Program: RFEM 5, RF-LAMINATE, RFEM 6

Category: Geometrically Linear Analysis, Orthotropic Linear Elasticity, Laminate, Plate

Verification Example: 0029 - Fiber Rotation Test in Laminated Plates

0029 - Fiber Rotation Test in Laminated Plates

Description

One layered square orthotropic plate of side length L and thickness t is fully fixed at its middle point and subjected to the pressure p according to the Figure 1. Problem is described by the following set of parameters.

Material	Laminate	Modulus of Elasticity	E_{X}	8000.000	MPa
			$E_{Y}=E_{Z}$	270.000	MPa
		Poisson's Ratio	$\nu_{Y Z}$	0.350	-
			$\nu_{X Y}=\nu_{X Z}$	0.470	-
		Shear Modulus	$G_{X Y}=G_{X Z}$	500.000	MPa
			$G_{Y Z}$	100.000	MPa
Geometry		Side Length	L	10.000	m
		Thickness	t	0.100	m
		Fibers Angle	β	± 45	-
Load		Pressure	p	1.000	Pa

Compare the deflection u_{z} of the plate corners $\mathrm{A}(0,0,0)$ and $\mathrm{B}(L, 0,0)$ for different fiber angles β to check the correctness of the transformation.

Figure 1: Problem sketch

Verification Example: 0029 - Fiber Rotation Test in Laminated Plates

Analytical Solution

The aim of this test is to prove the equality of the deflections in opposite corners for fibre orientation $\beta= \pm 45^{\circ}$. Complete analytical solution is not available, because of the given boundary conditions. The reason of those boundary conditions is the suitable comparability of the results for fiber orientation angle $\beta= \pm 45^{\circ}$. The stiffness of the plate is much grater in fibres direction (direction of X-axis). The different fiber orientation causes the different stiffness of the plate in directions of diagonals, see Figure 2. The plate is more stiffer in the direction of the diagonal which is parallel to the fibre direction. Thus it is possible to write

$$
\begin{array}{ll}
u_{z, \mathrm{~A}}>u_{z, \mathrm{~B}}, & \beta=45^{\circ} \\
u_{z, \mathrm{~A}}<u_{z, \mathrm{~B}}, & \beta=-45^{\circ} \tag{29-2}
\end{array}
$$

Figure 2: Different stiffness of the diagonals for fibre orientation $\beta= \pm 45^{\circ}$

Stiffness Matrix

The stiffness matrix elements calculation follows. The global stiffness matrix can be calculated analytically. The stiffness matrix for one layer in local coordinates is defined as follows

$$
\boldsymbol{d}^{\prime}=\left[\begin{array}{ccc}
\frac{E_{X}}{1-\nu_{X Y} \nu_{Y X}} & \frac{\nu_{X Y} E_{Y}}{1-\nu_{X Y} \nu_{Y X}} & 0 \tag{29-3}\\
& \frac{E_{Y}}{1-\nu_{X Y} \nu_{Y X}} & 0 \\
\text { sym. } & & G_{X Y}
\end{array}\right]
$$

The relionship between moduli of elasticity and Poisson's ratios for the orthotropic materials is defined as follows:

$$
\begin{equation*}
\frac{\nu_{Y X}}{E_{Y}}=\frac{\nu_{X Y}}{E_{X}} \tag{29-4}
\end{equation*}
$$

For the transformation of the local stiffness matrix \boldsymbol{d}^{\prime} to the global coordinate system by rotation by an angle β the transformation matrix \boldsymbol{T} is used

$$
\begin{equation*}
\boldsymbol{d}=\boldsymbol{T}^{\boldsymbol{\top}} \boldsymbol{d}^{\prime} \boldsymbol{T} \tag{29-5}
\end{equation*}
$$

The transformation matrix is defined as

$$
\boldsymbol{T}=\left[\begin{array}{ccc}
\cos ^{2} \beta & \sin ^{2} \beta & \cos \beta \sin \beta \tag{29-6}\\
\sin ^{2} \beta & \cos ^{2} \beta & -\cos \beta \sin \beta \\
-2 \cos \beta \sin \beta & 2 \cos \beta \sin \beta & \cos ^{2} \beta-\sin ^{2} \beta
\end{array}\right]
$$

Verification Example: 0029 - Fiber Rotation Test in Laminated Plates

The stiffness matrix for one layer then results for $\beta= \pm 45^{\circ}$:

$$
\boldsymbol{d}=\left[\begin{array}{ccc}
2.647 & 1.647 & \pm 1.947 \tag{29-7}\\
1.647 & 2.647 & \pm 1.947 \\
\pm 1.947 & \pm 1.947 & 2.019
\end{array}\right] \mathrm{GPa}
$$

Global stiffness matrix has the following form:

$$
\boldsymbol{D}=\left[\begin{array}{cccccccc}
D_{11} & D_{12} & D_{13} & 0 & 0 & D_{16} & D_{17} & D_{18} \tag{29-8}\\
& D_{22} & D_{23} & 0 & 0 & & D_{27} & D_{28} \\
& & D_{33} & 0 & 0 & \text { sym. } & & D_{38} \\
& & & D_{44} & D_{45} & 0 & 0 & 0 \\
& & & & D_{55} & 0 & 0 & 0 \\
& \text { sym. } & & & & D_{66} & D_{67} & D_{68} \\
& & & & & & D_{77} & D_{78} \\
& & & & & & & D_{88}
\end{array}\right]
$$

Elements of the stiffness matrix $D_{11}-D_{33}$ define bending and torsion. General formula for these elements can be written as follows

$$
\begin{equation*}
D_{i j}=\sum_{k=1}^{n} \frac{z_{k, \max }^{3}-z_{k, \min }^{3}}{3} d_{k, i j} \tag{29-9}
\end{equation*}
$$

where $i=1,2,3 ; j=1,2,3$ and n defines the number of the layers, $z_{k, \max }$ and $z_{k, \text { min }}$ corresponds to the maximum and minimum distance of the appropriate layer surfaces from the zero layer ($z=0$). In this special case with only one layer of the thickness t the elements can be calculated as follows.

$$
\begin{align*}
& D_{11}=\frac{t^{3}}{12} d_{11}=220.580 \mathrm{kNm} \tag{29-10}\\
& D_{12}=\frac{t^{3}}{12} d_{12}=137.246 \mathrm{kNm} \tag{29-11}\\
& D_{13}=\frac{t^{3}}{12} d_{13}= \pm 162.251 \mathrm{kNm} \tag{29-12}\\
& D_{22}=\frac{t^{3}}{12} d_{22}=220.580 \mathrm{kNm} \tag{29-13}\\
& D_{23}=\frac{t^{3}}{12} d_{23}= \pm 162.251 \mathrm{kNm} \tag{29-14}\\
& D_{33}=\frac{t^{3}}{12} d_{33}=168.259 \mathrm{kNm} \tag{29-15}
\end{align*}
$$

Thanks to the symmetry (reference plane is in the middle of the layer) elements of the stiffness matrix $D_{16}-D_{38}$ are equal to zero. The elements $D_{44}-D_{55}$ are not taken into account due to the assumption of Kirchhoff plate bending theory (no shear effects). Elements of the stiffness matrix $D_{66}-D_{88}$, which define membrane loading can be calculated for angles $\beta= \pm 45^{\circ}$ as follows

$$
\begin{equation*}
D_{i+5, j+5}=\sum_{k=1}^{n}\left(z_{k, \max }-z_{k, \min }\right) d_{k, i j} \tag{29-16}
\end{equation*}
$$

Verification Example: 0029 - Fiber Rotation Test in Laminated Plates

where $i=1,2,3 ; j=1,2,3$ and n defines the number of the layers, $z_{k, \max }$ and $z_{k, \text { min }}$ corresponds to the maximum and minimum distance of the appropriate layer surfaces from the zero layer ($z=0$). In this special case with only one layer of the thickness t the elements can be calculated as follows.

$$
\begin{align*}
& D_{66}=t d_{11}=264696 \mathrm{kNm} \tag{29-17}\\
& D_{67}=t d_{12}=164696 \mathrm{kNm} \tag{29-18}\\
& D_{68}=t d_{13}= \pm 194702 \mathrm{kNm} \tag{29-19}\\
& D_{77}=t d_{22}=264696 \mathrm{kNm} \tag{29-20}\\
& D_{78}=t d_{23}= \pm 194702 \mathrm{kNm} \tag{29-21}\\
& D_{88}=t d_{33}=201910 \mathrm{kNm} \tag{29-22}
\end{align*}
$$

RFEM Settings

- Modeled in RFEM 5.26 and RFEM 6.01
- The element size is $I_{\mathrm{FE}}=0.250 \mathrm{~m}$
- Geometrically linear analysis is considered
- The number of increments is 5
- Kirchhoff plate bending theory is used
- Orthotropic Elastic 2D material model is used

Results

Structure File	Program	Fiber Orientation	
0029.01	RFEM 5, RFEM 6	45°	
0029.02	RFEM 5, RFEM 6	-45°	
0029.03	RF-LAMINATE	45°	
0029.04	RF-LAMINATE	-45°	
Fiber orientation $\beta=+45^{\circ}$	RFEM 5	RF-LAMINATE	RFEM 6
Test point	$\begin{gathered} u_{z} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} u_{z} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} u_{z} \\ {[\mathrm{~mm}]} \end{gathered}$
A	0.502	0.502	0.502
B	4.976	4.976	4.976

Verification Example: 0029 - Fiber Rotation Test in Laminated Plates

Fiber orientation $\beta=-45^{\circ}$	RFEM 5	RF-LAMINATE	RFEM 6
Test point	u_{z} $[\mathrm{~mm}]$	u_{z} $[\mathrm{~mm}]$	u_{z} $[\mathrm{~mm}]$
A	4.976	4.976	4.976
B	0.502	0.502	0.502

