC3 + 0.9°LC5		44					and a second second
R CO14	1.35 LCT + 1.5 LC4							
R CO15	1.35 LCT + 1.5 LC5							
CO16	1.35 LC1 + 1.05 LC2 + 1.5 LC4							Comparison of results
TO CO19	1.35 LC1 + 1.05 LC2 + 1.5 LC3							with defined limit value
	1.35 LC1 + 1.05 LC2 + 0.75 LC3 +							
	135101+075103+15104							
TPL CO20	1 351 C1 ± 0 751 C3 ± 1 51 C5							
Ch CO22	101							
Ch CO23	LC1 + LC2	\mathbf{v}						
All (47		2					8v 85	A LOUGH
omment					-		34	
							105	S16000
					~			

Standard / National Annex

EN 199	95-1-1:2004-11	~
CEN	~	· 🔭 🐷
CEN	European Union	
BS	United Kingdom	
CSN	Czech Republic	
👅 DIN	Germany	
DK	Denmark	
IS	Ireland	
NBN	Belgium	
NEN	Netherlands	
NF	France	
ONOR	M Austria	
PN	Poland	
SFS	Finland	
SIST	Slovenia	
SS	Sweden	
STN 🔤	Slovakia	
UNI	Italy	
UNE	Spain	
BLG	Bulgaria	
CYS	Cyprus	
LST	Lithuania	
SR	Romania	
LVS	Latvia	
H NS	Norway	

The partial safety factor as well as the modification factor for the chosen material are defined automatically with the selection of the national application documents of the European countries.

P

Use the [Edit] button to open a dialog box where you can check and, if necessary, adjust the parameters of the selected standard or National Annex (see Image 2.4 12).

Nat. Annex...

You can also use the [Nat. Annex] button to open the Material Factors dialog box.

Material Factors						×
Factor Category Solid Timber Glued Laminated Timber LVL Plywood (Part 1) Plywood (Part 2) Plywood (Part 3) OSB (OSB/2) OSB (OSB/2) OSB (OSB/2) OSB (OSB/2) OSB (OSB/2) OSB (OSB/2) Particleboard (Part 4) Particleboard (Part 5) Particleboard (Part 7) Fibreboard - Hard (HB.LA) Fibreboard - Hard (HB.LA1 or 2) Fibreboard - Hard (HB.HA1 or 2) Fibreboard - HOF (MDF.HA1 or 2) Fibreboard - MDF (MDF.HA1) Fibreboard - MDF (MDF.HA1) Cross Laminated Timber	Partial Safety Factor Accor Design situation Persistent and transient: Accidental: Modification Factors Load Duration Class (LDC) - Permanent - Long-term - Medium-term - Short-term - Instantaneous Create design value by:	kmod : kmod : kmod : kmod :	γM : γM : 1 0.60 👻 0.70 🐨 0.80 😨 0.90 😨 1.10 😨	1.30 ÷ 1.00 ÷ Service Class 2 0.60 ÷ 0.70 ÷ 0.80 ÷ 1.10 ÷	3 0.50 ÷ 0.55 ÷ 0.65 ÷ 0.70 ÷	
Figure 2.4 Dialog box Material Fa	ictors				OK	Cancel

If None is set, you can only activate a user-defined partial safety factor γ_M in this dialog box.

Factor Category

This dialog section offers various timber materials for selection. The entries in the list differ according to the selected standard and annex.

7

Use the button [Include unassigned] to also display categories which are not used.

Partial Safety Factor / Modification Factors

The two dialog sections show the partial safety and modification factors of the service classes which apply to the selected material and the corresponding design situations.

For example, there is no service class 3 possible for oriented strand boards (OSB): The column is grayed out in this case.

Create Design Value

The strengths that are contrasted with the stresses are reduced by default as follows, depending on the class (LDC) defined in module window 1.3 Load Duration Class:

$$f_d = \frac{f_k \cdot k_{mod}}{\gamma_M}$$

Equation 2.1 Creation of design value by editing a limit (reduction of strength)

Use the options to decide if the strengths are raised to a design level (*Editing a limit, see* Equation 2.1 \square) or if the actions are increased. If the design value is increased by editing a force, Equation 2.1 \square is inverted:

$$f_d = \frac{F_k \cdot \gamma_M}{k_{\text{mod}}}$$

Equation 2.2 Creation of design value by editing a force (increase of action)

If you want to define the factors and coefficients by user-defined specifications, you have to create a standard first by clicking the 🛅 button. Then, you can set the parameters individually for that standard.

Existing Load Cases and Combinations

This column lists all load cases, load combinations, and result combinations that have been created in RFEM or RSTAB.

To transfer selected entries to the [Selected for Design] list on the right, click the D button. Alternatively, you can double-click the entries. To transfer the entire list to the right, use the D button.

As common for Windows applications, selecting several load cases is possible by clicking them one by one while holding down the [Ctrl] key. Thus, you can transfer several load cases at the same time.

If a load case's number is marked in red, you cannot design it: It indicates a load case without load data, or a load case that contains imperfections. A warning appears if you try to transfer it.

Below the list, several filter options are available. They help you assign the entries sorted by load case, load combination, or action category. The buttons have the following functions:

able 2.1 Buttons in module window 1.1 General Data

Selected for Limit Checks

The column on the right lists the load cases as well as the load and result combinations that have been selected for the design. To remove selected items from the list, click double-click the entries. To empty the entire list, click double-click the entries.

You can assign the load cases as well as the load and result combinations to the following design situations:

- Persistent and Transient
- Accidental

This classification controls the partial factors γ_M that are included in the determination of the resistances (see Equation 2.1 \square).

To change the design situation, use the list which you can access by clicking the button **I** at the end of the text box.

For a multiple selection, press the [Ctrl] key and click the corresponding entries. Thus, you can change several entries at once.

	All	2	31	83	
	All	2			
	Load and Result Combinations				
LC	Load Cases				
CO	Load Combinations				
RC	Result Combinations				
G	Permanent				
Qi A	Imposed - category A: domestic	, res	sidentia	al area	S
Qs	Snow (H ≤ 1000 m a.s.l.)				
Qw	Wind				
Imp	Imperfection				

Persistent and Transient

2.2 Limit Parameters

In module window 1.2, select the objects (member ends, members, nodes, etc.) and the limit values of the action effects.

	A	В	C	1	D	E	F	G	Н
Limit	Limit	Object			-	0	ptimization from Library		
No.	Description	Туре	List of Mer	mbers	Optimization	Limit Group	Limit Table	Limit Detail	Comment
1 S	TF 330	Nodal Support	10.33		None	SIHGA	SIHGA IdeFix STF	ETA-14/016	
2 4	6/90/106 (full na)	Member End	1.2E		None	WÜRTH	Beam	Full nailing	
3 1	60-38-36 M	Member	1.2		None	Metsä Wood	Finnioist	FJI 36 M	
4									
0			5	\$	3				¥ ¥
mit values	s - Limit No. 2								
Internal F	Forces			-	2		^ ^	_	* * ·
H Check	Normal Force N				1			1	
	Shear Force Vy								
Спеск	Shear Force Vz							-	5. Y
Mini	imum Value		Vz,min	-4.6	3 KN				4.5
Max	kimum Value		Vz,max	3.5	/ KN			Vz	
Ran	nge Berore			<u> </u>	1			+ /	
Ran	nge Between			2	1				
Ran	nge Atter				1			-	
H Check	Torsion Moment M	T			1			1-1	
H Check	Bending Moment N	ly .		<u> </u>	1			-	
H Check	Bending Moment N	1 _Z						14	
Uross-Se	ction Dimensions			-					
E Check	Cross-Section Wid	th		2	1				
Mini	mum Value		Dmin	60.0	0 mm				- 7
Max	kimum Value		b max		mm				
Ran	nge Betore]				
Ran	nge Between				1				
- Ran	nge After				3				
⊡ Check	Cross-Section Heig	ht			0				
- Mini	imum Value		hmin	100.0	0 mm				
	Annual Malain		h.						

Limit Description

In the first table column, enter the descriptions of the limit checks. To access the *Limit Library* use the [Library] button and 🗔 that appear when you click into a table cell.

ilter		Limit to Select					
State of the state		Limit	Limit		Limit	~	
object type:		Group	Table		Description		
Member End	\sim	Sherpa	Sherpa XS	XS 5 (C24)			
		Sherpa	Sherpa XS	XS 5 (C30)			
imit group:		Sherpa	Sherpa XS	XS 5 (GL24h)			
al.		Sherpa	Sherpa XS	XS 5 (GL28h)			
snerpa	~	Sherpa	Sherpa XS	XS 5 (GL32h)			
		Sherpa	Sherpa XS	XS 5 (GL36h)			
imit table:		Sherpa	Sherpa XS	XS 5 (GL24c)			
All	~	Sherpa	Sherpa XS	XS 5 (GL28c)			
		Sherpa	Sherpa XS	XS 5 (GL32c)			
		Sherpa	Sherpa XS	XS 10 (C24)			
imit detail:		Sherpa	Sherpa XS	XS 10 (C30)			
All	~	Sherpa	Sherpa XS	XS 10 (GL24)		
		Sherpa	Sherpa XS	XS 10 (GL28)		
		Sherpa	Sherpa XS	XS 10 (GL32h)		
Eavorites only	18	Sherpa	Sherpa XS	XS 10 (GL36h)		
		Sherpa	Sherpa XS	XS 10 (GL24d)		
		Sherpa	Sherpa XS	XS 10 (GL28c)	✓	
		XS 5 (C24) Sherpa XS 1	Sherpa				
		Check Normal Force	N				
		Minimum Value		Nmin	0.00 kN		
		Maximum Value		Nmax	3.60 kN		
		Range Before			V		
		Range Between			V		
		Range After					Vz
		Check Shear Force	/y				100
		 Minimum Value 		Vy,min	-3.20 kN		
		Maximum Value		V _{y,max}	3.20 kN		MT
		Range Before					
		 Range Between 			1		
		Range After					Vy
		Check Shear Force	V _z				
		 Minimum Value 		Vz,min	-3.76 kN		
		 Maximum Value 		V _{z,max}	5.10 kN		
		 Range Before 				¥	
2							OK Can
2 NOV							

Limit group: SIHGA Sherpa STEICO Metsä Wood WÜRTH KIVAPP At the moment, the library contains connections of the following companies: Sihga, Sherpa, Steico, Metsä Wood, Würth, Knapp and M-connect. Furthermore, the library contains connections which are authorized by DSTV (German Steel Engineering Association).

Limit group	Connection
Sihga	Vz Vy
	IdeFix group
Sherpa	Vz Vz Vy

With the \square button in the library you can define the relevant limit values for a new "limit element" (see Image 2.10 \square).

Furthermore, it is possible to define a new *Limit Group* and *Limit Table* so that limit zones can be filtered quickly later.

New Limit Group	×
Limit Group	
Description:	
Connections of beams	
OK Cance	el
Figure 2.7 Dialog box New Limit Group	

		\sim	
Limit Table			
Description:			
Joist hanger			
Limit group:	<u>(</u>)		
Connections of	rbeams	Y	
	OK	Cancel	
	OK	Cancel	
igure 2.8	ок Dialog box New	Cancel	
Figure 2.8	OK Dialog box New	Cancel Limit Table.	
Figure 2.8	OK Dialog box New	Cancel Limit Table.	
igure 2.8 Iew Limit Deta	ОК Dialog box New	Cancel Limit Table.	
Figure 2.8 New Limit Detail	OK Dialog box New	Cancel Limit Table.	_
Figure 2.8 New Limit Detail Limit Detail	ок Dialog box New	Cancel Limit Toble.	
Figure 2.8 New Limit Detail Limit Detail Description:	ок Dialog box New	Cancel Limit Table.	
Figure 2.8 Jew Limit Detail Limit Detail Description: 200/110/1.5	OK Dialog box New	Cancel Limit Table.	
Figure 2.8 New Limit Detail Limit Detail Description: 200/110/1.5	OK Dialog box New	Cancel Limit Table.	
Figure 2.8 New Limit Detail Limit Detail Description: 200/110/1.5	OK Dialog box New	Cancel Limit Table.	

In the dialog box, you have also the possibility to add a picture to describe the limit value. Many manufacturers of connecting elements or CAD software offer graphics on their web pages.

It is always possible to adjust the limit groups or tables by using the 💌 button.

Frequently used limit elements can be marked as Favorite to find them quickly.

Object Type

In table column B, you can select the object type that is relevant for the limit. If the object does not fit to the corresponding limit, the type will be shown in blue.

Member End

For the first object type of the list you can define limit values (min/max) for the Internal Forces N, V_{y} , V_{z} , M_{y} , M_{z} , M_{T} and the Cross-Section Dimensions (width and height).

Internal Forces			
Check Normal Force N			
Check Shear Force Vy			
Check Shear Force Vz		V	
Minimum Value	V _{z,min}	-4.63	kN
Maximum Value	V _{z,max}	3.57	kN
Range Before			
Range Between		V	
Range After			
⊡ Check Torsion Moment M _T			
⊕ Check Bending Moment My			
⊕ Check Bending Moment M _z			
Cross-Section Dimensions			
Check Cross-Section Width		V	
Minimum Value	b min	60.00	mm
Maximum Value	b max		mm
Range Before			
Range Between		V	
Range After		V	
Check Cross-Section Height		V	
Minimum Value	hmin	100.00	mm
Maximum Value	hmax		mm

Figure 2.10 Dialog box Limit Values for object type Member End (part of module window)

With the check boxes for Range Before, Range Between and Range After you decide if the zone is relevant

before the defined minimum value (Range Before)

For limit axial forces of e.g. N_{min} = and N_{max} = the program checks if the member axial force is smaller than 5 kN.

between both defined values (Range Between)

The zone between both limit values is verified in the check. In our example above, the program checks if the shear forces are available in the zone between \pm 10 kN.

after the defined maximum value (Range After)

The check is done for the zone above the defined maximum value. In our axial force example above, the program checks if the tension force is greater than 10 kN.

when checking the internal forces, deformations or support forces.

In addition, an interaction design is possible for the simultaneous action of the internal forces. This allows, amongst other things, to determine the influence of a biaxial bending. The internal forces are superimposed as follows:

Int = $(\eta N)^2 + (\eta V_v)^2 + (\eta V_z)^2 + \eta M_T$

Equation 2.3

The ratio from torsion is thus not squared.

Member

For this object type you can define the same limits like for the member ends. In contrast to the ends of a member, the limit area is checked on the entire member.

Nodal Support

The support force is checked in X-, Y- and Z-direction. A definition of the limit moments M_{X_r} M_Y and M_Z is additionally possible. The ranges must be defined in the same way.

Dlubal

Node

For the Node object type you can check the rotations about the X-, Y- and Z-axes in addition to the displacements in X, Y and Z.

The following Knowledge Base Article describes how limits are defined for horizontal displacements of a building: https://www.dlubal.com/en/support-and-learning/support/knowledge-base/000833 🗵

Surface (Only RF-LIMITS)

All internal forces in surfaces ($m_{x_r}, m_{y_r}, m_{xy_r}, v_{x_r}, v_{y_r}, n_{x_r}, n_{y_r}$ etc.) can be analyzed. The zones are defined in the same way.

List of Elements

In table column C, specify the numbers of the nodes, members, member ends, supports and surfaces that you want to check.

It is also possible to select the objects graphically in the RSTAB or RFEM work window by using the 🔊 button.

Service Class

This column is only displayed if an analysis according to EN 1995-1-1 [1] I or DIN 1052 [2] I in module window 1.1 General Data has been defined. The service classes 1 to 3 are available for selection.

Factor Category

Also this table column is displayed only for EN 1995-1-1 or DIN 1052. The categories of the materials are described in Chapter 2.1 2.

Optimization

This table column offers the option to optimize the selected limits. The optimization can be performed in accordance with the defined *Limit Group*, *Limit Table* or *Limit Detail*.

	Optimization from Library							
Optimization	Limit Group	Limit Table	Limit Detail					
From Limit Table	Sherpa	Sherpa S	C24					
None								
From Limit Group								
From Limit Table								
From Limit Detail								
	-							
E	Optimization options							

Optimization from Library

Limit Group

When an optimization is set, you can define the corresponding *Limit Group* in table column G. Use the button to select the group.

Limit Table

Table column H manages the tables that are relevant for the optimization.

Limit Detail

In this column, the governing category details for the optimization are displayed.

These options simplify the selection - particularly for the numerous DSTV connection types.

Comment

It is possible to enter a note in the last column which explains the limit parameter. It is also displayed in the printout report.

The data of module window 1.2 *Limit Parameters* can be exchanged with MS Excel by using the import and export functions. The buttons have the following meanings:

Button	Description	Function
	Excel export	Exports content of the module window to MS Excel
3	Excel import	Imports content of a table from MS Excel
	Export to library	Saves a new defined limit group
۲	View mode	Switches to RFEM or RSTAB work window without quitting RF/-LIMITS

 Table 2.3
 Buttons in module window 1.2 Limit Parameters

2.3 Load Duration Class

This input window appears only if an analysis according to EN 1995-1-1 [2] \square or DIN 1052 [2] \square has been set in module window 1.1 General Data. You define the load duration of the loads in order to determine the climatic conditions for the limit checks.

	А	B	С	D
C/CO/	LC/CO/			
RC	RC Description	LC Type	Load Duration Class	Comments
LC1	Permanent load	Permanent	Permanent	
LC4	Wind in X+	Wind	Short-term 🔻	
035	LC1 + LC4	-	Permanent	
			Long-term	
			Medium-term	
			Short-term	
			Instantaneous	

LC/CO/RC

The table column lists all actions that have been selected for the limit checks in module window 1.1 *General Data*. In case of combinations, included load cases are also displayed.

LC/CO/RC description

The load case descriptions make the classification easier.

LC Type

This table column shows the action types of the load cases as they were defined in RFEM or RSTAB during their creation. They form the basis for the settings in the next table column.

Load Duration LDC

The limit checks require the assignment of loads and their superpositions to particular load duration classes. For load cases you can change the load duration with the list shown on the left: Click into a table cell in column C. The I button will be enabled. In case of unambiguous load and result combinations, RF-/LIMITS carries out the classification automatically taking intoaccount the respective governing action.

The load duration class LDC is required for the determination of the modification factor k_{mod} . The factor is also considered for the material stiffness.

If an automatic combination of the actions was set in RFEM or RSTAB, the load duration classes are automatically taken into account according to the specifications in RFEM or RSTAB. Thus, a redefinition in RF-/LIMITS is not necessary. However, it is possible to adjust this classification by selecting another setting.

3

3 Results

L	A	B	C	D	E	F	G	H		J	K
ading	Limit	Object				Value					
	No.	Туре	No.	Symbol	Exist	Minimum	Maximum	Unit	Ratio		
035	1	Node	197	uγ	2.06	-20.00	20.00	mm	0.10	~	
											💺 🏹 🍇 🧞

Module window 2.1 Limit Checks by Loading appears immediately after the calculation.

The results of the limit value check are sorted by various criteria in the result windows 2.1 to 2.6.

Every window can be selected by clicking the corresponding entry in the navigator. To go to the previous or next module window, use the buttons shown on the left. You can also use the function keys [F2] and [F3] to go through the windows.

The results can be evaluated in different ways. The buttons below the table may help you. They have the following functions:

Button	Description	Function
	Relation scales	Shows or hides the colored scales in the table column Ratio
Z 1	Ratios > 1	Shows only rows with ratios greater than 1 (design not fulfilled)
B	Export to MS Excel	Exports contents of the table to MS Excel
*	Member selection	Allows for the graphical selection of a member to display its results in the table

۲	View mode	Jumps to the RFEM or RSTAB work window to change the view
Table 3.1 Buttons in res	ultwindows	

3.1

Limit Checks by Loading

This result window shows the maximum ratio for each of the selected objects.

The governing object is displayed in table columns B and C. The available internal force or deformation of the object is shown in column E. The indicated values are contrasted with the limits registered in the limit library.

As far as it is possible for the limit, table column I shows a corresponding ratio.

	Α	В	C	D	E	F	G	Н		J	K
oading	Limit	Object				Value					
No.	No.	Туре	No.	Symbol	Exist	Minimum	Maximum	Unit	Ratio		
LC1	1	Member End	5	h	220.00	220.00	220.00	mm	1.000	~	
CO1	1	Member End	5	h	220.00	220.00	220.00	mm	1.000	~	
LC2	1	Member End	5	h	220.00	220.00	220.00	mm	1.000	~	
CO2	1	Member End	21	Vz	-25.17	-23.15	23.15	kN	1.087	×	
LC3	1	Member End	5	h	220.00	220.00	220.00	mm	1.000	~	
CO3	2	Nodal Support	15	Pz	81.12	-70.42	70.42	kN	1.152	×	
LC4	1	Member End	5	h	220.00	220.00	220.00	mm	1.000	~	
CO4	2	Nodal Support	15	Pz	82.71	-70.42	70.42	kN	1.175	×	
CO5	1	Member End	5	h	220.00	220.00	220.00	mm	1.000	~	
CO6	1	Member End	5	h	220.00	220.00	220.00	mm	1.000	~	
07	1	Member End	5	h	220.00	220.00	220.00	mm	1.000	~	
CO8	1	Member End	5	h	220.00	220.00	220.00	mm	1.000	~	
CO9	2	Nodal Support	15	Pz	92.86	-70.42	70.42	kN	1.319	×	
CO10	2	Nodal Support	15	Pz	96.04	-70.42	70.42	kN	1.364	X	
											F M K

Figure 3.2 Module window 2.1 Limit Checks by Loading

Y

Table column E always shows as the Exist value the first possible value that was defined by you. The other values are shown in the subsequent result windows.

3.2

Limit Checks by Set of Members

This results window shows the ratios available in the sets of members.

		B	C	D	E	F	G	H		J	K	L
iet \No.	Limit	Object	Member	Loading			Value					
	No.	Туре	No.	No.	Symbol	Exist	Minimum	Maximum	Unit	Ratio		
3	1	Member End - End	21	CO2	Vz	-25.17	-23.15	23.15	kN	1.087	×	
4	1	Member End - End	24	LC1	Ь	180.00	100.00	100.00	mm	0.556	\checkmark	
												e 1

Limit Checks by Cross-Section

The results of the limit value checks performed for all selected cross-sections are shown in this results window. The criterion for members stored in the database serves as a limit.

		В	C	D	E	F	G	H		J	K	L
ction	Cross-Section	Limit	Object		Loading			Value				
No.	Description	No.	Туре	No.	No.	Symbol	Exist	Minimum	Maximum	Unit	Ratio	
1	Rectangle 180/400	1	Member End - End	3	LC1	b	180.00	100.00	100.00	mm	0.556	~
2	Rectangle 120/220	1	Member End - Start	4	LC1	h	220.00	220.00	220.00	mm	1.000	~
5	Rectangle 140/440	1	Member End - End	21	CO2	Vz	-25.17	-23.15	23.15	kN	1.087	×
										F	V31 🖳	1

3.3

3.4

Limit Checks by Surface (Only RF-LIMITS)

Module window 2.4 is displayed when at least one surface was selected for the design. The limiting criteria are described in detail in Chapter $2.2 \square$.

2.4 Lim	nt Checks	by Surface

	A	В	С	D	E	F	G	Н		J	K	L
	Limit	Object	Surface	Loading			Value					
No.	No.	Туре	No.	No.	Symbol	Exist	Minimum	Maximum	Unit	Ratio		
1	Custom m	naterial 4										
2	4	Surface	1	LC1	m _{x,min}	-0.179	-2.308	2.308	kNm/m	0.078	\checkmark	
3	4	Surface	1	LC1	m _{x,max}	0.720	-2.308	2.308	kNm/m	0.312	\checkmark	
4	4	Surface	2	LC1	M _{X,min}	-0.128	-2.308	2.308	kNm/m	0.055	\checkmark	
5	4	Surface	2	LC1	m _{x,max}	0.432	-2.308	2.308	kNm/m	0.187	\checkmark	
6	4	Surface	3	LC1	M _{x,min}	-0.087	-2.308	2.308	kNm/m	0.038	\checkmark	
7	4	Surface	3	LC1	m _{x,max}	0.635	-2.308	2.308	kNm/m	0.275	~	
8	4	Surface	1	CO1	M x,min	-0.242	-2.308	2.308	kNm/m	0.105	\checkmark	
9	4	Surface	1	CO1	m _{x,max}	0.973	-2.308	2.308	kNm/m	0.421	\checkmark	
10	4	Surface	2	CO1	m _{x,min}	-0.173	-2.308	2.308	kNm/m	0.075	~	
11	4	Surface	2	CO1	m _{x,max}	0.583	-2.308	2.308	kNm/m	0.253	~	
12	4	Surface	3	CO1	m _{x,min}	-0.117	-2.308	2.308	kNm/m	0.051	~	
13	4	Surface	3	CO1	m _{x,max}	0.858	-2.308	2.308	kNm/m	0.372	~	
14	4	Surface	1	LC2	m _{x,min}	-0.767	-2.692	2.692	kNm/m	0.285	~	
15	4	Surface	1	LC2	m _{x,max}	4.319	-2.692	2.692	kNm/m	1.604	×	
16	4	Surface	2	LC2	m _{x,min}	-0.569	-2.692	2.692	kNm/m	0.211	~	
17	4	Surface	2	LC2	m _{x,max}	2.409	-2.692	2.692	kNm/m	0.895	\checkmark	
18	4	Surface	3	LC2	M _{x,min}	-0.304	-2.692	2.692	kNm/m	0.113	~	
19	4	Surface	3	LC2	m _{x,max}	3.839	-2.692	2.692	kNm/m	1.426	×	
20	4	Surface	1	CO2	m _{x,min}	-1.385	-2.692	2.692	kNm/m	0.514	~	
21	4	Surface	1	CO2	m _{x,max}	7.452	-2.692	2.692	kNm/m	2.768	×	
22	4	Surface	2	CO2	M x,min	-1.022	-2.692	2.692	kNm/m	0.380	~	
23	4	Surface	2	CO2	m _{x,max}	4.197	-2.692	2.692	kNm/m	1.559	×	
24	4	Surface	3	CO2	m _{x,min}	-0.574	-2.692	2.692	kNm/m	0.213	~	
25	4	Surface	3	CO2	m _{x,max}	6.616	-2.692	2.692	kNm/m	2.457	×	
26	4	Surface	1	LC3	m _{x,min}	-1.226	-3.077	3.077	kNm/m	0.399	~	
27	4	Surface	1	LC3	m _{x,max}	1.398	-3.077	3.077	kNm/m	0.454	~	
28	4	Surface	2	LC3	m _{x,min}	-0.306	-3.077	3.077	kNm/m	0.099	~	
29	4	Surface	2	LC3	m _{x,max}	1.383	-3.077	3.077	kNm/m	0.450	~	
30	4	Surface	3	LC3	m _{x,min}	-0.505	-3.077	3.077	kNm/m	0.164	~	
31	4	Surface	3	LC3	m _{x,max}	2.200	-3.077	3.077	kNm/m	0.715	~	
32	4	Surface	1	CO3	m _{x,min}	-2.262	-3.077	3.077	kNm/m	0.735	~	
33	4	Surface	1	CO3	m _{x,max}	7.195	-3.077	3.077	kNm/m	2.338	×	
34	4	Surface	2	CO3	m _{x,min}	-1.244	-3.077	3.077	kNm/m	0.404	~	

```
Figure 3.5 Module window 2.4 Limit Checks by Surface
```


3.5

Limit Checks by Member

	A	B	C		E	F	G	H		J	K	L
0	Limit	Object	Member	Loading	Combol	E.c.	Value	Martin	1.11-2	Deres		
	No.	lype	No.	No.	Symbol	Exist	Minimum	Maximum	Unit	Ratio		
/6	1	Member End - End	21	C01	b	140.00	100.00	100.00	mm	0.714	~	
1//	1	Member End - End	21	CO1	h	440.00	220.00	220.00	mm	0.500	~	
178	1	Member End - End	21	LC2	Vy	0.00	-12.22	12.22	kN	0.000	~	
179	1	Member End - End	21	LC2	Vz	-14.27	-23.15	23.15	kN	0.616	~	
180	1	Member End - End	21	LC2	b	140.00	100.00	100.00	mm	0.714	\checkmark	
181	1	Member End - End	21	LC2	h	440.00	220.00	220.00	mm	0.500	\checkmark	
182	1	Member End - End	21	CO2	Vy	0.00	-12.22	12.22	kN	0.000	\checkmark	
183	1	Member End - End	21	CO2	Vz	-25.17	-23.15	23.15	kN	1.087	×	
184	1	Member End - End	21	CO2	b	140.00	100.00	100.00	mm	0.714	\checkmark	
185	1	Member End - End	21	CO2	h	440.00	220.00	220.00	mm	0.500	~	
186	1	Member End - End	21	LC3	Vy	0.00	-13.97	13.97	kN	0.000	\checkmark	
187	1	Member End - End	21	LC3	Vz	-3.97	-26.46	26.46	kN	0.150	~	
188	1	Member End - End	21	LC3	b	140.00	100.00	100.00	mm	0.714	~	
189	1	Member End - End	21	LC3	h	440.00	220.00	220.00	mm	0.500	~	
190	1	Member End - End	21	CO3	Vy	0.00	-13.97	13.97	kN	0.000	~	
191	1	Member End - End	21	CO3	Vz	-28.15	-26.46	26.46	kN	1.064	X	
192	1	Member End - End	21	CO3	b	140.00	100.00	100.00	mm	0.714	~	
193	1	Member End - End	21	CO3	h	440.00	220.00	220.00	mm	0.500	~	
194	1	Member End - End	21	LC4	Vv	0.01	-15.72	15.72	kN	0.000	~	
195	1	Member End - End	21	LC4	Vz	-1.31	-29.77	29.77	kN	0.044	~	
196	1	Member End - End	21	IC4	b	140.00	100.00	100.00	mm	0 714	~	
197	1	Member End - End	21	IC4	h	440.00	220.00	220.00	mm	0.500	~	
198	1	Member End - End	21	CO4	Vv	0.00	-15.72	15.72	kN	0.000	~	
199	1	Member End - End	21	CO4	V ₂	-29.13	-29.77	29.77	kN	0.978	-	
200	1	Member End - End	21	CO4	b	140.00	100.00	100.00	mm	0 714	~	
201	1	Member End - End	21	CO4	h	440.00	220.00	220.00	mm	0.500	-	
202	1	Member End - End	21	C05	Vv	0.00	-15.72	15.72	kN	0.000	~	
203	1	Member End - End	21	C05	V ₇	-26 15	-29 77	29.77	kN	0.878	~	
204	1	Member End - End	21	005	b	140.00	100.00	100.00	mm	0.714	-	
205	1	Member End - End	21	005	h	440.00	220.00	220.00	mm	0.500	-	
206	1	Member End - End	21	000	Vv	0.00	-13.97	13.97	kN	0.000	-	
207	1	Member End - End	21	200	V-	.9 71	-26.46	26.46	kN	0.000	2	
208	1	Member End - End	21	200	h.	1/0.00	100.00	100.00	mm	0.30/	-	
209	1	Member End End	21	000	b	440.00	220.00	220.00	mm	0.714	-	
205		Member End - End	21	000		440.00	220.00	220.00	1000	0.500		

Figure 3.6 Module window 2.5 Limit Checks by Member

The maximum utilization ratios of all members are shown here. In contrast to module window 2.2 Limit Checks by Set of Members, it is also possible to check the cross-section widths or depths.

Limit Checks by Node

	A	B	C	D	E	F	G	Н		J	K	L
	Limit	Object	Node	Loading			Value					
NO.	No.	Туре	No.	No.	Symbol	Exist	Minimum	Maximum	Unit	Ratio		
44	2	Nodal Support	15	LC1	Pz	6.48	-70.42	70.42	kN	0.092	\checkmark	
45	2	Nodal Support	15	CO1	Pz	8.75	-70.42	70.42	kN	0.124	\checkmark	
46	2	Nodal Support	15	LC2	Pz	31.09	-70.42	70.42	kN	0.442	~	
47	2	Nodal Support	15	CO2	Pz	55.40	-70.42	70.42	kN	0.787	~	
48	2	Nodal Support	15	LC3	Pz	34.31	-70.42	70.42	kN	0.487	~	
49	2	Nodal Support	15	CO3	Pz	81.12	-70.42	70.42	kN	1.152	×	
50	2	Nodal Support	15	LC4	Pz	2.12	-70.42	70.42	kN	0.030	~	
51	2	Nodal Support	15	CO4	Pz	82.71	-70.42	70.42	kN	1.175	×	
52	2	Nodal Support	15	CO5	Pz	56.99	-70.42	70.42	kN	0.809	~	
53	2	Nodal Support	15	CO6	Pz	60.21	-70.42	70.42	kN	0.855	~	
54	2	Nodal Support	15	C07	Pz	63.39	-70.42	70.42	kN	0.900	~	
55	2	Nodal Support	15	CO8	Pz	11.93	-70.42	70.42	kN	0.169	~	
56	2	Nodal Support	15	CO9	Pz	92.86	-70.42	70.42	kN	1.319	×	
57	2	Nodal Support	15	CO10	Pz	96.04	-70.42	70.42	kN	1.364	×	
58	2	Nodal Support	16	LC1	Pz	0.25	-70.42	70.42	kN	0.004	~	
59	2	Nodal Support	16	CO1	Pz	0.34	-70.42	70.42	kN	0.005	~	
60	2	Nodal Support	16	LC2	Pz	0.95	-70.42	70.42	kN	0.014	~	
61	2	Nodal Support	16	CO2	Pz	1.77	-70.42	70.42	kN	0.025	~	
62	2	Nodal Support	16	LC3	Pz	-5.72	-70.42	70.42	kN	0.081	~	
63	2	Nodal Support	16	CO3	Pz	-2.52	-70.42	70.42	kN	0.036	~	
64	2	Nodal Support	16	LC4	Pz	1.17	-70.42	70.42	kN	0.017	~	
65	2	Nodal Support	16	CO4	Pz	-1.65	-70.42	70.42	kN	0.023	~	
66	2	Nodal Support	16	CO5	Pz	2.64	-70.42	70.42	kN	0.038	~	
67	2	Nodal Support	16	CO6	Pz	-8.24	-70.42	70.42	kN	0.117	 	
68	2	Nodal Support	16	C07	Pz	-6.49	-70.42	70.42	kN	0.092	~	
69	2	Nodal Support	16	CO8	Pz	2.09	-70.42	70.42	kN	0.030	~	
70	2	Nodal Support	16	CO9	Pz	-7.24	-70.42	70.42	kN	0.103	~	
71	2	Nodal Support	16	CO10	Pz	-5.49	-70.42	70.42	kN	0.078	~	
72	Custom m	naterial 3										
73	3	Node	6	LC1	υz	5.02	0.00	73.00	mm	0.069	~	
74	3	Node	6	CO1	uΖ	6.77	0.00	73.00	mm	0.093	~	
75	3	Node	6	LC2	uΖ	26.41	0.00	73.00	mm	0.362	~	
76	3	Node	6	CO2	uz	46.40	0.00	73.00	mm	0.636	~	
77	3	Node	6	LC3	uz	15.57	0.00	73.00	mm	0.213	~	

Figure 3.7 Module window 2.6 Limit Checks by Node

The last module window lists the check results for each node respectively support node. The corresponding limit values are described in Chapter 2.2 \square .

⊿ ■ Dluba

I

Δ

4 Printout

4.1

Printout Report

Printout reports are created in the same way as in RFEM or RSTAB. First, a printout is generated for the data of the add-on module RF-/LIMITS to which you can add graphics and explanations. The selection in the printout report determines which data from the design module will be included in the final printout.

The printout report is described in the RFEM or RSTAB manual. Chapter 10.1.3.5 Selecting Data of Add-on Modules explains how to prepare input and output data of add-on modules for the printout.

rooram	Clabel Calastics Input Data Devide	
RFEM	Giobal Selection Input Data Results	
RF-LIMITS	Display	
	☑ 1.1 General Data	
	National Annex	
	✓ 1.2 Limit Parameters	
	Limit Details	
	✓ 1.3 Load Duration and Service Class	
play		
Cover sheet	(B)	
Contents		
Info pictures		
Uppercase titles		

Figure 4.1 Dialog box Printout Report Selection for RF-LIMITS

For large structural systems with many design cases, it is recommended to split the data into several printout reports, thus allowing for a clearly-arranged printout.

5 Literature

- Eurocode 5: Design of timber structures Part 1-1: General Common rules and rules for buildings; EN 1995-1-1:2010-12
- [2] DIN 1052:2008-12: Design of timber structures General rules and rules for buildings. Beuth Verlag GmbH, Berlin, 2008.
- [3] Eurocode 3: Design of steel structures Part 1-8: Design of joints; EN 1993-1-8:2005 + AC:2009