Program: RFEM 5

Category: Isotropic Linear Elasticity, Geometrically Linear Analysis, Member, Plate, Solid

Verification Example: 0086 – Curved Beam with Out-of-Plane Loading

0086 - Curved Beam with Out-of-Plane Loading

Description

A quarter-circle beam with rectangular cross-section $w \times h$ is loaded by means of an out-of-plane force *F* according to **Figure 1**. While neglecting self-weight, determine the total deflection u_z of the curved beam.

Material	Modulus of Elasticity	Ε	210000.0	MPa
	Poisson's Ratio	ν	0.296	_
Geometry	Radius	r	1.000	m
	Cross-section Width	w	25.000	mm
	Cross-section Height	h	50.000	mm
Load	Force	F	1.000	kN

Figure 1: Problem Sketch

Analytical Solution

The curved beam is loaded by a bending moment M_b , torsional moment M_t and by a transverse force T. Considering the scheme in **Figure 2**, these loads at an arbitrary section are equal to

$$M_b = Fa = Fr \sin \varphi, \tag{86-1}$$

$$M_t = Fb = Fr(1 - \cos\varphi), \qquad (86 - 2)$$

$$T = F. \tag{86-3}$$

The deflection of the structure can be then determined according to Castigliano's second theorem

$$u_z = \frac{\mathrm{d}U}{\mathrm{d}F} = \frac{\mathrm{d}(U_b + U_t + U_s)}{\mathrm{d}F}, \tag{86-4}$$

Verification Example: 0086 - Curved Beam with Out-of-Plane Loading

where the total strain energy U is composed of the bending strain energy U_b , torsional strain energy U_t and shear strain energy U_s .

Figure 2: Scheme

The strain energy is calculated integrating along the length of the curved beam *L*. Considering polar coordinates, the infinitesimal length of the arc is defined as $ds = rd\varphi$.

$$U_b = \int_{L} \frac{M_b^2(s)}{2El_y} ds = \int_{0}^{\pi/2} \frac{M_b^2(\varphi)}{2El_y} r d\varphi$$
(86 - 5)

$$U_t = \int_{L} \frac{M_t^2(s)}{2GJ} ds = \int_{0}^{\pi/2} \frac{M_t^2(\varphi)}{2GJ} r d\varphi$$
(86-6)

$$U_{s} = \frac{6}{5} \int_{L} \frac{T^{2}}{2GA} ds = \frac{6}{5} \int_{0}^{\pi/2} \frac{T^{2}}{2GA} r d\varphi$$
(86 - 7)

The second moment of the area I_y for the rectangular cross-section is defined as $I_y = \frac{1}{12}wh^3$, the torsional constant J is defined as $J = 0.229hw^3$ because of the particular h/w ratio according to [1] and the cross-section area is equal to A = wh. The total deflection of the curved beam u_z is then equal to

$$u_z = \frac{3\pi Fr^3}{Ewh^3} + \frac{1.555Fr^3}{Ghw^3} + \frac{3\pi Fr}{5Ghw} \approx 38.960 \text{ mm.}$$
(86 - 8)

RFEM 5 Settings

- Modeled in RFEM 5.12.02
- Element size is *I*_{FE} = 0.010 m
- The number of increments is 10
- Isotropic linear elastic material is used
- Mindlin plate bending theory is used

Verification Example: 0086 – Curved Beam with Out-of-Plane Loading

Results

Structure File	Entity	Orientation	
0086.01	Member	-	
0086.02	Plate	Horizontal	
0086.03	Plate	Vertical	
0086.04	Solid	-	

Entity	Theory	RFEM 5	
	<i>u_z</i> [mm]	<i>u_z</i> [mm]	Ratio [-]
Member		38.974	1.000
Plate, horizontal	28.060	38.642	0.992
Plate, vertical	30.900	38.117	0.978
Solid		38.398	0.986

References

[1] https://www.colorado.edu/engineering/CAS/courses.d/Structures.d/, *Introduction to aerospace structures*