Dr.-Ing. Jonas Bien

Product Engineering \& Customer Support Dlubal Software GmbH

Sonja von Bloh, M.Sc.

Product Engineering \& Customer Support Dlubal Software GmbH

Linear Stability
 Analysis in RFEM 6 and RSTAB 9

Questions During the Presentation

GoToWebinar Control Panel Desktop

E-mail: info@dlubal.com

Content

01 Stability analysis of members and frame structures

02 Stability analysis on cross section level using the finite strip method

03 Buckling analysis within steel joints

04 Detecting modeling errors and instability troubleshooting using stability analysis

Stability analysis as an eigenvalue problem

- Slender members and structures under compression tend to become unstable

Stability analysis as an eigenvalue problem

- Slender members and structures under compression tend to become unstable
- Using FEM, the ideal bifurcation load can be determined solving a conventional Eigenvalue problem

Linear structural behaviour / perfect geometry

General formulation

$$
\left(\bar{A}-\lambda_{i} \bar{B}\right) \bar{x}_{i}=0 \longrightarrow \operatorname{det}\left(\bar{A}-\lambda_{i} \bar{B}\right)=0
$$

Stability analysis
$\left(\overline{K_{I}}-\propto_{i} \overline{K_{g}}\right) \overline{u_{i}}=0$
linear stiffness matrix

Stability analysis as an eigenvalue problem

- Slender members and structures under compression tend to become unstable
- Using FEM, the ideal bifurcation load can be determined solving a conventional Eigenvalue problem
- Fundamental solutions for prismatic members under pure compression were already found by Euler in the $18^{\text {th }}$ century.

Stability analysis as an eigenvalue problem

- Slender members and structures under compression tend to become unstable
- Using FEM, the ideal bifurcation load can be determined solving a conventional Eigenvalue problem
- Fundamental solutions for prismatic members under pure compression were already found by Euler in the $18^{\text {th }}$ century.

Case 2

$$
F_{c r i t}=\frac{\pi^{2} E I}{(1.0 L)^{2}} \quad \longrightarrow \quad \beta L=L_{\text {crit }}=\sqrt{\frac{\pi^{2} E I}{F_{c r i t}}} \longrightarrow L_{\text {crit }}=\sqrt{\frac{\downarrow \pi^{2} E I}{\alpha_{c r i t} \cdot N}}
$$

- Stability modes of beams

Warping torsion required to account for those modes in static / stability analysis!

- Structural element is divided into multiple strips (strip length = system length)
- Advantage: Cross section deformation can be investigated (as opposed to beam elements) with very few DOFs (compared to a accurate shell representation)
- Boundary conditions for stability analysis: simply supported (including fork conditions)
- Due to the discretization in longitudinal direction (1 strip/simple shape function) only bow shaped deformations

04 Stability analysis on cross section level using the finite strip n

Additional Information

[1] Knowledge Base 1851: Modal Relevance Factor
https://www.dlubal.com/en/support-and-learning/support/knowledge-base/001851
[2] Knowledge Base 1801 : Linear Critical Load Analysis Using Finite Strip Method (FSM) https://www.dlubal.com/en/support-and-learning/support/knowledge-base/001801
[3] FAQ 005345: My model is unstable. What could be the reason? https://www.dlubal.com/en/support-and-learning/support/faq/005345

- Book your free Online Appointment!

Get valuable insights from one of our experts

Dipl.-Ing. (FH) Dipl.Wirtschaftsing. (FH) Christian Stautner Head of Sales

- Free Online Services

Cross-Section
Geo-Zone Tool
Properties
FAQs \&
Knowledge Base

With this free online tool, you can select standardized sections from an extensive section library, define parametrized cross-sections and
Dlubal Software provides an online tool with snow, wind and seismic zone maps.

calculate its crosssection properties.

Free Online Services

Youtube ChannelWebinars, Videos

Webshop with Prices

Trial Licenses

Configure your individual program package and get all prices online!

The best way how to learn using our programs
is to simply how to learn using our programs

90-day free trial version of our structural analysis \& design software

Get Further Details About Dlubal

Visit website www.dlubal.com

```
\(\rightarrow\) Videos and recorded webinars
\(\rightarrow\) Newsletters
\(\rightarrow\) Events and conferences
\(\rightarrow\) Knowledge Base articles
```

Phone: +49 $96739203-0$
E-mail: info@dlubal.com

방

