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0028 – Double-Pane Glass Without Coupling of Layers

Description

A simply-supported double-pane glass plate with a foil between both glass panes is subjected to
a uniform pressure p. Considering only the small deformations and neglecting plate's self-weight,
determine its maximum displacement uz,max, in-plane stresses and stress ratios.

Material Glass Modulus of
Elasticity

E1 70000000.000 kPa

Poisson's
Ratio

𝜈1 0.230 −

Foil Modulus of
Elasticity

E2 3000.000 kPa

Poisson's
Ratio

𝜈2 0.499 −

Geometry Plate Side Length L 10000.000 mm

Top Layer
Thickness

t1 10.000 mm

Middle Layer
Thickness

t2 0.380 mm

Bottom Layer
Thickness

t3 15.000 mm

Total
Thickness

t = ∑3
i=1

ti 25.380 mm

Load Pressure p 0.001 kPa

pp

L deptℎ L

t1t2t3
x

z

Figure 1: Problem sketch

Analytical Solution

At first, let us briefly explain the problematic of glass-foil-glass simulations. The foil is normally
much softer and thinner than glass. Therefore the foil shear modulus G2 is lower than the shear
modulus of glass by 5-7 orders. In this case, normal vectors after deformation in glass and foil have
significantly different directions. As a consequence, the usual 2D theories give unreliable results
(too conservative results = underestimated displacements). The correct results can be obtained
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by 3D simulation, although these calculations are more time consuming. The displacement upper
bound can be obtained by the 2D plate theory without layer's coupling, described in this example
and available in the RF-GLASS module. All three possibilities are shown in Figure 2:

Figure 2: Left: 2D plate theories (fully coupled), Middle: 3D simulations (correct), Right: plate
theories without layer's coupling

Although the plate setting is unsymmetrical, the unsymmetrical stiffness terms D16, D17, D18, D27,
D28, D38 are not present in this theory, because all panes are supposed to be located symmetrically
on the plate middle plane (they are supposed to act independently). As a consequence, the
elasticity matrix D is given as a sum of parts correspondent to individual layers (D = ∑n

i=1
Di), i.e.,

the Steiner's part is not considered. In this verification example all the analytical results apply to
the Kirchhoff plate theory, therefore in RFEM the same setting is considered.

The in-plane stiffness matrices, corresponding to the i-th layer, are as follows:

di =
⎡
⎢⎢
⎣

Ei
1−u� 2

i

u�iEi
1−u� 2

i
0

Ei
1−u� 2

i
0

sym. Gi

⎤
⎥⎥
⎦

(28 – 1)

where Gi = Ei
2(1+u�i)

is a shear modulus and i = 1, 2, 3 is the number of the layer. The stiffness
matrices corresponding to the i-th layer are than as follows:

Di =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t 3i
12di,11

t 3i
12di,12 0 0 0 0 0 0
t 3i
12di,11 0 0 0 0 0 0

t 3i
12di,33 0 0 0 0 0

5
6Giti 0 0 0 0

5
6Giti 0 0 0

tidi,11 tidi,12 0
tidi,11 0

sym. tidi,33

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(28 – 2)

The total stiffness matrix D is than defined by:

D =
n

∑
i=1

Di (28 – 3)

For the total stiffness matrix D the following relation holds:

f = D𝜺 (28 – 4)



Verification Example: 0028 – Double-Pane Glass Without Coupling of Layers

Verification Example - 0028 © Dlubal Software 2015

0028 – 3

where f is the stress resultant vector:

f = [mx my mxy vx vy nx ny nxy ]
T

(28 – 5)

and 𝜺 is the strain resultant vector:

𝜺 = [ 𝜅x 𝜅y 𝜅xy 𝛾x 𝛾y 𝜀 𝜀y 𝜀xy ]
T

(28 – 6)

The stress vector resultant f is divided to stress resultants fi corresponding to each layer according
to the formula:

f =
n

∑
i=1

fi (28 – 7)

where forces fi are given by:

fi = DiD−1f (28 – 8)

To determine the maximum displacement uz,max, the equivalent plate having the same properties
as the combination of all three layers given above will be computed. The equivalent plate bending
stiffness Keqv is given by:

Keqv =
3

∑
i=1

t3i
12

Ei
1 − 𝜈 2

i

(28 – 9)

The maximum displacement can be than obtained by the following formula:

uz,max =
16p

keqv𝜋6 ∑
m,n=1

(−1)m+n−2
2

mn (m2

a2 + n2

b2 )
2 (28 – 10)

To determine in-plane stresses, explicit formulae will be derived. These formulae determine the
stress extreme values in the one-layered isotropic elastic Kirchhoff plate and can be expressed as:

𝜎x (
L
2

,
L
2

, z) =
192zp
t3𝜋4 ∑

m,n=1

(−1)m+n−2
2

m2

a2 + 𝜈 n2

b2

mn (m2

a2 + 𝜈 n2

b2 )
2 (28 – 11)

𝜎y (
L
2

,
L
2

, z) =
192zp
t3𝜋4 ∑

m,n=1

(−1)m+n−2
2

𝜈 m2

a2 + n2

b2

mn (m2

a2 + 𝜈 n2

b2 )
2 (28 – 12)

𝜏xy (0, 0, z) = −
192zp(1 − 𝜈)

abt3𝜋4 ∑
m,n=1

1

mn (m2

a2 + 𝜈 n2

b2 )
2 (28 – 13)
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where a = b = L. The moment resultants for the whole plate are given by formulae:

mx (
L
2

,
L
2

) = ∑
m,n=1

16p
mn𝜋2 (−1)m+n−2

2
𝛼2
mD11 + 𝛽 2

nD12

D11𝛼4
m + 2(D12 + 2D33)𝛼2

m𝛽 2
n + D22𝛽 4

n

(28 – 14)

my (
L
2

,
L
2

) = ∑
m,n=1

16p
mn𝜋2 (−1)m+n−2

2
𝛼2
mD11 + 𝛽 2

nD12

D11𝛼4
m + 2(D12 + 2D33)𝛼2

m𝛽 2
n + D22𝛽 4

n

(28 – 15)

mxy (0, 0) = ∑
m,n=1

16p
mn𝜋2

−2D33𝛼m𝛽n

D11𝛼4
m + 2(D12 + 2D33)𝛼2

m𝛽 2
n + D22𝛽 4

n

(28 – 16)

where 𝛼m = m
a and 𝛽n = n

b . To determine in-plane stresses, formulae relating maximum stresses
and moment resultants must be derived. Maximum stress values at any point (x, y) can be ex-
pressed by following formulae:

𝜎x(x, z, y) =
2z
t

𝜎x,max(x, y) (28 – 17)

𝜎y(x, z, y) =
2z
t

𝜎y,max(x, y) (28 – 18)

𝜏xy(x, z, y) =
2z
t

𝜏xy,max(x, y) (28 – 19)

From these formulae,moments can be obtained bymultiplying by z and integration over thickness:

mx(x, y) =

t/2

∫
−t/2

𝜎x(x, y, z)z dz =
t2

6
𝜎x,max(x, y) (28 – 20)

my(x, y) =

t/2

∫
−t/2

𝜎y(x, y, z)z dz =
t2

6
𝜎y,max(x, y) (28 – 21)

mxy(x, y) =

t/2

∫
−t/2

𝜏xy(x, y, z)z dz =
t2

6
𝜏xy,max(x, y) (28 – 22)

which yields for the i-th layer:

𝜎i,x,max(x, y) =
6
t2
mi,x(x, y) (28 – 23)

𝜎i,y,max(x, y) =
6
t2
mi,y(x, y) (28 – 24)

𝜏i,xy,max(x, y) =
6
t2
mi,xy(x, y) (28 – 25)

To determine stress ratios u�1,x,max

u�3,x,max
and u�1,xz,max

u�3,xz,max
, another equation dependent on the z-coordinate

has to be mentioned:
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𝜏i,xz(z) = 𝜏i,xz,max (1 −
4z2

t2i
) (28 – 26)

It should be also mentioned that z = 0 at each pane's middle (as stated before, the panes are
supposed to act independently). Because t2 ⋘ min(t1, t3), the inner layer can be neglected in the
following calculations. It is also supposed, that curvatures are the same in each pane, therefore:

mi =
t3i
12

di𝜿 (28 – 27)

where di is given by the formula (28 – 1), 𝜿 is the curvature vector:

𝜿 = [ 𝜅x 𝜅y 𝜅xy ]
T

(28 – 28)

andmi is the moment vector in the i-th pane, when i = 1, 3. At the same time, these vectors can
be expressed as:

mi =

ti/2

∫
−ti/2

z[ 𝜎x 𝜎y 𝜏xy ]
T
dz = [ 𝜎x 𝜎y 𝜏xy ]

T t6i
6

(28 – 29)

Combining equations (28 – 1), (28 – 27), (28 – 28) and (28 – 29), the desired ratio for the
maximum normal stresses can be obtained:

𝜎1,x,max

𝜎3,x,max
=

t1
t3

(28 – 30)

The transversal shear ratios can be obtained from the transversal shear forces vx,i in x-direction:

vx,i =
5
6
Gti𝛾xz (28 – 31)

where i = 1, 3. At the same time, these forces can be expressed as:

vx,i =

ti/2

∫
−ti/2

𝜏i,zdz =
2
3

𝜏i,xz,max,ti (28 – 32)

Combining these two equations, the ratio for the maximum shear stresses can be obtained:

𝜏1,xz,max

𝜏3,xz,max
= 1 (28 – 33)
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RFEM 5 Settings

• Modeled in version RFEM 5.03.0050
• The element size is lFE = 0.250 m
• Geometrically linear analysis is considered
• The number of increments is 1
• The element type is plate
• The Mindlin plate theory is used
• Isotropic linear elastic material model is used
• Coupling of layers is not considered

Results

Structure File Program

0028.01 RF-LAMINATE

0028.02 RF-GLASS

As can be seen below, excellent agreements of analytical results with numerical outputs were
achieved:

Displacement Analytical
Solution

RF-LAMINATE RF-GLASS

[mm] [mm] Ratio [-] [mm] Ratio [-]

uz,max 1.507 1.507 1.000 1.507 1.000

Stresses Analytical
Solution

RF-LAMINATE RF-GLASS

[kPa] [kPa] Ratio [-] [kPa] Ratio [-]

𝜎1,x,max ( L
2 , L

2) 62.160 62.112 0.999 62.112 0.999

𝜎3,x,max ( L
2 , L

2) 93.200 93.168 1.000 93.168 1.000

𝜏1,xy,max (0, 0) −49.020 −48.987 0.999 −48.987 0.999

𝜏3,xy,max (0, 0) −73.493 −73.481 1.000 −73.481 1.000

Stress Ratios Analytical
Solution

RF-LAMINATE RF-GLASS

[−] [−] Ratio [-] [−] Ratio [-]

u�1,x,max

u�3,x,max
0.667 0.667 1.000 0.667 1.000

u�1,xy,max

u�3,xy,max
1.000 1.000 1.000 1.000 1.000


