Registrieren Sie sich für das Dlubal-Extranet, um die Software optimal nutzen zu lassen und ausschließlichen Zugriff auf Ihre persönlichen Daten zu haben.
Im Lastassistenten "Lagerreaktion übernehmen" steht ihnen neben "Manuell" der Objektverbindungstyp "Freie Lasten" zur Verfügung. Diese Option erspart Ihnen die manuelle Zuordnung der Lagerreaktionen zu bestimmten Knoten und Linien. Die Lagerkräfte des verbundenen Modells werden bei dieser Variante als freie Lasten angesetzt.
Nach der Lastübernahme haben Sie jederzeit die Möglichkeit, die Lasten von den lastgebenden Modellen zu entkoppeln.
In RFEM 6 und RSTAB 9 können Sie Liniengrafiken in das SVG-Format (Vektorgrafik) exportieren.
SVG steht für Scalable Vector Graphics und ist ein XML-basiertes Dateiformat zur Darstellung zweidimensionaler Vektorgrafiken. Diese Vektorgrafiken lassen sich verlustfrei skalieren. SVG-Dateien können mit Texteditoren bearbeitet, in Webseiten eingebettet und in den üblichen Browsern geöffnet werden.
Mittels der Nichtlinearität "Reibung" im Linienfreigabetyp können Sie Haftreibungseffekte zwischen zwei Tragkomponenten entlang einer Linie simulieren.
Im Register "Querkraftbewehrung" steht Ihnen die Option "Querkraftschenkel über freien Bewehrungsstäben mit aktiver Selektion in Grafik" zur Verfügung. Damit können Sie an freien Bewehrungsstäben der Längsbewehrung zusätzliche Querkraftschenkel anordnen.
Die Position der Querkraftschenkel lässt sich in der Info-Grafik aktivieren bzw. deaktivieren. Die Querkraftschenkel werden für die Nachweise der Tragfähigkeit und für die konstruktiven Nachweise angesetzt. Sie stehen Ihnen für die Bemessung nach EN 1992-1-1 zur Verfügung.
Mit RWIND 2 Pro gelingt es Ihnen völlig problemlos, eine Durchlässigkeit auf eine Fläche anzuwenden. Sie benötigen lediglich die Definition
des Darcy-Koeffizienten D,
des Trägheitskoeffizienten I und
der Länge des porösen Mediums in Strömungsrichtung L,
um Druckrandbedingungen zwischen der Vorder- und Rückseite einer porösen Zone zu definieren. Dank dieser Einstellung erhalten Sie eine Strömung durch diese Zone mit einer zweiteiligen Ergebnisausgabe auf beiden Seiten des Zonenbereichs.
Doch das ist noch nicht alles. Zusätzlich erkennt die Generierung des vereinfachten Modells durchlässige Zonen und berücksichtigt entsprechende Öffnungen in der Modellhaut. Sie können auf eine aufwendige geometrische Modellierung des porösen Elements gut verzichten? Verständlich – dann haben wir gute Nachrichten! Mit der reinen Definition der Durchlässigkeitsparameter können Sie genau diesen unliebsamen Prozess umgehen. Nutzen Sie dieses Feature zur Simulation von durchlässigen Gerüstplanen, Staubschutzvorhängen, Netzkonstruktionen usw. Sie werden begeistert sein!
Sie möchten Querschnittsnachweise für kaltgeformte Stahlstäbe nach EN 1993-1-3 führen? Ob kaltgeformte Profile aus der Querschnittsdatenbank oder allgemeine kaltgeformte (nicht perforierte) RSECTION-Querschnitte – Ihr Statikprogramm hilft Ihnen dabei, den wirksamen Querschnitt unter Berücksichtigung des lokalen Beulens und der Forminstabilität zu ermitteln. Auch den Querschnittsnachweis nach EN 1993-1-3, 6.1.6 können Sie hier führen. Dabei werden die Schnittgrößen aus der Berechnung mit Wölbkrafttorsion (7 Freiheitsgrade) über den Vergleichspannungsnachweis berücksichtigt.
Sie wissen sicher bereits, dass Knoten-, Linien- und Flächenfreigaben der Definition von Übertragungsbedingungen zwischen Objekten dienen. Somit können Sie beispielsweise Stäbe, Flächen und Volumenköper von einer Linie freigeben. Außerdem ist es problemlos möglich, dass die Freigaben auch nichtlineare Eigenschaften wie 'Fest, falls n positiv', 'Fest, falls n negativ' usw. aufweisen.
Das Add-On Wölbkrafttorsion (7 Freiheitsgrade) ermöglicht Ihnen die Berechnung von Stabstrukturen in RFEM und RSTAB unter Berücksichtigung der Querschnittsverwölbung. Alle Schnittgrößen (N, Vu, Vv, Mt,pri, Mt,sec, Mu, Mv, Mω), die Sie auf diese Weise ermittelt haben, können Sie im Vergleichsspannungsnachweis der Aluminiumbemessung berücksichtigen. Beachten Sie: Dieses Feature ist aktuell noch nicht für die Bemessungsnorm ADM 2020 verfügbar.
Sie sind bereit für die Auswertung? Dafür stehen Ihnen Berechnungsdiagramme zur Verfügung, die den Verlauf eines bestimmten Ergebnisses während einer Berechnung darstellen.
Die Belegung der vertikalen und horizontalen Achse des Berechnungsdiagramms können Sie frei definieren. Dadurch ist es Ihnen möglich, beispielsweise den Verlauf der Setzung eines bestimmten Knotens abhängig von der Belastung zu betrachten.
RFEM 6 und RSTAB 9 unterstützen(1) den ergonomisch optimierten Einsatz mobiler 3D-Mäuse der Firma 3Dconnexion.
Bei einer 3D-Maus können Sie das 3D-Modell gleichzeitig auf dem Bildschirm bewegen, zoomen und kippen, ohne die normale Maus zu verwenden. Die 3D-Maus ergänzt die herkömmliche Computermaus und wird mit der freien Hand bedient. Sie können also den Arbeitsablauf rationalisieren, wenn Sie zusätzlich zur normalen Maus mit der nicht-dominanten Hand eine 3D-Maus bedienen.
(1) Da RFEM und RSTAB ein anderes GUI-Toolkit verwendet, als von 3Dconnexion gefordert, kann es zu Einschränkungen in der Bedienung kommen. In den Programmoptionen von RFEM 6 finden Sie eine Einstellung, um die Geschwindigkeit der 3D-Maus zu steuern.
Zur anschaulichen Ausgabe Ihrer Ergebnisse trägt auch dieses Feature bei. Clippingebenen sind Schnittebenen, die Sie frei durch das Modell legen können. Der Bereich vor bzw. hinter der entsprechenden Ebene wird in der Ansicht ausgeblendet. So können Sie beispielsweise die Ergebnisse in einer Durchdringung oder in einem Volumenkörper klar und übersichtlich darstellen lassen.
Ihr Ziel ist die Ermittlung der Anzahl der Eigenformen? Dafür stellt Ihnen das Programm gleich zwei Methoden zur Verfügung. Zum einen können Sie die Anzahl der kleinsten zu berechnenden Eigenformen manuell festlegen. In diesem Fall hängt die Anzahl der verfügbaren Eigenformen von den Freiheitsgraden ab (also Anzahl der freien Massepunkte mal Anzahl der Richtungen, in welche die Massen wirken). Diese ist allerdings auf 9999 beschränkt. Zum anderen können Sie die maximale Eigenfrequenz so einstellen, dass das Programm die Eigenformen bis zum Erreichen der eingestellten Eigenfrequenz automatisch ermittelt.
Stabilitätsnachweise für Biegeknicken, Drillknicken und Biegedrillknicken unter Druckbeanspruchung
Übernahme von Knicklängen aus der Berechnung mit dem Add-On Strukturstabilität möglich
Grafische Eingabe und Kontrolle von definierten Knotenlagern und Knicklängen für den Stabilitätsnachweis
Ermittlung von Ersatzstablängen für gevoutete Stäbe
Berücksichtigung der Lage der Kippaussteifungen
Biegedrillknicknachweise für Bauteile mit Momentenbeanspruchung
Je nach Norm Auswahl zwischen benutzerdefinierter Eingabe von Mcr, analytischer Methode aus der Norm und Nutzung des internen Eigenwertlösers
Berücksichtigung von Schubfeld und Drehbettung bei Nutzung des Eigenwertlösers
Grafische Darstellung der Eigenform, wenn der Eigenwertlöser genutzt wurde
Stabilitätsnachweise für Bauteile mit kombinierter Druck- und Biegebeanspruchung je nach Bemessungsnorm
Nachvollziehbare Berechnung sämtlicher benötigten Beiwerte wie Faktoren für die Berücksichtigung des Momentenverlaufs oder Interaktionsfaktoren
Alternative Berücksichtigung aller Effekte für den Stabilitätsnachweis bereits bei der Schnittgrößenermittlung in RFEM/RSTAB (Theorie II. Ordnung, Imperfektionen, Steifigkeitsreduktion, ggf. in Kombination mit dem Add-On Wölbkrafttorsion (7 Freiheitsgrade))
Hier haben Sie die freie Wahl. Sie können den Auflagerpressungsnachweis an beliebigen Punkten für eine Belastung in y- und z-Richtung des Querschnitts führen. Dabei steht es Ihnen offen, zwischen inneren und äußeren Lagern zu unterscheiden. Den Faktor kc,90 für Druck rechtwinklig zur Faser können Sie benutzerdefiniert einstellen (z.B. 1,75 für Leimholz). Falls zulässig, wird die Auflagerlänge entsprechend der Normvorgaben automatisch vergrößert. Hiermit erreichen Sie eine wirtschaftlichere Bemessung ohne viel Aufwand.
Das Add-On Wölbkrafttorsion (7 Freiheitsgrade) bietet Ihnen zahlreiche neue Möglichkeiten. So können Sie bspw. Stabstrukturen in RFEM und RSTAB unter Berücksichtigung der Querschnittsverwölbung berechnen. Die damit ermittelten Schnittgrößen (N, Vu, Vv, Mt,pri, Mt,sec, Mu, Mv, Mω) können Sie im Vergleichsspannungsnachweis der Stahlbemessung berücksichtigen. Beachten Sie dabei: Dieses Feature ist aktuell noch nicht für die Bemessungsnormen AISC 360-16 und GB 50017 verfügbar.
Entdecken Sie die Neuerungen in Ihrer Materialbibliothek. Hier sind jetzt die Materialserien mit aufgeführt. Zudem ist es möglich, direkt mittels Freitext-Suche Ihr gewünschtes Material in der Bibliothek zu finden.
Nutzen Sie das hilfreiche neue Strukturmodifikations-Objekt, um Steifigkeiten, Nichtlinearitäten sowie Objekte übersichtlich und lastfallabhängig zu modifizieren bzw. zu deaktivieren.
Eine weitere hilfreiche neue Funktion des Lastassistenten ist die Ermittlung der Stablasten aus Flächenlasten mit der Vorgabe von Flächen (über Eckknoten) und Zellen in einer Definition.
Behalten Sie Ihre Querschnitte im Blick. Für sämtliche Ihrer verwendeten Querschnitte werden hilfreiche statistische Informationen wie Gesamtlänge, Gesamtvolumen, Gesamtgewicht usw. ausgegeben.
Bei RWIND Basic kommt ein numerisches CFD-Modell (Computational Fluid Dynamics) zum Einsatz, um mithilfe eines digitalen Windkanals Windströme um Ihre Objekte zu simulieren. Der Simulationsprozess ermittelt aus dem Strömungsergebnis um das Modell die spezifischen Windlasten, welche auf Ihre modellierten Strukturoberflächen einwirken.
Für die Simulation selbst ist ein 3D-Volumennetz verantwortlich. RWIND Basic führt dafür eine automatische Vernetzung auf Basis von frei definierbaren Steuerparametern durch. Für die Berechnung der Windströme stehen Ihnen in RWIND Basic ein stationärer und in RWIND Pro ein transienter Löser für inkompressible turbulente Strömungen zur Verfügung. Aus den Strömungsergebnissen werden je Zeitschritt resultierende Oberflächendrücke auf das Modell extrapoliert.
Durch die Lösung des numerischen Strömungsproblems können Sie folgende Ergebnisse auf dem Modell und um das Modell herum erhalten:
Druck auf Körperoberfläche
Cp-Koeffizient-Verteilung auf der Körperoberflächen
Druckfeld um die Körpergeometrie
Geschwindigkeitsfeld um die Körpergeometrie
Turbulenz-k-ω-Feld um die Körpergeometrie
Turbulenz-k-ε-Feld um die Körpergeometrie
Geschwindigkeitsvektoren um die Körpergeometrie
Stromlinien um die Körpergeometrie
Kräfte auf stabförmige Körper, die ursprünglich aus Stabelementen generiert wurden
Konvergenzdiagramm
Richtung und Größe des Strömungswiderstands der definierten Körper
Trotz dieser vielen Informationen bleibt RWIND 3 Dlubal-typisch übersichtlich. Sie können sich für eine grafische Auswertung frei festlegbare Zonen definieren. Voluminös dargestellte Strömungsergebnisse um die Körpergeometrie fallen meistens unübersichtlich aus – Das Problem kennen Sie sicher bereits. Daher stellt Ihnen RWIND Basic zur Analyse frei verschiebbare Schnittebenen zur separaten Darstellung der „Volumenergebnisse“ in einer Ebene zur Verfügung. Für das 3D-verzweigte Stromlinienergebnis haben Sie die Wahl zwischen einer ruhenden und einer animierten Darstellung in Form von bewegten Linienstücken oder Partikeln. Diese Option hilft Ihnen dabei, die Windströmung als dynamische Wirkung darzustellen.
Sämtliche Ergebnisse können Sie als Bild oder speziell für die animierten Ergebnisse als Video exportieren.
Dieses Feature ist für Ihre tägliche Arbeit hilfreich! Für Stablasten, Flächenlasten etc. ist es Ihnen möglich, Lasten nachträglich in einen anderen Lastfall zu verschieben.
Das Modell wird fotorealistisch gerendert (optional mit Texturen). Daraus ergibt sich für Sie der Vorteil, dass Sie stets eine unmittelbare Kontrolle über die Eingabe haben. Die Anzeigefarben können Sie frei anpassen und getrennt für Bildschirm sowie den Ausdruck speichern.
Objekte wie Knoten, Stäbe, Lager etc. lassen sich gezielt ein- und ausblenden. Das Modell kann über Linien, Bögen, Winkel, Neigungen oder mit Höhenkoten bemaßt werden. Frei angelegte Hilfslinien, Schnitte und Kommentare erleichtern die Eingabe und die Auswertung. Auch die Hilfsobjekte können einzeln ein- oder ausgeblendet werden.
In RFEM sind für Sie hilfreiche neue Modelltypen hinzugefügt worden:
2D | XZ | 3D
2D | XY | 3D
1D | X | 3D
Diese Modelltypen erlauben Ihnen die Modellierung in einer 1D- bzw. 2D-Umgebung (mit optionaler Querschnittsdrehung in alle Richtungen), aber einen dreidimensionalen Lastansatz und daraus folgende 3D-Schnittgrößen.
Entdecken Sie die Vorteile der Arbeit mit den vielfältigen Add-Ons für RFEM 6 und RSTAB 9. Sämtliche Add-Ons sind in die Programme integriert. Dadurch können die einzelnen Programmteile miteinander interagieren und sorgen für einen reibungslosen Ablauf Ihrer Berechnungen und Bemessungen. Beispiele hierfür sind die Ermittlung des ideellen Kippmoments von Holzbalken mithilfe des Add-Ons 'Wölbkrafttorsion (7 Freiheitsgrade)' oder die Berücksichtigung von gestaffelten Formfindungsprozessen mittels des Add-Ons 'Analyse von Bauzuständen (CSA)'.