Program: RFEM 5, RSTAB 8

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Elastic Foundation,
Member

Verification Example: 0002 - Cantilever Beam on an Elastic Winkler Foundation

0002 - Cantilever Beam on an Elastic Winkler Foundation

Description

A cantilever beam of length L with rectangular cross-section of height & and width b lying on
an elastic Winkler foundation of stiffness C; , is loaded by a distributed loading g,. Neglecting
self-weight, determine the maximum deflection u, and maximum bending moment M, of the
beam. Calculate the same example also for a plate of the same heigth and width as the cantilever.

Material Is'otroplc . Modfjlius of £ 210,000 | GPa
Linear Elastic | Elasticity
iﬂhjjlzlus G 105.000 | GPa
Geometry Cantilever Length L 4.000 | m
Height h 0.200 [ m
Width b 0.005 | m
M Winkl Stiff
ember‘ in ‘er iffness c,. 500.000 | kN/m2
Foundation | Elastic i
Plat
Foui dation Cpp= 100000.000 | kN/m>
Load Member Distributed q, 1.000 | kN/m
Plate Distributed g =% 200.000 | kN/m?
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Figure 1: Problem sketch
Analytical Solution

Member Calculation

The governing differential equation for a beam on an elastic foundation can be expressed as

d*u
EleTj—i—Cl,zuZ:qz 2-1)
with the moment of inertia |, = {5bh® = 3.33 x 107 m*. Dividing by El, and setting 3* = Z}E,y

equation (2 - 1) can be rewritten as
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Verification Example: 0002 - Cantilever Beam on an Elastic Winkler Foundation

d*u,
dx*

_ g
El,

+ 454,

(2-2)

The solution of (2 - 2) can be obtained as the superposition of the solutions of a particular integral,

which can be expressed, assuming u, = C = const, as

0+4B%C = g—lz = const

Y

which leads to

c=- 9% _ 9% _ 9
4 G,
4p4El, AzcE, G

4

and the solution of the characteristic equation

d*u,

dx# + 464”2 =0

To solve the characteristic equation (2 - 5), assume that u, = Ae™, hence

A +484 =0

Then the solution for A can be expressed as

M= —4p% = N\ =1/ (48%) [COS (7T —|—42k7r> +isin (W +42k7r>]

where k = 0, 1, 2, 3. Equation (2 - 7) can be rewritten for all four variants as

A (k=0) = V2 :cos (%) +isin (%)] = B(1 +1)
b= () ) -
Ak=2) = 8v2 :cos (5—”) +isin (%”) — B(=1—i)
Mk =3) = Bv2 :cos (—) +isin (%7’) — B(1—i)

Therefore, the solution u, of (2 - 5) takes the form

4

— Aix

u, = E Aei
i=1

Substituting equations (2 - 8)-(2 - 11), (2 - 12) can be rewritten as

(2-6)

(2-12)
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Verification Example: 0002 - Cantilever Beam on an Elastic Winkler Foundation

u, = A1eﬁx(1+i) +A2eBx(—1+i) _|_Ase,8x(—1—i) +A4eﬁx(1—i) — (2 _ 13)
e (Aje™ + Ae= ) e Px (AP + Aje=) 2-14)

Incorporating e = cos(3x) + isin(Bx) into (2 - 13) yields

u, = 7(C, cos(Bx) + C, sin(Bx)) + e PX(C5 cos(Bx) + C,sin(Bx)) = (2-15)
cos(Bx) (C,e™ + Cse=™) + sin(Bx) (Ce™ + Ce) (2-16)

which can be further simplified using a new set of unknowns and the definition of hyperbolic
functions

u, = cos(px)(D, cosh(Bx) + D, sinh(8x)) + sin(8x)(D; cosh(Bx) + D, sinh(Bx))  (2-17)

The final solution of equation (2 - 2) is constructed by the superposition of the solutions (2 - 4)
and (2- 17)

u, = cos(Bx)(D, cosh(Bx) + D, sinh(Bx)) +

sin(Bx) (D5 cosh(x) 4+ D, sinh(Bx)) + g—z (2-18)
1,z

To obtain values for constants D,-D,, four cantilever boundary conditions have to be applied

1) u,(0)=0 2-19)
du
2) —2(0) = 2-2
) Sz =0 2-20)
d’u d’u
3) M,(L)=E, dXZZ (L)y=0= dx22 (Ly=0 (2-21)
d’u, d’u,
4) V() =H—oFL)=0= F()=0 (2-22)
which leads to
1) w(0) =D, + 2 —0=p, =22 (2-23)
‘ k C1,z 1 Cl 2
du,
2) 5(0) = B(D, +D;) =0= D, = —D; (2-24)
dzuz 2
3) ) (L) = —2B%(D;ss;, + Dysc;, — Dscs;, — Dyccy,) =0 (2-25)
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Verification Example: 0002 - Cantilever Beam on an Elastic Winkler Foundation

d’u
) dx3z (L) = —283(D;s¢;, + Dsssy, + Dycs, + Dyccy, — Dyccy, — Dycsy, +

Dsss;, + D,sc;,) =0 (2-26)

where s = sin(8L), ¢ = cos(SL), s;, = sinh(SL), and ¢;, = cosh(/5L). Substituting (2 - 23) and (2 -
24)into (2 - 25) and (2 - 26), the following relations are obtained

3) — c (ssp,) — D5(scy, + csp,) — Dy(cc,) =0 (2-27)
1,z

4) — qu (sc;, + csp,) — Ds(ssy, + cc;, + cc;, — ssp,) — Dy(csy, —sc,) =0 (2-28)
1,z

Combining (2 - 27), (2 - 28) yields

scy, + ¢s, cc, Ds| _ _C‘ZZ,Z 55h 2-29)
2cc;,  cs, —sc, | | Dy — 2= (sc;, + ¢sp,)

Z
1,z

Solving (2 - 29) leads to the coefficients D; and D, in the form

q, (¢cs+s,¢,
D,= — = " °hoh 2-30
3 c1’z< 2+¢c ) ( )
a (¢=G
D, — _ 2-31
4 C1,z <C2+C}2~b ( )

Finally, substituting equations (2 - 23), (2 - 24), (2 - 30),and (2 - 31) into (2 - 18) and setting
x = L, the value for the maximum deflection u, is obtained

q;

Uy max = Uy(L) = c(Dy¢y, + Dysp,) + 5(D5¢), + Dysy,) + o= 2.498 mm (2-32)

1,z

Similarly, setting x = 0 and substituting (2 - 25) and (2 - 31) into (2 - 21) gives the value for the
maximum bending moment M,

d%u
My max = My (0) = —El,—%(0) = —2E1,32D, = —1.146 kNm (2-33)

Plate Calculation

The cantilever is also calculated using plate elements of width b and height i on a Pasternak
foundation. The example yields the same numerical results, so the theory is identical. The para-
meter C, , describing the Pasternak foundation for plates that yields the same results is equal to
C,, = S = 100000 kN/m®.

u,z b
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Verification Example: 0002 - Cantilever Beam on an Elastic Winkler Foundation

Note that, in order to approximate the member solution exactly, the Poisson ratio is zero.

RFEM 5 and RSTAB 8 Settings

Modeled in version RFEM 5.16.01 and RSTAB 8.16.01

®

e The element sizes are I = 0.400 m (member) and /i = 0.100 m (plate)

o Geometrically linear analysis is considered

e Isotropic linear elastic material model is used

e The Kirchhoff plate theory is used

e Shear stiffness of members is deactivated

Results
Structure File Entity Program

0002.01 Member RFEM 5
0002.02 Member RSTAB 8
0002.03 Plate RFEM 5

\

Figure 2: RFEM 5 Model - Member

As seen from the following comparisons, excellent agreement between the analytical solutions

and numerical outputs has been achieved.

Analytical RFEM 5 (Member) RSTAB 8 (Member) RFEM 5 (Plate)
Solution
VW v W v Ratio U s Ratio W, v Ratio
[mm] [mm] [-] [mm] [-] [mm] [-]
2.498 2.498 1.000 2.498 1.000 2.495 0.999
Analytical RFEM 5 (Member) RSTAB 8 (Member) RFEM 5 (Plate)
Solution
Wil v Wiy e Ratio Wi e Ratio e ey 9519 Ratio
[kNm] [kNm] [-] [kNm] [-] [kNm] [-]
—1.146 —1.146 1.000 —1.146 1.000 —1.139 0.994
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