

Software für Statik und Dynamik

Dipl.-Ing. (FH) Andreas Hörold Organizer

Marketing & Public Relations
Dlubal Software GmbH

Dr.-Ing. Jonas BienCo-Organizer

Product Engineering & Customer Support Dlubal Software GmbH

Sonja von Bloh, M.Sc.
Co-Organizer

Product Engineering & Customer Support Dlubal Software GmbH Webinar

Linear Stability
Analysis in
RFEM 6 and

RSTAB 9

춨

QuestionsDuring thePresentation

GoToWebinar Control Panel **Desktop**

E-mail: info@dlubal.com

Vebina

Content

- O2 Stability analysis on cross section level using the finite strip method
- 03 Buckling analysis within steel joints

O4 Detecting modeling errors and instability troubleshooting using stability analysis

Stability analysis as an eigenvalue problem

• **Slender** members and structures under compression tend to become **unstable**

Stability analysis as an eigenvalue problem

- Slender members and structures under compression tend to become unstable
- Using FEM, the ideal bifurcation load can be determined solving a conventional Eigenvalue problem

Linear structural behaviour / perfect geometry

General formulation

$$(\bar{A} - \lambda_i \bar{B}) \bar{x_i} = 0 \qquad det(\bar{A} - \lambda_i \bar{B}) = 0$$

Stability analysis

$$\left(\overline{K_I} - \propto_i \overline{K_g}\right) \overline{u_i} = 0$$

Critical load factor

geometric stiffness matrix

Stability analysis as an eigenvalue problem

- **Slender** members and structures under compression tend to become **unstable**
- Using FEM, the ideal bifurcation load can be determined solving a conventional Eigenvalue problem
- Fundamental solutions for prismatic members under pure compression were already found by **Euler** in the 18th century.

ebinar

Stability analysis as an eigenvalue problem

- **Slender** members and structures under compression tend to become **unstable**
- Using FEM, the ideal bifurcation load can be determined solving a conventional Eigenvalue problem
- Fundamental solutions for prismatic members under pure compression were already found by **Euler** in the 18th century.

Mode shape dependent!

Case 2

$$F_{crit} = \frac{\pi^2 EI}{(\mathbf{1.0}L)^2} \longrightarrow \beta L = L_{crit} = \sqrt{\frac{\pi^2 EI}{F_{crit}}} \longrightarrow L_{crit} = \sqrt{\frac{\pi^2 EI}{\alpha_{crit}}}.$$

Stability modes of beams

Warping torsion required to account for those modes in static / stability analysis!

- Structural element is divided into multiple strips (strip length = system length)
- Advantage: Cross section deformation can be investigated (as opposed to beam elements) with very few DOFs (compared to a accurate shell representation)
- Boundary conditions for stability analysis: simply supported (including fork conditions)
- Due to the discretization in longitudinal direction (1 strip/simple shape function) only bow shaped deformations are considered

Additional Information

- [1] Knowledge Base 1851: Modal Relevance Factor https://www.dlubal.com/en/support-and-learning/support/knowledge-base/001851
- 2] Knowledge Base 1801: Linear Critical Load Analysis Using Finite Strip Method (FSM) https://www.dlubal.com/en/support-and-learning/support/knowledge-base/001801
- [3] FAQ 005345: My model is unstable. What could be the reason? https://www.dlubal.com/en/support-and-learning/support/faq/005345

Book your free Online Appointment!

Get valuable insights from one of our experts

Dipl.-Ing. (FH) Dipl.-Wirtschaftsing. (FH) Christian Stautner

Head of Sales

Bastian Ackermann, M.Sc.

Daniel Dlubal, M.Sc.COO of Dlubal Software GmbH

淤

Free Online Services

Geo-Zone Tool

Dlubal Software provides an online tool with snow, wind and seismic zone maps.

Dlubal

Cross-Section Properties

With this free online tool, you can select standardized sections from an extensive section library, define parametrized cross-sections and calculate its cross-section properties.

FAQs & Knowledge Base

Access frequently asked questions commonly submitted to our customer support team and view helpful tips and tricks articles to improve your work.

Models to Download

Download numerous example files here that will help you to get started and become familiar with the Dlubal programs.

Free Online Services

Youtube Channel -Webinars, Videos

Videos and webinars about the structural engineering software.

Webshop with **Prices**

Configure your individual program package and get all prices online!

Trial Licenses

The best way how to learn using our programs is to simply test them for yourself. Download a

We offer free

and chat

support via email

Get Further Details About Dlubal

Visit website www.dlubal.com

- Videos and recorded webinars
- → Newsletters
- Events and conferences
- Knowledge Base articles

See Dlubal Software in action in a webinar

Download free trial license

Phone: +49 9673 9203-0 E-mail: info@dlubal.com

www.dlubal.com