Category: Isotropic Linear Elasticity, Geometrically Linear Analysis, Member, Plate,

 Solid
Verification Example: 0086 - Curved Beam with Out-of-Plane Loading

0086 - Curved Beam with Out-of-Plane Loading

Description

A quarter-circle beam with rectangular cross-section $w \times h$ is loaded by means of an out-of-plane force F according to Figure 1. While neglecting self-weight, determine the total deflection u_{z} of the curved beam.

Material	Modulus of Elasticity	E	210000.0	MPa
	Poisson's Ratio	ν	0.296	-
Geometry	Radius	r	1.000	m
	Cross-section Width	w	25.000	mm
	Cross-section Height	h	50.000	mm
Load	Force	F	1.000	kN

Figure 1: Problem Sketch

Analytical Solution

The curved beam is loaded by a bending moment M_{b}, torsional moment M_{t} and by a transverse force T. Considering the scheme in Figure 2, these loads at an arbitrary section are equal to

$$
\begin{align*}
M_{b} & =F a=F r \sin \varphi, \tag{86-1}\\
M_{t} & =F b=F r(1-\cos \varphi), \tag{86-2}\\
T & =F . \tag{86-3}
\end{align*}
$$

The deflection of the structure can be then determined according to Castigliano's second theorem

$$
\begin{equation*}
u_{z}=\frac{\mathrm{d} U}{\mathrm{~d} F}=\frac{\mathrm{d}\left(U_{b}+U_{t}+U_{s}\right)}{\mathrm{d} F} \tag{86-4}
\end{equation*}
$$

Verification Example: 0086 - Curved Beam with Out-of-Plane Loading

where the total strain energy U is composed of the bending strain energy U_{b}, torsional strain energy U_{t} and shear strain energy U_{s}.

Figure 2: Scheme
The strain energy is calculated integrating along the length of the curved beam L. Considering polar coordinates, the infinitesimal length of the arc is defined as $\mathrm{d} s=r \mathrm{~d} \varphi$.

$$
\begin{align*}
& U_{b}=\int_{L} \frac{M_{b}^{2}(s)}{2 E I_{y}} \mathrm{~d} s=\int_{0}^{\pi / 2} \frac{M_{b}^{2}(\varphi)}{2 E I_{y}} r \mathrm{~d} \varphi \tag{86-5}\\
& U_{t}=\int_{L} \frac{M_{t}^{2}(s)}{2 G J} \mathrm{~d} s=\int_{0}^{\pi / 2} \frac{M_{t}^{2}(\varphi)}{2 G J} r \mathrm{~d} \varphi \tag{86-6}\\
& U_{s}=\frac{6}{5} \int_{L} \frac{T^{2}}{2 G A} \mathrm{~d} s=\frac{6}{5} \int_{0}^{\pi / 2} \frac{T^{2}}{2 G A} r \mathrm{~d} \varphi \tag{86-7}
\end{align*}
$$

The second moment of the area I_{y} for the rectangular cross-section is defined as $I_{y}=\frac{1}{12} w h^{3}$, the torsional constant J is defined as $J=0.229 h w^{3}$ because of the particular h / w ratio according to [1] and the cross-section area is equal to $A=w h$. The total deflection of the curved beam u_{z} is then equal to

$$
\begin{equation*}
u_{z}=\frac{3 \pi F r^{3}}{E w h^{3}}+\frac{1.555 F r^{3}}{G h w^{3}}+\frac{3 \pi F r}{5 G h w} \approx 38.960 \mathrm{~mm} \tag{86-8}
\end{equation*}
$$

RFEM 5 Settings

- Modeled in RFEM 5.12.02
- Element size is $I_{\mathrm{FE}}=0.010 \mathrm{~m}$
- The number of increments is 10
- Isotropic linear elastic material is used
- Mindlin plate bending theory is used

Verification Example: 0086 - Curved Beam with Out-of-Plane Loading

Results

Structure File	Entity	Orientation
0086.01	Member	-
0086.02	Plate	Horizontal
0086.03	Plate	Vertical
0086.04	Solid	-

Entity	Theory	RFEM 5	
	$\begin{gathered} u_{z} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} u_{z} \\ {[\mathrm{~mm}]} \end{gathered}$	Ratio [-]
Member	38.960	38.974	1.000
Plate, horizontal		38.642	0.992
Plate, vertical		38.117	0.978
Solid		38.398	0.986

References

[1] https://www.colorado.edu/engineering/CAS/courses.d/Structures.d/, Introduction to aerospace structures

