A childred tion

Program: RFEM 5

Category: Geometrically Linear Analysis, Structural Nonlinearity

Verification Example: 0057 – Scaffolding Tube Connection - Hinge

0057 – Scaffolding Tube Connection - Hinge

Description

Consider a scaffolding tube connection subjected to an axial force of magnitude *N* and a moment *M*. Self-weight is not considered. The material of the tube is idealised as perfectly rigid. All geometrical non-linearities are ignored. The problem is described in **Figure 1** and by the following set of input parameters.

Material	Rigid	Modulus of Elasticity	Ε	1000.000	TPa
Geometry	Scaffolding tube	Segment 1 Length	L	1.000	m
		Segment 2 Length	L	1.000	m
Loading	Compression	Moment	<i>M</i> _{1_x}	0.000	Nm
			<i>M</i> _{1_Y}	530.000	Nm
				1100.000	Nm
				1650.000	Nm
			M _{2x}	374.767	Nm
				777.817	Nm
				1166.726	Nm
			M _{2y}	374.767	Nm
				777.817	Nm
				1166.726	Nm
		Force	Ν	50000.000	Ν
	Tension	Moment	<i>M</i> _{1_x}	0.000	Nm
			<i>M</i> _{1_Y}	1000.000	Nm
			<i>M</i> _{1_{<i>x</i>}}	707.107	Nm
			<i>M</i> _{1_Y}	707.107	Nm
		Force	Ν	-50000.000	N
Hinge Properties		Maximal Moment	M _{max}	545.750	Nm
		Maximal Force	N _{pl}	-90000.000	Ν

The task is to find the angle of deflection φ for four different moment magnitudes (three for compression, one for tension), two different forces (one for tension and one for compression), in two different geometrical settings.

Let M stand for the magnitude of the moment M a let it attain all values specified in the input table.

- Firstly, we a consider moment $M_1 = [M_{1_x}, M_{1_y}, 0] = [0, M, 0]$ acting about the Y-axis.
- Secondly, we a consider moment $\mathbf{M}_2 = [M_{2_x}, M_{2_y}, 0] = [\frac{\sqrt{2}}{2}M, \frac{\sqrt{2}}{2}M, 0]$ acting about an X'-axis which we get by rotating the *X*-axis around the *Z*-axis by an $\alpha = 45^{\circ}$.

Figure 1: Problem Sketch and Solution in the loading plane X'Z.

Analytical Solution

The scaffolding tube connection is given by parallel combination of inter and outer tube. The behaviour of each tube is given quantitatively by a separate diagram. The Moment - Force diagram **Figure 2** is used for the outer tube and the Moment - Angle diagram **Figure 3** is used for the inner tube. For further inquiry see [1].

Figure 2: Scaffolding tube connection - outer tube, Moment - Force diagram

The case of the lowest moment magnitude M = 530 Nm represent the most elementary scenario. The outer tube is strong enough to support the loading all alone. According to **Figure 2**, we have the following observation.

$$M_{1\nu} - M(-50) = 530 - 537.46 < 0 \tag{57-1}$$

No moment is left to be caried by the inner tube. Therefore

$$\varphi = \mathbf{0} \tag{57-2}$$

as given by Figure 3.

In case of moment magnitude M = 1100 Nm, we have that

$$M_{1_v} - M_{\rm max} > 0$$
 (57-3)

This fact can be interpreted as a failure of outer tube. The rest of the loading $M_{1_y} - M_{max}$ must be carried by the inner tube. Reading the values from both **Figure 3** yields the result.

$$\varphi = 0.027 \text{ rad}$$
 (57 – 4)

In case of moment magnitude M = 1650 Nm, the hinge structure can not support the loading. Both inner and outher tube have failed according to **Figure 2** and **Figure 3**.

RFEM Setting

- Geometrically linear analysis
- Hinge properties are given by diagrams in Figure 2 and Figure 3

Results

Structure Files	Description
0057.01	Compression states only
0057.02	Tension states only

vernication example: 0057 – Scarolding rube connection - Hinge								
Loading Force	Loading Moment		Theory	RFEM 5				
<i>N</i> [N]	<i>M_X</i> [Nm]	<i>M_Y</i> [Nm]	arphi [rad]	arphi [rad]	Ratio [-]			
50000	0.000	530	0.000 *	0.000 *	1.000			
	0.000	1100	0.027 **	0.027 **	1.000			
	0.000	1650	***	***				
-50000	0.000	1100	***	***				
50000	374.767	374.767	0.000 *	0.000 *	1.000			
	777.817	777.817	0.027 **	0.027 **	1.000			
	1166.726	1166.726	***	***	-			
-50000	707.107	707.107	***	***	-			

The angle of deflection φ is considered in the loading plane

* Both inner and outer tube are ok

- ** Inner tube is ok, outer tube has failed
- *** Both inner and outer tube have failed

References

[1] 1065:1998, E. Adjustable telescopic steel props - Product specifications, design and assessment by calculation and tests. 1998.