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0104 – Cantilever Beam (SDOF) with Periodic Excitation

Description

A cantilever I-beam of length L, height ℎ, and width b with a nodal mass m on its free end is
considered, the self-weight is neglected. This single-degree-of-freedom system (SDOF) is excited
by a periodic oscillation F(t) = F0 sin(𝛺t) with an angular frequency 𝛺 at its free end. The
deflection uz(t) of the beam is determined.

Material Isotropic
Linear Elastic

Modulus of
Elasticity

E 210.000 GPa

Shear
Modulus

G 81.000 GPa

Structure Cantilever
Beam

Length L 1.000 m

Load F0 1.000 kN

Cross Section
IPE 80

Depth d 0.080 m

Width b 0.046 m

Web
Thickness

tw 0.004 m

Flange
Thickness

tf 0.005 m

Radius r 0.005 mm

Moment of
Inertia

Iy 8.014×10−7 m4

SDOF System Nodal Mass m 100.000 kg

Damping Lehr's
Damping

D 0.010 −

Periodic
Excitation

Frequency 𝛺 10.000 rad/s

Amplitude F0 1.000 kN

Initial
Conditions

Displacement u0 0.000 m

Velocity v0 0.000 m/s
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Figure 1: Problem sketch
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Analytical Solution

The following terms and relations are based on the work of J. W. Tedesco [1].

The stiffness k of the cantilever beam is equal to

k =
3EIy
L3

≈ 504.882 kN/m (104 – 1)

from where the circular frequency of the undamped SDOF system is then calculated as

𝜔 = √ k
m

≈ 71.055 rad/s (104 – 2)

which corresponds to the natural frequency

f =
𝜔
2𝜋

≈ 11.309 Hz (104 – 3)

SDOF System without Damping

The motion of a freely vibrating SDOF system is described by the homogeneous second-order
ordinary differential equation

m üℎ + k uℎ = 0 (104 – 4)

the general solution of which is

uℎ(t) = A sin(𝜔t) + B cos(𝜔t) (104 – 5)

where the constants A and B are determined from the initial conditions.

The equation ofmotion for an SDOF systemunder forced vibration, excited by a harmonic function
with frequency 𝛺 , is given by

m üp + k up = F0 sin(𝛺t) (104 – 6)

The resulting particular solution for this differential equation is

up(t) =
F0/k

1 − (𝛺/𝜔)2
sin(𝛺t) =

ust
1 − 𝜂2 sin(𝛺t) (104 – 7)

where ust = F0/k is the equivalent static deflection that would result from a force F0,

ust =
F0
k

≈ 1.981 mm (104 – 8)
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and 𝜂 = 𝛺/𝜔 is the so-called frequency ratio,

𝜂 =
𝛺
𝜔

≈ 0.141 (104 – 9)

Recall that the dynamic response factor Rd, which is the ratio between the static and dynamic
displacement, is for the undamped SDOF system defined as

Rd =
1

1 − 𝜂2 (104 – 10)

The complete solution of this SDOF system is the sum of the homogeneous and particular solution,
in particular, the solution for displacement u(t), velocity u̇(t) and acceleration ü(t) is given by

u(t) = A sin(𝜔t) + B cos(𝜔t) +
ust

1 − 𝜂2 sin(𝛺t) (104 – 11)

u̇(t) = A𝜔 cos(𝜔t) − B𝜔 sin(𝜔t) +
ust

1 − 𝜂2 𝛺 cos(𝛺t) (104 – 12)

ü(t) = − (A𝜔2 sin(𝜔t) + B𝜔2 cos(𝜔t) +
ust

1 − 𝜂2 𝛺2 sin(𝛺t)) (104 – 13)

The constants A and B from the homogeneous part of the solution are determined from the initial
conditions u(0) = u0 and u̇(0) = v0, namely

A = −
𝜂 ust
1 − 𝜂2 (104 – 14)

B = 0 (104 – 15)

Inserting A and B into (104 – 11)—(104 – 13), the final solution for this SDOF system reads as

u(t) =
ust

1 − 𝜂2 [sin(𝛺t) − 𝜂 sin(𝜔t)] (104 – 16)

u̇(t) =
𝛺 ust
1 − 𝜂2 [cos(𝛺t) − cos(𝜔t)] (104 – 17)

ü(t) =
𝛺 ust
1 − 𝜂2 [𝜔 sin(𝜔t) − 𝛺 sin(𝛺t)] (104 – 18)

SDOF System with Viscous Damping

The equation of motion for a freely vibrating damped SDOF system is given by

m üℎ + c u̇ℎ + k uℎ = 0 (104 – 19)

where c is the viscous-damping coefficient. The relation between Lehr's damping D and the
viscous damping coefficient c reads as
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D =
c
Cc

=
c

2m𝜔
(104 – 20)

where Cc = 2m𝜔 is the so-called critical-damping constant. The presented SDOF system exhibits
subcritical damping, as D < 1. Then, the solution to (104 – 19) is given by

uℎ(t) = e−Du�t [A sin(𝜔dt) + B cos(𝜔dt)] (104 – 21)

where 𝜔d is the damped circular frequency,

𝜔d = √1 − D2 𝜔 ≈ 71.051 rad (104 – 22)

The specific values of the constants A and B follow again from the initial conditions.

The equation of motion damped SDOF system under forced vibration, excited by a harmonic
function with frequency 𝛺 , is given by

m üp + c u̇p + k up = F0 sin(𝛺t) (104 – 23)

A particular solution of this differential equation is

up(t) = Rd ust sin(𝛺t − 𝛹) (104 – 24)

where ust is the equivalent static deflection (104 – 8), and 𝜂 the frequency ratio (104 – 9). The
dynamic response factor Rd is given by

Rd =
1

√(1 − 𝜂2)2 + (2D𝜂)2
(104 – 25)

which represents the ratio between static and dynamic amplitude, for further details see [2]. Note
that for D = 0 the equation is identical to (104 – 10). The phase angle 𝛹 represents the lag of the
response behind the periodic excitation,

𝛹 = tan−1 (
2D𝜂

1 − 𝜂2 ) ≈ 2.871 × 10−3 rad (104 – 26)

The complete solution of this SDOF system is the sum of the homogeneous and particular solution,
namely
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u(t) = e−Du�t[A sin(𝜔dt) + B cos(𝜔dt)] + Rd ust sin(𝛺t − 𝛹) (104 – 27)

u̇(t) = e−Du�t[ − [AD𝜔 + B 𝜔d] sin(𝜔d t) + [A𝜔d − BD𝜔] cos(𝜔d t)] +

Rd ust𝛺 cos(𝛺t − 𝛹) (104 – 28)

ü(t) = e−Du�t[[ − A(D2 𝜔2 + 𝜔 2
d ) + 2 BD𝜔 𝜔d] sin(𝜔d t) − [2AD𝜔 𝜔d −

B(D2 𝜔2 + 𝜔 2
d )] cos(𝜔d t)] − Rd ust𝛺2 sin(𝛺t − 𝛹) (104 – 29)

where

A = − Rd
ust
𝜔d

[D 𝜔 sin(−𝛹) + 𝛺 cos(−𝛹)] (104 – 30)

B = − Rd ust sin(−𝛹) (104 – 31)

are—again—determined from the initial conditions u(0) = u0 and u̇(0) = v0.

RFEM 5 and RSTAB 8 Settings

• Modeled in version RFEM 5.05.0019 and RSTAB 8.04.0019
• The member is not divided into finite elements (RFEM) nor internal nodes (RSTAB)
• Linear dynamic analysis is considered, modal analysis and direct integration (Newmark
method) are used

• The time increment is 𝛥t = 1 × 10−3 s for the implicit Newmark method
• Isotropic linear elastic material model is used
• Shear stiffness of members is deactivated

Analytical solutions are compared with the results of direct integration andmodal analysis in both
RFEM and RSTAB. The displacements and the accelerations at time steps where the maximum
displacements at the free end of the cantilever beam occur are compared. The time step 𝛥t =
1 × 10−3 s for the implicit Newmark method has been chosen with recommendations given in [3],

𝛥t =
1

20 f
= 4.420 × 10−3 s (104 – 32)

Results

In RSTAB DYNAM Pro and RFEM RF-DYNAM Pro, both direct integration and modal analysis are
available. The values of the displacement uz and the acceleration üz are compared with the
analytical solution, separate for the undamped and the SDOF systemwith viscous damping, in the
tables below.



Verification Example: 0104 – Cantilever Beam (SDOF) with Periodic Excitation

Verification Example - 0104 © Dlubal Software 2018

0104 – 6

Results of the SDOF System without Damping

Structure File Program Analysis Method Dynamic Load Case

0104.01 RFEM 5 – RF-DYNAM Pro Modal Analysis DLC1

0104.01 RFEM 5 – RF-DYNAM Pro Direct Integration DLC2

0104.02 RSTAB 8 – DYNAM Pro Modal Analysis DLC1

0104.02 RSTAB 8 – DYNAM Pro Direct Integration DLC2

As seen from the following comparisons, excellent agreements of the analytical and numerical
solutions were achieved.

Time Analytical Solution RFEM 5 - Modal Analysis 𝛥t = 1 × 10−3 s

t
[s]

uz
[mm]

üz
[m/s2]

uz
[mm]

Ratio
[−]

üz
[m/s2]

Ratio
[−]

0.155 2.305 −1.638 2.305 1.000 −1.638 1.000

0.775 2.293 −1.631 2.294 1.000 −1.634 0.998

1.395 2.266 −1.616 2.268 0.999 −1.625 0.994

2.015 2.224 −1.592 2.228 0.998 −1.610 0.989

Time Analytical Solution RFEM 5 - Direct Integration 𝛥t = 1 × 10−3 s

t
[s]

uz
[mm]

üz
[m/s2]

uz
[mm]

Ratio
[−]

üz
[m/s2]

Ratio
[−]

0.155 2.305 −1.638 2.305 1.000 −1.638 1.000

0.775 2.293 −1.631 2.294 1.000 −1.634 0.998

1.395 2.266 −1.616 2.268 0.999 −1.625 0.994

2.015 2.224 −1.592 2.228 0.998 −1.610 0.989

In RSTAB, the modal analysis provides the exact analytical solution, and also the direct integration
provides very good results.

Time Analytical Solution RSTAB 8 - Modal Analysis 𝛥t = 1 × 10−3 s

t
[s]

uZ
[mm]

üZ
[m/s2]

uz
[mm]

Ratio
[−]

üZ
[m/s2]

Ratio
[−]

0.155 2.305 −1.638 2.305 1.000 −1.638 1.000

0.775 2.293 −1.631 2.293 1.000 −1.631 1.000

1.395 2.266 −1.616 2.266 1.000 −1.616 1.000

2.015 2.224 −1.592 2.224 1.000 −1.592 1.000



Verification Example: 0104 – Cantilever Beam (SDOF) with Periodic Excitation

Verification Example - 0104 © Dlubal Software 2018

0104 – 7

Time Analytical Solution RSTAB 8 - Direct Integration 𝛥t = 1 × 10−3 s

t
[s]

uZ
[mm]

üZ
[m/s2]

uz
[mm]

Ratio
[−]

üZ
[m/s2]

Ratio
[−]

0.155 2.305 −1.638 2.305 1.000 −1.638 1.000

0.775 2.293 −1.631 2.294 1.000 −1.634 0.998

1.395 2.266 −1.616 2.268 0.999 −1.624 0.995

2.015 2.224 −1.592 2.227 0.999 −1.609 0.989

All results, achieved in RFEM and RSTAB are compared graphically with the analytical solution, the
difference can be hardly seen.

Figure 2: Displacement uZ versus time t, the analytical solution comparedwith RFEM and RSTAB.
The differences can be hardly seen, the curves are on top of each other.

Figure 3: Acceleration üZ versus time t, the analytical solution compared with RFEM and RSTAB.
The differences can be hardly seen, the curves are on top of each other.
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Results of the Damped SDOF System

Structure File Program Analysis Method Dynamic Load Case

0104.03 RFEM 5 Modal Analysis DLC1

0104.04 RSTAB 8 Modal Analysis DLC1

As can be seen from the following comparisons, good agreements of analytical solutions with
numerical outputs were achieved in RFEM. In case of a damped system, a smaller time step would
increase the accuracy further.

Time Analytical Solution RFEM 5 - Modal Analysis 𝛥t = 1 × 10−3 s

t
[s]

uZ
[mm]

üZ
[m/s2]

uz
[mm]

Ratio
[−]

üZ
[m/s2]

Ratio
[−]

0.155 2.275 −1.487 2.275 1.000 −1.488 0.999

0.776 2.174 −1.013 2.174 1.000 −1.022 0.992

1.399 2.094 −0.671 2.096 0.999 −0.691 0.971

2.024 2.032 −0.409 2.035 0.999 −0.437 0.936

In RSTAB, the modal analysis provides the exact analytical solution, and also the direct integration
provides good results. To increase the accuracy even further a smaller time stepwould be required.

Time Analytical Solution RSTAB 8 - Modal Analysis 𝛥t = 1 × 10−3 s

t
[s]

uZ
[mm]

üZ
[m/s2]

uz
[mm]

Ratio
[−]

üZ
[m/s2]

Ratio
[−]

0.155 2.275 −1.487 2.275 1.000 −1.488 0.999

0.776 2.174 −1.013 2.174 1.000 −1.018 0.995

1.399 2.094 −0.671 2.094 1.000 −0.681 0.985

2.024 2.032 −0.409 2.032 1.000 −0.420 0.974

All results, achieved in RFEM and RSTAB are compared graphically with the analytical solution, the
difference can be hardly seen.
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Figure 4: Displacement uZ versus time t, the analytical solution comparedwith RFEM and RSTAB.
The differences can be hardly seen, the curves are on top of each other.

Figure 5: Acceleration üZ versus time t, the analytical solution compared with RFEM and RSTAB.
The differences can be hardly seen, the curves are on top of each other.
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