DESIGN OF SPECIAL STRUCTURES

ARAB ACADEMY FOR SCIENCE, TECHNOLOGY \& MARITIME TRANSPORT

COLLEGE OF ENGINEERING, CONSTRUCTION \& BUILDING DEPARTMENT

'GRADUATION PROJECT BOOK"

FIRST EDITION

Author

Mohamed Ahmed Hamdallah, B.Sc., C.Eng.

Professor: Eehab Khalil

JULY 24, 2020
AASTMT
South valley branch

Technical Design Calculation Report

Table of Contents

DESIGN AND BEHAVIOR OF A MID-RISE CROSS LAMINATED TIMBER BUILDING 4
I. DESIGN CODES AND STANDARDS 6

1. INTRODUCTION 7
2. PROJECT FEATURES 7
3. GENERAL DESCRIPTION OF THE BUILDING 8
4. CALCULATION SOFTWARE USED 13
5. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES 14
5.1 Wooden materials 14
5.2 Screws 16
6. CALCULATION METHOD AND NUMERICAL MODEL 17
6.1 Model Description 17
7. ACTIONS AND DESIGN LOADS 28
7.1 STRUCTURAL LOADS 28
7.2 Load Cases and Load Combinations 29
8. SECTIONS OF THE STRUCTURAL ELEMENTS 31
8.1 CLT walls and floors 31
8.2 LVL Beams \& Glulam Columns 32
8.3 Connections 33
9. STRUCTURAL SYSTEM 37
10. STRUCTURAL ANALYSIS 39
10.1 ASSIGN OF LOADS 39
11. STRUCTURAL DESIGN 43
11.1 DESIGN OF CLT SLABS and WALLS 43
11.2 Structural analysis results 59
Egyptian Aquatic Centre 100
SHORT COURSE POOL 102
I. Design codes and standards 103
12. INTRODUCTION 104
Technical Design Calculation Report
13. Pool Drawings Details 105
14. Calculation Software Used 111
15. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES 112
16. Calculation method and numerical model 114
17. Actions and design loads. 117
18. STRUCTURAL ANALYSIS 119
19. STRUCTURAL DESIGN 124
LONG COURSE POOL 153
I. Design codes and standards. 154
20. INTRODUCTION 155
21. Pool Drawings Details 156
22. Calculation Software Used 161
23. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES 162
24. Calculation method and numerical model 164
25. Actions and design loads 166
26. STRUCTURAL ANALYSIS 169
27. STRUCTURAL DESIGN. 175
DIVING PLATFORMS 204
I. Design codes and standards 205
28. INTRODUCTION 206
29. Diving Platform Drawings Details 207
30. Calculation Software Used 214
31. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES 215
32. Calculation method and numerical model 217
33. Actions and design loads 219
34. STRUCTURAL ANALYSIS 224
35. STRUCTURAL DESIGN. 227
COLISEUM 244
I. Design codes and standards 245
36. INTRODUCTION 246
37. Coliseum Drawings Details 247
38. Calculation Software Used 253
39. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES 254
40. Calculation method and numerical model 255

Technical Design Calculation Report

6. Actions and design loads 256
7. STRUCTURAL ANALYSIS 264
8. STRUCTURAL DESIGN 275

TECHNICAL DESIGN CALCULATION REPORT

DESIGN AND BEHAVIOR OF A MID-RISE CROSS LAMINATED TIMBER BUILDING
 Part 1

Technical Design Calculation Report

Abstract

Cross laminated timber (CLT) is a new engineered wood material with a wide range of application as structural member in residential, commercial and educational buildings. CLT is developed in Austria and its production and application is increasing in Europe and around the world. One of the utilization fields of CLT is midrise residential and commercial buildings including single and multifamily residential buildings, educational institutions, and office buildings. Using Engineered wood products in construction field can contribute to solve climate change and global warming problems, reduce fresh water consumed in concrete buildings and build green society. This project proposes a modeling of CLT (Cross Laminated Timber) multi-stories building on DLUBAL RFEM software. Wall carrier structural system is proposed to resist gravity load by wall bearing and floor bending. Lateral loads are resisted by connector brackets with wood screws. The model contains LVL (Laminate Veneer Lumber) Paneled beams to enhance the performance of CLT floor in 7x7m hall. Due to the different deflection profiles. Frames experience "Racking" deflections, where the greatest interstory drift is at the base of the structure, while walls experience a "Bending Deflection" deformation, with the greatest inter-story drift at the top of the structure. The combination of these two deformed shapes will compensate for each other's shape, reducing lateral deflection along the whole height thus the GLULAM (Glued Laminated Timber) columns have been modeled.

Technical Design Calculation Report

I. Design codes and standards

1. ANSI/AWC NDS-2018

CROSS-LAMINATED TIMBER - Chapter 4,10,11,12,13,15,16 and appendix

2. ANSI/APA PRG 320-18

Manufacturing Standard
3. IBC 2018

2018 Code Confirming Wood Design

4. CLT HANDBOOK

US Edition

5. TIMBER DESIGN AND CONSTRUCTION SOURCEBOOK

Large Halls and Roof Structures - Beam Grid

6. ASCE/SEI 7-05

Load Combination
7. ECP (201-2012)

Egyptian Code for Loading on Buildings
8. ECP (204-2005)

Egyptian Code for Loading on Foundation

Technical Design Calculation Report

1.INTRODUCTION

The concept for structural design focuses on satisfying both the functional and the economic requirements of the building without jeopardizing its aesthetic and architectural features.

This Calculation Report presents the structural engineering aspect of the works due for the development construction work of GE BUILDING.

In this Report, a modeling of Cross Laminated Timber (CLT) multi-stories building on DLUBAL RFEM software is proposed. Egypt has 5510 feddan established Afforestation Areas Irrigated by Treated Sewage Water ;thus, using CLT panels in construct green cities in Egypt will be a solution of many problems like global warming, water consumed in concrete building and high building cost.
(The Role of Ministry of State for Environmental Affairs in implementing the National Program for safe use of treated sewage water for afforestation)

2.PROJECT FEATURES

the urbanization at 2018 equal 55.3% and will be 60.4% at 2030, 3 billion people (40% of the world) will need a new home at 2030. This translates into a demand for 96,000 new affordable and accessible housing units every day. One of three people today are actually live in slum that mean one billion people in the world live in slum. A hundred million people in the world are homeless. The scale of engineers challenge for society is to find a solution to house people but the challenge as we move to cities, cities were built in two materials that are steel and concrete. (UN HABITAT, World Urbanization Prospects: The 2018 Revision)

1. Steel and concrete are great materials but it consume very high energy in manufacturing process and emit green house gases. The embodied carbon emissions of building products and construction represent a significant portion global emissions: concrete, iron, and steel alone produce 9\% of annual global GHG emissions; embodied carbon emissions from the building sector produce 11% of annual global GHG emissions. Every year, 6.13 billion square meters of buildings are constructed. The embodied carbon emissions of that construction is approximately 3729 million metric tons CO_{2} per year (ARCHETECTURE2030.ORG)

- Wood is the only material that we can build with and grow with the power of sun.
- When the tree grows in the forests, it give us oxygen and store carbon dioxide, one cubic meter of wood can store one tone of carbon dioxide.
- Dead forests give carbon dioxide back to atmosphere into the ground and when the forests burn, it give carbon dioxide back to atmosphere.
- One cubic meter of concrete consumes almost 175 liter of fresh water while forests can grow with primary treatment of sanitary water.
- Wooden building is a fast building erection.
- light weight structure that will give us minimum foundation cost.
- minimize number of crews that mean minimize construction cost and conflicts.
the following link include energy consumption comparison between traditional structural system and wooden structural systems in Aswan province, Egypt. https://drive.google.com/file/d/1-
Jb00F1nYV4FKd0ASX55xLXrbawRH2yt/view?usp=sharing

3. General description of the building

Location

Country: Egypt
City: Aswan

Description

Number of storeys: 4
Building length: 12 m
Building width: 16.7 m
Building height: 16.7 m
Wall carrier structural system is proposed to resist gravity load by wall bearing and floor bending. Lateral loads are resisted by connector brackets with wood screws.

Technical Design Calculation Report

Three-dimensional view South West

Technical Design Calculation Report

Three-dimensional view North West

Technical Design Calculation Report

Three-dimensional view South West

4. Calculation Software Used

Calculation software features

The software used is RFEM, developed by DLUBAL COMPANY (Germany).
Technical specifications
Name: RFEM
Version: $\quad 5.15 .01$

Producer: DLUBAL

www.dlubal.com

License registered is a student license.

5. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES

5.1 Wooden materials

5.1.1 CLT walls and floors

Technical Design Calculation Report

5.1.2 LVL Beams

Alaska Spruce, 2"-4" Thick, 2" and Wider, Select Structural | ANSI/AWC NDS2015

QMain Properties			
Modulus of Elasticity	E	11031600.0	$\mathrm{kN} / \mathrm{m}^{2}$
Shear Modulus	G	689476.00	$\mathrm{kN} / \mathrm{m}^{2}$
Specific Weight	7	4.48	$\mathrm{kN} / \mathrm{m}^{3}$
Coefficient of Thermal Expansion	α	$2.7778 \mathrm{E}-06$	$1 /{ }^{\circ} \mathrm{F}$
- Partial Safety Factor	7 M	1.00	
■Additional Properties			
Modulus of Elasticity	E	11031600.0	kN/m²
Shear Modulus	G	689476.00	$\mathrm{kN} / \mathrm{m}^{2}$
Modulus of Elasticity Perpendicular	E90	367718.00	kN/m²
Shear Modulus Perpendicular	G90	68947.60	kN/m²
- Reference Modulus of Elasticity for Stability Calculations	$E_{\text {min }}$	3998960.00	$\mathrm{kN} / \mathrm{m}^{2}$
Reference Bending Design Value	Fb	1400.00	psi
Reference Tension Design Value Parallel to Grain	F_{t}	900.00	psi
Reference Shear Design Value Parallel to Grain (Horizontal Shear)	Fv	160.00	psi
Reference Compression Design Value Perpendicular to Grain	F_{cp}	330.00	psi
- Reference Compression Design Value Parallel to Grain	Fc	1200.00	psi
Rolling Shear Design Value	Fs	53.00	psi
Specific Gravity	G	0.410	
Type of Wood Product		Visually Graded Dimension Lumber	
Species		Alaska Spruce	
Commercial Grade		Select Structural	
Thickness Classification		2"-4*Thick	
Width Classification		2^{*} and Wider	
Wood Category		Softwood	

Douglas Fir-Larch, 2"-4" Thick, 2" and Wider, Select Structural | ANSI/AWC NDS-201

- Main Properties			
Modulus of Elasticity	E	13100000.0	kN/m²
Shear Modulus	G	818752.00	$\mathrm{kN} / \mathrm{m}^{2}$
Specific Weight	γ	5.37	$\mathrm{kN} / \mathrm{m}^{3}$
Coefficient of Thermal Expansion	α	$2.7778 \mathrm{E}-06$	$1 /{ }^{\circ} \mathrm{F}$
Partial Safety Factor	7 M	1.00	
曰Additional Properties			
Modulus of Elasticity	E	13100000.0	$\mathrm{kN} / \mathrm{m}^{2}$
Shear Modulus	G	818752.00	$\mathrm{kN} / \mathrm{m}^{2}$
Modulus of Elasticity Perpendicular	E90	436666.00	$\mathrm{kN} / \mathrm{m}^{2}$
Shear Modulus Perpendicular	G90	81875.20	$\mathrm{kN} / \mathrm{m}^{2}$
Reference Modulus of Elasticity for Stability Calculations	$E_{\text {min }}$	4757380.00	$\mathrm{kN} / \mathrm{m}^{2}$
Reference Bending Design Value	Fb	1500.00	psi
Reference Tension Design Value Parallel to Grain	Ft_{t}	1000.00	psi
Reference Shear Design Value Parallel to Grain (Horizontal Shear)	Fv	180.00	psi
Reference Compression Design Value Perpendicular to Grain	F_{cp}	625.00	psi
Reference Compression Design Value Parallel to Grain	Fc	1700.00	psi
Rolling Shear Design Value	Fs	60.00	psi
Specific Gravity	G	0.500	
Type of Wood Product		Visually Graded Dimension Lumber	
Species		Douglas Fir-Larch	
Commercial Grade		Select Structural	
Thickness Classification		2-4* Thick	
Width Classification		2^{*} and Wider	
Wood Category		Softwood	

Technical Design Calculation Report

5.1.3 GLULAM Columns

Douglas Fir-Larch, 2"-4" Thick, 2" and Wider, Select Structural | ANSI/AWC NDS-2015

\square Main Properties			
Modulus of Elasticity	E	12410600.0	kN/m²
Shear Modulus	G	775660.00	$\mathrm{kN} / \mathrm{m}^{2}$
Specific Weight	7	5.86	$\mathrm{kN} / \mathrm{m}^{3}$
Coefficient of Thermal Expansion	α	$2.7778 \mathrm{E}-06$	$1 /{ }^{\circ} \mathrm{F}$
Partial Safety Factor	7 M	1.00	
■Additional Properties			
Modulus of Elasticity	E	12410600.0	$\mathrm{kN} / \mathrm{m}^{2}$
Shear Modulus	G	775660.00	$\mathrm{kN} / \mathrm{m}^{2}$
Modulus of Elasticity Perpendicular	E90	413685.00	$\mathrm{kN} / \mathrm{m}^{2}$
Shear Modulus Perpendicular	G90	77566.00	$\mathrm{kN} / \mathrm{m}^{2}$
Reference Modulus of Elasticity for Stability Calculations	$E_{\text {min }}$	4550540.00	$\mathrm{kN} / \mathrm{m}^{2}$
Reference Bending Design Value	Fb	1500.00	psi
Reference Tension Design Value Parallel to Grain	F_{t}	1000.00	psi
Reference Shear Design Value Parallel to Grain (Horizontal Shear)	Fv	175.00	psi
Reference Compression Design Value Perpendicular to Grain	F_{cp}	660.00	psi
Reference Compression Design Value Parallel to Grain	Fc	1650.00	psi
Rolling Shear Design Value	Fs	58.00	psi
Specific Gravity	G	0.550	
Type of Wood Product		Visually Gra	ded Southern Pine Dimension Lumber
Species		Southern Pin	
Commercial Grade	Species	No. 1 Dense	
Thickness Classification		2"-4" Thick	
Width Classification		5"-6" Wide	
Wood Category		Softwood	

5.2 Screws

$\mathrm{D}=$ diameter, in.
$\mathrm{D}=$ root diameter, in.
$\mathrm{S}=$ mothreaded body length, in.
$\mathrm{T}=$ minimum thread length ${ }^{2}$, in

type	Diameter (D)	Root Diameter (Dr)	Length	Tapered Tip Length (E)	Thread Length (T)
$\mathbf{0 . 5}$ in. Hexa Lag Screw	0.5 in	0.5 in	0.371 in	9 in	$5 / 16$ in
\mathbf{y} in					

6. Calculation method and numerical model

6.1 Model Description

6.1.1 Hypothesis adopted for the elements

The timber walls are constrained at the base by means of connection systems capable of transmitting both in-plane and out-of-plane actions.

The floors are schematized simply supported by the walls or by the beams and the columns are modelled with hinged ends.

The horizontal elements are considered infinitely rigid in their plane and with three degrees of freedom: two translational and one rotational.

In the analysis, in presence of horizontal loads, some elements may be defined as "secondary": this mean that their strength and stiffness are neglected in the calculation of the response of the building. In the model these elements are represented in columns.

6.1.2 Rigid body rocking - Forces on hold-down / tie-down

The hold-down or tie-down systems are used to prevent the rotation of the wall caused by the overturning moment of the horizontal force. The hold-down, placed on the in-tension edge of the wall, is loaded by a force equal to

$$
T=\left\{\begin{array}{cl}
\left(\frac{M_{3-3}}{b}-\frac{N}{2}\right) \cdot \frac{1}{n_{a n c}} & \text { for active hold }- \text { down } \\
0 & \text { for inactive hold }- \text { down }
\end{array}\right.
$$

where:
$b \quad$ is the lever arm for the internal couple, assumed equal to $0.9 \cdot l$, where l is the length of the wall
$N \quad$ is the axial vertical load acting on the wall
M_{3-3} is the moment acting in the plane of the wall
$n_{\text {anc }}$ is the number of connections present at each corner of the wall

Technical Design Calculation Report

Figure 6.1: Calculation model for determining the tensile force acting on the hold-down

6.1.3 Wall horizontal stiffness

The wall stiffness can be estimated considering the contributions of all the components, as shown below

CLT walls

The overall stiffness of CLT walls is calculated taking into account the contribution of the following components:

- CLT panel (kxLAM)
- shear connections - angle brackets (ka)
- hold-down or tie-down (kh)

Technical Design Calculation Report

Figure 6.2: Mechanical model for determining the CLT walls overall stiffness

6.1.4 Types of structural elements and sign conventions Linear elements

The linear elements are used to model beams and columns. They have a local reference system with respect to which stress/force components are shown. The sign convention adopted is shown in the figure below.

Force	Description	Unit of measure
\mathbf{N}	Axial force	
$\mathbf{M y}$	Bending moment about local axis y	kN
$\mathbf{V z}$	Shear along local axis z	$\mathrm{kN} \cdot \mathrm{m}$
$\mathbf{M z}_{\mathbf{z}}$	Bending moment about local axis \mathbf{z}	kN
$\mathbf{V y}$	Shear along local axis y	$\mathrm{kN} . \mathrm{m}$

Figure 6.3: sign conventions for beams

Figure 6.4: sign conventions for columns

Wall elements

The walls, regardless of type, have the following sign conventions.

Technical Design Calculation Report

Figure 6.5: sign conventions for walls

In-plane stresses	Stress	Description	Axial stress (per unit length)	

Technical Design Calculation Report

6.1.5 Orthotropic angle effect on CLT Panel.

- The innovation in massive wood appears in collect the wooden boards (laminations) and compress it together in transverse direction to create the first layer, after that, the layers has been collected together and compress it with structural adhesive, to create the section.

- There are many forms of layers composition, the most common is collect the layers in odd number. Each composition give different structural behavior for the section.

Technical Design Calculation Report

- The important inquery is, what is the best form of layers compositions?, to answer this question, a simulation of a nine slab panels with different layers compositions has been constructed and the results have been evaluated.

- The relationship between orthotropic direction and straining action in one way slabs and two way slabs shown in the following charts.

Note that.

Local axis x is considered as a strengthen axis and the orthotropic angle is measured about it.

Technical Design Calculation Report

1- Orthotropic angle effect on deflection.

Deflection results on one way CLT slab	
Number of 90 degree layers	Deflection value (mm)
0	5.2
1	4.6
2	1.6
3	0.6
5	0.4

Orthotropic angle effect on CLT

Deflection results on two way CLT slab	
Number of 90 degree layers	Deflection value (mm)
0	0.4
1	0.4
2	0.5
3	0.5
5	0.4

Orthotropic angle effect on CLT

Technical Design Calculation Report

2- Orthotropic angle effect on Bending moment in y-direction.

M_{y} results on one way CLT slab	
Number of 90 degree layers	Bending moment value (KN.m)
0	2.25
1	2.23
2	2.25
3	2.26
5	2.27

Orthotropic angle effect on CLT

Orthotropic angle effect on CLT

Technical Design Calculation Report

3- Orthotropic angle effect on Bending moment in x-direction.

M_{x} results on two way CLT slab	
Number of 90 degree layers	Bending moment value (KN.m)
0	2.03
1	1.97
2	1.61
3	0.56
5	0.12

Orthotropic angle effect on CLT

Technical Design Calculation Report

Conclusion

- Deflection is minimized when consider all layers in the same direction (support direction) with one way slabs.
- Deflection is minimized when consider all layers in the same direction with two way slabs.
- Bending moment is minimized when consider all layers in the same direction with one way slabs.
- Bending moment is minimized when consider odd section with two way slabs as show in the following figure.

Thus; it is recommended using layers compositions depending on the load direction on each span ratio in the building but that depending on manufacturing sections in each country. For moisture effect on the wood, thermal expansion and contraction, it is recommended, make opposite layers every two same direction layers.

Technical Design Calculation Report

7. Actions and design loads

7.1 STRUCTURAL LOADS

The following loads are considered in the design:

- Structural Dead Loads which include:

The own weight of the structural elements, slabs, columns, and walls.
Superimposed dead load from floorings.

- Live loads which cover the occupants, furniture, and mechanical equipment.

Wind loads on the external façade and roof.
Seismic loads according to ECP.
The basis for the considered design loads are summarized in the followings sections.

A. Dead Loads

- The weights of the structural materials are shown in the table below.

DeScription	Specific weight \% [kN/m3]
Southern Pine, 2"-4" Thick, 5"-6" Wide, No.1 Dense । ANSI/AWC NDS-2015	5.86
Alaska Spruce, 2"-4" Thick, 2" and Wider, Select Structural । ANSI/AWC NDS-2015	4.48
Douglas Fir-Larch, 2"-4" Thick, 2" and Wider, Select Structural \| ANSI/AWC NDS-2015	5.37

Flooring shall be

$>$ Typical floor	2.0	$\mathrm{kN} / \mathrm{m}^{2}$
$>$ Roof	4.0	$\mathrm{kN} / \mathrm{m}^{2}$

B. Live Loads

Live loads for the different zone areas shall be calculated in accordance with (ECP 201-2012) as follows (uniformly distributed in $\mathrm{kN} / \mathrm{m}^{2}$):

Living areas and bedrooms 2.0
Corridors 3.0
Toilets
3.0

Inaccessible roof1.0

Technical Design Calculation Report

C. Wind Loads

The wind pressure shall be calculated in accordance with (ECP 201-2012)

$$
\text { Basic wind speed }=42 \mathrm{~m} / \mathrm{sec} \text {. }
$$

Wind pressure (or suction) distribution factor (Ce)
$C_{e}=+0.8$ for areas subjected to wind pressure
$C_{e}=-0.5 /-0.7$ for areas subjected to suction wind

Exposure factor (according to height from ground level) $(k=1)$

7.2 Load Cases and Load Combinations

7.2.1 Load Cases

Load	Load Case		Self-Weight - Factor in Direction				ASCE 7-10 NDS (Wood)
Case	Description	Action Category	Active	X	Y	Z	Load Duration
LC1	Finishing	Dead	\square				Permanent
LC2	live	Live	\square				Permanent
LC3	Wind x	Wind	\square				Permanent
LC4	Wind y	Wind	口				Permanent
LC5	EQx	Earthquake	\square				Permanent
LC6	EQy	Earthquake	\square				Permanent
LC7	Self-weight	Dead	囚	0.000	0.000	-1.000	Permanent

Technical Design Calculation Report

7.2.2 Load Combinations

8. Sections of the structural elements

8.1 CLT walls and floors

Technical Design Calculation Report

$h_{b}: \quad$ CLT panel thickness

Figure 8.1: CLT geometric characteristics
The following table sets out the details concerning the CLT floors.

Section name	Manufacturer	CLT panel Grade	Material	Number of layers	Thickness $h_{b}[\mathrm{~mm}]$	Layers Thickness (mm)	External layers orientation
CLT floor	$\begin{aligned} & \text { ANSI/APA } \\ & \text { PRG-320-18 } \\ & \hline \end{aligned}$	E_{1}	Spruce Pine	5	172	35	Parallel to the moment direction
CLT Unsafe floor	ANSI/APA PRG-320-18	E_{1}	Spruce Pine	7	244	35	Parallel to the moment direction
CLT Interior walls	ANSI/APA PRG- $320-18$	E_{1}	Spruce Pine	5	172	35	Parallel to the Loading direction
CLT exterior walls	ANSI/APA PRG- $320-18$	E_{1}	Spruce Pine	7	244	35	Parallel to the Loading direction

8.2 LVL Beams \& Glulam Columns

8.2.1 LVL Beams

T-Rectangle $6 / 9$

T-Rectangle 15/12

Technical Design Calculation Report

8.2.2 Glulam Columns

T-Rectangle 27/36

[cm]

8.3 Connections

8.3.1 Hold Down

Figure 8.2: graphical representation of a hold-down in a base connection (timber wall - foundation connection)

Technical Design Calculation Report

WHT540

	CHARACTERISTIC VALUES								
	configuration				$z_{\text {timber }}[\mathrm{lbs}]$			$Z_{\text {steel }}$ [lbs]	
		type	$\emptyset \times \mathrm{L}$ [in]	n_{v} [pcs]	$\mathrm{G}=0.42$	$\mathrm{G}=0.49$	$\mathrm{G}=0.55$	Washer	$Z_{\text {steel }}[\mathrm{lbs}]$
F_{1}	- total nailing - anchor M2O - washer WHTBS50L	LBA Nails	$\begin{aligned} & 5 / 32^{\prime \prime} \times 15 / 8^{\prime \prime} \\ & 5 / 32^{\prime \prime} \times 23 / 8^{\prime \prime} \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$	5738	6482	7086	WHTBS50L	14253
$\begin{aligned} & r_{1} \\ & \uparrow \end{aligned}$					5738	6482	7086		
		IBS Screws	$6 / 32^{\prime \prime} \times 15 / 8^{\prime \prime}$	45	4032	4556	4982		
\bigcirc		LBS Screws	$6 / 32^{\prime \prime} \times 2^{\prime \prime}$	45	4032	4556	4982		
\therefore			$5 / 32^{\prime \prime} \times 15 / 8^{\prime \prime}$	27	3443	3889	4252		
\therefore	- partial nailing	LBANalls	$5 / 32^{\prime \prime} \times 23 / 8^{\prime \prime}$	27	3443	3889	4252		
	- anchor M2O - washer WHTBS50L	IBSScrews	$6 / 32^{\prime \prime} \times 15 / 8^{\prime \prime}$	27	2419	2734	2989	WHIBS50L	14253
		LBSScrews	$6 / 32^{\prime \prime} \times 2^{\prime \prime}$	27	2419	2734	2989		
			$5 / 32^{\prime \prime} \times 15 / 8^{\prime \prime}$	45	5738	6482	7086		
	- total nailing	LBA Nails	$5 / 32^{\prime \prime} \times 23 / 8^{\prime \prime}$	45	5738	6482	7086		
	- anchor M16 - washer WHTBS50		$6 / 32^{\prime \prime} \times 15 / 8^{\prime \prime}$	45	4032	4556	4982	WHIBS50	14253
品		LBSScrews	$6 / 32^{\prime \prime} \times 2^{\prime \prime}$	45	4032	4556	4982		
		IBA Nails	$5 / 32^{\prime \prime} \times 15 / 8^{\prime \prime}$	27	3443	3889	4252		
	- partial nailing - anchor M16	LBA Nalls	$5 / 32^{\prime \prime} \times 23 / 8^{\prime \prime}$	27	3443	3889	4252	WHTBS50	14253
	- washer WHTBS50	Scews	$6 / 32^{\prime \prime} \times 15 / 8^{\prime \prime}$	27	2419	2734	2989	WHibso	14253
		Screws	$6 / 32^{\prime \prime} \times 2^{\prime \prime}$	27	2419	2734	2989		

${ }^{(1)}$ Length obtainable from MGS threaded rods (to be cut to measure)

8.3.2 Timber-reinforced concrete connection

Figure 8.3:

graphical representation of the
shear connection with angle bracket

Technical Design Calculation Report

8.3.3 Double Hold Down

Figure 8.4: graphical representation of the hold-down connection at the upper floors

Connection name	Connection position	Manufacturer	Description	Fasteners number	Fastener typology	Number of connections at each wall end
Upper level-2 hold down-shear angle bracket	Upper level	Rotho Blass	WHT 540			

Technical Design Calculation Report

8.3.4 Angle bracket - Timber to Timber connection

Figure 8.5: graphical representation of the timber to timber shear connection with angle brackets

Model ID	Gauge	Dimensions (in.)			Fastener Schedule				Allowable Load (lbs.), $\mathrm{C}_{0}=1.60$			
		W_{4}	W_{3}	1	Horizontal Leg		Vertical Leg		F_{1}	F_{2}	F_{3}	F_{4}
					Quantity	Type	Quantity	Type				
ABR9020	14	$3^{3} / 4$	$3^{3} / 4$	$2^{3} / 14$	10	CNA4x60	10	CNA4x60	1085	780	1330	590
					10	SD10212	10	SD10212	1480	1200	1330	1010
ABR105	11	$4{ }^{3} / 4$	$4 / 4$	3/15	14	CNA4x60	10	CNA4*50	1350	835	2300	1020
					14	SD10212	10	5010212	1880	1235	2300	1475
AE116	11	3/4e	1'/4	$4^{3} / 16$	7	CNA4x60	18	CNA4x60	1720	1225	1550	650
					7	SD10212	18	SD10212	1850	1445	1850	1035

9. STRUCTURAL SYSTEM

The following structural system is utilized to support the previously mentioned loads and satisfy the functional and architectural requirements of the building.

Figure 9.1: Floor Plan

Technical Design Calculation Report

Figure 9.2: Strip footings foundations

Technical Design Calculation Report
10. STRUCTURAL ANALYSIS
10.1 ASSIGN OF LOADS

Figure 10.1.: Assign of Finishing and Live Loads on Typical Floor (KN-M Units)

Technical Design Calculation Report

Figure 10.2.: Assign of Suction Wind Load on Typical Floor (KN-M Units)

Technical Design Calculation Report

Figure 10.2.: Assign of Wind Load on Walls in x-direction (KN-M Units)

Technical Design Calculation Report

Figure 10.2.: Assign of Wind Load on Walls in y-direction (KN-M Units)

11. STRUCTURAL DESIGN

11.1 DESIGN OF CLT SLABS and WALLS

11.1.1 Max. Stress Ratio on CLT cross section

Technical Design Calculation Report

Max. Stress Ratio on LVL Beams

Technical Design Calculation Report

Max. Stress Ratio on Glulam Columns

Technical Design Calculation Report
11.1.2 Max. Stress Ratio on LVL \& GLULAM cross sections

Loading	Description	Design		Design According to Formula
	Ultimate Limit State Design			
CO1	1.4*LC1 + 1.4*LC7	0.82	≤ 1	393) Stability - Biaxial bending with LTB and compression with buckling about both axes acc. to 3.9.2
CO2	$1.2 * \mathrm{LC} 1+1.6 * \mathrm{LC} 2+1.2 * \mathrm{LC} 7$	0.87	≤ 1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO3	1.2* $\mathrm{LC} 1+0 .{ }^{*} \mathrm{LC} 3+1.2 * \mathrm{LC} 7$	0.52	≤ 1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO4	1.2*LC1 + 0.5*LC4 + 1.2*LC7	0.51	≤ 1	393) Stability - Biaxial bending with LTB and compression with buckling about both axes acc. to 3.9.2
CO5	1.2*LC1 + LC2 + LC3 + 1.2*LC7	0.68	≤ 1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO6	1.2*LC1 + LC2 + LC4 + 1.2*LC7	0.62	≤ 1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO7	$1.2 * \mathrm{LC} 1+\mathrm{LC} 3+1.2 * \mathrm{LC7}$	0.49	≤ 1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO8	$1.2 *$ LC1 + LC4 + 1.2*LC7	0.44	≤ 1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO9	1.2*LC1 + LC5 + 1.2*LC7	0.52	≤ 1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO10	1.2*LC1 + LC2 + LC5 + 1.2*LC7	0.70	≤ 1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO11	0.9*LC1 + LC3 + 0.9*LC7	0.36	≤ 1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO12	0.9*LC1 + LC4 + 0.9*LC7	0.31	≤ 1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO13	0.9*LC1 + LC5 + 0.9*LC7	0.39	≤ 1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
	Serviceability Limit State Design			
CO14	LC1 + LC7	0.09	≤ 1	401) Serviceability - Deflection in z / y-direction (Beam)
CO15	LC1 + LC2 + LC7	0.10	≤ 1	401) Serviceability - Deflection in z / y-direction (Beam)
CO16	LC1 + 0.7*LC5 + LC7	0.09	≤ 1	401) Serviceability - Deflection in z / y-direction (Beam)
CO17	LC1 + 0.6*LC3 + LC7	0.09	≤ 1	401) Serviceability - Deflection in z / y-direction (Beam)
CO18	LC1 + 0.6*LC4 + LC7	0.09	≤ 1	401) Serviceability - Deflection in z / y-direction (Beam)
CO19	$\mathrm{LC} 1+0.75 * \mathrm{LC} 2+0.45 * \mathrm{LC} 3+\mathrm{LC} 7$	0.10	≤ 1	401) Serviceability - Deflection in z / y-direction (Beam)
CO20	LC1 + 0.75*LC2 + 0.45*LC4 + LC7	0.10	≤ 1	401) Serviceability - Deflection in z / y-direction (Beam)
CO21	LC1 + 0.75*LC2 + 0.52*LC5 + LC7	0.10	≤ 1	401) Serviceability - Deflection in z / y-direction (Beam)
CO22	$0.6 * \mathrm{LC} 1+0.6 * \mathrm{LC3}+0.6 * \mathrm{LC7}$	0.05	≤ 1	401) Serviceability - Deflection in z / y-direction (Beam)
CO23	$0.6 *$ LC1 + 0.6*LC4 + 0.6*LC7	0.05	≤ 1	401) Serviceability - Deflection in z / y-direction (Beam)
CO24	$0.6 *$ LC1 + 0.7*LC5 + 0.6*LC7	0.05	≤ 1	401) Serviceability - Deflection in z / y-direction (Beam)

Technical Design Calculation Report

11.1.3 Stair Design

For a 5-layer, E1 panel:
$h_{i}=$ Thickness of an individual layer $=13 / 8 \mathrm{in}$.
b $=$ Design width $=12 \mathrm{in}$.
Major strength axis (parallel to grain)
$\mathrm{F}_{\mathrm{b}, 0}=$ Bending strength $=1950 \mathrm{psi}$
$\mathrm{E}_{0}=$ Modulus of elasticity $=1.7 \times 10^{6} \mathrm{psi}$
$\mathrm{F}_{\mathrm{t}, 0}=$ Tensile strength $=1375 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}, 0}=$ Compression strength $=1800 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}, 0}=$ Shear strength $=135 \mathrm{psi}$
$\mathrm{F}_{\mathrm{s}, 0}=$ Rolling shear strength $=45 \mathrm{psi}$

Stair section (E1, 5-layers CLT)

Minor strength axis (perpendicular to grain)
$\mathrm{F}_{\mathrm{b}, 90}=$ Bending strength $=500 \mathrm{psi}$
$\mathrm{E}_{0}=$ Modulus of elasticity $=1.2 \times 10^{6} \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}, 0}=$ Shear strength $=135 \mathrm{psi}$
$\mathrm{F}_{\mathrm{s}, 0}=$ Rolling shear strength $=45 \mathrm{psi}$

$$
\text { L.L }=3 \mathrm{KN} / \mathrm{m}^{\prime}, \quad \text { F.C }=1 \mathrm{KN} / \mathrm{m}^{\prime}
$$

According to ASCE-7.15:-

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{u}}=1.2(5 \times 0.168+1)+1.6 \times 3=7 \mathrm{KN} / \mathrm{m}^{2} \\
& \mathrm{M}_{\mathrm{u}}=\left(7 \mathrm{x} 1.4^{2}\right) / 8=1.72 \mathrm{KN} \cdot \mathrm{~m} \\
& \mathrm{~V}=4.9 \mathrm{KN}
\end{aligned}
$$

1. Check on flexural strength

$\mathrm{F}_{\mathrm{b}} \mathrm{S}_{\text {eff }}{ }^{\prime}=1 \times 2.54 \times 0.85 \times 10400 \times 0.6=13472.16 \mathrm{Ib} . \mathrm{ft}=18.7 \mathrm{KN} . \mathrm{m} \quad$ (NDS- chapter 10 \& PRG32018)

$$
\begin{equation*}
\mathrm{M}_{\mathrm{u}}<\mathrm{F}_{\mathrm{b}} \mathrm{~S}_{\mathrm{eff}}{ }^{\prime} \tag{Safe}
\end{equation*}
$$

2. Check on shear strength.

$\mathrm{F}_{\mathrm{s}} \mathrm{Ib} \mathrm{Q}_{\mathrm{eff}}{ }^{\prime}=1 \mathrm{x} 1 \times 2441=2441 \mathrm{Ib}=11.1 \mathrm{KN}$.

$$
\begin{equation*}
\mathrm{V}<\mathrm{F}_{\mathrm{s}} \mathrm{Ib} Q_{\mathrm{eff}}{ }^{\prime} \tag{Safe}
\end{equation*}
$$

3. Check on vibrations.

$$
E I_{\text {cpp }}=\frac{E I_{e f f}}{1+\frac{K_{s} E I_{e f f}}{G A_{e f f} L^{2}}}
$$

$$
\mathrm{F}=\frac{2.188}{2 \times 4.5^{2}} \times \sqrt{ } \frac{1.6 \times 10^{6}}{1.0625 \times 6.625 \times 12}=11.83 \mathrm{HZ}>9 \mathrm{HZ}
$$

4. Check on fire resistance.

According to IBC, the required fire resistance is 90 min . (Type V construction).

Step 1: Calculation of lamination fall-off time
The time to reach a glue line is calculated from Equation 4 as follows:
$t_{f o}=\left(\frac{h_{\text {lam }}}{\beta_{n}}\right)^{1.23}=\left(\frac{13 / 8^{\prime \prime}}{11 / 2^{\prime \prime} / h r}\right)^{1.23}=0.90 h=54 \mathrm{~min}$

The number of layers of laminations that may fall-off is rounded to the lowest integer as follows:
$n_{\text {lam }}=I N T\left(\frac{90}{54}\right)=1$ laminate

Step 2: Calculation of the effective char depth
The effective depth of char based on the number of laminations that may delaminate can be calculated as follows:
$a_{\text {char }}=1.2\left[n_{\text {lam }} \cdot h_{\text {lam }}+\beta_{n}\left(t-\left(n_{\text {lam }} \cdot t_{\text {fo }}\right)\right)^{0.813}\right]$
$\left\lceil\quad\right.$ in $/ \mathrm{an}, \quad$ [A, $\left.\backslash^{0.813}\right\rceil$

Table 16.2.1B Effective Char Depths (for CLT
 with $\beta_{\mathrm{n}}=1.5 \mathrm{in} . / \mathrm{hr}$.)

Required Fire Endurance (hr.)	Effective Char Depths, a char (in.)								
	lamination thicknesses, $\mathrm{h}_{\text {dam }}$ (in.)								
	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	1-3/4	2
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8
11/2-Hour	3.4	3.2	3.1	3.0	2.9	(2.8)	2.8	2.8	2.6
2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6

(NDS- chapter 10 \& PRG320-18)

$$
f=\frac{2.188}{2 L^{2}} \sqrt{\frac{E I_{\text {app }}}{\rho A}} \geq 9.0 \mathrm{~Hz}
$$

2018 Code Conforming Wood Design
2. Type of Construction

Chapter 6 of the IBC defines types of construction, with wood frame construction typically found in Type V, IV and III. Additionally, the IBC has specific applications that permit the use of wood in construction in Type I and II. These circumstances will be addressed in Sections 5 and 6 of this book.

Type V Construction

Type V construction permits the use of wood or other approved materials for structural elements, including structural frame members, bearing walls, floor and roof construction, as well as nonbearing elements such as exterior walls and interior partitions. Type V construction is further defined as Type VA (all interior and exterior load-bearing walls, floors, roofs and all structural members are designed or protected to provide a minimum 1-hour fire-resistance rating) and Type VB (no fireresistance rating is required)

Type IV Construction

Type IV construction (Heavy Timber, HT) has exterior walls made of noncombustible materials, fire-retardant-treated wood (FRTW), or cross-laminated timber (CLT) protected in accordance with Section 602.4.2. Interior building elements must be of solid or laminated wood without concealed spaces for partitions, see below) Columns supporting roof and ceiling (for partitions, see below). Columns supporting roof and celling loads must be a min um nominal dimension of 6 inches by 8 inches and 8 inches by 8 inches if supporting floor loads. Floor beams and girders must be a minimum nominal dimension of 6
inches by 10 inches, and roof beams and eirders must be a 6 inches by 6 inches. Flooring must be a minimum nominal 3 -inch thickness covered with 1 -inch nominal dimension tongue-and-groove flooring or 4 -inch-thick cross-laminated timber (CLT). Roof decking must be a minimum nominal 2 -inch thickness, $1^{1 / 3}$-inch-thick wood structural panels, or 3 -inch-thick CLT. Partitions must be 1 -hour fire-resistance-rated construction or a minimum two layers of 1 -inch nominal board or laminated construction 4 inches thick.

Type III Construction

Type III construction requires exterior walls to be noncombustible material or FRTW having a minimum 2-hour fire-resistance rating. All of the other building elements are permitted to be wood or other approved materials. Type IIIA construction needs to provide a minimum 1 -hour fire-resistance rating for all building elements other than nonbearing walls, and Type IIIB construction does not require any fire-resistance rating other than the exterior load-bearing wall.

Technical Design Calculation Report

$$
\begin{aligned}
& \bar{y}= \frac{\sum_{i} \widetilde{y}_{i} h_{i}}{\sum_{i} h_{i}}=\frac{\left(\frac{1.375}{2} \times 1.375\right)+(3.393 \times 1.285)}{1.375+1.285}=1.994 \mathrm{in} . \\
& I_{e f f}=\sum_{i} \frac{b_{i} h_{i}^{3}}{12}+\sum_{i} b_{i} h_{i} d_{i}^{2} \\
&=\left(\frac{12 \cdot(1.375)^{3}}{12}\right)+\left(\frac{12 \cdot(1.285)^{3}}{12}\right) \\
&+\left(12 \cdot 1.375 \cdot\left(1.994-\frac{1.375}{2}\right)^{2}\right) \\
&+\left(12 \cdot 1.375 \cdot(3.393-1.994)^{2}\right)=63.1 \frac{\mathrm{in} .^{4}}{\mathrm{ft} .}
\end{aligned}
$$

$\mathrm{S}_{\text {eff }}=\frac{66.2}{4.035-2.019}=32.9 \mathrm{in}^{3} / \mathrm{ft}$
$\mathrm{M}=83686 \mathrm{Ib} . \mathrm{ft} / \mathrm{ft}$
$\mathrm{M}_{\mathrm{u}}=1241.5 \mathrm{Ib} . \mathrm{ft} / \mathrm{ft}$
$\mathrm{M}>\mathrm{M}_{\mathrm{u}}$

Technical Design Calculation Report

11.1.4 Connection Design

1- Half-Lapped Connection

7-ply grade v_{3} CLT (seven times 1.375 in . plies= 9.625 , specific gravity ' ${ }^{\prime}$ ' $=0.5,0.5 \mathrm{in}$. Lag Screw, root diameter ' D_{r} '= 0.371 in ., Lag Screw length $=9 \mathrm{in}$., Tip Length $(\mathrm{E})=0.3125 \mathrm{in}$.
$\mathrm{F}_{\mathrm{e}^{\circ} 0}=11200 * 0.5=5600 \mathrm{psi}$
$\mathrm{F}_{\mathrm{e}^{9} 90^{\prime}}=6100 * 0.5^{1.45} * 0.5^{-0.5}=3157 \mathrm{psi}$
a. Bearing length of the lap joint:-

- $\mathrm{L}_{\mathrm{s}}=3 * 1.375+0.5 * 1.375=4.81 \mathrm{in}$.
- $\mathrm{L}_{\mathrm{m}}=\left((9-4.81)-\frac{0.3125}{2}\right)=4.033 \mathrm{in}$.
b. Check on wood crashing in the side length:-
- $\mathrm{P}_{\text {min. }}=(9-4.81)-0.3125=3.877 \mathrm{in} .>4 * 0.5=2 \mathrm{in} .=$
c. Adjusted bearing length for lateral calculations:-
- $L_{\text {s-adj }}=\left(\left(2 * 1.375 * \frac{5600}{3157}\right)+1.375+\frac{1.375}{2}\right)=6.94 \mathrm{in}$.
- $L_{\text {m-adj }}=\left(\frac{1.375}{2}+1.375+\left(\left(1.375+0.75-\frac{0.3125}{2}\right) * \frac{5600}{3157}\right)+1.375\right)=6.92 \mathrm{in}$.

Technical Design Calculation Report

d. Calculation of ASD adjusted design values using NDS yield limit equations:-

Single Shear Connections

Double Shear Connections

Mode II

Mode III $_{\text {m }}$
(not applicable)

(not applicable)

Mode IV

Technical Design Calculation Report

- Mode $\mathrm{I}_{\mathrm{m}}: \mathrm{Z}=\frac{0.37 * 6.92 * 3157}{5}=1616.63 \mathrm{Ib}$
- Mode $\mathrm{I}_{\mathrm{s}}: \mathrm{Z}=\frac{0.37 * 6.94 * 3157}{5}=1621.3 \mathrm{Ib}$

$$
\begin{aligned}
& >\mathrm{K}_{1}=\frac{\sqrt{1+2 * 1^{2} *\left(1+0.99+0.99^{2}\right)+0.99^{2}+1^{2}}-(1 * 1.99)}{1+1}=0.412 \\
& >\mathrm{K}_{\mathbf{2}}=1.036 \\
& >\mathrm{K}_{\mathbf{3}}=1.036
\end{aligned}
$$

- Mode II: $\mathrm{Z}=\frac{0.412 * 6.94 * 0.37 * 3157}{4.5}=742 \mathrm{Ib}$
- Mode IIIm: $\mathrm{Z}=\frac{1.036 * 0.37 * 6.92 * 3157}{(2+1) * 4}=697.9 \mathrm{Ib}$
- Mode IIIs: $\mathrm{Z}=\frac{1.036 * 0.37 * 6.94 * 3157}{(2+1) * 4}=699.9 \mathrm{Ib}$
- Mode IV: $\mathrm{Z}=\frac{0.37^{2}}{4} * \sqrt{\frac{2 * 3157 * 45000}{3 * 2}}=235.521 \mathrm{Ib}$

Using the bearing length, mode IV still control and $Z 90=235.52 \mathrm{Ib}$
$\mathrm{Z}_{90 \text {-adj. }}=1.6 * 235=376 \mathrm{Ib}$
$\mathrm{V}_{\mathrm{y} \text {-max. }=}=2.186 \mathrm{KN} / \mathrm{m}^{\prime}=481 \mathrm{Ib} / \mathrm{m}^{\prime} \quad$ (From Analysis)
Spacing $=\frac{376}{481}=0.78 \mathrm{~m}=0.7 \mathrm{~m}$
Edge distance $=4 * 0.5=2 \mathrm{in} .=5 \mathrm{~cm}$
(According to NDS)
End distance $=0.45 \mathrm{~m}$

Technical Design Calculation Report

2. Wall intersection connection.

Im	600 lbs.
Is	4171 lbs.
II	1481 lbs.
IIIm	341 lbs.
IIIs	1628 lbs.
IV	365 lbs.

Adjusted ASD Capacity 341 lbs.

- Withdrawal force $=6.985 \mathrm{ken} / \mathrm{m}$ '
- Withdrawal capacity $=4.3 \mathrm{kN} /$ screw
- Number of screws ${ }_{w}=7 / 4.3=2$ screw $/ \mathrm{m}$,
- Lateral force $=2.1 \mathrm{kN} / \mathrm{m}^{\prime}$
- Lateral capacity $=1.55 \mathrm{kN} /$ screw
- Number of screws ${ }_{L}=2.1 / 1.55=2 \mathrm{screw} / \mathrm{m}$,

3. Floor to Wall connection.

Straining actions at connection From FE Analysis;-

Technical Design Calculation Report

$\mathrm{F} 1=1.2 \mathrm{kN} / \mathrm{m}$,
$\mathrm{F} 2=0.9 \mathrm{kN} / \mathrm{m}$,
F3 $=3.3 \mathrm{kN} / \mathrm{m}$ '
$\mathrm{F} 4=9.5 \mathrm{kN} / \mathrm{m}$ '
Connection capacity according to Simpson Strong Tie bracket design information:-

Model ID	Gauge	Dimensions (in.)			Fastener Schedule				Allowable Load (lbs.), $\mathrm{C}_{\mathrm{D}}=1.60$			
		W_{4}	W_{3}	1	Horizontal Leg		Vertical Leg		F_{1}	F_{2}	F_{3}	F_{4}
					Quantity	Type	Quantity	Type				
ABR9020	14	$33 / 4$	$3^{3} / 3$	$2^{3} / 30$	10	CNAAx60	10	CNA4×60	1085	780	1330	590
					10	SD10212	10	SD10212	1480	1200	1330	1010
ABR105	11	$4^{3} / 4$	$4{ }^{3} / 4$	$3^{4} / 38$	14	CNA4x60	10	CNA4*50	1350	835	2300	1020
					14	SD10212	10	S010212	1880	1235	2300	1475
AE116	11	3/40	$1^{1} / 4$	4 46	7	CNA4x60	18	CNA4×60	1720	1225	1550	650
					7	SD10212	18	SD10212	1850	1445	1850	1035

According to using ABR9020 bracket and Wall length is $4.5 \mathrm{~m}:-$
Bracket capacity $=2.68 \mathrm{kN}$
The Number of brackets $=9.5 / 2.86=4$ bracket

Technical Design Calculation Report

4- Wall to footing connection (shear resistance connection):-

- By using 6 brackets along the wall TITAN TCN240Angle Bracket along the wall.
- $\mathrm{L}_{\text {wall }}=16.5 \mathrm{~m}$

Straining actions at connection From FE Analysis;-

- $\mathrm{V}_{\text {wall }}=6.125 \mathrm{KN} / \mathrm{m}$ '
- $F_{\text {bracket }}=(16.5 / 6) \times 6.125=16.9 \mathrm{KN}$.

CONFIGURATION

- uncracked concrete
- fixing on concrete: VINYLPRO M12 x 130 (steel grade 5.8) anchors installed internally (IN)
- fixing on timber: LBS $\varnothing 5 \times 50$ screws

Technical Design Calculation Report

5- Wall to footing connection (pull through resistance connection):-

- By using 2 WHT540 Angle brackets (total nailing anchor M20washer WHTBS50L- LBA Nails) at the 2 ends of the wall
Straining actions at connection From FE Analysis;-
- $\mathrm{T}_{\text {wall }}=26.73 \mathrm{KN}=5880.6 \mathrm{Ib}$
pull through connection resistance:-
$\mathrm{G}=0.55$
$Z_{\text {timber }}=7066 \mathrm{Ib}$
$Z_{\text {steel }}=14253 \mathrm{Ib}$
Twall $<\left\{Z_{\text {timber }}=7066 \mathrm{Ib} ; \mathrm{Z}_{\text {steel }}=14253 \mathrm{Ib}\right\}$

WHT540

	CHARACTERISTIC VALUES								
	configuration	Holes Ø 6/32"			$z_{\text {timber }}$ [lbs]			$Z_{\text {steel }}$ [lbs]	
		type	$0 \times \mathrm{L}$ [in]	$\mathrm{n}_{\mathrm{v}}[\mathrm{pcs}]$	$\mathrm{G}=0.42$	$G=0.49$	$\mathrm{G}=0.55$	Washer	$z_{\text {stel }}$ [lbs]
F_{1}	- total nailing - anchor M20 - washer WHTBS50L	LBA Nails	$\begin{aligned} & 5 / 32^{\prime \prime} \times 15 / 8^{\prime \prime} \\ & 5 / 32^{\prime \prime} \times 23 / 8^{\prime \prime} \end{aligned}$	$\begin{array}{r} 45 \\ 45 \\ \hline \end{array}$	5738	6482	7086	WHTBS50L	14253
1					5738	6482	7086		
1		LBS Screws	$6 / 32^{\prime \prime} \times 15 / 8^{\prime \prime}$	45	4032	4556	4982		
\because		Lbs crews	$6 / 32^{\prime \prime} \times 2^{\prime \prime}$	45	4032	4556	4982		
		IBA Nails	$5 / 32^{\prime \prime} \times 15 / 8^{\prime \prime}$	27	3443	3889	4252		
	- partial nailing	LBANalls	$5 / 32^{\prime \prime} \times 23 / 8^{\prime \prime}$	27	3443	3889	4252	WHTBS50L	
	- washer WHTBS50L	LBS Screws	$6 / 32^{\prime \prime} \times 15 / 8^{\prime \prime}$	27	2419	2734	2989	WHibSSOL	14253
\because		LBSScrews	$6 / 32^{\prime \prime} \times 2^{\prime \prime}$	27	2419	2734	2989		
		IBA Nails	$5 / 32^{\prime \prime} \times 15 / 8^{\prime \prime}$	45	5738	6482	7086		
	- total naliing	LBANalis	$5 / 32^{\prime \prime} \times 23 / 8^{\prime \prime}$	45	5738	6482	7086	WHTBS50	14253
皿	-washer WHTBS50	LBS Screws	6/32"x15/8"	45	4032	4556	4982	Whibsso	14253
		LBS	$6 / 32^{\prime \prime} \times 2^{\prime \prime}$	45	4032	4556	4982		
		LBA Nails	$5 / 32^{\prime \prime} \times 15 / 8^{\prime \prime}$	27	3443	3889	4252		
	- partial naliing - anchor M16	LBANalis	$5 / 32^{\prime \prime} \times 23 / 8^{\prime \prime}$	27	3443	3889	4252	WHTBS50	14253
	- washer WHTBS50	IBS Screws	$6 / 32^{\prime \prime} \times 15 / 8{ }^{\prime \prime}$	27	2419	2734	2989	WHisso	14253
			$6 / 32$ " $\times 2^{\prime \prime}$	27	2419	2734	2989		

${ }^{(1)}$ Length obtainable from MGS threaded rods (to be cut to measure)

Technical Design Calculation Report

11.1.5 Foundations Design

Isolated Footing Design

Isolated footing is considered under columns by rebars Intensification under columns in distance (L) equal 145 cm

* Design of Isolated Footing

\star Project:

Concrete	$\mathrm{F}_{\mathrm{cu}}=$	250	$\mathrm{~kg} / \mathrm{cm}^{2}$
Steel	$\mathrm{Fg}_{\mathrm{g}}=$	3600	$\mathrm{~kg} / \mathrm{cm}^{2}$
Bearing capacity $\mathrm{q}_{\mathrm{al}}=$	1.20	$\mathrm{~kg} / \mathrm{cm}^{2}$	

Technical Design Calculation Report

Strip footing Design

11．2 Structural analysis results

11．2．1 Walls

Max shear stresses on CLT Interior walls

Project Navigator－Results
\square RF－LAMINATE Results

Panel		\times
Stresses for RC1 Tau－x＇y＇［psi］		
	$\begin{array}{lr} \text { Max : } & 68.5 \\ \text { Min : } & -159.8 \end{array}$	
	RF－LAMINATE	

ㅂ․ Select loading

탕 Select composition

Technical Design Calculation Report

Combination between Max．bending stresses＋Max．compression stresses on CLT Interior walls

Project Navigator－Results

ПR RF－LAMINATE Results
G－\square_{1} Select loading
（O）RC1
O 1 RC2
日回百 Select composition
O 1 ｜Floor
（๑） $2 \mid 2$｜nterior Walls
O $3 \mid$ Exterior Walls
O§4｜Floor（UnSafe）
曰回白 Select layer
（๑）Layer No． 1
O Layer No． 2
O Layer No． 3
O Layer No． 4
O Layer No． 5
－ Select layer side
© Top
O Middle
O Bottom
日回 Stresses
$O \sigma_{b, 0}$
$O \sigma_{b, 90}$
$O \sigma t / c, 0$
O－$\sigma t / c, 90$
（o）$\sigma b+t / c, 0$
O $\sigma_{b+t / c, 90}$
O® $\tau_{x^{\prime} y^{\prime}}$
O－Ratio－int $\left(\sigma t / c, 90+\tau y^{\prime}\right.$
O Ratio－$\sigma \mathrm{b}, 0$
Ratio－$\sigma b, 90$
O－Ratio－$\sigma t / c, 0$
O－Ratio－$\sigma t / c, 90$
OR Ratio－$\sigma \mathrm{b}+\mathrm{t} / \mathrm{c}, 0$
－O Ratio－$\sigma \mathrm{b}+\mathrm{t} / \mathrm{c}, 90$
O Ratio－$\tau_{x^{\prime} y^{\prime}}$
＋回 幽 Values on Surfaces

Technical Design Calculation Report

Max shear stresses on CLT Exterior walls

Project Navigator－Results
－

F回 ${ }^{2}$ ．Select loading （O）RC1 O 1 RC2
日回 Select composition O 1 ｜Floor O 212 ｜nterior Walls © 0 ｜Exterior Walls O 4 ｜Floor（UnSafe）
回 Select layer
（○）Layer No． 1
O Layer No． 2
O Layer No． 3
O Layer No． 4 O Layer No． 5 O Layer No． 6 O Layer No． 7
日回 Select layer side
© Top
O Middle
O Bottom
－回 \bigcirc Stresses
$O \sigma_{b, 0}$
$O \sigma_{b, 90}$
$O \sigma_{t / c, 0}$
$O \sigma_{t / c, 90}$
O－$\sigma_{b}+t / c, 0$ O－$\sigma b+t / c, 90$ （－）$\tau_{x^{\prime}} y^{\prime}$
O Ratio－int（ $\sigma \mathrm{t} / \mathrm{c}, 90+\tau \mathrm{y}^{\prime} z^{\prime}$
O－Ratio－$\sigma b, 0$
OR Ratio－$\sigma \mathrm{b}, 90$
OORatio－$\sigma t / c, 0$
Or Ratio $-\sigma_{t} / \mathrm{c}, 90$
OP Ratio $-\sigma_{b}+\mathrm{t} / \mathrm{c}, 0$
O Ratio $-\sigma_{b+t / c, 90}$

Technical Design Calculation Report

Combination between Max．bending stresses＋Max．compression stresses on CLT Interior walls

Project Navigator－Results

－
$\boxminus \square_{1}$ Select loading
（o）RC1
OL RC2
回 ${ }^{2}$ Select composition
O 1 ｜Floor
$02 \mid 2$｜nterior Walls
（๑） 3 ｜Exterior Walls
O4｜Floor（UnSafe）
回 Select layer
（○）Layer No． 1
O Layer No． 2
O Layer No． 3
O Layer No． 4
O Layer No． 5
O Layer No． 6
O Layer No． 7
日回 Select layer side
© Top
O Middle
O Bottom
日回 Stresses
Or σ b， 0
$O-\sigma$ ， 90
$O \sigma_{t / c, 0}$
$\bigcirc \sigma_{t / c, 90}$
（）$\sigma b+t / c, 0$
O－$\sigma b+t / c, 90$
Or $\tau_{x^{\prime} y^{\prime}}$
O Ratio－int（ $\sigma \mathrm{t} / \mathrm{c}, 90+\tau \mathrm{y}^{\prime} z$
O－Ratio－$\sigma_{b, 0}$
O Ratio－$\sigma \mathrm{b}, 90$
O－Ratio－$\sigma \mathrm{t} / \mathrm{c}, 0$
O－Ratio－$\sigma t / c, 90$
O Ratio $-\sigma \mathrm{b}+\mathrm{t} / \mathrm{c}, 0$
O－Ratio－$\sigma b+t / c, 90$

Technical Design Calculation Report

Max. Compression/Tension forces on CLT walls (x-direction)
(

Technical Design Calculation Report

Max. Compression/Tension forces on CLT walls (y-direction)

Technical Design Calculation Report

Max. Shear force on CLT walls (x-direction)
(

Technical Design Calculation Report

Max. Shear force on CLT walls (y-direction)
(

Technical Design Calculation Report

Max. Bending Moment on CLT walls (x-direction)

Technical Design Calculation Report

Max. Bending Moment on CLT walls (y-direction)
(

Technical Design Calculation Report

11．2．2 Floor
Max shear stresses on CLT Floors

Project Navigator－Results

Technical Design Calculation Report

Max shear stresses on CLT Floors

Project Navigator－Results
－RF－LAMINATE Results

回 Select loading
（o）RC1
O\＆RC2
ㅂ․ Select composition
0 O 1 ｜Floor
$0-2 \mid 2$｜interior Walls O－3｜Exterior Walls © 4 ｜Floor（UnSafe）
$\square \square$ Select layer
（）Layer No． 1
0 Layer No． 2
O Layer No． 3
O Layer No． 4
O Layer No． 5
O Layer No． 6
O Layer No． 7
日回 Select layer side
© \triangleq Top
O．Middle
O Bottom
回○ Stresses
$O \sigma_{b, 0}$
$O \sigma_{b}, 90$
$O \sigma_{t / c, 0}$
$O \sigma t / c, 90$
OO $\sigma b+t / c, 0$
$O \sigma_{b}+\mathrm{t} / \mathrm{c}, 90$
－（ $\tau_{x} y^{\prime}$
O Ratio－int（ $\sigma t / c, 90+\tau y^{\prime} z^{\prime}$
O－Ratio－$\sigma \mathrm{b}, 0$
Or Ratio－$\sigma \mathrm{b}, 90$
O Ratio $-\sigma t / c, 0$
O－Ratio $-\sigma t / c, 90$
O Ratio $-\sigma b+t / c, 0$
O Ratio－$\sigma b+t / c, 90$

Technical Design Calculation Report

Combination between Max．bending stresses＋Max．compression／tension stresses on CLT Floor

Project Navigator－Results

曰回 RF－LAMINATE Results
© \square_{1} Select loading
（O）RC1
OL RC2
回回 Select composition
（o） 1 ｜Floor
0 O 212 ｜interior Walls
O 3 ｜Exterior Walls
O§4｜Floor（UnSafe）
回 Select layer
© Layer No． 1
O Layer No． 2
O Layer No． 3
O－Layer No． 4
O Layer No． 5
－${ }^{\square}$ Select layer side
（）Top
O Middle
O Bottom
日回 \ominus Stresses
$O \sigma_{b, 0}$
$O \sigma_{b, 90}$
$O \odot \sigma_{t / c, 0}$
$\bigcirc \sigma t / c, 90$
（0）$\sigma b+t / c, 0$
OO $\sigma_{\mathrm{b}+\mathrm{t} / \mathrm{c}, 90}$
OP $\tau_{x^{\prime} y^{\prime}}$
OP Ratio－int $\left(\sigma t / c, 90+\tau y^{\prime} z\right.$
O－Ratio－$\sigma b, 0$
OPRatio－$\sigma b, 90$
O－Ratio $-\sigma t / c, 0$
OR Ratio－$\sigma \mathrm{t} / \mathrm{c}, 90$
Ratio $-\sigma b+t / c, 0$
Oヤ Ratio $-\sigma_{b}+t / c, 90$
O Ratio－$\tau_{x^{\prime} y^{\prime}}$
＋－龱 Values on Surfaces

Technical Design Calculation Report

Combination between Max．bending stresses＋Max．compression／tension stresses on CLT Floor

Project Navigator－Results

Panel		x
Stresses for RC1 Sigma－b＋tic，0［psi］		
\square	RF－LAMINATE	

ㅂ․ Select loading
© 1 RC1
O\＆RC2
Select composition
O气 1 ｜Floor
O§ 212 ｜interior Walls
O－3｜Exterior Walls
（๑） 4 ｜Floor（UnSafe）
－\square^{\square} Select layer
© Layer No． 1
O Layer No． 2
O Layer No． 3
O －Layer No． 4
O－Layer No． 5 O Layer No． 6 O Layer No． 7
日回 Select layer side
© Top
O Middle
O Bottom
E回 Stresses
Or σ b，0
Ob，90
$O \quad \sigma t / c, 0$
OO $\sigma t / c, 90$
（）$\sigma_{b}+\mathrm{t} / \mathrm{c}, 0$
O－$\sigma b+t / c, 90$
$O \tau_{x^{\prime} y^{\prime}}$
O Ratio－int（ $\sigma \mathrm{t} / \mathrm{c}, 90+\tau \mathrm{y}^{\prime} z$
O－Ratio－$\sigma b, 0$
ORATio－$\sigma \mathrm{b}, 90$
O－Ratio－$\sigma t / c, 0$
O－Ratio－$\sigma t / c, 90$
OR Ratio $-\sigma_{b}+t / c, 0$
O Ratio $-\sigma_{b}+t / c, 90$

Max．bending stresses on CLT Floor

Project Navigator－Results

G回 Select loading
O）RC1
－OL RC2
日回 Select composition
－ $1 \mid$ Floor
$0 \cong 2 \mid 2$｜interior Walls
．－O 3 ｜Exterior Walls
O§4｜Floor（UnSafe）
回 Select layer
（๑）Layer No． 1
O－Layer No． 2
O Layer No． 3
O Layer No． 4
O Layer No． 5
日回 Select layer side
© Top
O Middle
O Bottom
日回 Stresses
○○ σ b， 0
$O \sigma_{b, 90}$
$O \sigma t / c, 0$
Ob $\sigma t / c, 90$
$O \quad \sigma b+t / c, 0$
OO $\sigma_{b+t / c, 90}$
$0 \tau_{x^{\prime} y^{\prime}}$
OP Ratio－int $\left(\sigma t / c, 90+\tau^{\prime} y^{\prime} z\right.$
OP Ratio－$\sigma \mathrm{b}, 0$
O Ratio－$\sigma b, 90$
OPRatio $-\sigma t / c, 0$
OP Ratio－$\sigma t / c, 90$
Ratio－$\sigma b+t / c, 0$
O Ratio $-\sigma b+t / c, 90$
$\xrightarrow{\circ}$ Ratio－$\tau_{x^{\prime} y^{\prime}}$
（1）国 Values on Surfaces

Technical Design Calculation Report

Max．bending stresses on CLT Floor

Project Navigator－Results

－ OL RC1
O．RC2
回 Select composition
O－1｜Floor
$0-2 \mid 2$｜nterior Walls
O＠3｜Exterior Walls
© $\bigoplus 4$｜Floor（UnSafe）
－
（๑）Layer No． 1
O Layer No． 2
O Layer No． 3
0 Layer No． 4
O－Layer No． 5
O Layer No． 6
O Layer No． 7
日回 Select layer side
（○）Top
O Middle
O Bottom
－回 Stresses
（o）$\sigma_{b, 0}$
$O \sigma_{b, 90}$
$O \sigma_{t / c, 0}$
OO $\sigma t / c, 90$
$0-\sigma b+t / c, 0$
O－$\sigma_{b+t / c, 90}$
$O \tau_{x^{\prime} y^{\prime}}$
Ratio－int $\left(\sigma t / c, 90+\tau y^{\prime} z\right.$
\bigcirc Ratio－$\sigma b, 0$
O Ratio－$\sigma b, 90$
O－Ratio－$\sigma t / c, 0$
O－Ratio－$\sigma t / c, 90$
O Ratio $-\sigma_{b}+t / c, 0$
O Ratio $-\sigma b+t / c, 90$

Technical Design Calculation Report

Max．compression／tension stresses on CLT Floor

Project Navigator－Results
RF－LAMINATE Results
ㅁ．Select loading
（O）RC1
OL RC2
回 Select composition
（O） 1 ｜Floor
0212 Interior Walls
O§3｜Exterior Walls
O O_{1} Floor（UnSafe）
回 Select layer
－${ }^{\circ}$ Layer No． 1
O Layer No． 2
O Layer No． 3
O Layer No． 4
O Layer No． 5
ㅂ Select layer side
（o）Top
O Middle
O Bottom
日回 Stresses
$O \bigcirc \sigma_{b, 0}$ $O \sigma_{b, 90}$ －時 $/ \mathrm{c}, 0$ $O \sigma_{t / c, 90}$ O $\sigma \mathrm{b}+\mathrm{t} / \mathrm{c}, 0$ $O \sigma_{b+t / c, 90}$ O－$\tau_{x^{\prime} y^{\prime}}$ O－Ratio－int $\left(\sigma t / c, 90+\tau^{\prime}\right.$ OR Ratio－$\sigma b, 0$ O）Ratio－$\sigma \mathrm{b}, 90$ OPRatio－$\sigma t / c, 0$ \bigcirc Ratio－$\sigma t / c, 90$ OR Ratio－$\sigma \mathrm{b}+\mathrm{t} / \mathrm{c}, 0$ OP Ratio $-\sigma b+t / c, 90$ OP Ratio－$\tau_{x^{\prime} y}$
＋ 龱 Values on Surfaces

Technical Design Calculation Report

Max．compression／tension stresses on CLT Floor

Project Navigator－Results

H \square_{1} Select loading
OL RC1
O．RC2
빙 Select composition
O－ 1 ｜Floor
$0-2 \mid 2$｜nterior Walls
O气3｜Exterior Walls
© $\ominus 4$｜Floor（UnSafe）
回 Select layer
（๑）Layer No． 1
O Layer No． 2
O Layer No． 3
0 Layer No． 4
O Layer No． 5
O Layer No． 6
O Layer No． 7
日回 Select layer side
（－）Top
O Middle
O Bottom
E日 Stresses
$O \sigma_{b, 0}$
Ob，90
（0）$\sigma t / c, 0$
OO $\sigma t / c, 90$
O－$\sigma \mathrm{b}+\mathrm{t} / \mathrm{c}, 0$
O－$\sigma_{b+t / c, 90}$
$O \tau_{x^{\prime} y^{\prime}}$
Ratio－int（ $\sigma t / \mathrm{c}, 90+\tau y^{\prime} z^{\prime}$
\bigcirc Ratio－$\sigma b, 0$
O○ Ratio－$\sigma b, 90$
O－Ratio－$\sigma t / c, 0$
O－Ratio－$\sigma t / c, 90$
O Ratio $-\sigma_{b}+t / c, 0$
O Ratio $-\sigma b+t / c, 90$

Technical Design Calculation Report

Max. Bending Moment on CLT Floor (x-direction)

Panel		\times
Basic Internal Forces m_{x} [KNmim]		
	$\begin{aligned} & \text { Max : } \\ & \text { Min }:-16.388 \\ & \hline \end{aligned}$	

Technical Design Calculation Report

Max. Bending Moment on CLT Floor (y-direction)

Panel		x
Basic Internal Forces my [kNimim]		
	$\begin{aligned} & \text { Max : } 5.236 \\ & \text { Min : }-2.995 \end{aligned}$	

Project Navigator - Results

Max. Shear force on CLT Floor (x-direction)

Project Navigator - Results

Technical Design Calculation Report

Max. Shear force on CLT Floor (y-direction)

Technical Design Calculation Report

Max. Compression/Tension forces on CLT Floor (x-direction)

Technical Design Calculation Report

Max. Compression/Tension forces on CLT Floor (y-direction)

Max. Deflection on CLT Floor

Technical Design Calculation Report

Max. Deflection on CLT Floor

Project Navigator - Results

Panel
Displacements for RC2
U-z [in]
R

\square RF-LAMINATE Results
回 Select loading O\& RC1
(1) RC2

Select composition
O-1| Floor
$0 \cong 2 \mid 2$ |nterior Walls
O§3| Exterior Walls
© 9 | Floor (UnSafe)
—回 Select layer
© Layer No. 1
O Layer No. 2
O Layer No. 3
$\mathrm{O}=$ Layer No. 4
O Layer No. 5 O Layer No. 6 O Layer No. 7

- Select layer side
© ©
O Middle
O Bottom
- \square D Displacements
-() uz
Or Ratio - uz
(I) Values on Surfaces

Technical Design Calculation Report

11.2.3 LVL Beams

Max. Bending moment on LVL Grid Beams (y-direction)

Technical Design Calculation Report

Max. Shear forces on LVL Grid Beams (z-direction)

Technical Design Calculation Report

Max. Normal forces on LVL Grid Beams

Technical Design Calculation Report

Max. Deflection on LVL Grid Beams

Technical Design Calculation Report

Max. Bending Moment on LVL Beams (z-direction)

Technical Design Calculation Report

Max. Bending Moment on LVL Beams (y-direction)

Technical Design Calculation Report

Max. Bending Moment on LVL Beams (x-direction)

Technical Design Calculation Report

Max. Shear forces on LVL Beams (z-direction)

Technical Design Calculation Report

Max. Shear forces on LVL Beams (y-direction)

Technical Design Calculation Report

Max. Normal forces on LVL Beams

Technical Design Calculation Report

Max. Defection on LVL Beams (z-direction)

Technical Design Calculation Report

Max. Defection on LVL Beams (y-direction)

Max. Defection on LVL Beams (x-direction)

11.2.4 Glulam Columns

Max. Normal forces on GLULAM Columns

Technical Design Calculation Report

11.2.5 Foundations

Line support Reactions

TECHNICAL DESIGN CALCULATION REPORT

Egyptian Aquatic Centre

Part 2

Technical Design Calculation Report

Abstract

Masonry structures have been used in ancient Egypt in many monuments like temples, pyramids and sphynx; thus, masonry structures expresses Egyptian civilization. Masonry structures expresses also the greatness of other civilization in Architecture like Romanian civilization with coliseum. One of important types of masonry is stone. Stone is a very strong material, durable, resistance to weather conditions, fire and insects proof. Stone considered also as eco-friendly material. Based on the concept of mixing between ancient Egyptian civilization and modern design solution and to achieve the sustainability, Egyptian Aquatic Centre is proposed in Aswan province. The centre contains two Olympic swimming pools, diving platform and masonry amphitheater.

Egyptian Aquatic Centre Short Course Pool

Technical Design Calculation Report

I. Design codes and standards

1- ECP (203-2018)
Egyptian Code of Practice for Design and Construction of Concrete Structures.

2- ECP (201-2010)
Egyptian Code for Loading on Buildings.

3- FINA FACILITIES RULES (2017-2021)

International Swimming Federation.

Technical Design Calculation Report

1. INTRODUCTION

The concept for structural design focuses on satisfying both the functional and the economic requirements of the building without jeopardizing its aesthetic and architectural features. This Calculation Report presents the structural engineering aspect of the works due for the development construction work of Egypt Aquatic Centre.

Figure 1-1 Short Course Pool location

2. Pool Drawings Details

Figure 2-1 Pool Plan

Figure 2-2 HZ Section

Technical Design Calculation Report

Figure 2-3 VL Section 1

Figure 2-4 VL Section 2

Technical Design Calculation Report

Figure 2-5 VL Section 3

Technical Design Calculation Report

Figure 2-6 3d wall to slab joint RFT

3. Calculation Software Used

Calculation software features

The software used is RFEM, developed by DLUBAL COMPANY (Germany).
Technical specifications
Name: RFEM
Version: $\quad 5.22 .03$

Producer:
DLUBAL
www.dlubal.com

License registered is a student license

4. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES

REINFORCED CONCRETE

The grade of concrete will be according to the Egyptian Code of Practice (ECP). The grade of concrete is indicated in two numbers, the first one indicate the characteristic cube strength in $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ while the second one indicates the maximum nominal size of the aggregate in (mm) to be used;

Grade (20/20) for plain concrete of foundations of thickness $<12 \mathrm{~cm}$.
Grade (20/40) for plain concrete of foundations of thickness $>12 \mathrm{~cm}$
Grade (30/20) for all pool reinforced concrete elements.
Minimum thickness of blinding concrete is 100 mm .
Concrete cover is the concrete thickness to all steel reinforcement including links:
For all concrete (with protection) in contact with soil, cover shall be 70 mm (or as will be recommended in the geotechnical report)
For all concrete elements above grade where concrete is protected from weathering, cover shall be 50 mm for beams and 25 mm for slabs and walls.

- SLUMP VALUES

The following values are according to the Egyptian code of practice ECP 203-2018 section (2-$3-1-2$), Table (2-5).

Type of Structural Element	Type of Compaction	Slump-in mm (max.)
Massive concrete	Mechanical	$25-50$
- Concrete foundation. - Concrete sections with low reinforcement ratio ($<80 \mathrm{~kg} / \mathrm{m}^{3}$)	Mechanical	$50-75$
Concrete sections with medium and high reinforcement ratio $\left(80-150 \mathrm{~kg} / \mathrm{m}^{3}\right)$	Mechanical/ Manual	$75-125$
Concrete sections with very high reinforcement ratio $\left(>150 \mathrm{~kg} / \mathrm{m}^{3}\right)$	Light compaction	$125-150^{* *}$
Deep foundation	Light compaction	$125-200^{* *}$

** By using chemical additives.

REINFORCING STEEL

All reinforcing steel shall be complying with the Egyptian code of practice ECP203-2018, section 2-2-5-3, Table 2-4.

Reinforcing steel bars shall be uncoated high yield deformed bars of characteristic strength $360 \mathrm{~N} / \mathrm{mm}^{2}$.
Uncoated mild steel plain bars with characteristic strength $280 \mathrm{~N} / \mathrm{mm}^{2}$ may be used for links and binders.

Technical Design Calculation Report

Type	Grade	Yield Strength, f_{y} $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Normal mild steel	$280 / 450$	280
High grade steel	$360 / 520$	360
Cold formed welded mesh	$450 / 520$	450

Note: Bar size increment $=6,8,10,12,16,18,20,22,25,28$ and 32

5. Calculation method and numerical model

5.1 Model Description

5.1.1 Hypothesis adopted for the elements

- Based on the pool dimension to it's height ratio, the pool considered as rested on rigid foundation; thus we can assume uniform stress distribution under it.

Figure 5.1 stress distribution under pool

- To achieve economy in design and logical concrete dimensions, the counterforts are modeled every 5 meter and a horizontal beam at the top of the pool. The horizontal beam converts the cantilever action of the wall into simply supported action, That can reduce the straining actions values in vertical direction of the wall. The counterforts lead a percentage of the wall loads to transfer in the horizontal direction depend on elastic analysis of plates (Grashoff's values).

Figure 5.2 Loads distribution on the wall in x and y directions

Technical Design Calculation Report

- From economy point of view, the bilinear variable thickness in walls and raft are modeled as shown in fig. 5.3.

Figure 5.3 color scale of thicknesses in panels

- For simplicity, the soil is modeled as springs following this equation:

Soil bearing capacity $=1 \mathrm{~cm}{ }^{*} K_{\text {spring }}$

Technical Design Calculation Report

6. Actions and design loads

6.1 STRUCTURAL LOADS

The following loads are considered in the design:
Structural Dead Loads which include:
The own weight of the structural elements, beams, raft and walls.
Superimposed dead load from water and soil weights.
Live loads which cover the weight and movement of equipment and people on the sides of the pool (surcharge).
The basis for the considered design loads are summarized in the followings sections.

Dead Loads

Unit weight of concrete elements $\quad 25.0 \mathrm{kN} / \mathrm{m}^{3}$

Live Loads

Live loads are considered equal to $30 \mathrm{kN} / \mathrm{m}^{2}$ effect on the sides of the pool as a surcharge.

Earthquakes

from experience of prof. Eehab Khalil, the earthquake effect on pool is taken as increase by 15% of load combinations factors.

The following tables describe the load cases and load combinations on the pool:

Table 1, Load cases

Load	Load Case	No Standard	Self-Weight - Factor in Direction			
Case	Description	Action Category	Active	X	Y	Z
LC1	Live load	Live	\square			
LC2	Floor-Cover	Dead	\square			
LC3	Water-Weight	Fluids - Well-defined	\square			
LC4	Water-Pressure	Fluids - Well-defined	\square			
LC5	Earth-Pressure	Lateral Earth Pressure	\square			
LC6	Soil Weight	Dead	\square			

Table 2, Load combinations

Technical Design Calculation Report

6.2 Calculations of water and earth pressure.
6.2.1 water pressure.

$\gamma_{\text {water }}=10 \mathrm{KN} / \mathrm{m}^{3}$
Height $=7 \mathrm{~m}$
$W . P=10 * 7=70 \mathrm{KN} / \mathrm{m}^{2}$
6.2.2 Earth pressure. $\rightarrow E . P_{1}=1 / 3 * 30=10 \mathrm{KN} / \mathrm{m}^{2}$
$E . P_{2}=1 / 3 * 18 * 1=6 \mathrm{KN} / \mathrm{m}^{2}$

$\gamma_{\text {water }}=10 \mathrm{KN} / \mathrm{m}^{3}$
$\gamma_{\text {soil }}=18 \mathrm{KN} / \mathrm{m}^{3}$
$K a=1 / 3$
Height= 7 m
$W . P=10^{*} 6=60 \mathrm{KN} / \mathrm{m}^{2}$
E. $P_{3}=1 / 3 * 8 * 6+6=22 \mathrm{KN} / \mathrm{m}^{2}$

6.3 CRACKING

It will be calculated as stated in the "ECP 203-2018 - section 4-3-2" for the following maximum design crack width:

- 0.15 mm for water-side exposure.

Technical Design Calculation Report
7. STRUCTURAL ANALYSIS

7.1 3d-model

Technical Design Calculation Report

7.2 ASSIGN OF LOADS

Figure 8.1.: Assign of Finishing Loads on the pool's raft (KN-M ${ }^{2}$ Units)

Technical Design Calculation Report

Figure 8.2.: Assign of Water weight on the pool's raft (KN-M ${ }^{2}$ Units)

Figure 8.3.: Assign of Soil weight on the pool's raft (KN-M² Units)

Figure 8.4.: Assign of Surcharge Load on the pool's HZ-Beams (KN-M ${ }^{2}$ Units)

Technical Design Calculation Report

Figure 8.5.: Assign of Water on the pool's walls (KN-M² Units)

Figure 8.6.: Assign of Soil Pressure on the pool's walls (KN-M ${ }^{2}$ Units)

Technical Design Calculation Report

8. STRUCTURAL DESIGN

8.1 Checks.

8.1.1 Bearing Capacity.

- From RFEM model, the maximum soil reaction equal 40664 KN when the tank is full (Testing case), as shown in Fig. 8.1.
- The maximum stress distributed under soil $=\frac{40664 / 10}{29.8 * 24.8}=5.5 \mathrm{t} / \mathrm{m} 2<15 \mathrm{t} / \mathrm{m}^{2}$

Figure 8.1: Soil Reaction under the pool, Testing case (KN)

8.1.2 Uplift.

- From RFEM model, the maximum soil reaction equal 35034 KN when the tank is empty (Maintenance case), as shown in Fig. 7.2.
- \quad The maximum stress distributed under soil $=\frac{35034 / 10}{24.8 * 29.8}=4.74 \mathrm{t} / \mathrm{m}^{2}>1.5$

Technical Design Calculation Report

Figure 8.2: Soil Reaction under the pool, Maintenance case (KN)

8.1 Analysis

8.1.1 Analysis results as contour range

> Maintenance Case.

Figure 8.3: Deformations of pool's panels (mm).

Technical Design Calculation Report

Figure 8.4: Bending Moment in x-direction (short direction) (KN-M).

Figure 8.5: Normal Force in x-direction (short direction) (KN).

Technical Design Calculation Report

Figure 8.6: Bending moment in y-direction (long direction) (KN-M)

Figure 8.7: Normal Force in y-direction (long direction) (KN).

Technical Design Calculation Report

> Working Case.

Figure 8.8: Deformations of pool's panels (mm).

Figure 8.9: Bending Moment in x-direction (short direction) (KN-M).

Technical Design Calculation Report

Figure 8.10: Normal Force in x-direction (short direction) (KN).

Figure 8.11: Bending moment in y-direction (long direction) (KN-M)

Technical Design Calculation Report

Figure 8.12: Normal Force in y-direction (long direction) (KN).

8.1.2 Analysis results as sections.

Figure 8.13: Sections through the pool.

Technical Design Calculation Report

Maintenance Case.

- Section 1-1.

Figure 8.14: Bending moments and Normal forces through section 1-1 ($\mathrm{Mx}, \mathrm{Nx}, \mathrm{My}, \mathrm{Ny}$)..

- Section 2-2.

Figure 8.15: Bending moments and Normal forces through section 2-2 ($\mathrm{Mx}, \mathrm{Nx}, \mathrm{My}, \mathrm{Ny}$).

Technical Design Calculation Report

- Section 3-3.

Figure 8.16: Bending moments and Normal forces through section 3-3 ($\mathrm{Mx}, \mathrm{Nx}, \mathrm{My}, \mathrm{Ny}$).

> Working Case.

- Section 1-1.

Figure 8.17: Bending moments and Normal forces through section 1-1 ($\mathrm{Mx}, \mathrm{Nx}, \mathrm{My}, \mathrm{Ny}$)..

Technical Design Calculation Report

- Section 2-2.

Figure 8.18: Bending moments and Normal forces through section 2-2 ($\mathrm{Mx}, \mathrm{Nx}, \mathrm{My}, \mathrm{Ny}$).

- Section 3-3.

Figure 8.19: Bending moments and Normal forces through section 3-3 (Mx,Nx,My,Ny).

Technical Design Calculation Report

8.2 Design.

8.2.1 Design of Surfaces.

8.2.1.1 Concrete Dimensions.

Technical Design Calculation Report

Technical Design Calculation Report

8.2.1.2 RFT Calculations.

$>$ Required Reinforcement areas as contour range.

- External and Top Required Reinforcement.

Technical Design Calculation Report

- Internal and Bottom Required Reinforcement.

Technical Design Calculation Report

Required Reinforcement areas as sections.

Figure 8.20: Sections through the pool.

- Section 1.

rf-Concrete Surfaces CA1-Reinforced concreve design

CA1-Reinbrced concree design
Longitudinal Reirforcement -

- Section 2.
 Longitudinal Reirforcement-
as, $1,-\mathrm{z}$ (lop)

CA1 - Reinbrced concree desi

Technical Design Calculation Report

- Section 3.
 Longitudinal Reirforcement

CA1 - Reinioced cicreb desi

Longitudinal Reirforcement
ass,1,z (botom)
$\left.\right\|^{x}$
$x=1,2 \times 2$ bitum)

\& $81 .+2$ (tootum)		
	[m]	[mm^{2} m]
max	90.000	2400.000
min		

rF-CONCREIE Surfaces
CA1 - Reintriced concrev design
Longitudinal Reinforcement

		1mm
	[${ }^{\text {m }}$	[mm2m]
max	90.000	2400.000
min		

> Additional Reinforcement areas.

- By assume using 7 T 22/m' and 7 T 12/m' as external and top reinforcement as shown in Fig. 8.21, the additional reinforcement will follow the values shown in Fig. 8.22.

Figure 8.21: Provided Reinforcement Areas.

Technical Design Calculation Report

Figure 8.22: Required Additional Reinforcement Areas (External \& Top).

- By assume using 7 T 18/m' and 7 T 12/m' as external and top reinforcement as shown in Fig. 8.23, the additional reinforcement will follow the values shown in Fig. 8.24.

Figure 8.24: Provided Reinforcement Areas.

Technical Design Calculation Report

Figure 8.24: Required Additional Reinforcement Areas (External \& Top).

- By assume using 7 T 18/m' and 7 T 12/m' as Internal and Bottom reinforcement as shown in Fig. 8.21, the additional reinforcement will follow the values shown in Fig. 8.25.

Figure 8.25: Required Additional Reinforcement Areas (Internal \& Bottom).

Technical Design Calculation Report

- By assume using 7 T $18 / \mathrm{m}^{\prime}$ and $7 \mathrm{~T} 12 / \mathrm{m}^{\prime}$ as Internal and Bottom reinforcement as shown in Fig. 8.23, the additional reinforcement will follow the values shown in Fig. 8.26.

Figure 8.26 Required Additional Reinforcement Areas (Internal \& Bottom).

Note That: For economic purposes, some of assumed reinforcement areas are reduced as shown in section 2.

Technical Design Calculation Report

8.2.2 Design of Horizontal Beams.

8.2.2.1 Design of As_{1}.

- The Reinforcement A_{51} should resist The horizontal bending moment (Mz) and the Normal force (N) generated from Testing case as shown in Fig. 8.27 and Fig. 8.28.

Figure 8.27: Bending Moment in z-direction.

Technical Design Calculation Report

Figure 8.27: Normal Force.

* Design of Water Section

${ }^{*}$ Project :
Egyptian Aquatic Centre

Concrete $\mathrm{f}_{\mathrm{cu}}=$	30	MPa
Concrete $\mathrm{f}_{\mathrm{ctr}}=$	3.3	MPa
Steel $\quad \mathrm{f}_{\mathrm{y}}=$	350	MPa

Working Moment Sec. $\mathbf{M}_{\mathbf{w}}(\mathbf{k N} . \mathrm{m})$		Normal Force $\mathbf{N}_{\mathbf{w}}(\mathbf{k N})$	
$\mathbf{1}$	60.55	-212	Compression

Dims of sec:	b (mm)	$t(\mathrm{~mm})$	$\mathrm{f}_{\text {ct }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		
	250	1000	2.3		
Properties of sec:	$t_{v}(\mathrm{~mm})$	$\mathrm{f}_{\text {ct all }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	Safe		
	1584	2.3			
Design of sec:	d (mm)	C1	As ${ }_{\text {calc }}$	$\boldsymbol{A s} s_{\text {min }}$	As (mm^{2})
	670	$9.57 \quad 0.826$	1235	750	1235

use:
6
18
$\beta_{\mathrm{cr}}=0.85$

Technical Design Calculation Report

* Design of Water Section

* Project : Egyptian Aquatic Centre

Concrete $\mathrm{f}_{\mathrm{cu}}=$	30	MPa
Concrete $\mathrm{f}_{\mathrm{ctr}}=$	3.3	MPa
Steel $\mathrm{f}_{\mathrm{y}}=$	350	MPa

8.2.2.2 Design of $\mathbf{A}_{\mathbf{s} 2}$

- The Reinforcement $\mathrm{A}_{\mathrm{s} 1}$ should resist The horizontal bending moment (Mz) and the Normal force (N) generated from Maintenance case as shown in Fig. 8.29 and Fig. 8.30.

Technical Design Calculation Report

Figure 8.29: Bending Moment in z-direction (KN.m)

Technical Design Calculation Report

Figure 8.30: Normal Force (KN)

* Design of Water Section

* Project :

Egyptian Aquatic Centre

Concrete $\mathrm{f}_{\mathrm{cu}}=$	30	MPa
Concrete $\mathrm{f}_{\mathrm{ctr}}=$	3.3	MPa
Steel $\quad \mathrm{f}_{\mathrm{y}}=$	350	MPa

Working Moment Sec. $\mathbf{M}_{\mathbf{w}}(\mathbf{k N} . \mathrm{m})$	Normal Force $\mathbf{N}_{\mathbf{w}}(\mathbf{k N})$		
$\mathbf{1}$	30.5	91	Tension

Dims of sec:	$\mathbf{b}(\mathrm{mm}) \mathbf{t}(\mathrm{mm})$	$\boldsymbol{f}_{\text {ct }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
250	1000	1.1

use: \quad| | 3 | ϕ | 18 | $\beta_{\text {or }}=0.85$ |
| :--- | :--- | :--- | :--- | :--- |

Technical Design Calculation Report

* Design of Water Section

*Project :

| Concrete $\mathrm{f}_{\mathrm{cu}}=$ | 30 | MPa |
| :--- | :--- | :--- | :--- |
| Concrete $\mathrm{f}_{\mathrm{ctr}}=$ | 3.3 | MPa |
| Steel $\mathrm{f}_{\mathrm{y}}=$ | 350 | MPa |

$3 \quad \phi \quad 18$
$\beta_{\mathrm{cr}}=0.85$

Technical Design Calculation Report

8.2.2.3 Design of $\boldsymbol{A}_{\mathrm{s} 3}$ \& Stirrups.

- The Reinforcement $A_{s 3}$ and the stirrups should resist The Torsional moment $\left(M_{T}\right)$ and the Shear forces $\left(\mathrm{V}_{\mathrm{y}} \& \mathrm{~V}_{\mathrm{z}}\right)$ generated from Maintenance case as shown in Fig. 8.31, Fig. 8.32. and Fig. 8.33.

Figure 8.31: Torsional Moment (KN.m).

Figure 8.32: Shear Forces in y-direction (KN).

Figure 8.33: Shear Forces in z-direction (KN)

* Design for Torsion

${ }^{*}$ Project: Egyptian Aquatic Centre

Concrete	$\mathrm{f}_{\mathrm{au}}=$	30	MPa
Stirrups	$\mathrm{f}_{\mathrm{y}}=$	240	MPa
Horizontal bars $\mathrm{f}_{\mathrm{y}}=$	350	MPa	

Egyptian Aquatic Centre Long Course Pool

I. Design codes and standards

5- ECP (203-2018)

Egyptian Code of Practice for Design and Construction of Concrete Structures.

6- ECP (201-2010)
Egyptian Code for Loading on Buildings.

7- FINA FACILITIES RULES (2017-2021)
International Swimming Federation.

Technical Design Calculation Report

1.INTRODUCTION

The concept for structural design focuses on satisfying both the functional and the economic requirements of the building without jeopardizing its aesthetic and architectural features. This Calculation Report presents the structural engineering aspect of the works due for the development construction work of Egyptain Aquatic Centre.

Figure 1-2 Long Course Pool location

Technical Design Calculation Report

2. Pool Drawings Details

Figure 2-1 Pool Plan

Technical Design Calculation Report

Figure 2-2 HZ Section (Detail)

Technical Design Calculation Report

Figure 2-3 VL Sections (Detail)

Technical Design Calculation Report

Figure 2-4 Pool's Sections

Technical Design Calculation Report

Figure 2-5 3d wall to slab joint RFT

Figure 2-6 3d wall to slab joint RFT

Technical Design Calculation Report

3. Calculation Software Used

Calculation software features

The software used is SAP2000, developed by Computer \& Structures (United States).
Technical specifications
Name: Sap2000
Version: 14.2.2

Producer:
Computer\&Structures
https://www.csiamerica.com/

4. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES

REINFORCED CONCRETE.

The grade of concrete will be according to the Egyptian Code of Practice (ECP). The grade of concrete is indicated in two numbers, the first one indicate the characteristic cube strength in $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ while the second one indicates the maximum nominal size of the aggregate in (mm) to be used;

Grade (20/20) for plain concrete of foundations of thickness < 12 cm .
Grade (20/40) for plain concrete of foundations of thickness $>12 \mathrm{~cm}$
Grade (30/20) for all pool reinforced concrete elements.
Minimum thickness of blinding concrete is 100 mm .
Concrete cover is the concrete thickness to all steel reinforcement including links:
For all concrete (with protection) in contact with soil, cover shall be 70 mm (or as will be recommended in the geotechnical report)

For all concrete elements above grade where concrete is protected from weathering, cover shall be 50 mm for beams and 25 mm for slabs and walls.

- SLUMP VALUES.

The following values are according to the Egyptian code of practice ECP 203-2018 section (2-3-1-2), Table (2-5).

Type of Structural Element	Type of Compaction	Slump-in mm (max.)
Massive concrete	Mechanical	$25-50$
- Concrete foundation. - Concrete sections with low reinforcement ratio $\left(<80 \mathrm{~kg} / \mathrm{m}^{3}\right)$	Mechanical	$50-75$
Concrete sections with medium and high reinforcement ratio $\left(80-150 \mathrm{~kg} / \mathrm{m}^{3}\right)$	Mechanical/ Manual	$75-125$
Concrete sections with very high reinforcement ratio $\left(>150 \mathrm{~kg} / \mathrm{m}^{3}\right)$	Light compaction	$125-150^{* *}$
Deep foundation	Light compaction	$125-200^{* *}$

** By using chemical additives.
REINFORCING STEEL
All reinforcing steel shall be complying with the Egyptian code of practice ECP203-2018, section 2-2-5-3, Table 2-4.
Reinforcing steel bars shall be uncoated high yield deformed bars of characteristic strength $360 \mathrm{~N} / \mathrm{mm}^{2}$.
Uncoated mild steel plain bars with characteristic strength $280 \mathrm{~N} / \mathrm{mm}^{2}$ may be used for links and binders.

Technical Design Calculation Report

Type	Grade	Yield Strength, f_{y} $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Normal mild steel	$280 / 450$	280
High grade steel	$360 / 520$	360
Cold formed welded mesh	$450 / 520$	450

Note: Bar size increment $=6,8,10,12,16,18,20,22,25,28$ and 32

Technical Design Calculation Report

5. Calculation method and numerical model

5.1 Model Description

5.1.1 Hypothesis adopted for the elements

- Based on the pool dimension to it's height ratio, the pool considered as rested on elastic foundation; thus we can assume nonuniformity in stress distribution under it.

Figure 5.1 stress distribution under pool

Technical Design Calculation Report

- For simplicity, the soil is modeled as springs following this equation:

Soil bearing capacity $=1 \mathrm{~cm} * K_{\text {spring }}$

Object Model - Point Information
Location Assignments Loads
Identification
Label 2539

Constraints	None
Restraint	None
Local Axes	Default
Springs	
Coordinate System	Local
U1	10.
U2	10
U3	375.
Masses	None
Panel Zone	None
Joint Patterns	None
Group	ALL
Generalized Displs	None
RS Named Sets	None
Plot Functions	None
Merge Number	0

$$
\text { Tonf, m, C } \quad=
$$

Reset All

Technical Design Calculation Report

6. Actions and design loads

6.1 STRUCTURAL LOADS.

The following loads are considered in the design:
Structural Dead Loads which include:
The own weight of the structural elements, beams, raft and walls.
Superimposed dead load from water and soil weights.
Live loads which cover the weight and movement of equipment and people on the sides of the pool (surcharge).
The basis for the considered design loads are summarized in the followings sections.
A. Dead Loads

Unit weight of concrete elements $\quad 25.0 \mathrm{kN} / \mathrm{m}^{3}$
B. Live Loads

Live loads are considered equal to $30 \mathrm{kN} / \mathrm{m}^{2}$ effect on the sides of the pool as a surcharge.
C. Earthquakes
from best Practices, the earthquake effect on pool is taken as increase by 15% of load combinations factors.

The following tables describe the load cases and load combinations on the pool:

Table 1: Load cases

Case	Type	Self. Wt. Mult.	Design Type
DEAD	LinStatic	1.000000	DEAD
MODAL	LinModal	0.000000	OTHER
L.L	LinStatic	0.000000	OTHER
F.C	LinStatic	0.000000	DEAD
W.P	LinStatic	0.000000	OTHER
E.P	LinStatic	0.000000	OTHER
Water weight	LinStatic	0.000000	OTHER
W.P (soil)	LinStatic	0.000000	OTHER

Table 2: Load combinations

Table 2: Combination Definitions								
Combo. Name	Load Case	Combo. Type	Auto Design	Case Type	CaseName	Scale Factor	Steel Design	
Testing Case (working)	W.P	Linear Add	No	Linear Static	DEAD	1.150000	None	
Testing Case (working)	water weight			Linear Static	F.C	1.150000		

Technical Design Calculation Report

Testing Case (working)	DEAD			Linear Static	W.P	1.150000	
Testing Case (working)	F.C			Linear Static	water weight	1.150000	
Mainteinance Case (working)	E.P	Linear Add	No	Linear Static	DEAD	1.150000	None
Mainteinance Case (working)	W.P (soil)			Linear Static	F.C	1.150000	
Mainteinance Case (working)	DEAD			Linear Static	E.P	1.150000	
Mainteinance Case (working)	F.C			Linear Static	W.P (soil)	1.150000	
Testing case (ULT.)	W.P	Linear Add	No	Linear Static	DEAD	1.550000	None
Testing case (ULT.)	water weight			Linear Static	F.C	1.550000	
Testing case (ULT.)	DEAD			Linear Static	W.P	1.550000	
Testing case (ULT.)	F.C			Linear Static	water weight	1.550000	
Meintenance Case (ULT.)	E.P	Linear Add	No	Linear Static	DEAD	1.750000	None
Meintenance Case (ULT.)	W.P (soil)			Linear Static	F.C	1.750000	
Meintenance Case (ULT.)	DEAD			Linear Static	E.P	1.750000	
Meintenance Case (ULT.)	F.C			Linear Static	W.P (soil)	1.750000	

Technical Design Calculation Report

6.2 Calculations of water and earth pressure.

6.2.1 water pressure.

$\gamma_{\text {water }}=10 \mathrm{KN} / \mathrm{m}^{3}$
Height $=3 \mathrm{~m}$
$W . P=10 * 3=30 \mathrm{KN} / \mathrm{m}^{2}$
6.2.2 Earth pressure.
E. $P_{1}=1 / 3 * 30=10 \mathrm{KN} / \mathrm{m}^{2}$

6.3 CRACKING

It will be calculated as stated in the "ECP 203-2018 - section 4-3-2" for the following maximum design crack width:

- 0.15 mm for water-side exposure.

7. STRUCTURAL ANALYSIS
7.1 3d-model

Technical Design Calculation Report

7.2 ASSIGN OF LOADS

```
Z] SAP2000 v14.2.2 Advanced - Race pool
Eile Edit View Define Bridge Draw Select Assign Analyze Display Design Options Iools Help
```



```
\(\begin{array}{lll}81 . & 92 & 104 .\end{array}\)
115.

Figure 7.1.: Assign of Finishing Loads on the pool's raft (T-M \({ }^{2}\) Units)

\section*{Technical Design Calculation Report}


Figure 7.2.: Assign of Water weight on the pool's raft (T-M \({ }^{2}\) Units)

\section*{Technical Design Calculation Report}


Figure 7.3.: Assign of Earth Pressure on the pool's Walls (T-M² Units)
\(\longleftarrow\) Earth Pressure Direction

\section*{Technical Design Calculation Report}


Figure 7.4.: Assign of Water pressure induced from soil on the pool's Walls (T-M \({ }^{2}\) Units)

Wall


\section*{Technical Design Calculation Report}

Home Insert Design Layout References Mailings Review View Help Nitro Pro 10 PDFsam Enhanced 6 Creator foxit PDF \(Q\) Tell me what you want to do


Figure 7.5.: Assign of Water Pressure on the pool's walls (T-M \({ }^{2}\) Units)


\section*{Technical Design Calculation Report}

\section*{8. STRUCTURAL DESIGN.}

\subsection*{8.1 Checks.}

\subsection*{8.1.1 Bearing Capacity.}

From SAP model, the maximum soil reaction equal 1.24 ton when the tank is full (Testing case)


The maximum stress distributed under soil \(=\frac{1.24}{0.5 * 0.5}=4.96 \mathrm{t} / \mathrm{m} 2<15 \mathrm{t} / \mathrm{m}^{2}\)

\subsection*{8.1.2 Uplift.}

From SAP model, the maximum soil reaction equal 0.47 ton when the tank is empty
(Maintenance case).
File View Format-Filter-Sort Select Options Units: As Noted \(\quad\) Joint Reactions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Joint Text & OutputCase Text & CaseType Text & \[
\begin{array}{r}
\text { F1 } \\
\text { Tonf }
\end{array}
\] & \[
\begin{array}{r}
\text { F2 } \\
\text { Tonf }
\end{array}
\] & \[
\begin{array}{r}
\text { F3 } \\
\text { Tonf }
\end{array}
\] & \[
\begin{array}{r}
\mathrm{M} 1 \\
\text { Tonf-m }
\end{array}
\] & \[
\begin{array}{r}
\mathrm{M} 2 \\
\text { Tonf-m }
\end{array}
\] & \(\wedge\) \\
\hline - & 3379 & Mainteinance Case (working) & Combination & -0.0016 & -0.0013 & 0.4737 & 0 & 0 & \\
\hline
\end{tabular}
The maximum stress distributed under soil \(=\frac{0.47}{0.5 * 0.5}=1.88 \mathrm{t} / \mathrm{m}^{2}>1.5\)

\section*{Technical Design Calculation Report}

\subsection*{8.2 Analysis.}

\subsection*{8.2.1 Short direction strip.}


Technical Design Calculation Report
\(>\) Testing Case (Working straining actions).

\section*{Bending moment.}


Technical Design Calculation Report

Normal Forces.

为 1.

Technical Design Calculation Report
> Testing Case (Ultimate straining actions).
Bending Moment.


Technical Design Calculation Report

Normal Forces.


Technical Design Calculation Report

Shear Forces.





\section*{Technical Design Calculation Report}

\subsection*{8.2.2 Long direction strip.}


\section*{> Testing Case (Working straining actions)}

\section*{Bending Moment}



Technical Design Calculation Report

Normal Forces.


\section*{Shear Force.}


Technical Design Calculation Report
\(>\) Testing Case (Ultimate straining actions). Bending Moment


\section*{Normal Force.}


Technical Design Calculation Report

\section*{Shear Force.}
-


\subsection*{8.3 Design.}
8.3.1 Short direction strip.


Sec.1-1
Sec. 2-2

\section*{Technical Design Calculation Report}

\section*{Testing Case.}

\section*{- Wall Design.}

\section*{Sec. 4-4}


\section*{Technical Design Calculation Report}

Sec. 3-3


\section*{Technical Design Calculation Report}
- Floor Design.

\section*{Sec. 1-1}


\section*{Technical Design Calculation Report}

Sec. 2-2
\(t_{\mathrm{mm}}=0.88 * 75=63.75 \mathrm{~mm}\) \(\qquad\) take t \(=150 \mathrm{~mm}\)
\(A_{S}=\frac{75 * 1000}{0.85 *\left(\frac{360}{1.15}\right)}=282 \mathrm{~mm}^{2}\) \(\qquad\) assume using T 12

Use 5T12/m'

\section*{Technical Design Calculation Report}

\section*{- Maintenance Case}
- Wall Design.

Sec. 4-4


\section*{Technical Design Calculation Report}

Sec. 3-3


\section*{Technical Design Calculation Report}

\section*{Floor Design.}

\section*{Sec. 1-1}


\section*{Technical Design Calculation Report}

Sec. 2-2
\(\mathrm{t}_{\mathrm{mm}}=0.88 * 75=63.75 \mathrm{~mm}\) \(\qquad\) take t \(=150 \mathrm{~mm}\)
assume using 5 T 12 as section reinforcement.
\(\mathrm{Pu}=0.33 * 30 *(1000 * 150)+0.67 * \frac{0.85 * 360}{1.15} * 577=1586 \mathrm{KN}>75 \mathrm{KN}\)
Use 5 T 12 / m'

\title{
Technical Design Calculation Report
}

\subsection*{8.3.2 Long direction strip.}


\section*{Technical Design Calculation Report}

\section*{- Testing Case}
- Wall Design.

\section*{Sec. 4-4}


\section*{Technical Design Calculation Report}

\section*{Sec. 3-3}


\section*{Technical Design Calculation Report}

\section*{- Floor Design.}

\section*{Sec. 1-1}


\section*{Technical Design Calculation Report}

Sec. 2-2
\(t_{\mathrm{mm}}=0.88 * 75=63.75 \mathrm{~mm}\) \(\qquad\) take t \(=150 \mathrm{~mm}\)
\(A_{S}=\frac{75 * 1000}{0.85 *\left(\frac{360}{1.15}\right)}=282 \mathrm{~mm}^{2}\) \(\qquad\) assume using T 12

Use 5T12/m'

\section*{Technical Design Calculation Report}

\section*{- Maintenance Case}
- Wall Design.

\section*{Sec. 4-4}


\section*{Technical Design Calculation Report}

Sec. 3-3


\section*{Technical Design Calculation Report}
- Floor Design.

\section*{Sec. 1-1}


\section*{Technical Design Calculation Report}

Sec. 2-2
\(\mathrm{t}_{\mathrm{mm}}=0.88 * 75=63.75 \mathrm{~mm}\) \(\qquad\) take t \(=150 \mathrm{~mm}\)
assume using 5 T 12 as section reinforcement.
\(\mathrm{Pu}=0.33 * 30 *(1000 * 150)+0.67 * \frac{0.85 * 360}{1.15} * 577=1586 \mathrm{KN}>75 \mathrm{KN}\) (Safe)

Use 5 T 12 / m'

\section*{Egyptian Aquatic Centre \\ Diving Platforms}


\section*{I. Design codes and standards}

\section*{9- ECP (203-2018)}

Egyptian Code of Practice for Design and Construction of Concrete Structures.

\section*{10-ECP (201-2010)}

Egyptian Code for Loading on Buildings.

\section*{11- FINA FACILITIES RULES (2017-2021)}

International Swimming Federation.

\section*{Technical Design Calculation Report}

\section*{1.INTRODUCTION}

The concept for structural design focuses on satisfying both the functional and the economic requirements of the building without jeopardizing its aesthetic and architectural features. This Calculation Report presents the structural engineering aspect of the works due for the development construction work of Egyptain Aquatic Centre.


Figure 1-3 Diving Platform location

\section*{2. Diving Platform Drawings Details}


Figure 2-1: \(1^{\text {st }}\) Platform Plan

\section*{Technical Design Calculation Report}


Figure 2-2: \(\mathbf{2}^{\text {nd }}\) Platform Plan


Figure 2-3: \(3^{\text {rd }}\) Platform Plan

\section*{Technical Design Calculation Report}

 T10@ 200.00 mm (E)
\(\mathrm{T} 10 @ 200.00 \mathrm{~mm}\) (E)

Figure 2-4: Platform's Sections.

\section*{Technical Design Calculation Report}


Figure 2-5: 3D-Reinforcement

Technical Design Calculation Report


Figure 2-6: Sectional Elevation.

\section*{Technical Design Calculation Report}


Figure 2-7: 3D-Arched Beam RFT

\section*{Technical Design Calculation Report}

\section*{3. Calculation Software Used}

\section*{Calculation software features}

The software used is SAP2000, developed by Computer \& Structures (United States).
Technical specifications
Name: Sap2000
Version: 14.2.2

Producer:
Computer\&Structures
https://www.csiamerica.com/

\section*{4. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES.}

\section*{REINFORCED CONCRETE.}

The grade of concrete will be according to the Egyptian Code of Practice (ECP). The grade of concrete is indicated in two numbers, the first one indicate the characteristic cube strength in \(\left(\mathrm{N} / \mathrm{mm}^{2}\right)\) while the second one indicates the maximum nominal size of the aggregate in ( mm ) to be used;

Grade (20/20) for plain concrete of foundations of thickness < 12 cm .
Grade (20/40) for plain concrete of foundations of thickness \(>12 \mathrm{~cm}\)
Grade (30/20) for all pool reinforced concrete elements.
Minimum thickness of blinding concrete is 100 mm .
Concrete cover is the concrete thickness to all steel reinforcement including links:
For all concrete (with protection) in contact with soil, cover shall be 70 mm (or as will be recommended in the geotechnical report)

For all concrete elements above grade where concrete is protected from weathering, cover shall be 50 mm for beams and 25 mm for Colmuns, slabs and walls.
- SLUMP VALUES.

The following values are according to the Egyptian code of practice ECP 203-2018 section (2-3-1-2), Table (2-5).
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Type of Structural Element } & Type of Compaction & Slump-in mm (max.) \\
\hline Massive concrete & Mechanical & \(25-50\) \\
\hline \begin{tabular}{l} 
- Concrete foundation. \\
- Concrete sections with low \\
reinforcement ratio \(\left(<80 \mathrm{~kg} / \mathrm{m}^{3}\right)\)
\end{tabular} & Mechanical & \(50-75\) \\
\hline \begin{tabular}{l} 
Concrete sections with medium and \\
high reinforcement ratio \(\left(80-150 \mathrm{~kg} / \mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Mechanical/ \\
Manual
\end{tabular} & \(75-125\) \\
\hline \begin{tabular}{l} 
Concrete sections with very high \\
reinforcement ratio \(\left(>150 \mathrm{~kg} / \mathrm{m}^{3}\right)\)
\end{tabular} & Light compaction & \(125-150^{* *}\) \\
\hline Deep foundation & Light compaction & \(125-200^{* *}\) \\
\hline
\end{tabular}
** By using chemical additives.
REINFORCING STEEL
All reinforcing steel shall be complying with the Egyptian code of practice ECP203-2018, section 2-2-5-3, Table 2-4.
Reinforcing steel bars shall be uncoated high yield deformed bars of characteristic strength \(360 \mathrm{~N} / \mathrm{mm}^{2}\).
Uncoated mild steel plain bars with characteristic strength \(280 \mathrm{~N} / \mathrm{mm}^{2}\) may be used for links and binders.

\section*{Technical Design Calculation Report}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Type } & Grade & \begin{tabular}{c} 
Yield Strength, \(\mathrm{f}_{\mathrm{y}}\) \\
\(\left(\mathrm{N} / \mathrm{mm}^{2}\right)\)
\end{tabular} \\
\hline Normal mild steel & \(280 / 450\) & 280 \\
\hline High grade steel & \(360 / 520\) & 360 \\
\hline Cold formed welded mesh & \(450 / 520\) & 450 \\
\hline
\end{tabular}

Note: Bar size increment \(=6,8,10,12,16,18,20,22,25,28\) and 32

\section*{Technical Design Calculation Report}

\section*{5. Calculation method and numerical model}

\subsection*{5.1 Model Description}

\subsection*{5.1.1 Hypothesis adopted for the elements}
- The Diving Platform is modeled as spatial model, all element is defined as shell elements except the columns.
- The arch section of the beam, enhances it's performance by reducing the tensioned area of the beam as shown in Fig. 5.1.


Figure 5.1: Tension side of the Platform's Beam.

\section*{Technical Design Calculation Report}
- According to, depth to span ratio, the beam act as deep beam in the section near to the columns and act as shallow beam in the midspan's section; thus the reinforcement details follow the deep beams reinforcement requirements as shown in Fig. 5.2.


Figure 5.2: Arched Beam Detail.

\section*{Technical Design Calculation Report}

\section*{6. Actions and design loads}

\subsection*{6.1 STRUCTURAL LOADS.}

The following loads are considered in the design:
- Structural Dead Loads which include:
> The own weight of the structural elements, beams, Columns and Platforms.
\(>\) Superimposed dead load from Finishing.
- Live loads which cover the spring boards and the movement of swimmers on the platform.
- Seismic loads according to ECP.

The basis for the considered design loads are summarized in the followings sections.
A. Dead Loads

Unit weight of concrete elements \(\quad 25.0 \mathrm{kN} / \mathrm{m}^{3}\)
B. Live Loads

Live loads are considered equal to \(350 \mathrm{~kg} / \mathrm{m}^{\prime}\) for platforms and supporting structure according to FINA requirements.
C. Earthquakes
- Response modification factor
\[
\begin{align*}
& (R=5) \\
& \left(r_{i}=1.2\right)  \tag{i}\\
& \left(a_{g}=0.15 \mathrm{~g}\right) \\
& (\eta=1.0)
\end{align*}
\]
- Importance factor
- The design acceleration
- Design damping correction factor
- Zone 3
- Soil Type
(C)
- Earthquake loads shall be comply with the (ECP 201-2010).

The following tables describe the load cases and load combinations on the pool:

\section*{Table 1: Load cases}
\begin{tabular}{|c|c|c|c|c|}
\hline Case & Type & Modal Case & Design Type & Auto Type \\
\hline DEAD & LinStatic & & DEAD & None \\
\hline MODAL & LinModal & & OTHER & None \\
\hline L.L & LinStatic & & OTHER & None \\
\hline F.C & LinStatic & & DEAD & None \\
\hline Ex & LinStatic & & QUAKE & None \\
\hline Ey & LinStatic & LinRespSpec & MODAL & QUAKE
\end{tabular}

\section*{Technical Design Calculation Report}

Table 2: Load combinations
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Table: Combination Definitions, Part 1 of 3} \\
\hline Combo .Name & Comb .Type & Auto Design & Case Type & Case Name & Scale Factor & Steel Design \\
\hline UDLPRx & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline UDLPRx & & & Linear Static & L.L & 0.500000 & \\
\hline UDLPRx & & & Response Spectrum & Resp. x & 1.000000 & \\
\hline UDLPRx & & & Linear Static & F.C & 1.120000 & \\
\hline UDLNRX & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline UDLNRx & & & Linear Static & L.L & 0.500000 & \\
\hline UDLNRx & & & Response Spectrum & Resp. x & -1.000000 & \\
\hline UDLNRx & & & Linear Static & F.C & 1.120000 & \\
\hline UDLPRy & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline UDLPRy & & & Linear Static & L.L & 0.500000 & \\
\hline UDLPRy & & & Response Spectrum & Resp. y & 1.000000 & \\
\hline UDLPRy & & & Linear Static & F.C & 1.120000 & \\
\hline UDLNRy & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline UDLNRy & & & Linear Static & L.L & 0.500000 & \\
\hline UDLNRy & & & Response Spectrum & Resp. y & -1.000000 & \\
\hline UDLNRy & & & Linear Static & F.C & 1.120000 & \\
\hline UDLPRxPRy & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline UDLPRxPRy & & & Linear Static & L.L & 0.500000 & \\
\hline UDLPRxPRy & & & Response Spectrum & Resp. x & 1.000000 & \\
\hline UDLPRxPRy & & & Response Spectrum & Resp. y & 0.300000 & \\
\hline UDLPRxPRy & & & Linear Static & F.C & 1.120000 & \\
\hline UDLNRxNRy & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline UDLNRxNRy & & & Linear Static & L.L & 0.500000 & \\
\hline UDLNRxNRy & & & Response Spectrum & Resp. x & -1.000000 & \\
\hline UDLNRxNRy & & & Response Spectrum & Resp. y & -0.300000 & \\
\hline UDLNRxNRy & & & Linear Static & F.C & 1.120000 & \\
\hline UDLPRxNRy & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline UDLPRxNRy & & & Linear Static & L.L & 0.500000 & \\
\hline UDLPRxNRy & & & Response Spectrum & Resp. x & 1.000000 & \\
\hline UDLPRxNRy & & & Response Spectrum & Resp. y & -0.300000 & \\
\hline UDLPRxNRy & & & Linear Static & F.C & 1.120000 & \\
\hline UDLNRxPRy & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline UDLNRxPRy & & & Linear Static & L.L & 0.500000 & \\
\hline UDLNRxPRy & & & Response Spectrum & Resp. x & -1.000000 & \\
\hline UDLNRxPRy & & & Response Spectrum & Resp. y & 0.300000 & \\
\hline UDLNRxPRy & & & Linear Static & F.C & 1.120000 & \\
\hline UDLPRyPRx & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline UDLPRyPRx & & & Linear Static & L.L & 0.500000 & \\
\hline UDLPRyPRx & & & Response Spectrum & Resp. x & 0.300000 & \\
\hline UDLPRyPRx & & & Response Spectrum & Resp. y & 1.000000 & \\
\hline UDLPRyPRx & & & Linear Static & F.C & 1.120000 & \\
\hline UDLNRyNRx & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline UDLNRyNRx & & & Linear Static & L.L & 0.500000 & \\
\hline UDLNRyNRx & & & Response Spectrum & Resp. x & -0.300000 & \\
\hline UDLNRyNRx & & & Response Spectrum & Resp. y & -1.000000 & \\
\hline UDLNRyNRx & & & Linear Static & F.C & 1.120000 & \\
\hline UDLNRyPRx & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline UDLNRyPRx & & & Linear Static & L.L & 0.500000 & \\
\hline UDLNRyPRx & & & Response Spectrum & Resp. x & 0.300000 & \\
\hline UDLNRyPRx & & & Response Spectrum & Resp. y & -1.000000 & \\
\hline UDLNRyPRx & & & Linear Static & F.C & 1.120000 & \\
\hline
\end{tabular}

Technical Design Calculation Report
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline UDLPRyNRx & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline UDLPRyNRx & & & Linear Static & L.L & 0.500000 & \\
\hline UDLPRyNRx & & & Response Spectrum & Resp. x & -0.300000 & \\
\hline UDLPRyNRx & & & Response Spectrum & Resp. y & 1.000000 & \\
\hline UDLPRyNRx & & & Linear Static & F.C & 1.120000 & \\
\hline UDL & Linear Add & No & Linear Static & DEAD & 1.400000 & None \\
\hline UDL & & & Linear Static & F.C & 1.400000 & \\
\hline UDL & & & Linear Static & L.L & 1.600000 & \\
\hline Ub & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline Ub & & & Linear Static & F.C & 1.120000 & \\
\hline Ub & & & Linear Static & L.L & 1.280000 & \\
\hline Ub & & & Linear Static & W-x & 1.280000 & \\
\hline Ua & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline Ua & & & Linear Static & F.C & 1.120000 & \\
\hline Ua & & & Linear Static & L.L & 1.280000 & \\
\hline Ua & & & Linear Static & Wx & 1.280000 & \\
\hline Uc & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline Uc & & & Linear Static & F.C & 1.120000 & \\
\hline Uc & & & Linear Static & L.L & 1.280000 & \\
\hline Uc & & & Linear Static & Wy & 1.280000 & \\
\hline Ud & Linear Add & No & Linear Static & DEAD & 1.120000 & None \\
\hline Ud & & & Linear Static & F.C & 1.120000 & \\
\hline Ud & & & Linear Static & L.L & 1.280000 & \\
\hline Ud & & & Linear Static & W-y & 1.280000 & \\
\hline WDL & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDL & & & Linear Static & F.C & 1.000000 & \\
\hline WDL & & & Linear Static & L.L & 1.000000 & \\
\hline WDLPRx & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDLPRx & & & Linear Static & L.L & 0.420000 & \\
\hline WDLPRx & & & Response Spectrum & Resp. x & 0.720000 & \\
\hline WDLPRx & & & Linear Static & F.C & 1.000000 & \\
\hline WDLNRx & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDLNRx & & & Linear Static & L.L & 0.420000 & \\
\hline WDLNRx & & & Response Spectrum & Resp. x & -0.720000 & \\
\hline WDLNRx & & & Linear Static & F.C & 1.000000 & \\
\hline WDLPRy & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDLPRy & & & Linear Static & L.L & 0.420000 & \\
\hline WDLPRy & & & Response Spectrum & Resp. y & 0.720000 & \\
\hline WDLPRy & & & Linear Static & F.C & 1.000000 & \\
\hline WDLNRy & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDLNRy & & & Linear Static & L.L & 0.420000 & \\
\hline WDLNRy & & & Response Spectrum & Resp. y & -0.720000 & \\
\hline WDLNRy & & & Linear Static & F.C & 1.000000 & \\
\hline WDLPRxPRy & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDLPRxPRy & & & Linear Static & L.L & 0.420000 & \\
\hline WDLPRxPRy & & & Response Spectrum & Resp. x & 0.720000 & \\
\hline WDLPRxPRy & & & Response Spectrum & Resp. y & 0.220000 & \\
\hline WDLPRxPRy & & & Linear Static & F.C & 1.000000 & \\
\hline WDLNRxNRy & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDLNRxNRy & & & Linear Static & L.L & 0.420000 & \\
\hline WDLNRxNRy & & & Response Spectrum & Resp. x & -0.720000 & \\
\hline WDLNRxNRy & & & Response Spectrum & Resp. y & -0.220000 & \\
\hline WDLNRxNRy & & & Linear Static & F.C & 1.000000 & \\
\hline WDLPRxNRy & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDLPRxNRy & & & Linear Static & L.L & 0.420000 & \\
\hline WDLPRxNRy & & & Response Spectrum & Resp. x & 0.720000 & \\
\hline
\end{tabular}

Technical Design Calculation Report
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline WDLPRxNRy & & & Response Spectrum & Resp. y & -0.220000 & \\
\hline WDLPRxNRy & & & Linear Static & F.C & 1.000000 & \\
\hline WDLNRxPRy & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDLNRxPRy & & & Linear Static & L.L & 0.420000 & \\
\hline WDLNRxPRy & & & Response Spectrum & Resp. x & -0.720000 & \\
\hline WDLNRxPRy & & & Response Spectrum & Resp. y & 0.220000 & \\
\hline WDLNRxPRy & & & Linear Static & F.C & 1.000000 & \\
\hline WDLPRyPRx & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDLPRyPRx & & & Linear Static & L.L & 0.420000 & \\
\hline WDLPRyPRx & & & Response Spectrum & Resp. x & 0.220000 & \\
\hline WDLPRyPRx & & & Response Spectrum & Resp. y & 0.720000 & \\
\hline WDLPRyPRx & & & Linear Static & F.C & 1.000000 & \\
\hline WDLNRyNRx & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDLNRyNRx & & & Linear Static & L.L & 0.420000 & \\
\hline WDLNRyNRx & & & Response Spectrum & Resp. x & -0.220000 & \\
\hline WDLNRyNRx & & & Response Spectrum & Resp. y & -0.720000 & \\
\hline WDLNRyNRx & & & Linear Static & F.C & 1.000000 & \\
\hline WDLPRyNRx & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDLPRyNRx & & & Linear Static & L.L & 0.420000 & \\
\hline WDLPRyNRx & & & Response Spectrum & Resp. x & -0.220000 & \\
\hline WDLPRyNRx & & & Response Spectrum & Resp. y & 0.720000 & \\
\hline WDLPRyNRx & & & Linear Static & F.C & 1.000000 & \\
\hline WDLNRyPRx & Linear Add & No & Linear Static & DEAD & 1.000000 & None \\
\hline WDLNRyPRx & & & Linear Static & L.L & 0.420000 & \\
\hline WDLNRyPRx & & & Response Spectrum & Resp. x & 0.220000 & \\
\hline WDLNRyPRx & & & Response Spectrum & Resp. y & -0.720000 & \\
\hline WDLNRyPRx & & & Linear Static & F.C & 1.000000 & \\
\hline UE & Envelope & No & Response Combo & UDL & 1.000000 & None \\
\hline UE & & & Response Combo & UDLNRx & 1.000000 & \\
\hline UE & & & Response Combo & UDLNRxNRy & 1.000000 & \\
\hline UE & & & Response Combo & UDLNRxPRy & 1.000000 & \\
\hline UE & & & Response Combo & UDLNRy & 1.000000 & \\
\hline UE & & & Response Combo & UDLNRyNRx & 1.000000 & \\
\hline UE & & & Response Combo & UDLNRyPRx & 1.000000 & \\
\hline UE & & & Response Combo & UDLPRx & 1.000000 & \\
\hline UE & & & Response Combo & UDLPRxNRy & 1.000000 & \\
\hline UE & & & Response Combo & UDLPRxPRy & 1.000000 & \\
\hline UE & & & Response Combo & UDLPRy & 1.000000 & \\
\hline UE & & & Response Combo & UDLPRyNRx & 1.000000 & \\
\hline UE & & & Response Combo & UDLPRyPRx & 1.000000 & \\
\hline WE & Envelope & No & Response Combo & WDL & 1.000000 & None \\
\hline WE & & & Response Combo & WDLNRx & 1.000000 & \\
\hline WE & & & Response Combo & WDLNRxNRy & 1.000000 & \\
\hline WE & & & Response Combo & WDLNRxPRy & 1.000000 & \\
\hline WE & & & Response Combo & WDLNRy & 1.000000 & \\
\hline WE & & & Response Combo & WDLNRyNRx & 1.000000 & \\
\hline WE & & & Response Combo & WDLNRyPRx & 1.000000 & \\
\hline WE & & & Response Combo & WDLPRx & 1.000000 & \\
\hline WE & & & Response Combo & WDLPRxNRy & 1.000000 & \\
\hline WE & & & Response Combo & WDLPRxPRy & 1.000000 & \\
\hline WE & & & Response Combo & WDLPRy & 1.000000 & \\
\hline WE & & & Response Combo & WDLPRyNRx & 1.000000 & \\
\hline WE & & & Response Combo & WDLPRyPRx & 1.000000 & \\
\hline
\end{tabular}

\section*{Technical Design Calculation Report}

\subsection*{6.2 CRACKING}

It will be calculated as stated in the "ECP 203-2018 - section 4-3-2" for the following maximum design crack width:
- 0.20 mm for concrete exposed to dry soil or air.

\subsection*{6.3 Deflection}
- Total deflection for beams/slabs and cantilevers calculated taking all loads into consideration in addition to the effects of self-straining forces shall not exceed the following values:
a) For beams and slabs L/250
b) For cantilevers

L/450
Immediate deflection due to live loads for beams and slabs supporting non-structural elements (which are not affected by deflection) shall not exceed L/360.
Additional total deflection (that occur after adding the floorings) for beams and slabs supporting non-structural elements (which are affected by deflections, such as spring boards) calculated taking all loads into consideration in addition to the effects of selfstraining forces shall not exceed L/480.

Where \(L\) is distance between the inflection points for beams and slabs or the cantilever length. L is calculated for the short span of the two way slabs, and for the long span of the flat slabs.
- The spatial deformation of the front edge of the platforms as a result of \(\mathrm{Px}=\mathrm{Py}=\mathrm{Pz}\) \(=100\) kiloponds (kilograms force) shall be a maximum of 1 mm .

FÉDÉRATION
FACILITIES RULES 2017-2021
INTERNATIONALE
DE NATATION

Fundamental frequency of tower 3.5 Hz
Oscillation of total structure 3.5 Hz

The spatial deformation of the front edge of the platforms as a result of \(\mathrm{Px}=\mathrm{Py}=\mathrm{Pz}=100\) kiloponds (kilograms force) shall be a maximum of 1 mm . See Drawing


\subsection*{6.4 Fundamental Frequency.}

According to FINA, Fundamental frequency of platforms 10.0 Hz TOLERANCES:
\begin{tabular}{|l|c|c|}
\hline PLATFORM & MINIMUM & MAXIMUM \\
\hline 10 m & 10 Hz & 20 Hz \\
\hline \(7.5 \mathrm{~m}, 5 \mathrm{~m}, 3 \mathrm{~m}\) and 1 m & 10 Hz & 30 Hz \\
\hline
\end{tabular}

Fundamental frequency of tower 3.5 Hz
Oscillation of total structure 3.5 Hz

Technical Design Calculation Report

\section*{7. STRUCTURAL ANALYSIS}
7.1 3d-model


\subsection*{7.2 ASSIGN OF LOADS}


Figure 7.1.: Assign of Finishing Loads on the Platforms (T-M \({ }^{2}\) Units)

\section*{Technical Design Calculation Report}

Eile Edit View Define Bridge Draw Select Assign Analyze Display Design Options Iools Help口自回


Figure 7．2．：Assign of Live loads on the Platforms（ \(\mathrm{T}-\mathrm{M}^{2}\) Units）

\section*{Technical Design Calculation Report}
8. STRUCTURAL DESIGN.

\subsection*{8.1 Checks.}

\subsection*{8.1.1 Frequency}

From SAP model, the maximum Frequency of total structure \(=3.19 \mathrm{HZ}\) as shown in Fig. 8.1


Maximum Frequency \(=3.19 \mathrm{HZ}<3.5 \mathrm{HZ}\)

\subsection*{8.1.2 Spatial Deformation.}

From SAP model, the maximum deformation in the front edge of:
- \(3^{\text {rd }}\) platform \(=1.8 \mathrm{~mm}\) induced from 220 kg load; thus, for 100 kg load, it will equal 1.8/2.2= \(0.82 \mathrm{~mm}>1 \mathrm{~mm}\)
- \(1^{\text {st }}\) and \(2^{\text {nd }}\) platforms \(=1.6 \mathrm{~mm}\) induced from 340 kg load; thus, for 100 kg load, it will equal \(1.6 / 3.4=0.47 \mathrm{~mm}<1 \mathrm{~mm}\)
(Acceptable)

\section*{Technical Design Calculation Report}

\subsection*{8.1.3 Equivalent static loads.}

According to clause 8.7.3.4 in ECP 201-2010, the equivalent static load shouldn't less than \(80 \%\) of equivalent load calculated by using compound response spectrum method.

Table 3: Base Shear Reactions
\begin{tabular}{|c|c|c|r|r|}
\hline Output Case & Case Type & Step Type & \begin{tabular}{r} 
Global FX \\
(Ton)
\end{tabular} & \begin{tabular}{r} 
Global FY \\
(Ton)
\end{tabular} \\
\hline \(\mathbf{E}_{\mathbf{x}}\) & Lin. Static & & -22.0827 & \(3.164 \mathrm{E}-11\) \\
\hline \(\mathbf{E}_{\mathbf{y}}\) & Lin. Static & & \(-2.516 \mathrm{E}-11\) & -22.0827 \\
\hline Resp. \(\mathbf{x}\) & Lin. Resp. Spec. & Max & 22.0379 & 37.2215 \\
\hline Resp. \(\mathbf{y}\) & Lin. Resp. Spec. & Max & 12.3472 & 20.8542 \\
\hline
\end{tabular}

\subsection*{8.1.4 Model Participation Mass Ratio.}

According to clause 8.7.3.3.1, point 5.a in ECP 201-2010 , The considered Eigenvalues mode shapes in design should excite mass not less than 0.9 of total structure's mass.

Table 4: Modal Participating Mass Ratios
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Output Case & Step. Type & Step. Num. & Period (Sec) & UX & UY & UZ & Sum. UX & Sum. UY \\
\hline MODAL & Mode & 1.000000 & 0.313457 & 0.209093 & 0.119547 & 9.421E-06 & 0.209093 & 0.119547 \\
\hline MODAL & Mode & 2.000000 & 0.234052 & 0.064936 & 0.343120 & 0.000290 & 0.274029 & 0.462667 \\
\hline MODAL & Mode & 3.000000 & 0.230853 & 0.006611 & 0.002124 & 0.000084 & 0.280639 & 0.464791 \\
\hline MODAL & Mode & 4.000000 & 0.193856 & 0.000462 & \(3.707 \mathrm{E}-06\) & 8.965E-06 & 0.281101 & 0.464794 \\
\hline MODAL & Mode & 5.000000 & 0.187341 & 0.000058 & 9.715E-08 & 1.949E-07 & 0.281159 & 0.464794 \\
\hline MODAL & Mode & 6.000000 & 0.185208 & 0.000013 & 4.052E-08 & 3.597E-08 & 0.281172 & 0.464794 \\
\hline MODAL & Mode & 7.000000 & 0.184418 & \(2.475 \mathrm{E}-06\) & 1.544E-08 & 8.194E-09 & 0.281175 & 0.464794 \\
\hline MODAL & Mode & 8.000000 & 0.177439 & 0.015936 & 0.060854 & 0.000045 & 0.297111 & 0.525648 \\
\hline MODAL & Mode & 9.000000 & 0.130703 & \(3.406 \mathrm{E}-06\) & 0.003181 & 0.001976 & 0.297114 & 0.528829 \\
\hline MODAL & Mode & 10.000000 & 0.122133 & 0.004049 & 0.225864 & 0.000530 & 0.301163 & 0.754692 \\
\hline MODAL & Mode & 11.000000 & 0.120187 & \(7.978 \mathrm{E}-06\) & 0.014271 & 0.000030 & 0.301171 & 0.768963 \\
\hline MODAL & Mode & 12.000000 & 0.117995 & 0.000695 & 0.007442 & 0.000191 & 0.301866 & 0.776406 \\
\hline MODAL & Mode & 13.000000 & 0.116025 & 7.805E-06 & 0.000505 & 0.000015 & 0.301874 & 0.776911 \\
\hline MODAL & Mode & 14.000000 & 0.115027 & 1.389E-08 & 0.000070 & 7.573E-06 & 0.301874 & 0.776981 \\
\hline MODAL & Mode & 15.000000 & 0.114769 & \(2.646 \mathrm{E}-07\) & 0.000014 & \(6.528 \mathrm{E}-07\) & 0.301874 & 0.776995 \\
\hline MODAL & Mode & 16.000000 & 0.113156 & 0.000480 & 0.000326 & 0.000083 & 0.302355 & 0.777321 \\
\hline MODAL & Mode & 17.000000 & 0.108937 & 0.001857 & 0.009398 & 0.000376 & 0.304212 & 0.786719 \\
\hline MODAL & Mode & 18.000000 & 0.102520 & 0.001114 & 0.004293 & 0.000022 & 0.305325 & 0.791012 \\
\hline MODAL & Mode & 19.000000 & 0.101027 & 0.002156 & 0.003236 & 0.001141 & 0.307482 & 0.794248 \\
\hline MODAL & Mode & 20.000000 & 0.092887 & 0.000742 & 0.008455 & 0.042936 & 0.308223 & 0.802703 \\
\hline MODAL & Mode & 21.000000 & 0.089829 & 0.000816 & 0.000442 & 0.016445 & 0.309039 & 0.803145 \\
\hline MODAL & Mode & 22.000000 & 0.085317 & 0.000585 & 0.000713 & 0.166644 & 0.309625 & 0.803859 \\
\hline MODAL & Mode & 23.000000 & 0.077451 & 0.000012 & 0.001016 & 0.050161 & 0.309637 & 0.804874 \\
\hline MODAL & Mode & 24.000000 & 0.074719 & 0.000511 & 0.000746 & 0.003557 & 0.310147 & 0.805620 \\
\hline MODAL & Mode & 25.000000 & 0.070608 & 0.000178 & 0.001852 & 0.000344 & 0.310326 & 0.807472 \\
\hline MODAL & Mode & 26.000000 & 0.066530 & 0.000816 & 0.010871 & 0.001701 & 0.311141 & 0.818343 \\
\hline MODAL & Mode & 27.000000 & 0.060565 & 0.000055 & 0.005614 & 0.003322 & 0.311196 & 0.823957 \\
\hline MODAL & Mode & 28.000000 & 0.055659 & 0.000224 & 0.000046 & 0.000090 & 0.311420 & 0.824003 \\
\hline MODAL & Mode & 29.000000 & 0.053809 & 0.000400 & 0.000443 & 0.001237 & 0.311820 & 0.824445 \\
\hline MODAL & Mode & 30.000000 & 0.052034 & 0.000126 & 0.000381 & 0.000694 & 0.311946 & 0.824827 \\
\hline MODAL & Mode & 31.000000 & 0.050025 & 0.000868 & 0.009131 & 0.001337 & 0.312814 & 0.833958 \\
\hline
\end{tabular}

Technical Design Calculation Report
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline MODAL & Mode & 32.000000 & 0.048928 & 0.000327 & 0.001701 & 0.000152 & 0.313140 & 0.835659 \\
\hline MODAL & Mode & 33.000000 & 0.046602 & 0.000985 & 0.000139 & 0.001797 & 0.314125 & 0.835798 \\
\hline MODAL & Mode & 34.000000 & 0.045288 & 0.004698 & 0.000163 & 0.000316 & 0.318823 & 0.835961 \\
\hline MODAL & Mode & 35.000000 & 0.040960 & 0.000030 & 0.002058 & 0.018340 & 0.318853 & 0.838019 \\
\hline MODAL & Mode & 36.000000 & 0.040093 & 0.001530 & 0.017280 & 0.003272 & 0.320384 & 0.855299 \\
\hline MODAL & Mode & 37.000000 & 0.037550 & 0.000111 & 0.026479 & 0.000060 & 0.320495 & 0.881779 \\
\hline MODAL & Mode & 38.000000 & 0.037135 & 0.001401 & 0.000227 & \(3.648 \mathrm{E}-07\) & 0.321896 & 0.882006 \\
\hline MODAL & Mode & 39.000000 & 0.036127 & 0.003696 & 0.006538 & \(8.218 \mathrm{E}-07\) & 0.325592 & 0.888543 \\
\hline MODAL & Mode & 40.000000 & 0.035045 & 0.001617 & 0.002301 & 0.000176 & 0.327209 & 0.890844 \\
\hline MODAL & Mode & 41.000000 & 0.034477 & 0.000100 & 0.000318 & 0.002295 & 0.327308 & 0.891163 \\
\hline MODAL & Mode & 42.000000 & 0.033972 & 0.000124 & 0.000018 & 0.002296 & 0.327433 & 0.891180 \\
\hline MODAL & Mode & 43.000000 & 0.033545 & 0.003712 & 0.000226 & 0.001503 & 0.331145 & 0.891406 \\
\hline MODAL & Mode & 44.000000 & 0.032392 & 0.001432 & 0.001641 & 0.001540 & 0.332576 & 0.893047 \\
\hline MODAL & Mode & 45.000000 & 0.031784 & 0.001108 & 0.000076 & 0.000785 & 0.333685 & 0.893124 \\
\hline MODAL & Mode & 46.000000 & 0.031079 & 0.000012 & 0.000806 & \(4.336 \mathrm{E}-06\) & 0.333696 & 0.893929 \\
\hline MODAL & Mode & 47.000000 & 0.030694 & 0.000138 & 0.001011 & 0.003334 & 0.333834 & 0.894940 \\
\hline MODAL & Mode & 48.000000 & 0.030338 & 0.001311 & 0.000084 & 0.000410 & 0.335145 & 0.895024 \\
\hline MODAL & Mode & 49.000000 & 0.029956 & 0.009726 & 0.000065 & 0.002178 & 0.344871 & 0.895089 \\
\hline MODAL & Mode & 50.000000 & 0.029312 & 0.000746 & 0.001691 & 0.000947 & 0.345617 & 0.896780 \\
\hline MODAL & Mode & 51.000000 & 0.028641 & 0.012178 & 0.000076 & 0.027823 & 0.357795 & 0.896856 \\
\hline MODAL & Mode & 52.000000 & 0.028189 & 0.023713 & 0.000349 & 0.032400 & 0.381508 & 0.897205 \\
\hline MODAL & Mode & 53.000000 & 0.027496 & 0.012505 & 0.001152 & 0.011996 & 0.394013 & 0.898357 \\
\hline MODAL & Mode & 54.000000 & 0.027385 & 0.008744 & 0.001425 & 0.000107 & 0.402758 & 0.899782 \\
\hline MODAL & Mode & 55.000000 & 0.026955 & 0.006122 & 0.000019 & 0.003727 & 0.408879 & 0.899802 \\
\hline MODAL & Mode & 56.000000 & 0.026669 & 0.006180 & 0.001187 & 0.000239 & 0.415060 & 0.900989 \\
\hline MODAL & Mode & 57.000000 & 0.026421 & 0.004929 & \(1.455 \mathrm{E}-06\) & 0.002927 & 0.419988 & 0.900990 \\
\hline MODAL & Mode & 58.000000 & 0.025545 & 0.000604 & 0.001373 & \(1.030 \mathrm{E}-06\) & 0.420592 & 0.902364 \\
\hline MODAL & Mode & 59.000000 & 0.024966 & 0.008190 & 0.003172 & 0.000072 & 0.428782 & 0.905536 \\
\hline MODAL & Mode & 60.000000 & 0.023835 & 0.000432 & \(5.359 \mathrm{E}-06\) & 0.264635 & 0.429213 & 0.905542 \\
\hline
\end{tabular}

\subsection*{8.1.5 Slenderness.}
- Y-Direction.

Unbraced Column
\(\mathrm{He}=1.3^{*} 10=13 \mathrm{~m}\)
\(\lambda=13 / 0.6=21>23\) \(\qquad\) (Slender Column)
- X-Direction.

Unbraced Column
\(\mathrm{He}=1.3^{*} 8=10.4 \mathrm{~m}\)
\(\lambda=10.4 / 0.5=20.8>23\) \(\qquad\) (Slender Column)


Page \(\mathbf{2 2 9}\) of 296

\section*{Technical Design Calculation Report}

\subsection*{8.2 Analysis.}

\subsection*{8.2.1 Beam and Cantilevers Analysis.}


Figure 8.1: Internal Force in local axis 1 (red axis) direction (T-M').

\section*{Technical Design Calculation Report}
```

Eile Edit View Define Bridge Draw select Assign Analyze Display Design Options Iools Help

```



Figure 8.2: Internal Force in local axis 2 (white axis) direction (T-M').

\section*{Technical Design Calculation Report}

\subsection*{8.2.2 Columns Analysis.}
```

Eile Edit View Define Bridge Draw Select Assign Analyze Display Design Options Iools Help

```



Figure 8.3: Bending Moment around Global axis \(Y\) (T.M').

\section*{Technical Design Calculation Report}

File Edit View Define Bridge Draw Select Assign Analyze Display Design Options Iools Help


Figure 8.4: Shear Forces in Global axis X direction ( \(\mathrm{T}-\mathrm{M}^{\prime}\) ).

\section*{Technical Design Calculation Report}
```

Eile Edit View Define Bridge Draw Select Assign Analyze Display Design Options Iools Help

```



Figure 8.5: Axial Forces in Global axis \(Z\) direction ( \(T-M^{\prime}\) ).

\section*{Technical Design Calculation Report}


Figure 8.6: Torsion Forces in Global axis Z direction ( \(\mathrm{T}-\mathrm{M}^{\prime}\) ).

\section*{Technical Design Calculation Report}

\subsection*{8.3 Design.}

\subsection*{8.3.1 Platforms \& Wall}
- By assume using 5 T 10/m' mesh in the short and long directions, the covered bending moment induced from 5 T 10/m' mesh is show in Fig. 8.6.
- No additional reinforcement required as show in Fig. 8.7 and Fig. 8.8.
* Project : \(\square\) Egyptian Aquatic Centre
\begin{tabular}{|lcc|}
\hline Concrete \(\mathrm{f}_{\mathrm{cu}}=\) & 30 & MPa \\
Steel \(\quad \mathrm{f}_{\mathrm{y}}=\) & 350 & MPa \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sec. & Ult. Moment \(\mathrm{M}_{\mathrm{u}}\) (kN.m) & \[
\begin{array}{|l|}
\hline \text { Normal } \\
\mathrm{N}_{\mathrm{u}}(\mathrm{kN}) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Breadth \\
b (mm)
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { Depth } \\
\mathrm{d}(\mathrm{~mm}) \\
\hline
\end{array}
\] & \[
\begin{array}{l|}
\hline \text { Thick } \\
t(\mathrm{~mm})
\end{array}
\] & ecc. & C1 & \(J\) & \[
\begin{array}{c|}
\hline \text { As } \\
\left(\mathrm{mm}^{2}\right)
\end{array}
\] & \[
\begin{aligned}
& \mathrm{As}_{\text {min }} \\
& \left(\mathrm{mm}^{2}\right)
\end{aligned}
\] & \begin{tabular}{l}
Used \\
As
\end{tabular} & & Rft. \\
\hline 1 & 11 & 10 & 1000 & 135 & 160 & Big & 7.23 & 0. & 301 & 391 & 391 & & ¢ 10 \\
\hline
\end{tabular}

Figure 8.7: Covered Bending moment induced from 5 T 10/m' mesh


Figure 8.8: Additional Reinforcement required in local axes 1 direction (short direction)

\section*{Technical Design Calculation Report}


Figure 8.9: Additional Reinforcement required in local axes 2 direction (long direction)

\section*{Technical Design Calculation Report}

\subsection*{8.3.2 Beam Design.}

\subsection*{8.3.2.1 Horizontal \& Longitudinal RFT}
- \(A_{s 1}=\frac{63 * 10000}{\left(\frac{360}{1.15}\right)}=2012.5 \mathrm{~mm}^{2}\) \(\qquad\) .assume using T 22 \(\qquad\) Use 6 T 22
- \(A_{s 2}=\frac{22 * 10000}{\left(\frac{360}{1.15}\right)}=703 \mathrm{~mm}^{2}\) \(\qquad\) .assume using T 22 \(\qquad\) .Use 2 T 22
- \(\mathrm{A}_{\mathrm{s} 3}=\frac{12 * 10000}{\left(\frac{360}{1.15}\right)}=384 \mathrm{~mm}^{2}\) \(\qquad\) .assume using T 16 \(\qquad\) .Use 2 T 116

\subsection*{8.3.2.2 Stirrups.}
- \(A_{\text {st }}=\frac{11 * 10000}{\left(\frac{360}{1.15}\right)}=352 \mathrm{~mm}^{2}\) \(\qquad\) Use stirrups 5 T 10/m'


\section*{Technical Design Calculation Report}

\subsection*{8.3.3 Columns Design.}

\subsection*{8.3.3.1 Longitudinal RFT}
- \(\sigma_{\mathrm{x}}=\left(20.8^{2} * 0.5\right) /(2000)=0.108 \mathrm{~m}\)
- \(\sigma_{y}=\left(21^{2} * 0.6\right) /(2000)=0.132 \mathrm{~m}\)
- \(M_{\text {add. }}=240 * 0.132=31.68 \mathrm{KN} . \mathrm{m}\)
- \(M_{\text {add. } y}=240^{*} 0.108=25.92 \mathrm{KN} . \mathrm{m}\)
- Column A ( Left Column).
- \(M x=149.8\) KN.m
- \(M y=56.5 \mathrm{KN} . \mathrm{m}\)
- \(M_{d-x}=149.8+31.68=181.48 \mathrm{KN} . \mathrm{m}\)
- \(M_{d-y}=56.5+25.92=82.42 \mathrm{KN} . \mathrm{m}\)
- \(\mathrm{Pu}=240 \mathrm{KN}\)
- Use top and bottom steel \(\dot{\alpha}=1\)
- \(\zeta=\frac{550-50}{600}=0.83\)
- \(\mathrm{R}_{\mathrm{b}}=\frac{p u}{F c u * b * t}=\frac{240 * 1000}{30 * 500 * 600}=0.027\)
- \(\frac{M d x}{F c u * b * t^{2}}=\frac{181.48 * 1000000}{30 * 500 * 600^{2}}=0.034\)
- \(\frac{M d y}{F c u * b * t^{2}}=\frac{82.42 * 1000000}{30 * 600 * 500^{2}}=0.0183\)
- From Interaction Diagram, \(\rho=3\)
- \(\mu=3 * 30^{*} 10^{-4}=9 * 10^{-3}\)
- As=9*10-3*600*500 \(=2700 \mathrm{~mm}^{2}\) \(\qquad\) .Use 14 T 16
- Torsion RFT. (see part 8.3.2.2) ...... 7 T 16

- Total vertical RFT. equal 22 T 16
- Column B ( Right Column).
- \(M x=100.5 \mathrm{KN} . \mathrm{m}\)
- \(M y=37.5 \mathrm{KN} . \mathrm{m}\)
- \(M_{d-x}=100.5+31.68=132.18 \mathrm{KN} . \mathrm{m}\)
- \(M_{d-y}=37.5+25.92=63.42 \mathrm{KN} . \mathrm{m}\)
- \(\mathrm{Pu}=240 \mathrm{KN}\)
- Use top and bottom steel \(\dot{\alpha}=1\)
- \(\zeta=\frac{550-50}{600}=0.83\)
- \(\mathrm{R}_{\mathrm{b}}=\frac{p u}{F c u * b * t}=\frac{240 * 1000}{30 * 500 * 600}=0.027\)
- \(\frac{M d x}{F c u * b * t^{2}}=\frac{132.18 * 1000000}{30 * 500 * 600^{2}}=0.025\)
- \(\frac{M d y}{F c u * t * b^{2}}=\frac{63.42 * 1000000}{30 * 600 * 500^{2}}=0.014\)
- From Interaction Diagram, \(\rho=2.1\)
- \(\mu=2.1 * 30^{*} 10^{-4}=6.3 * 10^{-3}\)
- As \(=6.3 * 10^{-3} * 600 * 500=1890 \mathrm{~mm}^{2}\). .Use 10 T 16
- Torsion RFT. (see part 8.3.2.2) \(\qquad\) 6 T 16
- Total vertical RFT. equal 16 T 16

\section*{Technical Design Calculation Report}

Results assessment by using Sap 2000 software (Design according to BS8110 97) K SAP2000 v14.2.2 Advanced - Diving Platform Modeling (With Wall) - [longitudinal Reinforcing Area (BS8110 97)]



\section*{Technical Design Calculation Report}

\subsection*{8.3.2.2 Stirrups.}
- Column A ( Left Column).
\begin{tabular}{|lrrr|}
\hline Concrete & \(f_{c u}=\) & 30 & MPa \\
Stirrups & \(\mathrm{f}_{\mathrm{y}}=\) & 350 & MPa \\
Horizontal bars \(\mathrm{f}_{\mathrm{y}}=\) & 350 & MPa \\
\hline
\end{tabular}


Calculation of Rft.
\begin{tabular}{lllll} 
Stirrups due to shear & no. & 1 & \\
\hline & 0.0 & 10 & \(/ \mathrm{m}\) & inner
\end{tabular}

\begin{tabular}{ccccl}
\hline or use total stirrups & no. & 1 & \\
\hline & 4 & 10 & \(/ \mathrm{m}\) & as min
\end{tabular}
\begin{tabular}{ccc} 
Horizontal Rft. & no. & 1 \\
\hline & 7 & 16
\end{tabular}


\section*{Technical Design Calculation Report}
- Column B ( Right Column).


\section*{Technical Design Calculation Report}

\subsection*{8.3.4 Cantilevers}
- Horizontal RFT.

F11 \(=18 \mathrm{~T} / \mathrm{m}^{\prime}\)
By using Interior and Exterior mesh, the \(\mathrm{F}_{11}\) for eash mesh will equal 18/2=9 T/m' As \(=\frac{9 * 10000}{360 / 1.15}=288 \mathrm{~mm}^{2}\) Use \(\qquad\) Use 5 T \(10 /\) m \(^{\prime}\)
- Vertical RFT.

F22=6 T/m'
By using Interior and Exterior mesh, the \(F_{22}\) for eash mesh will equal \(6 / 2=3 \mathrm{~T} / \mathrm{m}^{\prime}\) As \(=\frac{3 * 10000}{360 / 1.15}=96 \mathrm{~mm}^{2}\) Use Use 5 T \(10 /\) m \(^{\prime}\)

\section*{Egyptian Aquatic Centre Coliseum}


\section*{Technical Design Calculation Report}

\section*{I. Design codes and standards}

1- EN 1996-1-1
Eurocode 6 - Design of masonry structures - Part 1-1: General rules for reinforced and unreinforced masonry structures.

2- ECP (201-2010)
Egyptian Code for Loading on Buildings.

3- EN 1990:2002+A1
Eurocode - Basis of structural design.

4- Structural Designer's Manual
Second Edition.
5- DESIGN OF MASONRY STRUCTURES Book
Third edition of Load Bearing Brickwork Design.
6- Design of Masonry Structures According Eurocode 6.
Prof. em. Dr.-Ing. Wieland Ramm Technical University of Kaiserslautern.

\section*{7- Ain Shams Engineering Journal .}

Study of physical and mechanical properties for some of Eastern Desert dimension marble and granite utilized in building decoration.

\section*{Technical Design Calculation Report}

\section*{1. INTRODUCTION}

The concept for structural design focuses on satisfying both the functional and the economic requirements of the building without jeopardizing its aesthetic and architectural features. This Calculation Report presents the structural engineering aspect of the works due for the development construction work of Egyptian Aquatic Centre.


Figure 1-4 Coliseum location

Technical Design Calculation Report

\section*{2. Coliseum Drawings Details}


Figure 2-: Ground Floor.


Figure 2-2: Arched Slabs Peak Level.


Figure 2- 3: Audience Level.

\section*{Technical Design Calculation Report}


Figure 2- 4: Elevations \& Section A-A.


(1) Wall Masonry Details
(3)

Figure 2- 5: Masonry Walls Blocks Details.


Figure 2-6: Arched Slabs Blocks Details.

\section*{3. Calculation Software Used}

\section*{Calculation software features}

The software used is RFEM, developed by DLUBAL COMPANY (Germany).
Technical specifications
Name: RFEM
Version: \(\quad 5.22 .03\)

Producer: DLUBAL
www.dlubal.com

License registered is a student license

\section*{4. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES}

\section*{Stone Masonry Blocks.}

By using Red Aswanian Granit Blocks, the mechanical properties of Red Aswanian Granite shown in the following table (AinShams University Journal).

Mechanical testing results of some Egyptian granite and marble.
\begin{tabular}{lllllllll}
\hline \begin{tabular}{l} 
Sample \\
No.
\end{tabular} & \begin{tabular}{l} 
Wt. \\
saturated \\
W2
\end{tabular} & \begin{tabular}{l} 
Weight in \\
water \\
W1
\end{tabular} & \begin{tabular}{l} 
Weight \\
dry \\
W0
\end{tabular} & \begin{tabular}{l} 
Dry \\
density
\end{tabular} & \begin{tabular}{l} 
Flexural \\
strength \(\mathrm{kg} / \mathrm{cm}^{2}\)
\end{tabular} & \begin{tabular}{l} 
Apparent \\
weight
\end{tabular} & \begin{tabular}{l} 
Water \\
absorption
\end{tabular} & \begin{tabular}{l} 
Compressive \\
Strength \(\mathrm{Kg} / \mathrm{cm} 2\)
\end{tabular} \\
\hline Halaib & 2569 & 1616 & 2565 & 2.692 & 155.0 & 2.703 & 0.156 & 1358 \\
Aswan & 2454 & 1545 & 2452 & 2.697 & 142.5 & 2.703 & 0.082 & 1050 \\
Dawi & 2535 & 1582 & 2520 & 2.627 & 124.0 & 2.703 & 1.075 & 827 \\
Sinai & 2594 & 1645 & 2591 & 2.730 & 125.0 & 2.739 & 0.116 & 1299 \\
Telmet & 2540 & 1585 & 2523 & 2.629 & 111.6 & 2.704 & 1.073 & 824 \\
\hline
\end{tabular}

\section*{Mortar.}

By using M12 mortar (the letter ' M ' describes the compressive strength of the mortar), the mechanical properties of the mortar is:
- Compressive strength \(=12 \mathrm{~N} / \mathrm{mm} 2\).
- Mortar class= standard Mortar.
- Ratio \(\mathrm{g} / \mathrm{t}\) (width of the mortar bed to the thickness of bedded surface) \(=1\).
- Bed joint thickness around from 3 mm to 5 mm .
- Reinforced mortar cover \(=30 \mathrm{~mm}\)

\section*{Stone Masonry Combination.}

According to EN 1996-1-1 Clause 3, the design characteristics strength of masonry combinations are:
- Compressive strength \({ }_{\mathrm{Fk}}=24.6 \mathrm{~N} / \mathrm{MM}^{2}\)
- Flexural Tensile \({ }_{\text {strength parallel to bed joint direction, } F \times \mathrm{Fk} 1}=0.6 \mathrm{~N} / \mathrm{mm}^{2}\).
- Flexural Tensile strength perpendicular to bed joint direction, \(\mathrm{Fxk} 2=1.2 \mathrm{~N} / \mathrm{mm}^{2}\).
- Shear strength \({ }_{\text {Fvko }}=0.6 \mathrm{~N} / \mathrm{mm}^{2}\).
- Final creep coeff. \(=0.05\)
- Modules of Elasticity \(=24600 \mathrm{~N} / \mathrm{mm}^{2}\)
- Shear Modules \(=10250 \mathrm{~N} / \mathrm{mm}^{2}\)
- Poisson's ratio= 0.2
- Partial Safety Factor (assume high quality in manufacturing and execution)= 2

\section*{Reinforcing Steel.}

Reinforcing steel bars shall be uncoated high yield deformed bars of characteristic strength \(360 \mathrm{~N} / \mathrm{mm}^{2}\).

Note: Bar size increment \(=6,8,10,12,16,18,20,22,25,28\) and 32

\section*{5. Calculation method and numerical model}

\subsection*{5.1 Model Description}

\subsection*{5.1.1 Hypothesis adopted for the elements}
- Stine masonry is an orthotropic material, due to absence of testing data and for simplicity the material is modeled as nonlinear isotropic material as shown in the fig.
5.1.


Figure 5.1 Material model of stone masonry.
- After tensile strength limits, the plastic behavior of masonry is obsesses and fracturing cracks appear.
- The masonry after this limit can resist the load as a cracked section, depending on it's stability moment of resistance.

\section*{Technical Design Calculation Report}
6. Actions and design loads

\subsection*{6.1 STRUCTURAL LOADS.}

The following loads are considered in the design:
- Structural Dead Loads which include:
> The own weight of the structural elements, walls and arched slabs.
\(>\) Superimposed dead load from Stone above arched slabs and Finishing.
- Live loads which cover all variable occupants above the coliseum.
- Seismic loads according to ECP.

The basis for the considered design loads are summarized in the followings sections.

\section*{D. Dead Loads}

Unit weight of Masonry elements \(\quad 27.0 \mathrm{kN} / \mathrm{m}^{3}\)
E. Live Loads

Live loads are considered equal to \(500 \mathrm{~kg} / \mathrm{m}^{2}\)
F. Wind Loads

The wind pressure shall be calculated in accordance with (ECP 201-2012)
Basic wind speed \(=36 \mathrm{~m} / \mathrm{sec}\).
Wind pressure (or suction) distribution factor ( Ce )
\(\mathrm{C}_{\mathrm{e}}=+0.8\) for areas subjected to wind pressure
\(\mathrm{C}_{\mathrm{e}}=-0.5 /-0.7\) for areas subjected to suction wind
Exposure factor (according to height from ground level) ( \(k=1\) )
G. Earthquakes
- Response modification factor \(\quad(R=2)\)
- Importance factor
( \(r_{i}=1.2\) )
- The design acceleration
\(\left(\mathrm{a}_{\mathrm{g}}=0.15 \mathrm{~g}\right)\)
- Design damping correction factor
( \(n=1.0\) )
- Zone 3
- Soil Type
(C)
- Earthquake loads shall be comply with the (ECP 201-2010).

\section*{Technical Design Calculation Report}

\section*{Earthquakes Input data and results.}



\section*{Technical Design Calculation Report}
\begin{tabular}{|c|cccr}
\hline & \multicolumn{2}{c}{\begin{tabular}{c} 
Response Spectrum \\
Description
\end{tabular}} & No. & \multicolumn{1}{c}{ Time } \\
\hline No. & Ts] & \multicolumn{1}{c}{ Acceleration } \\
\hline RS1 & 17 & 3.670 & \(\left.0 . \mathrm{m} / \mathrm{s}^{2}\right]\)
\end{tabular}
- 1.5.4.1 RESPONSE SPECTRA - USER-DEFINED - GRAPH


Dynamic Load Cases
Description
Assign response spectrum.
Response Spectrum in Direction
\(\triangle \mathrm{x}: \mathrm{RS} 1\) -
Multiplication factor
\(\triangle y: R S 1\) -
1.000
1.000

Rotate \(a_{x} a_{y}\) about \(Z\) :
\[
\left.\alpha=0.00{ }^{\circ}\right]
\]

Settings:
- Consider accidental torsional actions:

To generate:
\(\triangle\) Load cases with \(\mathrm{E}_{\mathrm{X}, j} / \mathrm{E}_{\mathrm{z},}\) from all modal shapes Number of first generated load case;
\(\triangle\) Result Combinations (modal combination)
Number of first generated result combination:
© Combination of directional components with \(\square\) SRSS
区 \(100 / 30 \%\)
\(\square 100 / 40 \%\)
Combination Rules:
Modal response combination rule
\(\square\) SRSS
\(\triangle\) CQC

\section*{Options}
\(\triangle\) Use equivalent linear combination
\(\triangle\) Signed results using dominant mode shape
Y : Automatic
Z: Automatic
X : Automatic


SHAPES TO GENERATE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DLC & \multirow[t]{2}{*}{Dynamic Load Cases Description} & Mode & To generate & Freq & & Period & Acceleration \\
\hline Case & & No. & & \(\omega\) [ \(\mathrm{rad} / \mathrm{s}\) ] & \(\mathrm{f}[\mathrm{Hz}]\) & T [s] & \(\mathrm{S}_{\mathrm{a}}\left[\mathrm{m} / \mathrm{s}^{2}\right]\) \\
\hline DLC1 & & 1 & 囚 & 49.014 & 7.801 & 0.128 & 2.023 \\
\hline ) & & 2 & 园 & 63.668 & 10.133 & 0.099 & 1.859 \\
\hline & & 3 & \(\square\) & 70.291 & 11.187 & 0.089 & 1.808 \\
\hline & & 4 & Q & 76.036 & 12.102 & 0.083 & 1.770 \\
\hline & & 5 & \(\square\) & 89.150 & 14.189 & 0.070 & 1.703 \\
\hline & & 6 & \(\square\) & 90.995 & 14.482 & 0.069 & 1.695 \\
\hline & & 7 & \(\square\) & 103.003 & 16.394 & 0.061 & 1.655 \\
\hline & & 8 & \(\square\) & 113.214 & 18.019 & 0.055 & 1.627 \\
\hline & & 9 & \(\square\) & 122.136 & 19.439 & 0.051 & 1.607 \\
\hline & & 10 & \(\square\) & 125.137 & 19.916 & 0.050 & 1.601 \\
\hline
\end{tabular}

\subsection*{5.1 NATURAL FREQUENCIES}


\subsection*{5.7 EFFECTIVE MODAL MASS FAGTORS}

NVC1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mode & Modal Mass & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\mathrm{m}_{\mathrm{ex}}[\mathrm{t}]
\]
\[
m_{e Y}[t]
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Effective Modal Mass \(\mathrm{m}_{\mathrm{ez}}[t] \quad \mathrm{m}_{\varphi \mathrm{x}}\left[\mathrm{t} . \mathrm{m}^{2}\right]\)}} & \multirow[b]{2}{*}{\(\mathrm{m}_{\varphi \mathrm{Y}}\left[\mathrm{t} . \mathrm{m}^{2}\right]\)} & \multirow[b]{2}{*}{\(\mathrm{m}_{\varphi} \mathrm{z}\left[\mathrm{t} . \mathrm{m}^{2}\right]\)} & \multicolumn{3}{|l|}{Effective Modal Mass Factor} \\
\hline No. & \(M_{i}[t]\) & & & & & & & \(\mathrm{f}_{\text {mex }}[-]\) & \(\mathrm{f}_{\mathrm{meY}}[-]\) & \(\mathrm{f}_{\mathrm{mez}}[-]\) \\
\hline 1 & 3230.50 & 0.00 & 5020.75 & 0.66 & 95.498 & 0.000 & 36294.255 & 0.000 & 0.909 & 0.000 \\
\hline 2 & 1532.46 & 3756.08 & 1.87 & 8.90 & 17.356 & 2579.357 & 17116.636 & 0.680 & 0.000 & 0.002 \\
\hline 3 & 1929.15 & 133.41 & 40.95 & 0.04 & 1774.352 & 6.669 & 2585185.212 & 0.024 & 0.007 & 0.000 \\
\hline 4 & 1233.96 & 1299.49 & 107 & 3.09 & 692.159 & 94.774 & 37617.967 & 0.235 & 0.000 & 0.001 \\
\hline 5 & 1106.59 & 9.02 & 8.63 & 46.29 & 917.802 & 2.148 & 121698.288 & 0.002 & 0.002 & 0.008 \\
\hline 6 & 1377.24 & 11.70 & 31.05 & 15.01 & 6344.396 & 0.031 & 209874.453 & 0.002 & 0.006 & 0.003 \\
\hline 7 & 205.80 & 8.51 & 0.46 & 0.00 & 2457.496 & 67.419 & 1660.530 & 0.002 & 0.000 & 0.000 \\
\hline 8 & 174.19 & 6.49 & 0.18 & 0.29 & 180.056 & 247.940 & 333.941 & 0.001 & 0.000 & 0.000 \\
\hline 9 & 301.14 & 1.40 & 10.13 & 60.26 & 21360.189 & 89.104 & 5774.345 & 0.000 & 0.002 & 0.011 \\
\hline 10 & 186.48 & 0.82 & 2.91 & 0.26 & 517.525 & 109.330 & 5380.205 & 0.000 & 0.001 & 0.000 \\
\hline Sum & 11277.52 & 5226.91 & 5118.03 & 134.80 & 34356.829 & 3196.773 & 3020935.833 & 0.947 & 0.927 & 0.024 \\
\hline
\end{tabular}

\section*{Technical Design Calculation Report}

\subsection*{6.2 Load Cases and Load combinations.}

The following tables describe the load cases and load combinations on the Coliseum:
Table 1: Load cases


\section*{Technical Design Calculation Report}

\section*{Table 2: Load combinations}


\section*{Technical Design Calculation Report}


\section*{Technical Design Calculation Report}

7. STRUCTURAL ANALYSIS
7.1 3d-model


\subsection*{7.2 ASSIGN OF LOADS}


Figure 7.1.: Assign of stone masonry fill loads on the arched slab (KN-M \({ }^{2}\) Units)

\section*{Technical Design Calculation Report}


Figure 7.2.: Assign of Live loads on the arched slab (KN-M \({ }^{2}\) Units)


Figure 7.3.: Assign of Wind loads in positive x -direction (KN-M \({ }^{2}\) Units)

\section*{Technical Design Calculation Report}


Figure 7.4.: Assign of Wind loads in positive x -direction (KN-M Units)


Figure 7.5.: Assign of Wind loads in negative x -direction (KN-M \({ }^{2}\) Units)


Figure 7.6.: Assign of Wind loads in negative x -direction (KN-M Units)

\section*{Technical Design Calculation Report}


Figure 7.7.: Assign of Wind loads in positive y-direction (KN-M Units)

\section*{Technical Design Calculation Report}


Figure 7.5.: Assign of Wind loads in positive y-direction (KN-M \({ }^{2}\) Units)

\section*{Technical Design Calculation Report}


Figure 7.6.: Assign of Wind loads in negative y -direction (KN-M \({ }^{2}\) Units)


Figure 7.7: Assign of Wind loads in negative y-direction (KN-M Units)

\section*{8. STRUCTURAL DESIGN.}

\subsection*{8.1 Local Axis Definitions.}


The following figure illustrates the definition of basic internal forces in surfaces:


\section*{Technical Design Calculation Report}

\subsection*{8.2 Walls Design.}

\subsection*{8.2.1 Axial Loading Design.}
(1) The design vertical load resistance of a single leaf wall per unit length, \(N_{R d}\), is given by:
\[
N_{R d}=\frac{\Phi_{i, m} \cdot t \cdot f_{k}}{\gamma_{M}}
\]
where:
\(\Phi_{\mathrm{i}, \mathrm{m}}\) is the capacity reduction factor \(\Phi_{\mathrm{i}}\) or \(\Phi_{\mathrm{m}}\), as appropriate, allowing for the effects of slenderness and eccentricity of loading;
\(\mathrm{f}_{\mathrm{k}}\) is the characteristic compressive strength of masonry;
\(\gamma m\) is the partial safety factor for the material;
\(t\) is the thickness of the wall, taking into account the depth of recesses in joints greater than 5 mm .

\section*{Symbol:} \(\Phi\)
(I) At the top or bottom of the wall.
\[
\Phi_{\mathrm{i}}=1-2 \frac{\mathrm{e}_{\mathrm{i}}}{\mathrm{t}}
\]
where:
\(e_{i}\) is the eccentricity at the top or the bottom of the wall:

\(e_{i}=\frac{M_{i}}{N_{i}}+e_{h i}+e_{\mathrm{a}} \geq 0,05 t\)
\(M_{i}\) is the design bending moment at the top or the bottom of the wall resulting from the eccentricity of the floor load at the support,
\(N_{i}\) is the design vertical load at the top or bottom of the wall,
\(\mathrm{e}_{\mathrm{hi}}\) is the eccentricity at the top or bottom of the wall, if any, resulting from horizontal loads (for example, wind),
\(e_{a}\) is the accidental eccentricity
t is the thickness of the wall.
An accidental eccentricity, \(\mathrm{e}_{\mathrm{a}}\),
- shall be assumed for the full height of the wall to allow for construction imperfections,
- may be assumed to be \(\mathrm{h}_{\text {ef }} / 450\), where \(h_{e f}\) is the effective height of the wall.

\section*{Technical Design Calculation Report}
- \(\gamma_{M}=2\)
- \(t=1 \mathrm{~m}\)
- \(\mathrm{f}_{\mathrm{k}}=24649 \mathrm{KN} / \mathrm{m}^{2}\)
- The eccentricity is calculated in RFEM model and add to applied straining actions.
- Slenderness Ratio (S.R) \(=\mathrm{H} / \mathrm{t}=10100 / 1000=10.1>27\) \(\qquad\) (Safe)
- \(\phi_{i}=1\)
- \(\mathrm{N}_{\mathrm{RD}}=\frac{1 * 24649 * 1}{2}=12324.5 \mathrm{KN} / \mathrm{m}^{\prime}\)

From RFEM model, the normal stresses bigger than \(\mathrm{N}_{\mathrm{RD}}\), equal to zero as shown in Fig. 8.1.


Figure 8.1: Check on Normal Stresses in local axis y direction (KN-m')

\section*{Technical Design Calculation Report}

\subsection*{8.2.2 Bending Moment Design.}

According to mortar characteristics and test flexural test results, the Tensile flexural strength of Natural stone masonry equal to:
- \(F_{\mathrm{xk} 1}=0.6 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(F_{\mathrm{xk} 2}=1.2 \mathrm{~N} / \mathrm{mm}^{2}\)


Determination of the flexural strength by tests:
Examples of test set-ups and of typical test specimens:
for \(f_{k \times 1}\) :

for \(\mathrm{f}_{\text {boc }}\) :


\section*{Technical Design Calculation Report}

According to EN 1996-1-1, clause 6.3.1, the combined interaction between axial and bending moment will follow the following equations:
(4) When a vertical load is present, the favourable effect of the vertical stress may be taken into account either by:
(i) using the apparent flexural strength, \(f_{\mathrm{xd} 1 \text {,app }}\), given by equation (6.16), the orthogonal ratio used in (2) above being modified accordingly.
\[
\begin{equation*}
f_{\mathrm{xdl}, \mathrm{app}}=f_{\mathrm{xdl}}+\sigma_{\mathrm{d}} \tag{6.16}
\end{equation*}
\]
where:
\(f_{\mathrm{xdl}} \quad\) is the design flexural strength of masonry with the plane of failure parallel to the bed joints, see 3.6.3;
\(\sigma_{\mathrm{d}} \quad\) is the design compressive stress on the wall, not taken to be greater than \(0,2 f_{\mathrm{d}}\)

The design moment of lateral resistance of a masonry wall, \(\mathrm{M}_{\mathrm{Rd}}\), is given by:
\[
M_{R d}=\frac{f_{2 d} \cdot Z}{\gamma_{M}}
\]
where:
Z the section modulus of the wall.
(1)P At the ultimate limit state, the design value of the moment applied to the masonry wall, \(M_{\mathrm{Ed}}\) (see 5.5.5), shall be less than or equal to the design value of the moment of resistance of the wall, \(M_{\mathrm{Rd}}\), such that:
\[
\begin{equation*}
M_{\mathrm{Ed}} \leq M_{\mathrm{Rd}} \tag{6.14}
\end{equation*}
\]

\section*{Technical Design Calculation Report}

Plan of failure parallel to bed joints.
The average minimum compression force act on the wall is \(26.5+40=66.5 \mathrm{KN} / \mathrm{m}^{2}\) as show in Fig. 8.2.


Figure 8.2: axial load induced from Favourable load combinations ( \(\mathrm{KN}-\mathrm{m}^{2}\) )
- \(\sigma_{d}=66.5 \mathrm{KN} / \mathrm{m}^{2}=0.0665 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(F_{\text {cd1,app }}=0.6+0.0665=0.67 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(Z=b t^{2} / 6=(1 * 1) / 6=0.17 \mathrm{~m}^{3}\)
- \(\mathrm{M}_{\mathrm{RD}}=\frac{666.5 * 0.17}{2}=56.65 \mathrm{KN} . \mathrm{m} / \mathrm{m}^{\prime}\)

The applied bending moment ( \(\mathrm{M}_{\mathrm{ED}}\) ) < the resistance bending moment ( \(\mathrm{M}_{\mathrm{RD}}\) ) except some regions shown in Fig.8.3; thus, these regions will need reinforcement.


Figure 8.3: unsafe regions in bending moment in loxal axes \(x\) direction (KN.m-m')

\section*{Technical Design Calculation Report}
> Plan of failure perpendicular to bed joints.
The average minimum compression force act on the wall is \(26.5+40=66.5 \mathrm{KN} / \mathrm{m}^{2}\) as show in
Fig. 8.2.
- \(\sigma_{d}=66.5 \mathrm{KN} / \mathrm{m}^{2}=0.0665 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(F_{c d 1, \mathrm{app}}=1.2+0.0665=1.266 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(Z=b t^{2} / 6=\left(1^{*} 1\right) / 6=0.17 \mathrm{~m}^{3}\)
- \(M_{R D}=\frac{1266.5 * 0.17}{2}=107.7 \mathrm{KN} . \mathrm{m} / \mathrm{m}^{\prime}\)

The applied bending moment \(\left(\mathrm{M}_{\mathrm{ED}}\right)>\) the resistance bending moment \(\left(\mathrm{M}_{\mathrm{RD}}\right)\) in the most regions of walls as shown in Fig.8.4 ; thus, walls will design as reinforced masonry walls in that direction.


Figure 8.4: unsafe regions in bending moment in loxal axes y direction (KN.m-m')

\section*{Technical Design Calculation Report}

\subsection*{8.2.3 Shear Design.}

\section*{Behaving of masonry under shear:}

\section*{Element cut off a wall:}


In the global system shear stresses \(\tau\) act not only in horizontal but also in vertical direction (due to the equilibrium of moments at the element),

Locally in the perpend joints shear stresses cannot be transferred due to the following reasons:
- the surface of the unit heads are often very smooth,
- there are no normal stresses acting in the perpend joints, therefore there is no friction possible,
- the shrinkage of mortar reduces the possible adhesion,
- vertical joints often are not fully filled with mortar.

So if shear stresses only act in the bed joints, there must be a change in the distribution of the vertical normal stresses, as the equilibrium of a single stone shows. The stresses must become a stepped distribution due to the kinematics of deformations.


Three failure modes occur:
- small load \(\sigma\) :
- larger load \(\sigma\) :
failure in the bed joint, due to \(\tau\) under friction
fracture of units, due to the principal tensile stress, deriving from \(\sigma\) and \(\tau\) in the middle of units,
- very high load \(\sigma\) : failure of units, due to the pressure \(\sigma_{\mathrm{a}}\).
for vertical loading and for shear loading:
\[
\begin{array}{ll}
\mathrm{V}_{\mathrm{sd}} \leq \mathrm{V}_{\mathrm{Rd}} & \mathrm{~V}_{\mathrm{sd}}: \text { design value of the applied shear load } \\
\mathrm{V}_{\mathrm{Rd}}: \text { design shear resistance }
\end{array}
\]

The characteristic shear strength \(f_{v k}\) of unreinforced masonry can be determined
- from the results of tests on masonry,
- by calculation in the following way:

For general purpose mortar and when all joints may be considered as filled, \(\mathrm{f}_{\mathrm{vk}}\) will not fall below the least of the values described below:
or
\[
f_{\mathrm{vk}}=\mathrm{f}_{\mathrm{vko}}+0,4 \sigma_{\mathrm{d}}
\]
\(=0,065 \cdot f_{b}\), but not less than \(f_{\text {vko }}\)
\(=\) the limiting value given in table 3.5
where:
\(\mathrm{f}_{\text {vko }}\) is the shear strength, under zero compressive stress
\(\sigma_{d}\) is the design compressive stress perpendicular to the shear

\section*{Technical Design Calculation Report}

According to EN 1996-1-1, clause 3.6.2, the shear strength of stone masonry with M 2 mortar will equal \(0.1 \mathrm{~N} / \mathrm{mm} 2\).

Assume when use mortar M 12 , the shear strength will equal \(0.6 \mathrm{~N} / \mathrm{mm}^{2}\).
- \(\mathrm{F}_{\mathrm{vk} 0}=0.6 \mathrm{~N} / \mathrm{mm}^{2}\)

The average minimum compression force act on the wall is \(26.5+40=66.5 \mathrm{KN} / \mathrm{m}^{2}\) as show in Fig. 8.2
- \(F_{v k}=0.6+0.4^{*} 0.0665=0.67 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(\mathrm{I}_{\mathrm{c}}=1 \mathrm{~m}\)
- \(\mathrm{V}_{\mathrm{RD}}=\frac{670 * 1 * 1}{2}=335 \mathrm{KN} / \mathrm{m}^{\prime}\)
the applied shear ( \(\mathrm{V}_{\mathrm{ED}}\) ) in bed joint direction is less than the resistance shear ( \(\mathrm{V}_{\mathrm{RD}}\) ) except some regions as shown in Fig.8.5; thus these regions will need reinforcement.


Figure 8.5: unsafe regions in Shear forces in loxal axes \(x\) direction (bed joints direction) (KN-m')

\section*{Technical Design Calculation Report}

\subsection*{8.2.4 Reinforcement Calculations.}

According to EN 1996-1-1, clause 6.6.2, eq. 6.26, the applied axial stress is less than 0.3*axil strength of masonry as show in fig. 8.6.
(8) Reinforced masonry members subjected to a small axial force may be designed for bending, only, if the design axial stress, \(\sigma_{\mathrm{d}}\), does not exceed:
\[
\begin{equation*}
\sigma_{\mathrm{d}} \leq 0,3 f_{\mathrm{d}} \tag{6.26}
\end{equation*}
\]


Figure 8.6: Axial forces values, bigger than thirty percent of axial strength of masonry (KN-m')

\section*{Technical Design Calculation Report}

According the EC 1996-1-1, clause 6.6.2, the design of reinforced masonry subjected to bending moment follows the following equations.
\[
\begin{aligned}
& M_{\mathrm{d}}=A_{\mathrm{s}} z f_{\mathrm{y}} / \gamma_{\mathrm{ms}} \\
& z=\left(d-d_{\mathrm{c}} / 2\right) \\
& A_{\mathrm{s}} f_{\mathrm{y}} / \gamma_{\mathrm{m} \mathrm{~ms}}=b d_{\mathrm{c}} f_{\mathrm{k}} / \gamma_{\mathrm{mms}}
\end{aligned}
\]
so that
\[
\begin{aligned}
& d_{\mathrm{c}} / d=A_{\mathrm{s}} f_{\mathrm{y} \cdot \mathrm{~mm}} / b d f_{\mathrm{k} i i_{\mathrm{ms}}} \\
& z=d\left(1-0.5 A_{\mathrm{s}} f_{\mathrm{y}} \ddot{i}_{\mathrm{mm}} / b d f_{\mathrm{k}} \ddot{i} \mathrm{~ms}\right)
\end{aligned}
\]


Cross-section


Strain distrioution


Stress distribution

\section*{Technical Design Calculation Report}

The methods of reinforcement shown in fig. 8.7.

(i)

(ii)

(iii)
A - Reinforcement surrounded by mortar


B - Reinforcement surrounded by concrete

Figure 8.7: Methods of Masonry Reinforcement.
By using Type A reinforcement method as show in fig. 8.7 and fig. 8.8.


Figure 8.8: Section in masonry wall.

\section*{Technical Design Calculation Report}
> Plan of failure perpendicular to bed joints.
- \(d=687 \mathrm{~mm}\)
- \(\mathrm{M}_{\mathrm{d}}=260 \mathrm{KN} . \mathrm{m} / \mathrm{m}^{\prime}\)
- \(F_{y}=360 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(\mathrm{F}_{\mathrm{k}}=24.6 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(\gamma_{\mathrm{ms}}=1.15\)
- \(\gamma_{\mathrm{mm}}=2\)
- \(Z=687 *\left(1-0.5 * \frac{360 * A s * 2}{24.6 * 1000 * 687 * 1.15}\right)\)
- \(Z=686.987 \mathrm{As}\)
- \(260 * 10^{6}=\mathrm{As} *(360 / 1.15) * 686.987 \mathrm{As}\)
- \(260 * 10^{6}=215056.8\) As
- As \(=260 * 10^{6} / 215056.8=1209 \mathrm{~mm}^{2} / \mathrm{m}^{\prime}\) \(\qquad\) .use 5 T \(18 / \mathrm{m}^{\prime}\) as a vertical RFT By using 5 T \(18 / \mathrm{m}^{\prime}\) as a vertical RFT, the covered moment will equal:
- \(\mathrm{Z}=687^{*}\left(1-0.5^{*} \frac{1272 * 2}{24.6 * 1000 * 687 * 1.15}\right)=686.98 \mathrm{~mm}\)
- \(M_{d}=1272^{*}(360 / 1.15) * 686.98=272 \mathrm{KN} * \mathrm{~m} / \mathrm{m}^{\prime}\)

By using 3 T 18/m' as additional RFT distributed in the regions shown in fig. 8.9, the covered moment will equal:
- \(\mathrm{M}_{\mathrm{d} \text {, additional }}=763^{*}(360 / 1.15)^{*} 686.98=164 \mathrm{KN}^{*} \mathrm{~m} / \mathrm{m}^{\prime}\)
- \(M_{d, \text { total }}=164+272=436 \mathrm{KN} . \mathrm{m} / \mathrm{m}^{\prime}\)


Figure 8.9: Covered bending moment in local axis y direction induced from \(5 \mathrm{~T} 18 / \mathrm{m}\) ' rebars.

\section*{Technical Design Calculation Report}

\section*{Plan of failure Parallel to bed joints.}

By using 2 T 10/m' as horizontal RFT distributed in the total area of the wall except
the regions shown in fig.8.3.
the function of using \(2 \mathrm{~T} \mathrm{10/m}\) rebars is to tie vertical RFT together for ease the construction.
The covered bending moment induced from 7 T 10/m' rebars in the unsafe regions shown in fig. 8.3 will equal
- \(\quad \mathrm{M}_{\mathrm{d} \text {, additional }}=549.7^{*}(360 / 1.15)^{*} 686.98=118.2 \mathrm{KN} * \mathrm{~m} / \mathrm{m}^{\prime}\)


Figure 8.10: Covered bending moment in local axis \(x\) direction induced from 7 T 10/m' rebars.
There are small unsafe regions in bending moment in local \(x\) axis direction as shown in fig. 8.10. The author neglect these regions because of the following reasons:-
- These regions are small area regions.
- The unsafe bending moment in it, is low, equal to \(47 \mathrm{KN} . \mathrm{m} / \mathrm{m}^{\prime}\).
- EC 1996-1-1 assumes that, when design the reinforced masonry, the flexural tensile strength of masonry will be neglected and actually that doesn't occur because the masonry has flexural tensile strength as shown in part 8.3.2.

\section*{Technical Design Calculation Report}

\subsection*{8.3 Arched Slab Design.}

Most Masonry arches are considered to be fixed arches, there are no hinges. The downward loads on the arch creates lateral and comperession thrusts in the arch span (see fig. 8.11) which puch the masonry units against each other and compress them, and in turn the arch thrust against the abutments.


Figure: 8.11
If the line of thrust is on the center of the arch, the arch ring is under uniform compression stress (see fig. 8.12).


Figure: 8.12
The line of thrust doesn't always pass along the centerline of the arch, and the arch isn't then in uniform compression (see fig.8.13)

cross
section.
Figure: 8.13

\section*{Technical Design Calculation Report}

In the fact, the line of thrust can lie outside the middle third of the arch thickness, tensile stress can develop and crack can occur. The line of thrust can move can move to the edge of the arch ring and a hinge will develop, but the arch necessary collapse.

\subsection*{8.3.1 Check on compression stresses.}
- \(\gamma_{M}=2\)
- \(t=1 \mathrm{~m}\)
- \(Z=0.17 \mathrm{~m}^{3}\)
- \(\mathrm{f}_{\mathrm{k}}=24.649 \mathrm{~N} / \mathrm{mm}^{2}\)
- Slenderness Ratio (S.R)=L/t=9000/1000=9>27 \(\qquad\) (Safe)
- \(\phi_{i}=1\)
- \(\mathrm{F}_{\mathrm{RD}}=\frac{1 * 24.649}{2}=12.3 \mathrm{~N} / \mathrm{mm}^{2}\)

From RFEM model, the normal stresses bigger than \(\mathrm{F}_{\mathrm{RD}}\), equal to zero as shown in Fig. 8.14.


Figure 8.14: Check on Compression Stresses in arch thrust line direction ( \(\mathrm{N}-\mathrm{mm}^{\mathbf{2}}\) )

\section*{Technical Design Calculation Report}

\subsection*{8.3.2 Check on tension stresses.}

The arched slab will divide into three regions as shown in the following figure, and the tension stresses will check in each region.


\subsection*{8.3.2.1 Region 1 \& 3.}
- \(\gamma_{M}=2\)
- \(\mathrm{t}_{\text {eff }}=\mathrm{t}_{\text {arch }}+\mathrm{t}_{\text {fill }}=1+1=2 \mathrm{~m}\)
- \(t_{\text {average, eff. }}=\left(t_{\text {eff. }}+t_{\text {arch }}\right) / 2=(2+1) / 2=1.5 \mathrm{~m}\)
- \(Z_{\text {average,eff. }}=0.375 \mathrm{~m}^{3}\)
- \(Z_{\text {eff. }}=0.67 \mathrm{~m}^{3}\)

The minimum compression forces act on the arched slab are \(40 \mathrm{KN} / \mathrm{m}^{2}\) as show in Fig. 8.2.
Plan of failure parallel to bed joints.
The Masonry tensile Strength.
- \(\sigma_{d 1}=40 \mathrm{KN} / \mathrm{m}^{2}=0.04 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(\mathrm{F}_{\mathrm{cd}, \mathrm{app1} 1}=0.6+0.04=0.64 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(\mathrm{F}_{\text {Rd, app1 } 1}=\frac{0.64}{2}=0.32 \mathrm{~N} / \mathrm{mm}^{2}\)

\section*{The Maximum Applied Tensile Stresses.}
- \(\quad n_{y}=100 \mathrm{KN} / \mathrm{m}^{\prime}\)
- \(m_{y}=225 \mathrm{KN} . \mathrm{m} / \mathrm{m}^{\prime}\)
- \(\sigma_{y}=\frac{100 * 1000}{2000 * 1000}-\frac{225 * 1000000}{0.67 * 10^{9}}=0.285\) (Tension) \(\mathrm{N} / \mathrm{mm} 2>0.32\).

The Average Applied Tensile Stresses.
- \(\mathrm{n}_{\mathrm{y}}=208 \mathrm{KN} / \mathrm{m}^{\prime}\)
- \(m_{y}=100 \mathrm{KN} . \mathrm{m} / \mathrm{m}^{\prime}\)
- \(\sigma_{y}=\frac{208 * 1000}{1500 * 1000}-\frac{100 * 1000000}{0.375 * 10^{9}}=0.128\) (Tension) \(\mathrm{N} / \mathrm{mm} 2>0.32\).

\section*{Technical Design Calculation Report}
> Plan of failure Perpendicular to bed joints (Thrust line direction).
The Masonry tensile Strength.
- \(\sigma_{\mathrm{d} 1}=40 \mathrm{KN} / \mathrm{m}^{2}=0.04 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(\mathrm{F}_{\mathrm{cd}, \text { app } 2}=1.2+0.04=1.24 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(\mathrm{F}_{\text {Rd,app2 } 2}=\frac{1.24}{2}=0.62 \mathrm{~N} / \mathrm{mm}^{2}\)

The Maximum Applied Tensile Stresses.
- \(\mathrm{n}_{\mathrm{x}}=76 \mathrm{KN} / \mathrm{m}^{\prime}\)
- \(m_{x}=328 \mathrm{KN} . \mathrm{m} / \mathrm{m}^{\prime}\)
- \(\sigma_{x}=\frac{76 * 1000}{2000 * 1000}-\frac{328 * 1000000}{0.67 * 10^{9}}=0.45\) (Tension) \(\mathrm{N} / \mathrm{mm} 2>0.62\).

The Average Applied Tensile Stresses.
- \(n_{x}=60 \mathrm{KN} / \mathrm{m}^{\prime}\)
- \(m_{x}=127 \mathrm{KN} . \mathrm{m} / \mathrm{m}^{\prime}\)
- \(\sigma_{\mathrm{x}}=\frac{60 * 1000}{1500 * 1000}-\frac{127 * 1000000}{0.375 * 10^{9}}=0.29\) (Tension) \(\mathrm{N} / \mathrm{mm} 2>0.62\). \(\qquad\) (Safe)

\subsection*{8.3.2.2 Region 2.}
- \(\gamma_{M}=2\)
- \(t=1 \mathrm{~m}\)
- \(\mathrm{Z}=0.17 \mathrm{~m}^{3}\)

The minimum compression forces act on the arched slab are \(26.5 \mathrm{KN} / \mathrm{m}^{2}\) as show in Fig. 8.2.
> Plan of failure parallel to bed joints.
The Masonry Tensile Strength.
- \(\sigma_{\mathrm{d} 1}=26.5 \mathrm{KN} / \mathrm{m}^{2}=0.026 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(\mathrm{F}_{\mathrm{cd} \text { app1 }}=0.6+0.026=0.626 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(\mathrm{F}_{\text {Rd, app1 } 1}=\frac{0.62}{2}=0.31 \mathrm{~N} / \mathrm{mm}^{2}\)

From RFEM model, the Regions shown in fig. 8.15 describe the applied tension stresses ( \(\sigma_{\mathrm{y}}\) ) bigger than masonry tensile strength ( \(\mathrm{F}_{\text {rd,app1 }}\) ).

The masonry sections in these regions, (shown in fig. 8.15) will crack and considered as a cracked sections.

It must check the cracked sections against stability, even not collapse as described in part 8.3.1 (check on compression stresses).

\section*{Technical Design Calculation Report}


Figure 8.15: Check on Tensile Stresses in local axis y direction ( \(\mathrm{N}-\mathrm{mm}^{\mathbf{2}}\) )

\section*{Technical Design Calculation Report}
> Plan of failure Perpendicular to bed joints.
The Masonry Tensile Strength.
- \(\sigma_{\mathrm{d} 1}=26.5 \mathrm{KN} / \mathrm{m}^{2}=0.026 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(F_{\text {cd,app2 } 2}=1.2+0.026=1.22 \mathrm{~N} / \mathrm{mm}^{2}\)
- \(\mathrm{F}_{\text {Rd, app2 } 2}=\frac{1.22}{2}=0.61 \mathrm{~N} / \mathrm{mm}^{2}\)

\section*{From RFEM model, the Regions shown in fig. 8.16 describe the applied tension stresses ( \(\mathrm{a}_{\mathrm{x}}\) )} bigger than masonry tensile strength ( \(\mathrm{F}_{\text {Rd,app2 }}\) ).

The masonry sections in these regions, (shown in fig. 8.16) will crack and considered as a cracked sections.

It must check the cracked sections against stability, even not collapse as described in part 8.4.1 (check on compression stresses).


Figure 8.16: Check on Tensile Stresses in local axis x direction (Thrust line direction) ( \(\mathrm{N}-\mathrm{mm}^{2}\) )

\section*{Technical Design Calculation Report}

\subsection*{8.3.3 Check on Shear stresses.}

The minimum compression force act on the wall is \(26.5 \mathrm{KN} / \mathrm{m}^{2}\) as show in Fig. 8.2
- \(\mathrm{F}_{\mathrm{vk}}=0.6+0.4^{*} 0.026=0.61 \mathrm{~N} / \mathrm{mm}^{2}\)
the applied shear stress in the direction of bed joints ( \(\tau_{\mathrm{yz}}\) ) is less than the shear stength \(\left(\mathrm{F}_{\mathrm{vk}}\right)\) as shown in fig. 8.17.


Figure 8.17: Check on Shear Stresses in local axis Y direction (bed joints direction) (N-mm²)```

