Program: RFEM 5, RF-DYNAM Pro

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Dynamics, Member

Verification Example: 0100 – Single Mass System Oscillation

0100 – Single Mass System Oscillation

Description

A single mass system is subjected to the loading force *F* according to the **Figure 1**. The problem is described by the following parameters.

System Properties	Spring	Stiffness	k	200.000	N/m
		Length	L	1000.000	m
		Damping Parameter	Ь	0.500	Ns/m
	Mass	Weight	т	0.500	kg
Load		Force	F	200.000	N

Determine the deflection u_y for two values of the damping parameter¹ (b = 0.000 Ns/m and b = 0.500 Ns/m) in test time $t_1 = \frac{\pi}{20}$ s and $t_2 = \frac{3\pi}{20}$ s.

Figure 1: Problem sketch

Analytical Solution

A single mass system is described by the second order differential equation.

$$m\frac{d^{2}u_{y}(t)}{dt^{2}} + b\frac{du_{y}(t)}{dt} + ku_{y}(t) = F$$
(100 - 1)

The homogeneous solution of the differential equation is found using the characteristic equation.

$$m\lambda^2 + b\lambda + k = 0 \tag{100-2}$$

The roots of this equation yield

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4mk}}{2m}$$
(100 - 3)

¹ Damping matrix is defined in RF-DYNAM by means of Rayleigh damping $\boldsymbol{B} = \alpha \boldsymbol{M} + \beta \boldsymbol{K}$, where α and β are damping coefficients.

Verification Example - 0100 © Dlubal Software 2017

Verification Example: 0100 – Single Mass System Oscillation

The homogeneous solution can be then determined.

$$u_{yH}(t) = C_1 e^{-\frac{(b+\sqrt{b^2-4mk})t}{2m}} + C_2 e^{\frac{(-b+\sqrt{b^2-4mk})t}{2m}}$$
(100-4)

Together with the particular solution the complete solution can be written.

$$u_{y}(t) = C_{1}e^{-\frac{(b+\sqrt{b^{2}-4mk})t}{2m}} + C_{2}e^{\frac{(-b+\sqrt{b^{2}-4mk})t}{2m}} + \frac{F}{k}$$
(100-5)

Where C_1 and C_2 are constants which can be determined when the following initial conditions are added.

$$u_{\nu}(0) = 0 \tag{100-6}$$

$$\frac{du_{y}(0)}{dt} = 0$$
 (100 - 7)

The final solution then results as follows.

$$u_{y}(t) = -\frac{e^{-\frac{(b+\sqrt{b^{2}-4mk})t}{2m}(b^{2}-4km-b\sqrt{b^{2}-4km})F}}{2k(b^{2}-4km)} - \frac{e^{\frac{(-b+\sqrt{b^{2}-4mk})t}{2m}(b^{2}-4km+b\sqrt{b^{2}-4km})F}}{2k(b^{2}-4km)} + \frac{F}{k} \quad (100-8)$$

The result deflection is calculated in following test time.

$$t_1 = \frac{\pi}{20} = 0.157 \text{ s} \tag{100-9}$$

$$t_2 = \frac{3\pi}{20} = 0.471 \, \mathrm{s} \tag{100-10}$$

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.08.02
- The global element size is $I_{\rm FE} = 0.500$ m
- Spring member entity (Figure 2) is used

Verification Example: 0100 – Single Mass System Oscillation

Results

Structure Files	Program	Damping Parameter	Damping Coefficients in RF-DYNAM
0100.01	RF-DYNAM Pro	b= 0.000 Ns/m	lpha= 0.000, $eta=$ 0.000
0100.02	RF-DYNAM Pro	b= 0.500 Ns/m	lpha= 1.000, $eta=$ 0.000

Damping Parameter	Analytical Solution	RF-DYNAM Solution	
<i>b</i> = 0.000 Ns/m	и _у [m]	и _у [m]	Ratio [-]
Test Time $t_1 = 0.157$ s	2 000	2.000	1.000
Test Time $t_2 = 0.471$ s	2.000	2.000	1.000

Damping Parameter	Analytical Solution	RF-DYNAM Solution	
<i>b</i> = 0.500 Ns/m	и _у [m]	и _у [m]	Ratio [-]
Test Time $t_1 = 0.157$ s	1.924	1.924	1.000
Test Time $t_2 = 0.471$ s	1.790	1.790	1.000

