University of Surrey Faculty of Engineering and Physical Sciences Civil & Environmental Engineering

Suspen-domes: design and assessment of

progressive collapse

Adam Nagy

A dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Structural Engineering

September 2019

©Adam Nagy 2019

Declaration of originality

I confirm that the dissertation entitled 'SUSPEN-DOMES: DESIGN AND ASSESSMENT OF PROGRESSIVE COLLAPSE' for the partial fulfilment of the degree of MSc in STRUCTURAL ENGINEERING has been composed by myself and has not been presented or accepted in any previous application for a degree. The work, of which this is a record, has been carried out by myself unless otherwise stated and where the work is mine, it reflects personal views and values. All quotations have been distinggueshed by quotation marks and all sources of information have been acknowledged by means of references including those of the internet.

Adam Nagy 15th September 2019.

Acknowledgements

Hereby I express my gratitude to those professionals, who supported and contributed to complete this dissertation work.

First and foremost, to my supervisor Professor Gerry Parke, who provided invaluable advice and supported my ideas with a very positive and devoted spirit, it has been a great privilege to work under his supervision.

I would like to give special thanks to my colleagues at Novum Structures UK Ltd. for sharing their professional opinion and their specialist expertise with me.

Also, I would like to express my gratitude to all Lectures and the whole Academic Staff for their teaching work and their contribution to my professional development.

Finally, I would like to thank my family and my friends for the support and encouragement, which helped me to complete my studies.

Adam Nagy 15th September 2019.

Abstract

In the last, nearly three decades suspen-domes have become popular solutions for covering sports halls, stadiums and venue halls particularly in China and Japan. While suspen-domes can be easily constructed and maintained, their application extends the span limits for grid dome systems. Unlike for cable domes, special construction methods are not required, still a more cost-efficient, stiffer and more robust structure is created for mid- and large-spans. This hybrid spatial structure is composed from an upper single layer dome, and a lower, concentric tensegritic system.

This project focuses on the design and collapse resistance of suspen-domes, in the first part of the work a literature review is presented as the preparation to the actual case study of preliminary design and progressive collapse analysis of the dome.

The review discusses the typical design features, the behaviour and the applicable acceptance criteria of suspen-domes. Also the aspects of progressive collapse are presented in general and specifically for suspen-domes.

A preliminary design study is carried out for a forty-meter spanning trimmed lamella suspen-dome. It has been proven that global stability is a governing design aspect, the outermost-ring stiffened suspen-dome can fail even with moderate stress utilisation ratio and deflections, if the nonlinear stability with imperfect geometry is not assessed.

The progressive collapse analyses of the work were carried out according to the strategy of limiting the extent of localised failure. In case of most space structures, including suspen-domes, the alternative load path method with notional member removal is the most viable approach. The first, beam only model (Han et al., 2015) was found efficient for locating those member configurations of notional removal, that are mostly likely causing progressive collapse. In the other hand, a combined beam & shell model was found as safer and more reliable for predicting the stability and integrity of the remainder structure. The results of the two analyses are compared and discussed. Flowcharts of the used methodologies are presented.

Table of Contents

List of Figures and Tables				
I.	Introduction	1		
1.1	Introduction	1		
1.11	Objectives of dissertation work	2		
н	Literature Review	3		
	Novel space structures from the second half of the 20 th century	ς		
11.11	Suspen-domes	ع ع		
11.111	Geometries and materials used for suspen-domes			
II.IV	Behaviour of suspen-domes – internal forces			
II.V	Practical design procedures of suspen-domes			
II.VI	Prestress in suspen-domes			
II.VII	Stability of suspen-domes			
II.VIII	Impact studies on basic design parameters of suspen-domes			
II.IX	Progressive and disproportionate collapse	49		
II.IX.I	Introduction to the progressive collapse of space structures			
II.IX.II	Techniques of assessing stability and integrity	51		
II.IX.III	Types and classification of progressive collapse	56		
II.IX.IV	Design to prevent progressive collapse	59		
II.IX.V	Collapse design and assessment methods of the Eurocode	65		
II.IX.VI	Applicable procedures of analyses	67		
II.IX.VII	Applicable levels of modelling, finite element types	69		
II.X	Progressive collapse studies of single layer and suspen-domes	69		
II.X.I	Member removal analyses in beam model	69		
II.X.II	Hoop cable rupture scenario	71		
	Casa Study: Dasign & prograssiva callansa analysis	76		
III.	Case Study: Design & progressive collapse analysis	76		
III. III.I	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome	76 76		
III. III.1 III.1.1	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology	76 76 		
III. III.1 III.1.1 III.1.11	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure	76 76 76 		
III. III.1 III.1.1 III.1.11 III.1.111 III.1.111	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure	76 76 76 78 81		
III. III.1 III.1.1 III.1.1 III.1.11 III.1.1V III.1.1V	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding	76 76 76 78 81 		
III. III.1 III.1.1 III.1.11 III.1.11 III.1.1V III.1.V III.1.V	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry			
III. III.1 III.1.1 III.1.11 III.1.11 III.1.1V III.1.V III.1.V III.1.V1 III.1.V1	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry			
III. III.1 III.1.II III.1.II III.1.IV III.1.V III.1.V III.1.VI III.1.VII III.1.VII	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design			
III. III.1 III.1.1 III.1.11 III.1.11 III.1.1V III.1.V III.1.V1 III.1.VII III.1.VIII III.1.VIII	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual poplinear imperfection analyses			
III. III.1 III.1.1 III.1.11 III.1.11 III.1.1V III.1.V III.1.V11 III.1.V11 III.1.V11 III.1.X III.1.X	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis			
III. III.1 III.1.1 III.1.11 III.1.11 III.1.1V III.1.V III.1.V1 III.1.V11 III.1.V11 III.1.X III.1.X III.1.X III.1.X	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis			
III. III.1 III.1.1 III.1.11 III.1.11 III.1.1V III.1.V III.1.V1 III.1.V11 III.1.V11 III.1.X III.1.X III.1.X III.1.X III.1.1	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis Assessment of progressive collapse resistance			
III. III.1 III.1.II III.1.II III.1.IV III.1.V III.1.V III.1.VII III.1.VII III.1.X III.1.X III.1.X III.1.1 III.1.1 III.1.1	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis Assessment of progressive collapse resistance Introduction and methodology Progressive collapse analyses – element removal in beam model			
III. III.1 III.1.1 III.1.11 III.1.11 III.1.1V III.1.V III.1.V1 III.1.V11 III.1.V11 III.1.X III.1.X III.1.X III.1.X III.1.1 III.1.11 III.1.11 III.1.11	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis Assessment of progressive collapse resistance Introduction and methodology Progressive collapse analyses – element removal in beam model Sensitivity analyses			
III. III.1 III.1.1 III.1.1 III.1.1 III.1.1V III.1.V III.1.V III.1.VI III.1.VII III.1.X III.1.X III.1.X III.1.X III.1.1 III.1.1 III.1.1 III.1.1 III.1.1 III.1.1	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis Assessment of progressive collapse resistance Introduction and methodology Progressive collapse analyses – element removal in beam model Sensitivity analyses Member deactivation analyses considering geometric nonlinearing			
III. III.1 III.1.1 III.1.11 III.1.11 III.1.1V III.1.V III.1.V III.1.V1 III.1.V11 III.1.X III.1.X III.1.X III.1.X III.1.1 III.1.1.1 III.1.1.1 III.1.1.1 III.1.1.11 III.1.1.11	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis Assessment of progressive collapse resistance Introduction and methodology Progressive collapse analyses – element removal in beam model Sensitivity analyses Member deactivation analyses considering geometric nonlinearity			
III. III.1 III.1.1 III.1.1 III.1.1 III.1.1 III.1.1 III.1.1 III.1.V III.1.V III.1.V III.1.V III.1.V III.1.VI III.1.VII III.1.VII III.1.VII III.1.VII III.1.VII III.1.X III.1.1 III.1.1 III.1.1.1 III.1.1.1 III.1.1.1 III.1.1.1 III.1.1.1 III.1.1.1 III.1.1.1	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis Assessment of progressive collapse resistance Introduction and methodology Progressive collapse analyses – element removal in beam model Sensitivity analyses Member deactivation analyses considering geometric nonlinearity Progressive collapse analyses – single element removal in combined			
III. III.1 III.1.I III.1.II III.1.II III.1.II III.1.V III.1.V III.1.V III.1.VI III.1.VII III.1.VII III.1.VII III.1.VII III.1.VII III.1.VIII III.1.X III.1.X III.1.II III.1.II III.1.III III.1.III III.1.III III.1.IIII III.1.III III.1.III	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis Assessment of progressive collapse resistance Introduction and methodology Progressive collapse analyses – element removal in beam model Sensitivity analyses Member deactivation analyses considering geometric nonlinearit Member deactivation analyses considering dual nonlinearity Progressive collapse analyses – single element removal in combined Analysis considering imperfections & geometric nonlinearity			
III. III.I III.I.I III.I.I III.I.I III.I.I III.I.II III.I.V III.I.V III.I.V III.I.VII III.I.VII III.I.VII III.I.VII III.I.VII III.I.VIII III.I.VIII III.I.VIII III.I.I.II III.II.II III.II.III III.II.IIII III.II.IIIII III.II.IIII III.II.IIII III.II.IIIII III.II.IIIII III.II.IIIII III.II.IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis Assessment of progressive collapse resistance Introduction and methodology Progressive collapse analyses – element removal in beam model Sensitivity analyses Member deactivation analyses considering geometric nonlinearit Member deactivation analyses considering dual nonlinearity Progressive collapse analyses – single element removal in combined Analysis considering imperfections & geometric nonlinearity			
III. III.I. III.I.I. III.I.I.I.I.I. III.I.V III.I.V III.I.V III.I.V III.I.V III.I.V III.I.V III.I.V III.I.V III.I.VII III.I.VII III.I.VII III.I.VII III.I.I.I.I.I.III III.II.III III.II.IIII III.II.IIII III.II.IIIII III.II.IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis Assessment of progressive collapse resistance Introduction and methodology Progressive collapse analyses – element removal in beam model Sensitivity analyses Member deactivation analyses considering geometric nonlinearity Progressive collapse analyses – single element removal in combined Analysis considering imperfections & geometric nonlinearity			
III. III.1 III.1 III.1 III.1 III.1 III.1 III.1 III.1 III.1.V III.1.V III.1.V III.1.V III.1.V III.1.VII III.1.VII III.1.VII III.1.VII III.1.X III.1.X III.1.1 III.1.1 <td>Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis Assessment of progressive collapse resistance Introduction and methodology Progressive collapse analyses – element removal in beam model Sensitivity analyses Member deactivation analyses considering geometric nonlinearity Progressive collapse analyses – single element removal in combined Analysis considering imperfections & geometric nonlinearity Analysis considering imperfections & dual nonlinearity</td> <td></td>	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis Assessment of progressive collapse resistance Introduction and methodology Progressive collapse analyses – element removal in beam model Sensitivity analyses Member deactivation analyses considering geometric nonlinearity Progressive collapse analyses – single element removal in combined Analysis considering imperfections & geometric nonlinearity Analysis considering imperfections & dual nonlinearity			
III. III.1 III.1 III.1 III.1.II III.1.II III.1.II III.1.V III.1.V III.1.VI III.1.VII III.1.VII III.1.VIII III.1.VIII III.1.VIII III.1.VIII III.1.VIII III.1.III III.II.III III.II.IIII III.II.IIII III.II.IIII III.II.IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome Introduction and methodology Initial design considerations and geometry of suspen-dome Preliminary design procedure Loadings Prestress force finding Structural analysis of perfect geometry Structural analysis of the imperfect geometry Revised design Geometric and dual nonlinear imperfection analyses Natural frequency analysis Assessment of progressive collapse resistance Introduction and methodology Progressive collapse analyses – element removal in beam model Sensitivity analyses Member deactivation analyses considering geometric nonlinearity Progressive collapse analyses – single element removal in combined Analysis considering imperfections & geometric nonlinearity Analysis considering imperfections & dual nonlinearity			
III. III.1 III.1 <td>Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome</td> <td></td>	Case Study: Design & progressive collapse analysis Preliminary design of a suspen-dome			

IV.II.II	Results of progressive collapse analyses – combined model	139
v .	Discussion of results	140
VI.	Conclusions and provisions for further work	144
VII.	References	147
	Appendices	•••••
A1.	Annex A1 : Preliminary design of suspen-dome: Calculation annex	
A2.	Annex A2 : Progressive collapse analyses: Calculation annex	

List of Figures and Tables

Figure 1 - Construction of the Municipal Auditorium (pg. 81, Otto et al (2), 1967)	5
Figure 2 - Needle Tower, Hirshhorn Museum, K. Snelson, 1968	6
Figure 3 - Spodek, the first version of tensegrity dome built (Structurae.de)	7
Figure 4 –Under construction focus on the tension ring (Structurae.de)	7
Figure 5 - Components of suspen-domes (pg.524, Kawaguchi et al.,1993)	8
Figure 6 - Advantages of suspen-domes (pg.524, Kawaguchi et al.,1993)	9
Figure 7 - Geometric configuration types of circular suspen-domes (Olifin et al., 2017)	10
Table 8 – Summary of suspend-domes built	11
Figure 9 – Jinan Lotus Arena	12
Figure 10 – Jinan Lotus Arena, interior	12
Figure 11 - Structural system of the BUT Gymnasium (pg.66, Nooshin, 2015b).	12
Figure 12 – Suspen-dome test design (Kawaguchi et al., 1993, p.181)	13
Figure 13 – Axial forces in rings (Kawaguchi et al., 1999, p. 181)	14
Figure 14 - Axial forces in radial members (Kawaguchi et al.,1999, p.181)	14
Figure 15 – Analogy of prestressing a simple beam (Kitipornchai et al., 2005, p. 767)	15
Figure 16 – Axial stress in upper layer dome ring members: suspen-dome vs. single layer dome (Kitipornchai et al., 2005,	16
p.//2]	10
rigure 17 – Displacement-to-span ratio for hodes in the upper layer dome ring members: suspen-dome vs. single layer do	16
(Nupportunal et al., 2005, p. 775)	7)16
rigure 16 – Axial forces on cricial direction unper layer dome members, fun and nai-span loduing (Rawaguch et al., 1993, p.32	17
Figure 19 – Axial forces in radial direction cables (Xavagueli et al., 1993, p.327)	17
Figure 20 - Andri forces in radial direction cables (Nawaguchi et al. 1995), 520)	17
rigure 21 – Test dome parameters (Kawaguchi et al., 1999), 1921 (man-dome /laft) & single laver dome /right) (Kawaguch	17 i ot
and a start a start and a start and a start and a start a start and a start a sta	18
an, 1999, p.109,	10
	18
Energy 24 - Analysis and test results of axial force distribution of outermost radial members due to half span loading	10
Kawaguchi et al. 1999)	. 19
Figure 25 - Zero and initial states of suspen-domes (Zhang et al., 2008, p.324.)	19
Figure 26 - Load-displacement curves of analyses (Li et al., 2012, p.1109)	22
Figure 27 - Typical design flowchart of suspen-domes.	23
Table 28 - Prestress plans of examination (Feng et al., 2012, p.1110)	26
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 20)	12,
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 20: p.1110)	12, 27
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202 p.1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058)	12, 27 27
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p. 1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p. 1060)	12, 27 27 28
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p.1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059)	12, 27 27 28 28
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p.1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio	12, 27 27 28 28 s
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p.1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p.784).	12, 27 27 28 28 s 31
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p.1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p.784). Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p.1686)	12, 27 27 28 28 s 31 34
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p.1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p.784). Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p.1686) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p.1689)	12, 27 27 28 28 s 31 34 35
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p.1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p.784). Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p.1686) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p.1689) Figure 36 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p.1693).	12, 27 27 28 28 s 31 31 34 35 35
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p.1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p.784). Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p.1686) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p.1689) Figure 36 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p.1693). Figure 37 - Strut heights assessed (Feng et al., 2012, p.1109 & 1110).	12, 27 27 28 28 s 31 34 35 35 36
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202) p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p.1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p.784) Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p.1686) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p.1689) Figure 36 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p.1693) Figure 37 - Strut heights assessed (Feng et al., 2012, p.1109 & 1110) Figure 38 - Load-displacement curves of the suspen-dome with the different strut plans (Feng et al., 2012, p.1111)	12, 27 27 28 28 s 31 34 35 35 36 36
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202) p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p. 1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p. 1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p. 1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p. 784) Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p.1686) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p.1689) Figure 36 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p.1693) Figure 37 - Strut heights assessed (Feng et al., 2012, p.1109 & 1110) Figure 38 - Load-displacement curves of the suspen-dome with the different strut plans (Feng et al., 2012, p.1111) Figure 39 - Load-displacement curves of the suspen-dome with different rise-to-span ratios (Feng et al., 2012, p.1111)	12, 27 27 28 28 s 31 34 35 35 36 36 37
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202) p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p. 1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p. 1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p. 1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p. 784) Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p.1686) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p.1689) Figure 36 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p.1693) Figure 37 - Strut heights assessed (Feng et al., 2012, p.1109 & 1110) Figure 38 - Load-displacement curves of the suspen-dome with the different strut plans (Feng et al., 2012, p.1111) Figure 39 - Load-displacement curves of the suspen-dome with different rise-to-span ratios (Feng et al., 2012, p.1111) Figure 40 - Upper layer dome member axial forces with different rise (Dai et al., 2013, p.1059)	12, 27 27 28 28 31 34 35 35 36 36 37 38
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202) p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p.1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p.784) Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p.1686) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p.1689) Figure 36 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p.1693) Figure 38 - Load-displacement curves of the suspen-dome with the different strut plans (Feng et al., 2012, p.1111) Figure 39 - Load-displacement curves of the suspen-dome with different rise-to-span ratios (Feng et al., 2012, p.1111) Figure 40 - Upper layer dome member axial forces with different rise (Dai et al., 2013, p.1059) Figure 41 - Upper layer dome nodal vertical deflections with different rise (Dai et al., 2013, p.1059)	12, 27 27 28 s 38 35 35 35 35 36 36 37 38 38
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202) p. 1110)	12, 27 28 28 28 s 31 34 35 35 36 36 38 38 38 38
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202) p. 1110)	12, 27 28 28 28 s 31 34 35 35 35 36 36 37 38 38 38 39
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202) p. 1110)	12, 27 28 28 s 31 34 35 35 36 36 38 38 38 39 39 40
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 201 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p. 1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p. 1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p. 1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p. 784). Figure 34 - The suspen-dome of the assessment (Kang et al., 2003, p. 1686) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003, p. 1689) Figure 36 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p. 1693). Figure 37 - Strut heights assessed (Feng et al., 2012, p. 1109 & 1110) Figure 39 - Load-displacement curves of the suspen-dome with different strut plans (Feng et al., 2012, p. 1111) Figure 39 - Load-displacement curves of the suspen-dome with different rise-to-span ratios (Feng et al., 2012, p. 1111) Figure 41 - Upper layer dome member axial forces with different rise (Dai et al., 2013, p. 1059) Figure 42 - Vertical displacement and axial forces of upper dome members of pinned and rigidly connected model (Dai et a 2013, p. 1058) Table 43 - GNA load factors of models - rigid and pinned connection, different h/L ratios (Chen & Li, 2005, p. 121) Table 44 – Linear eigenvalue buckling analysis, elastic critical load factor results of different configurations of parameters	12, 27 28 28 s 28 s 31 34 35 35 36 36 38 38 38 39 40
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 201 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p.1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p.784). Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p.1686) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p.1689) Figure 36 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p.1693). Figure 37 - Strut heights assessed (Feng et al., 2012, p.1109 & 1110) Figure 39 - Load-displacement curves of the suspen-dome with different rise-to-span ratios (Feng et al., 2012, p.1111) Figure 40 - Upper layer dome member axial forces with different rise (Dai et al., 2013, p.1059) Figure 41 - Upper layer dome member axial forces of upper dome members of pinned and rigidly connected model (Dai et al. 2013, p.1058) Table 43 - GNA load factors of models - rigid and pinned connection, different h/L ratios (Chen & Li, 2005, p.121) Table 44 - Linear eigenvalue buckling analysis, elastic critical load factor results of different configurations of parameters (Kitipornchai et al., 2005, p.775)	12, 27 27 28 38 34 35 36 36 37 38 al., 39 40 40
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 201 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p. 1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p. 1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p. 1059) Figure 33 – Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p. 784). Figure 35 – The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p. 1686). Figure 35 – The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p. 1686). Figure 35 – Strut heights assessed (Feng et al., 2012, p. 1109 & 1110). Figure 36 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p. 1693). Figure 37 - Strut heights assessed (Feng et al., 2012, p. 1109 & 1110). Figure 38 - Load-displacement curves of the suspen-dome with the different rise-to-span ratios (Feng et al., 2012, p. 1111) Figure 40 - Upper layer dome member axial forces with different rise (Dai et al., 2013, p. 1059) Figure 41 - Upper layer dome modal vertical deflections with different rise (Dai et al., 2013, p. 1059) Figure 42 - Vertical displacement and axial forces of upper dome members of pinned and rigidly connected model (Dai et al. 2013, p. 1058). Table 43 - GNA load factors of models - rigid and pinned connection, different h/L ratios (Chen & Li, 2005, p. 2121) Table 44 - Linear eigenvalue buckling analysis, elastic critical load factor results of different configurations of parameters (Kitipornchai et al., 2005, p. 775). Figure 45 - Suspen-dome of study (Kitipornchai et al., 2005, p. 775).	12, 27 27 28 38 34 35 36 36 37 38 al., 39 40 40 41
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 20) p.1110)	12, 27 27 28 28 28 31 34 35 35 36 36 37 38 38 38 39 40 41 42
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 201 p.1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p.1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059) Figure 33 - Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p.784). Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p.1686) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p.1689) Figure 36 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p.1693). Figure 37 - Strut heights assessed (Feng et al., 2012, p.1109 & 1110). Figure 39 - Load-displacement curves of the suspen-dome with different rise-to-span ratios (Feng et al., 2012, p.1111) Figure 40 - Upper layer dome member axial forces with different rise (Dai et al., 2013, p.1059). Figure 41 - Upper layer dome nodal vertical deflections with different rise (Dai et al., 2013, p.1059). Figure 42 - Vertical displacement and axial forces of upper dome members of pinned and rigidly connected model (Dai et al. 2013, p.1058). Table 43 - GNA load factors of models - rigid and pinned connection, different h/L ratios (Chen & Li, 2005, p.121) Table 44 - Linear eigenvalue buckling analysis, elastic critical load factor results of different configurations of parameters (Kitipornchai et al., 2005, p.775). Figure 45 - Suspen-dome of first mode, symmetric load, rigidly-connected suspen-dome (Kitipornchai et al., 2005, p.778). Figure 47 - Buckling shape of first mode, symmetric load, rigidly-connected suspen-dome (Kitipornchai et al., 2005, p.778). Figure 47 - Buckling shape of first mode, symmetric load, nigidly-connecte	12, 27 27 28 28 28 31 34 35 35 36 37 38 38 38 38 39 40 41 42 42 42
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 201 p.1110)	12, 27 27 28 s 31 34 35 36 36 37 38 sll, 39 38 sll, 40 41 42 42 42 42
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 20) p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p. 1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p. 1060) Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p. 1059) Figure 33 - Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p. 784) Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p. 1686) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p. 1689) Figure 36 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p. 1693) Figure 37 - Strut heights assessed (Feng et al., 2012, p. 1109 & 1110). Figure 38 - Load-displacement curves of the suspen-dome with the different strut plans (Feng et al., 2012, p. 1111) Figure 40 - Upper layer dome member axial forces with different rise (Dai et al., 2013, p. 1059) Figure 41 - Upper layer dome nodal vertical deflections with different rise (Dai et al., 2013, p. 1059) Figure 42 - Vertical displacement and axial forces of upper dome members of pinned and rigidly connected model (Dai et at 2013, p. 1058) Table 43 - GNA load factors of models - rigid and pinned connection, different h/L ratios (Chen & Li, 2005, p. 712) Table 44 - Linear eigenvalue buckling analysis, elastic critical load factor results of different configurations of parameters (Kitipornchai et al., 2005, p. 775) Figure 45 - Suspen-dome of first mode, symmetric load, pin-connected suspen-dome (Kitipornchai et al., 2005, p. 778) Figure 48 - Buckling shape of first mode, asymmetric load, pin-connected suspen-dome (Kitipornchai et al., 2005, p. 779) Figure 49 - Buckling shape of first mode, asymmetr	12, 27 27 28 s 32 s 31 34 35 36 36 37 38 sll, 38 sll, 40 41 42 42 42 43
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 2017, p. 1110)	12, 27 27 28 s 31 34 35 36 36 37 38 s 38 s 38 s 38 s 40 42 43
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 201 p.1110)	12, 27 27 28 s 31 34 35 36 36 37 38 s 38 s 38 s 38 s 39 40 41 42 42 42 42 43 44 45 44 45
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 201 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p. 1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p. 1060) Figure 33 - Vertical nodal displacement under different prestress (Dai et al., 2013, p. 1059) Figure 33 - Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p. 784). Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p. 1689) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p. 1689). Figure 35 - Strut heights assessed (Feng et al., 2012, p. 1109 & 1110). Figure 37 - Strut heights assessed (Feng et al., 2012, p. 1109 & 1110). Figure 38 - Load-displacement curves of the suspen-dome with different rise-to-span ratios (Feng et al., 2012, p. 1111) Figure 40 - Upper layer dome member axial forces with different rise (Dai et al., 2013, p. 1059). Figure 41 - Upper layer dome member axial forces of upper dome members of pinned and rigidly connected model (Dai et al. 2013, p. 1058). Table 43 - GNA load factors of models - rigid and pinned connection, different h/L ratios (Chen & Li, 2005, p. 121) Table 44 - Linear eigenvalue buckling analysis, elastic critical load factor results of different configurations of parameters (Kitipornchai et al., 2005, p. 775). Figure 45 - Suspen-dome of first mode, symmetric load, rigidly-connected suspen-dome (Kitipornchai et al., 2005, p. 778). Figure 48 - Buckling shape of first mode, asymmetric load, rigidly-connected suspen-dome (Kitipornchai et al., 2005, p. 777). Figure 48 - Buckling shape of first mode, asymmetric load, rigidly connected suspen-dome (Kitipornchai et al., 2005, p. 779). Figure 50 - Stresses of hoop cables at different h/L ratios (Kitipornchai et	12, 27 27 28 s 31 34 35 36 36 37 38 s 38 s 38 s 38 s 39 40 41 42 42 42 42 43 44 45 46
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 201 p. 1110) Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p. 1058) Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p. 1060) Figure 33 - Vertical nodal displacement under different prestress (Dai et al., 2013, p. 1059) Figure 33 - Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p. 784). Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p. 1686) Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p. 1689). Figure 35 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p. 1693). Figure 37 - Strut heights assessed (Feng et al., 2012, p. 1109 & 1110) Figure 38 - Load-displacement curves of the suspen-dome with the different strut plans (Feng et al., 2012, p. 1111) Figure 40 - Upper layer dome member axial forces with different rise (Dai et al., 2013, p. 1059) Figure 41 - Upper layer dome nodal vertical deflections with different rise (Dai et al., 2013, p. 1059) Figure 42 - Vertical displacement and axial forces of upper dome members of pinned and rigidly connected model (Dai et al. 2013, p. 1058). Table 43 - GNA load factors of models - rigid and pinned connection, different h/L ratios (Chen & Li, 2005, p. 721) Table 44 - Linear eigenvalue buckling analysis, elastic critical load factor results of different configurations of parameters (Kitipornchai et al., 2005, p. 775) Figure 45 - Suspen-dome of first mode, symmetric load, rigidly-connected suspen-dome (Kitipornchai et al., 2005, p. 778) Figure 48 - Buckling shape of first mode, asymmetric load, pin-connected suspen-dome (Kitipornchai et al., 2005, p. 779) Figure 50 - Stresses of hoop cables at	12, 27 27 28 s 31 34 35 36 36 37 38 s 38 s 38 s 39 38 s 39 40 41 42 42 42 43 43 44 45 46 40
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 2005, p.1110). Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058)	12, 27 27 28 s 31 34 35 36 36 36 37 38 s 38 s 39 38 s 39 40 41 42 42 42 44 44 45 46 47 46 47
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 2005, p.1110). Figure 31 - Upper layer dome member axial forces under different prestresses (Dai et al., 2013, p.1060). Figure 32 - Vertical nodal displacement under different prestress (Dai et al., 2013, p.1059). Figure 33 - Buckling capacity, ultimate load factor of lamella suspen-dome with different initial imperfection-to-span ratio (Kitipornchai et al., 2005, p.784). Figure 34 - The suspen-dome of the assessment (Kang et al., 2003,p.1686). Figure 35 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p.1689). Figure 36 - Summary of GNA nonlinear critical buckling loads of the examined three structures (Kang et al., 2003, p.1693). Figure 37 - Strut heights assessed (Feng et al., 2012, p.1109 & 1110). Figure 38 - Load-displacement curves of the suspen-dome with different rise-to-span ratios (Feng et al., 2012, p.1111) Figure 39 - Load-displacement curves of the suspen-dome with different rise (Dai et al., 2013, p.1059) Figure 41 - Upper layer dome member axial forces with different rise (Dai et al., 2013, p.1059) Figure 42 - Vertical displacement and axial forces of upper dome members of pinned and rigidly connected model (Dai et al. 2013, p.1058) Figure 42 - Vertical displacement and axial forces of upper dome members of pinned and rigidly connected model (Dai et al. 2013, p.1058) Figure 44 - Linear eigenvalue buckling analysis, elastic critical load factor results of different configurations of parameters (Kitipornchai et al., 2005, p.775) Figure 45 - Suspen-dome of study (Kitipornchai et al., 2005, p.775). Figure 45 - Buckling shape of first mode, symmetric load, rigidly-connected suspen-dome (Kitipornchai et al., 2005, p.778). Figure 51 - Stress of hoop cables at different h/L ratios (Kitipornchai et al., 2005, p.779). Figure 51 - Stress of hoop cables at different h/L ratios (Kitipornchai et al., 2005, p.779). Figure 51 - Stress	12, 27 27 28 s 31 34 35 35 36 36 37 38 al., 39 38 al., 39 40 41 42 42 42 44 44 44 45 46 47
Figure 29 - load-displacement curves of the upper single layer dome nodes under different prestress plans (Feng et al., 202, p.1110). Figure 30 - Numbering of upper layer dome members (Dai et al., 2013, p.1058)	12, 27 27 28 s 31 34 35 36 36 36 36 37 38 al., 39 38 al., 39 40 41 42 42 42 44 44 45 46 47 JO, 47 JO, 47

Figure 56 - Recommended range of imperfection magnitude for the nonlinear stability analyses of suspen-domes (Guo, 2	2011.,
Figure 57 - Analysis methods on perfect structures (pg.110., Mov. 1996)	53
Figure 58 - Equilibrium path (highlighted) of cantilever column in collapse mechanism (pg.113, Moy, 1996)	54
Figure 59 - The Newton-Raphson method (pg.30, Parke, 2015f)	55
Figure 60 – Failure of ground floor column causing failure progression (pg.62-63, Starossek, 2018)	62
Figure 61 – First floor girder acting as alternative load path (pg.69, Starossek, 2018).	63
Table 62 – Progressive collapse: Design and assessment methods (based on Starossek, 2018)	64
Figure 63 - Strategies for Accidental Design Situations (Fig.3.1, BS EN 1991-1-7:2006, p.15)	66
Figure 64- Breaking points and dynamic force measuring points at hoop cables (Wang et al., 2017, p.361)	72
Figure 65 -Breaking points and dynamic force measuring points at struts and SLD members (Wang et al., 2017, p.362)	27
Figure 65 - Cable forces at and after first noop cable rupture (Wang et al., 2017, p.364)	/3
Figure 67 – Member forces at and arter first hopp table rupture (wang et al., 2017),0303	74
Figure 69 - Case-study: Preliminary design of susen-dome. Flowchart)	75
Figure 09 - Upper single layer dome member nodes of the Hikarizaoka dome (Kawazuchi et al., 1999, p.189).	79
Figure 71 - Upper single layer dome, strut and levy radial cable connection of the BUT Gymnasium dome (pg. 67, Nooshir	n.
2015b)	, 79
Figure 72 - The outmost-ring stiffened suspen-dome of the assessment (Kang et al., 2003,p.1689)	79
Figure 73 - Hikarigaoka dome, schematics (Kawaguchi et al., 1999, p.185.)	79
Figure 74 - Suspen-dome geometry - variant "Development 1", showing untrimmed, trimmed and 3D view	80
Figure 75 - Suspen-dome geometry - variant "Development 2" , plan & 3D view	80
Figure 76 - Suspen-dome geometry - variant "Development 3" , showing untrimmed, trimmed and 3D view	80
Figure 77 - Suspen-dome geometry - variant "Development 4" , showing untrimmed, trimmed and 3D view	80
Table 78 - Summary table of Suspen-dome variants concluding variant "Development4"	81
Figure 79 – Formian 2.0 formulation of dome "Development 2 & 4"	81
Figure 80 - Dead load (U-SkPa -cladding, U-SkPa - glazing, U-ZkN - nodes)	82
Figure 81 - Prestressing the radial cables of the Hikarigaoka dome (Kawaguchi et al., 1999,p.185)	82
Figure 82 - Prestress OF radial cables	ده ده
Figure 65 - Imposed loading L1 (bolk a).	85 84
Figure 64 - Imposed loading L2 (Inter-Spein, projected OD2, 0.5 K a)	85
Figure 86 - Element types of model for prestress finding (Stage 'A')	86
Figure 87 - Initial cross-sections	86
Figure 88 - Support nodes and coordinate systems (Stage 'A')	87
Figure 89 - Support reactions in DL+P combination (Stage 'A')	87
Figure 90 - Outer ring axial internal forces in DL+P load combination (Stage 'A')	88
Figure 91 - Member types (Stage 'B')	88
Figure 92 - Member coordinate systems	89
Figure 93 - Support releases & coordinate systems	89
Figure 94 - Load combinations	89
Figure 95 - Support reactions and outer ring normal force (CO7:DL+P)	90
Figure 96 - Global deformation envelope (SLS)	90
Figure 97 - Global deformation in CO1	91
Figure 96 - Normal tortes in CO6	۲۹ ۵۵
Figure 50 - Maximum cable force envelope (IIIS)	J2 92
Figure 100 - Maximum cable force, envelope (OLD) - Fatzer AG (02-2018 n.23)	93
Figure 102 - Minimum cable force (CO7:DL+P)	93
Figure 103 - Maximum V-m Stress utilisation ratio (all combinations)	94
Figure 104 - Maximum member design ratio (covering member buckle) (all combinations)	94
Figure 105 - Struts modelled as beam type members with hinge (Stage 'C')	95
Table 106 - First ten eigenvalues of CO3-CO6 (Stage 'C')	96
Figure 107 – Area loads converted to regular member loads (Stage 'D')	97
Table 108 - Results of GNIA analysis (Stage 'D')	99
Figure 109 - New cross-sections (Stage 'B' R)	100
Figure 110 - Prestress of radial cables (Stage 'B R')	100
Figure 111 - Support reactions and outer ring normal force in CO7:DL+P (Stage 'B R')	101
Figure 112 - Global deformations envelope (SLS) (Stage 'B K)	101
Figure 114 - Maximum cable forces (IIIS envelope)/Stage 'R R')	102
Figure 115 - Minimum cable forces (CCO+DI+P)(Stage 'B R')	102
Figure 116 - Maximum V-M Stress utilisation ratio (all combinations) (Stage 'B R')	102
Figure 117 - Maximum member design ratio (covering member buckle) (all combinations)(Stage 'B R')	104
Table 118 - First three eigenvalues of CO4 & CO6 (Stage 'C R')	105
Table 119 – Nonlinear load factor results of GNIA analysis for the revised dome design (Stage 'D R')	106
Figure 120 – Maximum cable forces of CO4-2 GNIA model (ULS envelope) (Stage 'D R')	107
Figure 121 - Sigma Von-Mises stresses in CO4-2 GNIA model (CO4) (Stage 'D R')	
	107
Figure 122 - Sigma Von-Mises stresses in CO4-2 GNIA model (CO6) (Stage 'D R')	107 108

Eigure 124 Maximum V m Stross utilisation ratio of CO4.2 model showing member (Λ'_{i} (all combinations) (Stage (D P')	100
Figure 124 - Maximum V - III Stress dullisation ratio of CO4-2 model showing member A (dat combinations) (stage D K)	. 100
Figure 125 - Maximum V-m Stress durisation ratio of CO-1 model (an combinations) (Stage D R)	. 109
Figure 126 – Nonlinear material model for S355 steel members (Stage 'E R')	. 110
Figure 127 – Nonlinear material model for USS cables (Stage 'E'R')	. 110
Table 128 – Nonlinear critical load factor results of GMNIA analysis for the revised dome design (Stage 'E R')	. 110
Figure 129 – Max Sigma V-M stress results for cross sections (all combinations) (Stage 'E R')	. 111
Figure 130 - Max Sigma V-M stress results for all cross sections (only CO6) (Stage 'E R')	. 111
Figure 131 - Maximum V-m Stress utilisation ratio of CO4-2 model (all combinations) (Stage 'E R')	. 112
Figure 132 - Maximum V-m Stress utilisation ratio of CO4-2, showing member 'A' (all combinations) (Stage 'E R')	. 112
Figure 133 - Sigma V-M stress utilisation ratio above 0.65 in CO4-2 showing member 'A' (all combinations) (Stage 'E R')	. 112
Figure 134 - Equivalent plastic strains - no plastification occurring (CO4)	. 113
Figure 135 – Axial ϵ_x strains - no plastification occurring (CO4)	. 113
Figure 136 – Curvature κ_{γ} – maximum rotations occur at member A-F zone (CO4)	. 113
Figure 137 - Natural frequency analysis, analysis settings (Stage 'N')	. 114
Figure 138 - Natural frequency analysis - Mass case and sum of masses (Stage 'N')	. 114
Figure 139 - Natural frequency analysis - First natural frequency (Stage 'N')	. 114
Figure 140 - Progressive collapse analysis - element removal in beam model. Flowchart	. 116
Figure 141 - Progressive collapse analysis - single element removal in combined model. Flowchart	. 117
Figure 142 – Assessed members for sensitivity analysis of the suspen-dome (Stage 'S0')	. 118
Figure 143 – Designation of member names in relation with member numbering of the model (Stage 'S0')	. 119
Table 144 - Result table of sensitivity analyses (GNA) (Stage 'SO')	. 119
Table 145 - Results of progressive collapse analyses in GNA models (Stage 'F')	. 121
Table 146 - Results of progressive collapse analyses GNMA (Stage 'F MNL')	. 122
Figure 147 – Global deformations of LC8: Members D.C.P.I.O.N are failed (Stage 'F MNL')	. 122
Figure 148 – Global deformations of LC10: s A.B.C.D.E.F.P.K.L.M failed, excessive deformation! (Stage 'F MNL')	. 122
Figure 149 – Global deformations of I C14: Tensegrity system (strut and cables) are failed (Stage 'F MNI')	123
Figure 150 - Member load conversion table to nodal loads at 1/4 points (Stage 'G')	124
Figure 151 - Nodal loads of IL1 load case (Stage 'G')	. 125
Figure 152 – Division of members (Stage 'G')	125
Figure 153 – Member types at interfaces (Stage 'G')	125
Figure 154 - Surface types standard surface generated from CHS sections (Stage 'G')	126
Figure 155 - Lamella member and struct member modelled as shell the initial geometric imperfection is visible on the the	. 120
amelia member (Stage 'G')	126
Figure 156 - Interface of surface (chell) and beam members in the model (Stage 'G')	126
Figure 157 – Mech of surfaces at the interface of Ring Lamella members and strut member (Stage 'G')	126
Figure 158 - Global deformations of hearn and shall elements in CO10 with the failure of member 'A' (Stage 'C')	120
Figure 156 - Global definitions of beam and share and shall aloments in CO10 with the failure of momber (// (frage [G])	127
Figure 155 - Combined Von Misse stresses of beam and shell elements in CO10 (racm) (stage G)	120
Figure 100 - Combined Volt-Wrise stresses of beam and shere femerits in COTO (2001) (Stage 'G')	120
Figure 101 - Sourdees vivi suess ratio with the failure of members (Vi (Kerze IC))	120
Figure 162 - Bealth members V-W stress ratio with the ratione of member A (Stage G)	129
Figure 105 - Material moder for shell elements (stage G Minc) - Material Stage G Minc) - Stage (G Minc) - St	129
Figure 104 - Calculation diagram of deformations at each four increment and feetances within (Stage G MNL)	. 150
Figure 165 - Calculation diagram: Global maximum deformations & applied load factors (stage G_MINL).	. 130
Figure 106 - Maximum global deformations in CO10 with the failure of memoer A (stage G Mint.)	. 131
Figure 167 - Von-Mises stress ratio of beam members in CO10 when member 'A' is failed. (Stage 'G MINL')	. 131
Figure 168 - Stresses in beam members of the remainder structure (COTU) (Stage G MNL).	. 132
Figure 169 - Combined Von-Mises Stresses shells elements adjacent to the failed member A (Stage G MINL)	. 132
Figure 1/U - Compined Von-Mises Stresses shells elements (Zoom) (Stage 'G MNL').	. 132
Figure 1/1 - Combined Von-Mises epsilon strain of shell elements (Stage 'G MNL')	. 133
Figure 1/2 - Equivalent plastic strain in all elements (Stage 'G MNL')	. 133
Table 173 - Structural properties of concluded design	. 137
Table 174 - Concluded design: Compliance to acceptance criteria	. 137
Table 175 – Comparison of member 'A' notional removal results	. 140

I. Introduction

I.I Introduction

In the early 1990s a novel structural system for large spans were introduced by Professor Mamoru Kawaguchi and his team. As presented in 1993 on the Symposium of the International Association for Shell and Spatial Structures, the proposed new space structure is an optimal combination of an upper single layer grid dome and a lower tensegrity system. A lightweight and stable hybrid solution was demonstrated that brings the advantages of the large span reticulated steel domes and the already existing cable dome structures of the era.

Their structural behaviour and mechanical characteristics can be relatively easily described. Significant numbers of research publications identify the excellent stability properties of such a system Due to the presence of tensegritic elements in combination with lattice dome members, specific failure modes may occur on suspen-domes and these shall be assessed in any collapse analyses.

The available research literatures separately discuss the topics of geometry optimisation, optimised initial pretension, simplified analysis, assessments of static nonlinear behaviour, stability and dynamic properties of suspen-domes.

Assessment of collapse mechanisms and more importantly, the potential of progressive collapse is a key requirement for all structures, for roofs and space structures as well. The highly statically indeterminate systems are built of lightweight slender members in complex geometric patterns, typically cover spaces crowded by people. Exposure and significance of stadium roofs are obvious when judging measures versus disproportionate failure. Unfortunately, instability related disproportionate collapse of single layer domes still occur from time to time. The existing research papers may advise the methods of collapse analysis separately for single layer dome and the cable system. A complete progressive collapse analysis study requires substantial, often excessive resources in daily engineering practice.

The aim of this dissertation is to review this novel hybrid solution, its behaviour in conjunction with the available findings of research; to summarise design options in aspects of strength and stability performance; then to carry out a preliminary design case study and arrive to the assessment of ultimate capacity and progressive collapse through a preliminary designed example.