Program: RFEM 5, RSTAB 8

Category: Geometrically Linear Analysis, Second-Order Analysis, Isotropic Linear Elasticity, Member

Verification Example: 0209 – Eccentric Axial Force

0209 – Eccentric Axial Force

Description

A console made of round bar of diameter *d* is loaded by means of eccentric axial force F_x according to **Figure 1**. Determine the maximal vertical deflection of the console $u_{z,max}$ using geometrically linear and second-order analysis. The problem is described by the following set of parameters.

Material	Steel	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.300	_
Geometry		Length	L	1.000	m
		Diameter	d	20.000	mm
		Eccentricity	e _z	0.250	m
Load		Axial Force	F _x	1.000	kN

Analytical Solution

Geometrically Linear Analysis

Considering geometrically linear analysis, the console is loaded by means of constant bending moment

$$M_{\rm v} = F_{\rm x} e_{\rm z}.\tag{209-1}$$

The deflection of the console tip is in this case defined by the following simple formula

$$u_{z,\max} = \frac{F_x e_z L^2}{2El_y} \approx 75.788 \text{ mm},$$
 (209 - 2)

where I_{y} is the moment of inertia of the circular cross-section.

Verification Example: 0209 – Eccentric Axial Force

Second-Order Analysis

In case of second-order analysis, the deflection of the console has to be taken into account. Thus, the bending moment has the following form

$$M_y = F_x \left(u_{z,\max} - u_z(x) - e_z \right),$$
 (209 - 3)

where $u_{z,\max} = u_z(L)$. The deflection $u_z(x)$ can be determined by means of the Euler-Bernoulli differential equation

$$\frac{d^2 u_z(x)}{dx^2} = -\frac{M_y(x)}{El_v}.$$
 (209 - 4)

Considering the bending moment from (209 – 3) and substituting

$$\alpha = \sqrt{\frac{F_x}{EI_y}},\tag{209-5}$$

(209 - 4) can be written as

$$\frac{d^2 u_z(x)}{dx^2} - \alpha^2 u_z(x) = \alpha^2 (e_z - u_{z,max}).$$
 (209 - 6)

This equation is completed by the boundary conditions for the fixed end of the console

$$u_z(0) = 0,$$
 (209 - 7)

$$\frac{du_z(0)}{dx} = 0.$$
 (209 - 8)

The general solution of (209 - 6) is then

$$u_z(x) = (e_z - u_{z,\max}) \left(\frac{e^{\alpha x} + e^{-\alpha x}}{2} + 1 \right).$$
 (209 - 9)

Hence, the deflection of the tip (at x = L) reads as

$$u_{z,\max} = \frac{e_z \left(e^{\alpha x} + e^{-\alpha x} - 2\right)}{e^{\alpha x} + e^{-\alpha x}} \approx 60.431 \text{ mm.}$$
 (209 - 10)

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.19.01 and RSTAB 8.19.01
- The element size is $I_{\rm FE} = 0.010$ m
- Isotropic linear elastic material model is used

Verification Example: 0209 – Eccentric Axial Force

Results

Structure Files	Program	Analysis	Details
0209.01	RFEM 5	Geometrically Linear	Eccentric Member Load
0209.02	RSTAB 8	Geometrically Linear	Rigid Member
0209.03	RFEM 5	Second-Order	Eccentric Member Load
0209.04	RSTAB 8	Second-Order	Rigid Member

Geometrically Linear Analysis

Model	Analytical Solution	RFEM 5 / RSTAB 8		
	u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]	
RFEM 5, Eccentric Member Load	75.788	75.788	1.000	
RSTAB 8, Rigid Mem- ber		75.788	1.000	

Second-Order Analysis

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]
RFEM 5, Eccentric Member Load	60.431	60.406	1.000
RSTAB 8, Rigid Mem- ber	00.431	60.431	1.000