

DESIGN OF SPECIAL STRUCTURES

ARAB ACADEMY FOR SCIENCE, TECHNOLOGY & MARITIME TRANSPORT

COLLEGE OF ENGINEERING, CONSTRUCTION & BUILDING DEPARTMENT

"GRADUATION PROJECT BOOK"

FIRST EDITION

Author

Mohamed Ahmed Hamdallah, B.Sc., C.Eng.

Supervisor

Professor: Eehab Khalil

JULY 24, 2020 AASTMT South valley branch

Table of Contents

DESI	GN AND BEHAVIOR OF A MID-RISE CROSS LAM	INATED
TIME	BER BUILDING	4
I.	DESIGN CODES AND STANDARDS	6
1.	INTRODUCTION	7
2.	PROJECT FEATURES	7
3. G	ENERAL DESCRIPTION OF THE BUILDING	8
4. C.	ALCULATION SOFTWARE USED	
5. O	UTLINE SPECIFICATION AND MATERIAL PROPERITIES	14
	Wooden materials	
5.2	Screws	16
6. C.	ALCULATION METHOD AND NUMERICAL MODEL	
6.1	Model Description	
7. A	CTIONS AND DESIGN LOADS	
7.1	STRUCTURAL LOADS	
7.2	2 Load Cases and Load Combinations	
8. SI	ECTIONS OF THE STRUCTURAL ELEMENTS	
8.1	CLT walls and floors	
8.2	2 LVL Beams & Glulam Columns	
8.3	Connections	
9. ST	FRUCTURAL SYSTEM	
10. S	TRUCTURAL ANALYSIS	
10	1 ASSIGN OF LOADS	
11. 5	TRUCTURAL DESIGN	43
11	.1 DESIGN OF CLT SLABS and WALLS	
11	2 Structural analysis results	
Egypt	ian Aquatic Centre	
	PRT COURSE POOL	
I.	Design codes and standards	
1.	INTRODUCTION	
		Page 1 of 296

2. I	ool Drawings Details	
3. (Calculation Software Used	
4. (OUTLINE SPECIFICATION AND MATERIAL PROPERITIES	
5. (alculation method and numerical model	
6. A	ctions and design loads	
7. 5	TRUCTURAL ANALYSIS	
8. 5	TRUCTURAL DESIGN	
LON	G COURSE POOL	
I.	Design codes and standards	
1.	INTRODUCTION	
2. F	ool Drawings Details	
3.	Calculation Software Used	
4.	OUTLINE SPECIFICATION AND MATERIAL PROPERITIES	
5.	Calculation method and numerical model	
6.	Actions and design loads	
7.	STRUCTURAL ANALYSIS	
8.	STRUCTURAL DESIGN	
DIVI	NG PLATFORMS	
DIVI I.	NG PLATFORMS Design codes and standards	
I. 1.	Design codes and standards	
I. 1.	Design codes and standards INTRODUCTION	
I. 1. 2. I	Design codes and standards INTRODUCTION Diving Platform Drawings Details	
I. 1. 2. I 3.	Design codes and standards INTRODUCTION Diving Platform Drawings Details Calculation Software Used	
I. 1. 2. I 3. 4.	Design codes and standards INTRODUCTION Diving Platform Drawings Details Calculation Software Used OUTLINE SPECIFICATION AND MATERIAL PROPERITIES	205 206 207 214 215 217
I. 1. 2. I 3. 4. 5.	Design codes and standards INTRODUCTION Diving Platform Drawings Details Calculation Software Used OUTLINE SPECIFICATION AND MATERIAL PROPERITIES Calculation method and numerical model	205 206 207 214 215 217 219
I. 1. 2. I 3. 4. 5. 6.	Design codes and standards INTRODUCTION Diving Platform Drawings Details Calculation Software Used OUTLINE SPECIFICATION AND MATERIAL PROPERITIES Calculation method and numerical model Actions and design loads	205 206 207 214 214 215 217 219 224
I. 1. 2. I 3. 4. 5. 6. 7. 8.	Design codes and standards INTRODUCTION Diving Platform Drawings Details Calculation Software Used OUTLINE SPECIFICATION AND MATERIAL PROPERITIES Calculation method and numerical model Actions and design loads STRUCTURAL ANALYSIS	205 206 207 214 214 215 217 219 224 227
I. 1. 2. I 3. 4. 5. 6. 7. 8.	Design codes and standards INTRODUCTION Diving Platform Drawings Details Calculation Software Used OUTLINE SPECIFICATION AND MATERIAL PROPERITIES Calculation method and numerical model Actions and design loads STRUCTURAL ANALYSIS STRUCTURAL DESIGN	205 206 207 214 215 215 217 219 224 224 227 244
I. 1. 2. I 3. 4. 5. 6. 7. 8. COL	Design codes and standards INTRODUCTION Diving Platform Drawings Details Calculation Software Used OUTLINE SPECIFICATION AND MATERIAL PROPERITIES Calculation method and numerical model Actions and design loads STRUCTURAL ANALYSIS STRUCTURAL DESIGN ISEUM	205 206 207 214 215 215 217 219 224 227 224 227 244 225
I. 1. 2. I 3. 4. 5. 6. 7. 8. COL I. 1.	Design codes and standards INTRODUCTION Diving Platform Drawings Details Calculation Software Used OUTLINE SPECIFICATION AND MATERIAL PROPERITIES Calculation method and numerical model Actions and design loads STRUCTURAL ANALYSIS STRUCTURAL DESIGN ISEUM Design codes and standards	205 206 207 214 215 215 217 219 224 227 224 227 244 245 245
I. 1. 2. I 3. 4. 5. 6. 7. 8. COL I. 1. 2. (Design codes and standards INTRODUCTION Diving Platform Drawings Details Calculation Software Used OUTLINE SPECIFICATION AND MATERIAL PROPERITIES Calculation method and numerical model Actions and design loads STRUCTURAL ANALYSIS STRUCTURAL DESIGN ISEUM Design codes and standards INTRODUCTION.	205 206 207 214 215 217 219 224 227 224 227 244 225 246 247
I. 1. 2. I 3. 4. 5. 6. 7. 8. COL I. 1. 2. (Design codes and standards INTRODUCTION Diving Platform Drawings Details Calculation Software Used OUTLINE SPECIFICATION AND MATERIAL PROPERITIES Calculation method and numerical model Actions and design loads STRUCTURAL ANALYSIS STRUCTURAL DESIGN ISEUM Design codes and standards INTRODUCTION Coliseum Drawings Details	205 206 207 214 215 217 219 224 227 224 227 244 245 246 247 253

6.	Actions and design loads	
7.	STRUCTURAL ANALYSIS	
8.	STRUCTURAL DESIGN	

TECHNICAL DESIGN CALCULATION REPORT

DESIGN AND BEHAVIOR OF A MID-RISE CROSS LAMINATED TIMBER BUILDING Part 1

Abstract

Cross laminated timber (CLT) is a new engineered wood material with a wide range of application as structural member in residential, commercial and educational buildings. CLT is developed in Austria and its production and application is increasing in Europe and around the world. One of the utilization fields of CLT is midrise residential and commercial buildings including single and multifamily residential buildings, educational institutions, and office buildings. Using Engineered wood products in construction field can contribute to solve climate change and global warming problems, reduce fresh water consumed in concrete buildings and build green society. This project proposes a modeling of CLT (Cross Laminated Timber) multi-stories building on DLUBAL RFEM software. Wall carrier structural system is proposed to resist gravity load by wall bearing and floor bending. Lateral loads are resisted by connector brackets with wood screws. The model contains LVL (Laminate Veneer Lumber) Paneled beams to enhance the performance of CLT floor in 7x7m hall. Due to the different deflection profiles. Frames experience "Racking" deflections , where the greatest interstory drift is at the base of the structure, while walls experience a "Bending Deflection" deformation, with the greatest inter-story drift at the top of the structure. The combination of these two deformed shapes will compensate for each other's shape, reducing lateral deflection along the whole height thus the GLULAM (Glued Laminated Timber) columns have been modeled.

I. Design codes and standards

1. ANSI/AWC NDS-2018

CROSS-LAMINATED TIMBER - Chapter 4,10,11,12,13,15,16 and appendix

2. ANSI/APA PRG 320-18

Manufacturing Standard

3. IBC 2018

2018 Code Confirming Wood Design

4. CLT HANDBOOK

US Edition

5. TIMBER DESIGN AND CONSTRUCTION SOURCEBOOK

Large Halls and Roof Structures - Beam Grid

6. ASCE/SEI 7-05

Load Combination

7. ECP (201-2012)

Egyptian Code for Loading on Buildings

8. ECP (204-2005)

Egyptian Code for Loading on Foundation

1.INTRODUCTION

The concept for structural design focuses on satisfying both the functional and the economic requirements of the building without jeopardizing its aesthetic and architectural features.

This Calculation Report presents the structural engineering aspect of the works due for the development construction work of GE BUILDING.

In this Report, a modeling of Cross Laminated Timber (CLT) multi-stories building on DLUBAL RFEM software is proposed. Egypt has 5510 feddan established Afforestation Areas Irrigated by Treated Sewage Water ;thus, using CLT panels in construct green cities in Egypt will be a solution of many problems like global warming, water consumed in concrete building and high building cost.

(The Role of Ministry of State for Environmental Affairs in implementing the National Program for safe use of treated sewage water for afforestation)

2.PROJECT FEATURES

the urbanization at 2018 equal 55.3 % and will be 60.4 % at 2030, 3 billion people (40% of the world) will need a new home at 2030. This translates into a demand for 96,000 new affordable and accessible housing units every day. One of three people today are actually live in slum that mean one billion people in the world live in slum. A hundred million people in the world are homeless. The scale of engineers challenge for society is to find a solution to house people but the challenge as we move to cities, cities were built in two materials that are steel and concrete. **(UN HABITAT, World Urbanization Prospects: The 2018 Revision)**

1. Steel and concrete are great materials but it consume very high energy in manufacturing process and emit green house gases. The embodied carbon emissions of building products and construction represent a significant portion global emissions: concrete, iron, and steel alone produce 9% of annual global GHG emissions; embodied carbon emissions from the building sector produce 11% of annual global GHG emissions. Every year, 6.13 billion square meters of buildings are constructed. The embodied carbon emissions of that construction is approximately 3729 million metric tons CO₂ per year (ARCHETECTURE2030.ORG)

- Wood is the only material that we can build with and grow with the power of sun.
- When the tree grows in the forests, it give us oxygen and store carbon dioxide, one cubic meter of wood can store one tone of carbon dioxide.
- Dead forests give carbon dioxide back to atmosphere into the ground and when the forests burn, it give carbon dioxide back to atmosphere.
- One cubic meter of concrete consumes almost 175 liter of fresh water while forests can grow with primary treatment of sanitary water.
- Wooden building is a fast building erection.
- light weight structure that will give us minimum foundation cost.
- minimize number of crews that mean minimize construction cost and conflicts.

the following link include energy consumption comparison between traditional structural system and wooden structural systems in Aswan province, Egypt. <u>https://drive.google.com/file/d/1-Jb00F1nYV4FKd0ASX55xLXrbawRH2yt/view?usp=sharing</u>

3. General description of the building

Location

Country: Egypt

City: Aswan

Description

Number of storeys: 4

Building length: 12 m

Building width: 16.7 m

Building height: 16.7 m

Wall carrier structural system is proposed to resist gravity load by wall bearing and floor bending. Lateral loads are resisted by connector brackets with wood screws.

Three-dimensional view South West

Three-dimensional view North West

Three-dimensional view South West

Three-dimensional view South East

4. Calculation Software Used

Calculation software features

The software used is RFEM, developed by DLUBAL COMPANY (Germany).

Technical specifications

Name:	RFEM
-------	------

Version: 5.15.01

Producer: DLUBAL

www.dlubal.com

License registered is a student license.

5. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES

5.1 Wooden materials

5.1.1 CLT walls and floors

Image Poisson's Ratio [-] Poisson's Ratio [-] Specific Weys $C = [L/F]$ $C = [L/F]$ $C = [L/F]$ $C = [L/F]$ 1 0.000 $- 0.000$ $- 0.000$ $- 2.000$ $- 7.000$ $- 2.000$ $- 7.000$ $- 7.000$ $- 7.000$ $- 7.000$ $- 7.0000$ $- 7.0000$ $- 7.0000$ $- 7.0000$ $- 7.00000$ $- 7.00000$ $- 7.000000$ $- 7.000000000000$ $- 7.000000000000000000000000000000000000$			nuns ui		,								
$ \begin{array}{ c c c c c c } \hline 1 & 0.0000 & 0.00000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.0000 & 0.00000 & 0.00000 & 0.0000$	Layer	Poisson's Ratio [-]	Poisson	's Ratio [-]	Specific \	Neight	Coe	eff. of Th. E	xp.				
2 0.000 0.000 29.00 2.8E-06 6 7/8 in, CLT Grade E1, ANS/APA PRG 320 CLT - US 3 0.000 0.000 29.00 2.8E-06 6 7/8 in, CLT Grade E1, ANS/APA PRG 320 CLT - US 4 0.000 0.000 29.00 2.8E-06 6 7/8 in, CLT Grade E1, ANS/APA PRG 320 CLT - US 5 0.000 0.000 29.00 2.8E-06 6 7/8 in, CLT Grade E1, ANS/APA PRG 320 CLT - US Layer Material E Strengths for Bending / Tersion / Comression [ps] F.a.o A25.0 1 1950F1.7E Spruce-pine-fir MSR lumber 1950.0 1950.0 1375.0 15.0 1800.0 425.0 3 1950F1.7E Spruce-pine-fir MSR lumber 1950.0 1950.0 1375.0 15.0 1800.0 425.0 4 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 45.0 5 1950F1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 45.0 45.0	No.	ν _{xy}	,	ν _{yx}	γ[lbf/	γ [lbf/ft ³]		α _T [1/°F]			Comment		
3 0.000 0.000 29.00 2.88-06 6 7/8 in, CLT Grade E1, ANS/APA PRG 320 CLT - US 4 0.000 0.000 29.00 2.88-06 6 7/8 in, CLT Grade E1, ANS/APA PRG 320 CLT - US 5 0.000 0.000 29.00 2.88-06 6 7/8 in, CLT Grade E1, ANS/APA PRG 320 CLT - US Layer Material Strengths for Bending / Tension / Compression [psi] Fc.0	1	0.000)	0.000		29.00		2.	8E-06	6 7/8 in, CLT G	rade E1, ANSI,	/APA PRG 320	CLT - US
4 0.000 0.000 29.00 2.8E-06 6 7/8 in, CLT Grade EL, ANSI/APA PRG 320 CLT - US 5 0.000 0.000 29.00 2.8E-06 6 7/8 in, CLT Grade EL, ANSI/APA PRG 320 CLT - US Layer Material Strengths for Bending / Tension / Compression [psi] F.o.0 400.0 425.0 2 No. 3 Spruce-pine-fir MSR lumber 195.00 1375.0 15.0 1800.0 425.0 3 1950f-1.7E Spruce-pine-fir MSR lumber 195.00 1375.0 15.0 1800.0 425.0 4 No. 3 Spruce-pine-fir MSR lumber 195.00 1375.0 15.0 1800.0 425.0 3 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 1375.0 15.0 180.0.0 425.0 4 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 45.0 3 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0	2	0.000		0.000		29.00		2.	8E-06	6 7/8 in, CLT G	rade E1, ANSI,	/APA PRG 320	CLT - US
5 0.000 29.00 2.8E-06 6<7/8 7/8 I., CLT Grade E1, ANSI/APA PRG 320 CLT - US Layer Material Strengths for Bending / Tension / Compression [psi] No. Description Fb.0	3	0.000		0.000		29.00		2.	8E-06	6 7/8 in, CLT G	rade E1, ANSI,	/APA PRG 320	CLT - US
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	0.000	0	0.000		29.00		2.	8E-06	6 7/8 in, CLT G	rade E1, ANSI,	/APA PRG 320	CLT - US
No.Description $F_{b,0}$ $F_{b,0}$ $F_{b,0}$ $F_{c,0}$ <th< td=""><td>5</td><td>0.000</td><td></td><td>0.000</td><td></td><td>29.00</td><td></td><td>2.</td><td>8E-06</td><td>6 7/8 in, CLT G</td><td>rade E1, ANSI,</td><td>/APA PRG 320</td><td>CLT - US</td></th<>	5	0.000		0.000		29.00		2.	8E-06	6 7/8 in, CLT G	rade E1, ANSI,	/APA PRG 320	CLT - US
1 1950f-1.7E Spruce-pine-fir MSR lumber 1950 1950 1375.0 15.0 1800.0 425.0 2 No. 3 Spruce-pine-fir lumber 500.0 500.0 1375.0 15.0 1800.0 425.0 3 1950f-1.7E Spruce-pine-fir MSR lumber 950.0 1950.0 1375.0 15.0 1800.0 425.0 4 No. 3 Spruce-pine-fir MSR lumber 500.0 150.0 150.0 1800.0 425.0 1 1950f-1.7E Spruce-pine-fir MSR lumber 1950.0 1950.0 1375.0 15.0 1800.0 425.0 1 1950f-1.7E Spruce-pine-fir MSR lumber 1950.0 1950.0 1375.0 1375.0 15.0 1800.0 425.0 1 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 135.0 45.0 45.0 3 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 45.0 4 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 45.0 45.0 45.0 5 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 135.0 45.0 45.0 </td <td>Layer</td> <td>Mi</td> <td>aterial</td> <td></td> <td></td> <td>Stren</td> <td>igths fo</td> <td>or Bending</td> <td>; / Ten</td> <td>sion / Compres</td> <td>sion [psi]</td> <td></td> <td></td>	Layer	Mi	aterial			Stren	igths fo	or Bending	; / Ten	sion / Compres	sion [psi]		
2No. 3 Spruce-pine-fir lumber 500.0 500.0 250.0 15.0 650.0 425.0 3 $1950f \cdot 1.7E$ Spruce-pine-fir MSR lumber 1950.0 1950.0 1375.0 15.0 650.0 425.0 4No. 3 Spruce-pine-fir MSR lumber 500.0 500.0 250.0 15.0 650.0 425.0 5 $1950f \cdot 1.7E$ Spruce-pine-fir MSR lumber 1950.0 1950.0 1375.0 15.0 1800.0 425.0 LayerMaterial $Soo.0$ F_{VV} F_V F_S 1 $1950f \cdot 1.7E$ Spruce-pine-fir MSR lumber 135.0 135.0 45.0 2No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 3 $1950f \cdot 1.7E$ Spruce-pine-fir MSR lumber 135.0 135.0 45.0 3 $1950f \cdot 1.7E$ Spruce-pine-fir MSR lumber 135.0 135.0 45.0 3 $1950f \cdot 1.7E$ Spruce-pine-fir MSR lumber 135.0 135.0 45.0 4No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 5 $1950f \cdot 1.7E$ Spruce-pine-fir MSR lumber 135.0 135.0 45.0 1 $1950f \cdot 1.7E$ Spruce-pine-fir MSR lumber 135.0 135.0 45.0 1 $1950f \cdot 1.7E$ Spruce-pine-fir MSR lumber 135.0 135.0 45.0 1 $1950f \cdot 1.7E$ Spruce-pine-fir MSR lumber 135.0 135.0 45.0 1 $1950f \cdot 1.7E$ Spruce-pine-fir MSR lumber 135.0 135.0 45.0 1 $1950f \cdot 1.7E$ Spru	No.	Des	cription		F _{b,0}	F _{b,9}	0	F _{t,0}		F _{t,90}	F _{c,0}	F _{c,90}	
31950f-1.7E Spruce-pine-fir MSR lumber1950.01950.01375.015.01800.0425.04No. 3 Spruce-pine-fir lumber500.0500.0250.015.0650.0425.051950f-1.7E Spruce-pine-fir MSR lumber1950.01950.01375.015.01800.0425.0LayerMaterialShear Strengths [psi]FxFx11950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.02No. 3 Spruce-pine-fir MSR lumber135.0135.045.031950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.04No. 3 Spruce-pine-fir MSR lumber135.0135.045.04No. 3 Spruce-pine-fir MSR lumber135.0135.045.051950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.04No. 3 Spruce-pine-fir MSR lumber135.0135.045.051950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.04No. 3 Spruce-pine-fir MSR lumber135.0135.045.051950f-1.7E Spruce-pine-fir MSR lumber135.0165.01062.011950f-1.7E Spruce-pine-fir MSR lumber135.01699999.956667.010625.010625.011950f-1.7E Spruce-pine-fir M fill1.370.001699999.956667.010625.010625.011950f-1.7E Spruce-pine-fir M fill1.370.001699999.956667.010625.010625.02	1	1950f-1.7E Spruce-pine	-fir MSR lum	nber	195	0.0 1	950.0	13	75.0	15.0	1800.0	425.0]
4No. 3 Spruce-pine-fir lumber500.0500.0250.015.0650.0425.051950f-1.7E Spruce-pine-fir MSR lumber1950.01950.01375.015.01800.0425.0LayerMaterialShear Strengths [psi]No.Description F_{xy} F_v F_s 11950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.02No. 3 Spruce-pine-fir MSR lumber135.0135.045.031950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.04No. 3 Spruce-pine-fir MSR lumber135.0135.045.04No. 3 Spruce-pine-fir MSR lumber135.0135.045.051950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.04No. 3 Spruce-pine-fir MSR lumber135.0135.045.051950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.061950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.051950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.011950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.011950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.011950f-1.7E Spruce-pine-fir MSR lumber135.0135.045.011950f-1.7E Spruce-pine-fir lumber1.370.00169999.956667.010625.011050.01.370.00169999.956667.0<	2	No. 3 Spruce-pine-fir lu	mber		50	0.0	500.0	2	50.0	15.0	650.0	425.0	
5 1950f-1.7E Spruce-pine-fir MSR lumber 1950. 1950. 1375.0 15.0 1800.0 425.0 Layer Material Shear Strengths [psi] No. Description F_{xy} F_v F_s 1 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 2 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 3 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 4 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 5 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 4 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 5 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 6 Orthotropic Modulus of Elastitity [psi] Column1 Shear Modulus [psi] Column3 G _{yz} <td>3</td> <td>1950f-1.7E Spruce-pine</td> <td>-fir MSR lum</td> <td>nber</td> <td>195</td> <td>0.0 1</td> <td>950.0</td> <td>13</td> <td>75.0</td> <td>15.0</td> <td>1800.0</td> <td>425.0</td> <td></td>	3	1950f-1.7E Spruce-pine	-fir MSR lum	nber	195	0.0 1	950.0	13	75.0	15.0	1800.0	425.0	
Layer Material Shear Strengths [psi] No. Description F _{xy} F _v F _s 1 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 2 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 3 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 4 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 5 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 Layer Material Thickness Orthotropic Modulus of Elasticity [psi] Column1 Shear Modulus [psi] Column2 Column3 No. Description t [in] Direction β [" E _y G _{xz} G _{yz} G _{yy} 1 1950f-1.7E Spruce-pine-fir N 1.37 0.00 1699999.9 56667.0 106250.0 106250.0 106250.0 2 No. 3 Spruce-pine-fir N 1.37 0.00 1699999.9 56667.0 106250.0 106250.0 106250.0	4	No. 3 Spruce-pine-fir lu	mber		50	0.0	500.0	2	50.0	15.0	650.0	425.0	
No. Description F_{xy} F_v F_s 1 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 2 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 3 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 4 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 5 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 5 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 6 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 1 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 1ayer Material Thickness Orthotropic Modulus of Elasticity [psi] Column1 Shear Modulus [psi] Column2 Column3 No. Description t [in] Direction β [i] E_x E_y G_{xz} G_{yz} G_{yz} 1 1950f-1.7E Spruce-pine-fir lumber	5	1950f-1.7E Spruce-pine	-fir MSR lum	nber	195	0.0 1	950.0	13	75.0	15.0	1800.0	425.0	
1 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 2 No. 3 Spruce-pine-fir lumber 135.0 135.0 45.0 3 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 4 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 5 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 1 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 4 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 5 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 Layer Material Thickness t [in] Orthotropic Direction β [?] Column1 Shear Modulus [psi] Column3 0 Description t [in] Direction β [?] E _x E _y G _{sz} G _{yz} G _{sy} 1 1950f-1.7E Spruce-pine-fir V 1.37 0.00 10699999.9 56667.0 10625.00 10625.00 2 No. 3 Spruce-pine-fir V 1.37 0.00 109999.99 56667.0 10625.00	Layer	Mate	erial		She	ar Strengths	[psi]						
2 No. 3 Spruce-pine-fir lumber 135.0 135.0 135.0 45.0 3 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 4 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 5 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 4 No. 3 Spruce-pine-fir MSR lumber 135.0 135.0 45.0 5 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 45.0 Layer Material Thickness Orthotropic Modulus of Elasticity [psi] Column1 Shear Modulus [psi] Column2 Column3 No. Description t [in] Direction β [?] E_y E_y G_{xz} G_{yz} G_{xy} 1 1950f-1.7E Spruce-pine-fir humber 1.37 0.00 120000.0 40000.0 7500.0 7500.0 7500.0 7500.0 10625.0 10625.0 10625.0 10625.0 10625.0 10625.0 10625.0 10625.0 10625.0 10625.0 10625.0 10625.0 10625.0 10625.0 10625.0 10625.0	No.	Descri	ption		F _{xy}	Fv		Fs					
3 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 135.0 45.0 4 No. 3 Spruce-pine-fir lumber 135.0 135.0 135.0 45.0 5 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 135.0 45.0 Layer Material Thickness Orthotropic Modulus of Elasticity [psi] Column1 Shear Modulus [psi] Column2 Column3 No. Description t [in] Direction β [°] E_y Shear Modulus [psi] Column2 Gasy 1 1950f-1.7E Spruce-pine-fir N 1.37 0.00 1699999.9 56667.0 106250.0 <td>1</td> <td>1950f-1.7E Spruce-pine</td> <td>-fir MSR lum</td> <td>ber</td> <td>135.0</td> <td>135</td> <td>.0</td> <td>45.0</td> <td>]</td> <td></td> <td></td> <td></td> <td></td>	1	1950f-1.7E Spruce-pine	-fir MSR lum	ber	135.0	135	.0	45.0]				
4 No. 3 Spruce-pine-fir lumber 135.0 135.0 135.0 45.0 5 1950f-1.7E Spruce-pine-fir MSR lumber 135.0 135.0 135.0 45.0 Layer Material Thickness Orthotropic Modulus of Elsticity [psi] Column1 Shear Modulus [psi] Column2 Column3 No. Description t [in] Direction β [°] E_x Ey Gaze Gyze Gaze 1 1950f-1.7E Spruce-pine-fir N 1.37 0.00 1699999.9 56667.0 106250.0 10625.0 106250.0 106250.0 106250.0 2 No. 3 Spruce-pine-fir N 1.37 0.00 1699999.9 56667.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 3 1950f-1.7E Spruce-pine-fir N 1.37 0.00 1699999.9 56667.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0 106250.0	2	No. 3 Spruce-pine-fir lu	mber		135.0	135	.0	45.0]				
51950f-1.7E Spruce-pine-fir MSR lumber135.0135.0145.0LayerMaterialThickness t [in]Orthotropic Direction β [10]Modulus of Elasticity [psi]Column1 E_{y} Shear Modulus [psi]Column2 G_{xz} Column3 G_{yz} 11950f-1.7E Spruce-pine-fir N 1.371.370.00169999.956667.0100250.0100250.0100250.02No. 3 Spruce-pine-fir lumber1.370.00120000.040000.075000.07500.07500.031950f-1.7E Spruce-pine-fir N1.370.00169999.956667.0100250.0100250.0100250.04No. 3 Spruce-pine-fir N1.370.00169999.956667.0100250.0100250.0100250.04No. 3 Spruce-pine-fir Lumber1.370.00120000.040000.075000.07500.07500.04No. 3 Spruce-pine-fir Lumber1.3790.00120000.040000.075000.07500.07500.0	3	1950f-1.7E Spruce-pine	-fir MSR lum	ber	135.0	135	.0	45.0]				
Layer Material Thickness Orthotropic Modulus of Elasticity [psi] Column1 Shear Modulus [psi] Column2 Column3 No. Description t [in] Direction β [°] Ex Ey Gxz Gyz Gxy 1 1950f-1.7E Spruce-pine-fir N 1.37 0.00 1699999.9 56667.0 106250.0 106250.0 106250.0 2 No. 3 Spruce-pine-fir lumber 1.37 90.00 1200000.0 40000.0 75000.0 7500.0 7500.0 3 1950f-1.7E Spruce-pine-fir N 1.37 0.00 1699999.9 56667.0 106250.0 106250.0 106250.0 4 No. 3 Spruce-pine-fir Iumber 1.37 90.00 1699999.9 56667.0 106250.0 106250.0 106250.0	4	No. 3 Spruce-pine-fir lu	mber		135.0	135	.0	45.0	Į				
No. Description t [in] Direction β [°] Ex Ey Gxz Gyz Gyz <td>5</td> <td>1950f-1.7E Spruce-pine</td> <td>-fir MSR lum</td> <td>ber</td> <td>135.0</td> <td>135</td> <td>.0</td> <td>45.0</td> <td>J</td> <td></td> <td></td> <td></td> <td></td>	5	1950f-1.7E Spruce-pine	-fir MSR lum	ber	135.0	135	.0	45.0	J				
1 1950f-1.7E Spruce-pine-fir N 1.37 0.00 1699999.9 56667.0 10625.0 10625.0 106250.0 2 No. 3 Spruce-pine-fir lumber 1.37 90.00 1200000.0 40000.0 75000.0 7500.0 75000.0 3 1950f-1.7E Spruce-pine-fir N 1.37 90.00 1699999.9 56667.0 106250.0 10625.0 106250.0 4 No. 3 Spruce-pine-fir lumber 1.37 90.00 1200000.0 40000.0 75000.0 7500.0 75000.0	Layer	Material	Thickness	Orthotropic	Modulus of E	lasticity [psi]	Со	lumn1	Shear	Modulus [psi]	Column2	Column3	
2 No. 3 Spruce-pine-fir lumber 1.37 90.00 1200000.0 40000.0 7500.0 7500.0 7500.0 3 1950f-1.7E Spruce-pine-fir N 1.37 0.00 1699999.9 56667.0 106250.0 106250.0 106250.0 4 No. 3 Spruce-pine-fir lumber 1.37 90.00 1200000.0 40000.0 75000.0 7500.0 75000.0	No.	Description	t[in]	Direction β [°) E	×		Ey		G _{xz}	G _{yz}	G _{xy}	
3 1950f-1.7E Spruce-pine-fir N 1.37 0.00 1699999.9 56667.0 106250.0 106250.0 106250.0 4 No. 3 Spruce-pine-fir lumber 1.37 90.00 1200000.0 40000.0 75000.0 7500.0 75000.0	1	1950f-1.7E Spruce-pine-fir N	1.37	0.00		1699999.	9	56667.0		106250.0	10625.0	106250.0	
4 No. 3 Spruce-pine-fir lumber 1.37 90.00 1200000.0 40000.0 75000.0 7500.0 75000.0	2	No. 3 Spruce-pine-fir lumber	1.37	90.00		1200000.	0	40000.0		75000.0	7500.0	75000.0	
	3	1950f-1.7E Spruce-pine-fir N	1.37	0.00		1699999.	9	56667.0		106250.0	10625.0	106250.0	
5 1950f-1.7E Spruce-pine-fir N 1.37 0.00 1699999.9 56667.0 106250.0 106250.0 106250.0	4	No. 3 Spruce-pine-fir lumber	1.37	90.00		1200000.	0	40000.0		75000.0	7500.0	75000.0	
	5	1950f-1.7E Spruce-pine-fir N	1.37	0.00		1699999.	9	56667.0		106250.0	10625.0	106250.0	

5.1.2 LVL Beams Alaska Spruce, 2"-4" Thick, 2" and Wider, Select Structural | ANSI/AWC NDS-2015

 Modulus of Elasticity 	E	11031600.0	kN/m ²
- Shear Modulus	G	689476.00	kN/m ²
 Specific Weight 	γ	4.48	kN/m ³
 Coefficient of Thermal Expansion 	α	2.7778E-06	1/°F
Partial Safety Factor	γM	1.00	
Additional Properties			·
 Modulus of Elasticity 	E	11031600.0	kN/m ²
- Shear Modulus	G	689476.00	kN/m ²
 Modulus of Elasticity Perpendicular 	E90	367718.00	kN/m ²
 Shear Modulus Perpendicular 	G90	68947.60	kN/m ²
 Reference Modulus of Elasticity for Stability Calculations 	Emin	3998960.00	kN/m ²
 Reference Bending Design Value 	Fb	1400.00	psi
 Reference Tension Design Value Parallel to Grain 	Ft	900.00	psi
 Reference Shear Design Value Parallel to Grain (Horizontal Shear) 	Fv	160.00	psi
 Reference Compression Design Value Perpendicular to Grain 	Fcp	330.00	psi
 Reference Compression Design Value Parallel to Grain 	Fc	1200.00	psi
 Rolling Shear Design Value 	Fs	53.00	psi
- Specific Gravity	G	0.410	
 Type of Wood Product 		Visually Gra	ded Dimension Lumber
- Species		Alaska Spru	се
- Commercial Grade		Select Struct	tural
 Thickness Classification 		2"-4" Thick	
 Width Classification 		2" and Wide	r
Wood Category		Softwood	

Douglas Fir-Larch, 2"-4" Thick, 2" and Wider, Select Structural | ANSI/AWC NDS-201

∃Main Properties			
 Modulus of Elasticity 	E	13100000.0	kN/m ²
- Shear Modulus	G	818752.00	kN/m ²
- Specific Weight	γ	5.37	kN/m ³
 Coefficient of Thermal Expansion 	α	2.7778E-06	1/°F
Partial Safety Factor	γM	1.00	
∃ Additional Properties			
 Modulus of Elasticity 	E	13100000.0	kN/m ²
- Shear Modulus	G	818752.00	kN/m ²
 Modulus of Elasticity Perpendicular 	E90	436666.00	kN/m ²
- Shear Modulus Perpendicular	G90	81875.20	kN/m ²
 Reference Modulus of Elasticity for Stability Calculations 	Emin	4757380.00	kN/m ²
 Reference Bending Design Value 	Fb	1500.00	psi
 Reference Tension Design Value Parallel to Grain 	Ft	1000.00	psi
 Reference Shear Design Value Parallel to Grain (Horizontal Shear) 	Fv	180.00	psi
 Reference Compression Design Value Perpendicular to Grain 	Fcp	625.00	psi
 Reference Compression Design Value Parallel to Grain 	Fc	1700.00	psi
 Rolling Shear Design Value 	Fs	60.00	psi
 Specific Gravity 	G	0.500	
 Type of Wood Product 		Visually Gra	ded Dimension Lumber
- Species		Douglas Fir-	Larch
- Commercial Grade		Select Struct	tural
 Thickness Classification 		2"-4" Thick	
- Width Classification		2" and Wide	r
Wood Category		Softwood	

5.1.3 GLULAM Columns Douglas Fir-Larch, 2"-4" Thick, 2" and Wider, Select Structural | ANSI/AWC NDS-2015

∃ Main Properties			
Modulus of Elasticity	E	12410600.0	kN/m ²
- Shear Modulus	G	775660.00	kN/m ²
 Specific Weight 	γ	5.86	kN/m ³
 Coefficient of Thermal Expansion 	α	2.7778E-06	1/°F
Partial Safety Factor	γM	1.00	
∃ Additional Properties			
Modulus of Elasticity	E	12410600.0	kN/m ²
- Shear Modulus	G	775660.00	kN/m ²
 Modulus of Elasticity Perpendicular 	E90	413685.00	kN/m ²
 Shear Modulus Perpendicular 	G90	77566.00	kN/m ²
 Reference Modulus of Elasticity for Stability Calculations 	Emin	4550540.00	kN/m ²
 Reference Bending Design Value 	Fb	1500.00	psi
 Reference Tension Design Value Parallel to Grain 	Ft	1000.00	psi
 Reference Shear Design Value Parallel to Grain (Horizontal Shear) 	F _V	175.00	psi
 Reference Compression Design Value Perpendicular to Grain 	Fcp	660.00	psi
 Reference Compression Design Value Parallel to Grain 	Fc	1650.00	psi
 Rolling Shear Design Value 	Fs	58.00	psi
 Specific Gravity 	G	0.550	
 Type of Wood Product 		Visually Gra	ded Southern Pine Dimension Lumber
- Species		Southern Pir	ie
- Commercial Grade	Species	No.1 Dense	
 Thickness Classification 		2"-4" Thick	
- Width Classification		5"-6" Wide	
Wood Category		Softwood	

5.2 Screws

type	Diameter (D)	Root Diameter (Dr)	Length	Tapered Tip Length (E)	Thread Length (T)
0.5 in. Hexa	0.5 in	0.371 in	9 in	5/16 in	5 in
Lag Screw	0.5 in	0.371 in	12 in	5/16 in	6 in

6. Calculation method and numerical model

6.1 Model Description

6.1.1 Hypothesis adopted for the elements

The timber walls are constrained at the base by means of connection systems capable of transmitting both in-plane and out-of-plane actions.

The floors are schematized simply supported by the walls or by the beams and the columns are modelled with hinged ends.

The horizontal elements are considered infinitely rigid in their plane and with three degrees of freedom: two translational and one rotational.

In the analysis, in presence of horizontal loads, some elements may be defined as "secondary": this mean that their strength and stiffness are neglected in the calculation of the response of the building. In the model these elements are represented in columns.

6.1.2 Rigid body rocking – Forces on hold-down / tie-down

The hold-down or tie-down systems are used to prevent the rotation of the wall caused by the overturning moment of the horizontal force. The hold-down, placed on the in-tension edge of the wall, is loaded by a force equal to

$$T = \begin{cases} \left(\frac{M_{3-3}}{b} - \frac{N}{2}\right) \cdot \frac{1}{n_{anc}} & for active hold - down\\ 0 & for inactive hold - down \end{cases}$$

where:

b is the lever arm for the internal couple, assumed equal to 0.9 - 1, where I is the length of the wall

N is the axial vertical load acting on the wall

M3-3 is the moment acting in the plane of the wall

nance is the number of connections present at each corner of the wall

Figure 6.1: Calculation model for determining the tensile force acting on the hold-down

6.1.3 Wall horizontal stiffness

The wall stiffness can be estimated considering the contributions of all the components, as shown below

CLT walls

The overall stiffness of CLT walls is calculated taking into account the contribution of the following components:

- CLT panel (kxLAM)
- shear connections angle brackets (ka)
- hold-down or tie-down (kh)

Figure 6.2: Mechanical model for determining the CLT walls overall stiffness

6.1.4 Types of structural elements and sign conventions Linear elements

The linear elements are used to model beams and columns. They have a local reference system with respect to which stress/force components are shown. The sign convention adopted is shown in the figure below.

Force	Description	Unit of measure
N	Axial force	kN
My	Bending moment about local axis y	kN.m
Vz	Shear along local axis z	kN
Mz	Bending moment about local axis z	kN.m
Vy	Shear along local axis y	kN

Figure 6.3: sign conventions for beams

Figure 6.4: sign conventions for columns

Wall elements

The walls, regardless of type, have the following sign conventions.

Figure 6.5: sign conventions for walls

	Stress	Description	Unit of measure
In-plane stresses	nx	Axial stress (per unit length)	kN/m
	mz	Bending moment about local axis z (per unit length)	kN.m/m
	Vx	Shear along local axis x (per unit length)	kN/m
Out-of-plane stresses (plate)	mx	Bending moment about local axis x (per unit length)	kN.m/m
(,,	Vz	Shear along local axis z (per unit length)	kN/m

6.1.5 Orthotropic angle effect on CLT Panel.

• The innovation in massive wood appears in collect the wooden boards (laminations) and compress it together in transverse direction to create the first layer, after that, the layers has been collected together and compress it with structural adhesive, to create the section.

• There are many forms of layers composition, the most common is collect the layers in odd number. Each composition give different structural behavior for the section.

• The important inquery is, **what is the best form of layers compositions?**, to answer this question, a simulation of a nine slab panels with different layers compositions has been constructed and the results have been evaluated.

• The relationship between orthotropic direction and straining action in one way slabs and two way slabs shown in the following charts.

Note that.

Local axis x is considered as a strengthen axis and the orthotropic angle is measured about it.

5

6

1- Orthotropic angle effect on deflection.

Deflection results on o	one way CLT slab	Orthotropic angle effect on CLT
Number of 90 degree layers	Deflection value (mm)	6
0	5.2	
1	4.6	
2	1.6	
3	0.6	
5	0.4	0 1 2 3 4 No. of 90 degree layers)

2- Orthotropic angle effect on Bending moment in y-direction.

M_y results on one way CLT slab							
Number of 90 degreeBending moment valuelayers(KN.m)							
2.25							
2.23							
2.25							
2.26							
2.27							

M _y results on two way CLT slab						
Number of 90 degree layers	Bending moment value (KN.m)					
0	0.12					
1	0.16					
2	0.56					
3	1.61					
5	2.03					

3- Orthotropic angle effect on Bending moment in x-direction.

M _x results on two way CLT slab							
Number of 90 degree layers	Bending moment value (KN.m)						
0	2.03						
1	1.97						
2	1.61						
3	0.56						
5	0.12						

Conclusion.

- Deflection is minimized when consider all layers in the same direction (support direction) with one way slabs.
- Deflection is minimized when consider all layers in the same direction with two way slabs.
- Bending moment is minimized when consider all layers in the same direction with one way slabs.
- Bending moment is minimized when consider odd section with two way slabs as show in the following figure.

Thus; it is recommended using layers compositions depending on the load direction on each span ratio in the building but that depending on manufacturing sections in each country. For moisture effect on the wood, thermal expansion and contraction, it is recommended, make opposite layers every two same direction layers.

7. Actions and design loads

7.1 STRUCTURAL LOADS

The following loads are considered in the design:

• Structural Dead Loads which include:

The own weight of the structural elements, slabs, columns, and walls.

Superimposed dead load from floorings.

• Live loads which cover the occupants, furniture, and mechanical equipment. Wind loads on the external façade and roof.

Seismic loads according to ECP.

The basis for the considered design loads are summarized in the followings sections.

A. Dead Loads

• The weights of the structural materials are shown in the table below.

Description	Specific weight ɣ [kN/m ³]
Southern Pine, 2"-4" Thick, 5"-6" Wide, No.1 Dense ANSI/AWC NDS-2015	5.86
Alaska Spruce, 2"-4" Thick, 2" and Wider, Select Structural ANSI/AWC NDS-2015	4.48
Douglas Fir-Larch, 2"-4" Thick, 2" and Wider, Select Structural ANSI/AWC NDS-2015	5.37
Cross Laminated Timber	4.65

Flooring shall be

Ypical floor	2.0	kN/m²
> Roof	4.0	kN/m²

B. Live Loads

I

Live loads for the different zone areas shall be calculated in accordance with (ECP 201-2012) as follows (uniformly distributed in kN/m^2):

Living areas and bedrooms	2.0	
Corridors		3.0
Toilets		3.0
Inaccessible roof	1.0	

C. Wind Loads

The wind pressure shall be calculated in accordance with (ECP 201-2012)

Basic wind speed = 42 m/sec.

Wind pressure (or suction) distribution factor (Ce)

 C_e = +0.8 for areas subjected to wind pressure

 $C_e = -0.5/-0.7$ for areas subjected to suction wind

Exposure factor (according to height from ground level) (k = 1)

7.2 Load Cases and Load Combinations

7.2.1 Load Cases

Load	Load Case			Self-Weight - Fa	ASCE 7-10 NDS (Wood)		
Case	Description	Action Category	Active	X	Y	(Z)	Load Duration
LC1	Finishing	Dead			11	1-12	Permanent
LC2	live	Live		and the second se	51 1	11	Permanent
LC3	Wind x	Wind				1 0	Permanent
LC4	Wind v	Wind			11		Permanent
LC5	EQX	Earthquake				1 1	Permanent
LC6	EQV	Earthquake		A 100		/	Permanent
LC7	Self-weight	Dead		0.000	0.000	-1.000	Permanent

7.2.2 Load Combinations

Load Combin.	DS Description	No.	Factor		Load Case
CO1	1.4"LC1 + 1.4"LC7	1	1.40	LC1	Finishing
CO2	1.2"LC1 + 1.6"LC2 + 1.2"LC7	2	1.40	LC7 LC1	Self-weight
002	1.2 LOT + 1.0 LO2 + 1.2 LOT	2	1.60	LC2	Finishing
1.1		3	1.20	LC7	Self-weight
CO3	1.2*LC1 + 0.5*LC3 + 1.2*LC7	11	1.20	LC1	Finishing
		23	0.50	LC3 LC7	Wind x Self-weight
CO4	1.2*LC1 + 0.5*LC4 + 1.2*LC7	100	1.20	LC1	Finishing
1000		2	0.50	LC4	Wind y
CO5	1.2*LC1 + LC2 + LC3 + 1.2*LC7	3	1.20	LC7 LC1	Self-weight Finishing
005	1.2 201 7 202 7 203 7 1.2 207	12	1.00	LC2	live
		3	1.00	LC3	Wind x
CO6	1.2*LC1+LC2+LC4+1.2*LC7	4	1.20	LC7 LC1	Self-weight Finishing
000	1.2 E01 * E02 * E04 * 1.2 E07	2	1.00	LC2	live
		3	1.00	LC4	Wind y
007	4 201 04 - 1 02 - 4 201 07		1.20	LC7 LC1	Self-weight
C07	1.2*LC1 + LC3 + 1.2*LC7	1 2	1.20	LC3	Finishing Wind x
		3	1.20	LC7	Self-weight
CO8	1.2*LC1 + LC4 + 1.2*LC7	1	1.20	LCI	Finishing
		23	1.00	LC4 LC7	- Wind y Self-weight
CO9	1.2*LC1 + LC5 + 1.2*LC7	1	1.20	LCI	Finishing
		2	1.00	LC5	EQX
0010	1.2*LC1 + LC2 + LC5 + 1.2*LC7	3	1.20	LC7 LC1	Self-weight
CO10	1.2'101+102+105+1.2'107	2	1.20	LC1 LC2	Finishing
		3	1.00	LC5	EQx / 2
	2 CH CL 1 CD 2 CH CT	4	1.20	LC7	Self-weight
CO11	0.9*LC1 + LC3 + 0.9*LC7	1 2	0.90	LC1 LC3	Finishing Wind x
		3	0.90	LC7	Self-weight
CO12	0.9*LC1 + LC4 + 0.9*LC7	1	0.90	LC1	Finishing
		23	1.00	LC4 LC7	Wind y Self-weight
CO13	0.9*LC1 + LC5 + 0.9*LC7	1	0.90	LC1	Finishing
		2	1.00	LC5	EQx
CO14	LC1 + LC7	3	0.90	LC7 LC1	Sett-weight Finishing
0014	LOT + LOT	2	1.00	LC7	Self-weight
CO15	LC1 + LC2 + LC7	1	1.00	LC1	Finishing
100		23	1.00	LC2	live
CO16	LC1 + 0.7*LC5 + LC7	1	1.00	LC7 LC1	Self-weight Finishing
		2	0.70	LC5	EQX
CO17	104 - 0 01 02 - 1 07	3	1.00	LC7	Self-weight
CON	LC1 + 0.6*LC3 + LC7	1 2	1.00	LC1 LC3	Finishing Wind x
		3	1.00	LC7	Self-weight
Load	Load Combination				
Combin.	DS Description	No.	Factor		Load Case
CO18	LC1 + 0.6*LC4 + LC7	1	1.00	LC1	Finishing
N		2	0.60	LC4 LC7	Wind y Self-weight
CO19	LC1 + 0.75*LC2 + 0.45*LC3 + LC7	3	1.00		Finishing
/		2	0.75	LC2	live
/ /		3	0.45		Wind x
CO20	LC1 + 0.75*LC2 + 0.45*LC4 + LC7	4	1.00	LC7	Self-weight Finishing
0020		2	0.75	LC2	live
1		3	0.45		Wind y
-0021	LC1 + 0.75*LC2 + 0.52*LC5 + LC7	4	1.00	LC7 LC1	Self-weight Finishing
		2	0.75		live
10		3	0.52		EQx
C022	0.6*LC1 + 0.6*LC3 + 0.6*LC7	4	1.00		Self-weight Finishing
0022	0.0 2017 0.0 205 +0.0 207	2	0.60		Wind x
1		3	0.60	LC7	Self-weight
CO23	0.6*LC1+0.6*LC4+0.6*LC7	1	0.60		Finishing
	7/	2	0.60		Wind y Self-weight
CO24	0.6*LC1 + 0.7*LC5 + 0.6*LC7	1	0.60	LC1	Finishing
100-00		2	0.70		EQx
		3	0.60	107	Self-weight

8. Sections of the structural elements

8.1 CLT walls and floors

Figure 8.1: CLT geometric characteristics

The following table sets out the details concerning the CLT floors.

Section name	Manufacturer	CLT panel Grade	Material	Number of layers	Thickness h₀[mm]	Layers Thickness (mm)	External layers orientation
CLT floor	ANSI/APA PRG-320-18	E1	Spruce Pine	5	172	35	Parallel to the moment direction
	ANSI/APA PRG- 320-18	E1	Spruce Pine	7	244	35	Parallel to the moment direction
CLT Interior walls	ANSI/APA PRG- 320-18	E1	Spruce Pine	5	172	35	Parallel to the Loading direction
CLT exterior walls	ANSI/APA PRG- 320-18	E1	Spruce Pine	7	244	35	Parallel to the Loading direction

8.2 LVL Beams & Glulam Columns

8.2.1 LVL Beams

8.2.2 Glulam Columns T-Rectangle 27/36

8.3 Connections

WHT540

				CHARAC	TERISTIC VALUE	S				
	configuration		Holes Ø 6/32 ″			Z _{timber} [lbs]			Z _{steel} [lbs]	
		type	ØxL[in]	n _v [pcs]	G = 0.42	G = 0.49	G = 0.55	Washer	Z _{steel} [lbs	
		LBA Nails	5/32"x1 5/8"	45	5738	6482	7086		_	
	• total nailing • anchor M20 • washer WHTBS50L	LDA INdits	5/32"x2 3/8"	45	5738	6482	7086	WUTDEFOL	14353	
		LBS Screws	6/32 "x 1 5/8 "	45	4032	4556	4982	WHTBS50L	14253	
			6/32 "x 2 "	45	4032	4556	4982			
	• partial nailing • anchor M20 • washer WHTBS50L		5/32"x1 5/8"	27	3443	3889	4252	WHTBS50L	14253	
			5/32"x 2 3/8"	27	3443	3889	4252			
			6/32 "x 1 5/8 "	27	2419	2734	2989			
			6/32"x 2"	27	2419	2734	2989			
	1. 1. M.	LBA Nails	5/32"x1 5/8"	45	5738	6482	7086			
	 total nailing anchor M16 	LDA NdIIS	5/32"x2 3/8"	45	5738	6482	7086	WHTBS50	14253	
		vasher WHTBS50 LBS Screws	6/32"x15/8"	45	4032	4556	4982	VCCOLUM	14200	
ŕ.	- Musher With 550		6/32 "x 2 "	45	4032	4556	4982			
	and the set	LBA Nails	5/32"x1 5/8"	27	3443	3889	4252			
	 partial nailing anchor M16 	LDA NdIIS	5/32"x2 3/8"	27	3443	3889	4252	WHTBS50	14253	
1	washer WHTBS50	LDC Comun	6/32 "x 1 5/8 "	27	2419	2734	2989	VCCOTINY	14200	
	musici minosso	LBS Screws	6/32 "x 2 "	27	2419	2734	2989			

⁽¹⁾Length obtainable from MGS threaded rods (to be cut to measure)

8.3.2 Timber-reinforced concrete connection

Figure 8.3: shear connection with angle bracket

graphical representation of the

8.3.3 Double Hold Down

Figure 8.4: graphical representation of the hold-down connection at the upper floors

Connection name	Connection position	Manufacturer	Description	Fasteners number	Fastener typology	Bolt	Number of connections at each wall end
Upper level - 2 hold down - shear angle bracket	Upper level	Rotho Blass	WHT 540	42	Chiodi Anker 4,0 X	M16 5.8	1

8.3.4 Angle bracket - Timber to Timber connection

Figure 8.5: graphical representation of the timber to timber shear connection with angle brackets

		Dimensions (in.)				Allowa	able Load (lbs.), Co = 1.60					
Model ID	Gauge				Horizontal Leg		Vertical Leg		-			
10		W ₁	w,	L	Quantity	Туре	Quantity	Туре	F1	F2	F1	F.
4000000		31/14	31/14	-10	10	CNA4x60	10	CNA4x60	1085	780	1330	590
ABR9020	14	3/18	3/16	29/10	10	SD10212	10	SD10212	1480	1200	1330	1010
		de.	de.		14	CNA4x60	10	CNA4x60	1350	835	2300	1020
ABR105	11	41/4	4%	3%/16	14	SD10212	10	SD10212	1880	1235	2300	1475
inus			1%		7	CNA4x60	18	CNA4x60	1720	1225	1550	650
AE116	11	3%	1%	4*/10	7	SD10212	18	SD10212	1850	1445	1850	1035

9. STRUCTURAL SYSTEM

The following structural system is utilized to support the previously mentioned loads and satisfy the functional and architectural requirements of the building.

Figure 9.1: Floor Plan

Figure 9.2: Strip footings foundations

10. STRUCTURAL ANALYSIS

10.1 ASSIGN OF LOADS

Figure 10.1.: Assign of Finishing and Live Loads on Typical Floor (KN-M Units)

Figure 10.2.: Assign of Suction Wind Load on Typical Floor (KN-M Units)

Figure 10.2.: Assign of Wind Load on Walls in x-direction (KN-M Units)

Figure 10.2.: Assign of Wind Load on Walls in y-direction (KN-M Units)

11. STRUCTURAL DESIGN

11.1 DESIGN OF CLT SLABS and WALLS

11.1.1 Max. Stress Ratio on CLT cross section

	A	B	C	D	E	F	G	Н		J	K	L	М
Load-	Surface	Point	Poin	t Coordinates	s [ft]		Layer			Stresses [psi]		Ratio	Graph in
ing	No.	No.	X	Y	Z	No.	z [in]	Side	Symbol	Existing	Limit	[-]	Printout Repo
RC1	Section 2	.3 (LRFD)	-								·		
	88	660	55.46	46.63	19.69	2	1.37	Тор	σb,0	64.3	647.7	0.10	
	51	13480	27.87	13.64	9.84	2	1.37	Тор	σb,90	2.8	647.7	0.00	
	114	2035	35.07	0.43	29.53	2	1.37	Тор	σt/c,0	285.3	324.0	0.88	
	88	660	55.46	46.63	19.69	1	0.00	Тор	σt/c,90	12.2	19.4	0.63	
	114	2035	35.07	0.43	29.53	2	1.37	Тор	σb+t/c,0	288.6		0.89	
	88	660	55.46	46.63	19.69	1	0.00	Тор	σb+t/c,90	15.2		0.63	
	182	2428	46.60	26.88	39.37	2	2.06	Middle	τy'z'	-23.7	97.2	0.24	
	182	2428	46.60	26.88	39.37	3	3.44	Middle	τx'z'	25.3	175.0	0.14	
	147	2310	46.60	26.88	39.37	1	0.00	Тор	τx'y'	-159.8	175.0	0.91	
	147	2310	46.60	26.88	39.37	1	0.69	Middle	$int(\tau_{X'Z'}+\tau_{X'Y'})$			0.80	
	88	660	55.46	46.63	19.69	1	1.37	Bottom	int(σt/c,90+τy			0.63	
● Ma	x stress rat	tio		O Max stre	ess value			Max ratio	: 0.91	≤1 🕲 🧃	•	>1 ~	Y 🖡
itress - τ Surface I	xγ	tio			ess value 1.8 psi			Max ratio	: 0.91				
Stress - t Surface M RC1 (: 46.6) (: 26.8)	xy ko. 147) ft 3 ft	tio						Max ratio	. 0.91	- 1: 1950 - 2: №. - 3: 1950 - 4: №. 3		ne-fir MSR lumber Imber e-fir MSR lumber Imber	
itress - t Surface M C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	xy ko. 147) ft 3 ft	tio						Max ratio	. 0.91	- 1: 1950 - 2: №. - 3: 1950 - 4: №. 3	If-1.7E Spruce-pin 3 Spruce-pine-fir lu If-1.7E Spruce-pine-fir lu 3 Spruce-pine-fir lu	ne-fir MSR lumber Imber e-fir MSR lumber Imber	
Stress - t Sturface N RC1 (: 46.61 (: 26.81 2: 39.3)	xy ko. 147) ft 3 ft	tio						Max ratio	: 0.91	- 1: 1950 - 2: №. - 3: 1950 - 4: №. 3	If-1.7E Spruce-pin 3 Spruce-pine-fir lu If-1.7E Spruce-pine-fir lu 3 Spruce-pine-fir lu	ne-fir MSR lumber Imber e-fir MSR lumber Imber	

Max. Stress Ratio on LVL Beams

Max. Stress Ratio on Glulam Columns

11.1.2 Max. Stress Ratio on LVL & GLULAM cross sections

Load-				
ing	Description	Design		Design According to Formula
	Ultimate Limit State Design			
CO1	1.4*LC1 + 1.4*LC7	0.82	≤1	393) Stability - Biaxial bending with LTB and compression with buckling about both axes acc. to 3.9.2
CO2	1.2*LC1 + 1.6*LC2 + 1.2*LC7	0.87	≤1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO3	1.2*LC1 + 0.5*LC3 + 1.2*LC7	0.52	≤1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO4	1.2*LC1 + 0.5*LC4 + 1.2*LC7	0.51	≤1	393) Stability - Biaxial bending with LTB and compression with buckling about both axes acc. to 3.9.2
CO5	1.2*LC1 + LC2 + LC3 + 1.2*LC7	0.68	≤1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO6	1.2*LC1 + LC2 + LC4 + 1.2*LC7	0.62	≤1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
C07	1.2*LC1 + LC3 + 1.2*LC7	0.49	≤1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO8	1.2*LC1 + LC4 + 1.2*LC7	0.44	≤1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO9	1.2*LC1 + LC5 + 1.2*LC7	0.52	≤1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO10	1.2*LC1 + LC2 + LC5 + 1.2*LC7	0.70	≤1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO11	0.9*LC1 + LC3 + 0.9*LC7	0.36	≤1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO12	0.9*LC1 + LC4 + 0.9*LC7	0.31	≤1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
CO13	0.9*LC1 + LC5 + 0.9*LC7	0.39	≤1	303) Stability - Compression parallel to grain with buckling about both axes acc. to 3.6 and 3.7
	Serviceability Limit State Design			
CO14	LC1 + LC7	0.09	≤1	401) Serviceability - Deflection in z/y-direction (Beam)
CO15	LC1 + LC2 + LC7	0.10	≤1	401) Serviceability - Deflection in z/y-direction (Beam)
CO16	LC1 + 0.7*LC5 + LC7	0.09	≤1	401) Serviceability - Deflection in z/y-direction (Beam)
CO17	LC1 + 0.6*LC3 + LC7	0.09	≤1	401) Serviceability - Deflection in z/y-direction (Beam)
CO18	LC1 + 0.6*LC4 + LC7	0.09	≤1	401) Serviceability - Deflection in z/y-direction (Beam)
CO19	LC1 + 0.75*LC2 + 0.45*LC3 + LC7	0.10	≤1	401) Serviceability - Deflection in z/y-direction (Beam)
CO20	LC1 + 0.75*LC2 + 0.45*LC4 + LC7	0.10	≤1	401) Serviceability - Deflection in z/y-direction (Beam)
CO21	LC1 + 0.75*LC2 + 0.52*LC5 + LC7	0.10	≤1	401) Serviceability - Deflection in z/y-direction (Beam)
CO22	0.6*LC1 + 0.6*LC3 + 0.6*LC7	0.05	≤1	401) Serviceability - Deflection in z/y-direction (Beam)
CO23	0.6*LC1 + 0.6*LC4 + 0.6*LC7	0.05	≤1	401) Serviceability - Deflection in z/y-direction (Beam)
CO24	0.6*LC1 + 0.7*LC5 + 0.6*LC7	0.05	≤1	401) Serviceability - Deflection in z/y-direction (Beam)

11.1.3 Stair Design

For a 5-layer, E1 panel:

- $h_i = \text{Thickness of an individual layer} = 1.3/8 \text{ in.}$
- b = Design width = 12 in.

Major strength axis (parallel to grain)

 $\begin{array}{l} F_{b,0} &= \text{Bending strength} = 1950 \text{ psi} \\ F_{0} &= \text{Modulus of elasticity} = 1.7 \times 10^6 \text{ psi} \\ F_{c,0} &= \text{Tensile strength} = 1375 \text{ psi} \\ F_{c,0} &= \text{Compression strength} = 1800 \text{ psi} \end{array}$

 $F_{v,0}$ = Shear strength = 135 psi

 $F_{s,0} = Rolling shear strength = 45 psi$

Minor strength axis (perpendicular to grain)

 $F_{h.90} = Bending strength = 500 psi$

 $E_0 = Modulus of elasticity = 1.2x10^6 psi$

 $F_{x0} =$ Shear strength = 135 psi

 $F_{s,0} = Rolling shear strength = 45 psi$

According to ASCE-7.15:-

 $W_u = 1.2(5x0.168+1)+1.6x3 = 7 \text{ KN/m}^2$

 $M_u = (7x1.4^2)/8 = 1.72$ KN.m

V = 4.9 KN

1. Check on flexural strength.

 F_bS_{eff} '= 1x2.54x0.85x10400x0.6= 13472.16 Ib.ft= 18.7 KN.m (NDS- chapter 10 & PRG320-18)

 $M_u < F_b S_{eff}$ ' (Safe)

Stair section (E1, 5-layers CLT)

2. Check on shear strength.

 F_sIbQ_{eff} '= 1x1x2441=2441 Ib= 11.1 KN.

- $V < F_s IbQ_{eff}$ ' (Safe)
- 3. Check on vibrations.

$$EI_{app} = \frac{EI_{eff}}{1 + \frac{K_s EI_{eff}}{GA_{eff}L^2}}$$

$$F = \frac{2.188}{2x4.5^2} \times \sqrt{\frac{1.6x10^6}{1.0625x6.625x12}} = 11.83 \text{ HZ} > 9 \text{ HZ}$$

4. Check on fire resistance.

According to IBC, the required fire resistance is 90 min. (Type V construction).

Step 1: Calculation of lamination fall-off time

The time to reach a glue line is calculated from Equation 4 as follows:

$$t_{fo} = \left(\frac{h_{lam}}{\beta_n}\right)^{1.23} = \left(\frac{1^{3/\!\!/}_{8}}{1^{1/\!\!/}_{2}}\right)^{1.23} = 0.90 \ h = 54 \ min$$

The number of layers of laminations that may fall-off is rounded to the lowest integer as follows:

$$n_{lam} = INT\left(\frac{90}{54}\right) = 1 \ laminate$$

Step 2: Calculation of the effective char depth

The effective depth of char based on the number of laminations that may delaminate can be calculated as follows:

$$a_{char} = 1.2 \left[n_{lam} \cdot h_{lam} + \beta_n \left(t - \left(n_{lam} \cdot t_{fo} \right) \right)^{0.813} \right]$$
$$\begin{bmatrix} in \ / 00 \ (54) \\ 0.813 \end{bmatrix}$$

Table 16.2.1B Effective Char Depths (for CLT

with β_n =1.5in./hr.)

Required Fire Endurance	Effective Char Depths, a _{char} (in.) lamination thicknesses, h _{lam} (in.)										
(hr.)	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	1-3/4	2		
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8		
1 ¹ / ₂ -Hour	3.4	3.2	3.1	3.0	2.9	(2.8)	2.8	2.8	2.6		
2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6		

(NDS- chapter 10 & PRG320-18)

$f = \frac{2.188}{2L^2} \sqrt{\frac{EI_{app}}{\rho A}} \ge 9.0 \ Hz$

(Safe)

2018 Code Conforming Wood Design

. Type of Construction

Chapter 6 of the IBC defines types of construction, with wood frame construction typically found in Type V, IV and III. Additionally, the IBC has specific applications that permit the use of wood in construction in Type I and II. These circumstances will be addressed in Sections 5 and 6 of this book.

Type V Construction

Type V construction permits the use of wood or other approved materials for structural elements, including structural frame members, bearing walls, floor and roof construction, as well as nonbearing elements such as exterior walls and interior partitions. Type V construction is further defined as Type VA (all interior and exterior load-bearing walls, floors, roofs and all structural members are designed or protected to provide a minimum 1-hour fire-resistance rating) and Type VB (no fireresistance rating is required).

Type IV Construction

Type IV construction (Heavy Timber, HT) has exterior walls made of noncombustible materials, fire-retardant-treated wood (FRTW), or cross-laminated timber (CLT) protected in accordance with Section 602.4.2. Interior building elements must be of solid or laminated wood without concealed spaces (for partitions, see below). Columns supporting roof and ceiling loads must be a minimum nominal dimension of 6 inches by 8 inches and 8 inches by 8 inches if supporting floor loads. Floor beams and girders must be a minimum nominal dimension of 6

EX-

beams and girders must be a minimum nominal dimension of 6 inches by 10 inches, and roof beams and girders must be a minimum nominal dimension of 4 inches by 6 inches. Flooring must be a minimum nominal 3-inch thickness covered with 1-inch nominal dimension tongue-and-groove flooring or 4-inch-thick cross-laminated timber (CLT). Roof decking must be a minimum nominal 2-inch thickness, 1¹/s-inch-thick wood structural panels, or 3-inch-thick CLT. Partitions must be 1-hour fire-resistance-rated construction or a minimum two layers of 1-inch nominal board or laminated construction 4 inches thick.

Type III Construction

Type III construction requires exterior walls to be noncombustible material or FRTW having a minimum 2-hour fire-resistance rating. All of the other building elements are permitted to be wood or other approved materials. Type IIIA construction needs to provide a minimum 1-hour fire-resistance rating for all building elements other than nonbearing walls, and Type IIIB construction does not require any fire-resistance rating other than the exterior load-bearing wall.

American Wood Council

International Code Council

Page 48 of 296

$$\overline{y} = \frac{\sum_{i} \widetilde{y}_{i} h_{i}}{\sum_{i} h_{i}} = \frac{\left(\frac{1.375}{2} \times 1.375\right) + (3.393 \times 1.285)}{1.375 + 1.285} = 1.994 \, in.$$

$$\begin{split} I_{eff} &= \sum_{i} \frac{b_{i}h_{i}^{3}}{12} + \sum_{i} b_{i}h_{i}d_{i}^{2} \\ &= \left(\frac{12\cdot(1.375)^{3}}{12}\right) + \left(\frac{12\cdot(1.285)^{3}}{12}\right) \\ &+ \left(12\cdot1.375\cdot\left(1.994 - \frac{1.375}{2}\right)^{2}\right) \\ &+ \left(12\cdot1.375\cdot(3.393 - 1.994)^{2}\right) = 63.1\,\frac{in.^{4}}{ft.} \end{split}$$

$$S_{eff} = \frac{66.2}{4.035 - 2.019} = 32.9 \text{ in}^{3}/\text{ft}$$

$$M = 83686 \text{ Ib.ft/ft}$$

$$M_{u} = 1241.5 \text{ Ib.ft/ft}$$

$$M > M_{u}$$

(Safe)

11.1.4 Connection Design

1- Half-Lapped Connection

7-ply grade v₃ CLT (seven times 1.375 in. plies= 9.625, specific gravity 'G'= 0.5, 0.5 in. Lag Screw, root diameter 'D_r'= 0.371 in., Lag Screw length= 9 in., Tip Length (E)= 0.3125 in.

 $F_{e'0} = 11200 * 0.5 = 5600 \text{ psi}$

 $F_{e'90'} = 6100 * 0.5^{1.45} * 0.5^{-0.5} = 3157 \text{ psi}$

- a. Bearing length of the lap joint:-
 - $L_s = 3 * 1.375 + 0.5 * 1.375 = 4.81$ in.
 - $L_m = ((9 4.81) \frac{0.3125}{2}) = 4.033$ in.
- b. Check on wood crashing in the side length:-
 - $P_{\min} = (9 4.81) 0.3125 = 3.877$ in. > 4*0.5= 2 in. = (Safe)
- c. Adjusted bearing length for lateral calculations:-

 - $L_{s-adj.} = ((2 * 1.375 * \frac{5600}{3157}) + 1.375 + \frac{1.375}{2}) = 6.94$ in. $L_{m-adj.} = (\frac{1.375}{2} + 1.375 + ((1.375 + 0.75 \frac{0.3125}{2}) * \frac{5600}{3157}) + 1.375) = 6.92$ in.

- Single Shear Connections Double Shear Connections Mode I_m Mode Is Mode II (not applicable) Mode III_m (not applicable) Mode III_s H Mode IV -
- d. Calculation of ASD adjusted design values using NDS yield limit equations:-

- Mode I_m: $Z = \frac{0.37 \times 6.92 \times 3157}{5} = 1616.63$ Ib Mode I_s: $Z = \frac{0.37 \times 6.94 \times 3157}{5} = 1621.3$ Ib

$$K_{1} = \frac{\sqrt{1+2*1^{2}*(1+0.99+0.99^{2})+0.99^{2}+1^{2}}-(1*1.99)}{1+1} = 0.412$$

$$K_{2} = 1.036$$

$$K_{3} = 1.036$$

- Mode II: $Z = \frac{0.412 \times 6.94 \times 0.37 \times 3157}{4.5} = 742$ Ib Mode III_m: $Z = \frac{1.036 \times 0.37 \times 6.92 \times 3157}{(2+1) \times 4} = 697.9$ Ib Mode III_s: $Z = \frac{1.036 \times 0.37 \times 6.94 \times 3157}{(2+1) \times 4} = 699.9$ Ib

• Mode IV:
$$Z = \frac{0.37^2}{4} * \sqrt{\frac{2*3157*45000}{3*2}} = 235.521$$
 Ib

Using the bearing length, mode IV still control and Z90= 235.52 Ib

Z_{90-adj}.= 1.6 * 235= 376 Ib
V_{y-max.=} 2.186 KN/m² = 481 Ib/m² (From Analysis)
Spacing=
$$\frac{376}{481}$$
 0.78 m = 0.7 m
Edge distance= 4 * 0.5= 2 in.= 5 cm (According to NDS)
End distance= 0.45 m

•

•

۲

۲

۲

2. Wall intersection connection.

Design Method	Allowable Stress Design (ASD)	Design Method	Allowable Stress Design (ASD)
Connection Type	Lateral loading 🔹 🔻	Connection Type	Withdrawal loading
Fastener Type	Lag Screw 🔻	Fastener Type	Lag Screw
Loading Scenario	Single Shear 🔻	Loading Scenario	N/A 🔻
	Submit Initial Values		Submit Initial Values

Main Member Type	Spruce-Pine-Fir 🔻
Main Member Thickness	Other (in inches) 🔻
	6.875
Main Member: Angle of Load to Grain	90
Side Member Type	Southern Pine 🔻
Side Member Thickness	Other (in inches) 🔻
Side Member Thickness	9.625
Side Member: Angle of Load to Grain	90
Washer Thickness	0 in. 🔻
Nominal Diameter	1/2 in. 🔻
Length	12 in. 🔻
Load Duration Factor	C_D = 1.6 ▼
Wet Service Factor	C_M = 1.0 ▼
End Grain Factor	C_eg = 1.0 ▼
Temperature Factor	C_t = 1.0 ▼

Fastener Type	Lag Screw 🔻
Loading Scenario	N/A 🔻
	Submit Initial Values
Main Member Type	Spruce-Pine-Fir 🔹
Main Member Thickness	Other (in inches) 🔻
Main Member Thickness	6.875
Side Member Type	Southern Pine 🔻
Side Member Thickness	Other (in inches) 🔻
Side Member Thickness	0.005

9.625

0 in.

Length 12 in.

Wet Service Factor C_M = 1.0

Temperature Factor C_t = 1.0

1/2 in.

 $C_D = 1.6$

C_eg = 1.0

Washer Thickness

Nominal Diameter

End Grain Factor

Load Duration Factor

Calculate Connection Capacity

Connection Yield	Mode Descriptions	Limits of Use
Diaphragm Factor Help	Load Duration Factor Help	Technical Help
Chow Brintable View		

Connection Yield Modes

Im	600 lbs.
Is	4171 lbs.
II	1481 lbs.
IIIm	341 lbs.
IIIs	1628 lbs.
IV	365 lbs.

Adjusted ASD Capacity 341 lbs.

- Withdrawal force= 6.985 ken/m'
- Withdrawal capacity= 4.3 kN/screw
- Number of $screws_w = 7/4.3 = 2 screw/m'$
- Lateral force = 2.1 kN/m'
- Lateral capacity= 1.55 kN/screw
- Number of screws_L= 2.1/1.55 = 2 screw/m'
- 3. Floor to Wall connection.

Straining actions at connection From FE Analysis;-

F1 = 1.2 kN/m

F2 = 0.9 kN/m'

F3= 3.3 kN/m'

F4=9.5 kN/m'

Connection capacity according to Simpson Strong Tie bracket design information:-

		Dimensions (in.)			1.1.1	Allowa	ble Load	ble Load (lbs.), Co = 1.60				
Model	Gauge				Horizon	tal Leg	Vertic	al Leg				-
10		W1	w,	L	Quantity	Туре	Quantity	Туре	F1	F2	Fa	F.
ABR9020	14	31/14	31/14	781	10	CNA4x60	10	CNA4x60	1085	780	1330	590
ABR9020	14	3/18	3/16	23/18	10	SD10212	10	SD10212	1480	1200	1330	1010
		a.	de.		14	CNA4x60	10	CNA4x60	1350	835	2300	1020
ABR105	11	41/4	4%	3%/16	14	SD10212	10	SD10212	1880	1235	2300	1475
		3%	1%		7	CNA4x60	18	CNA4x60	1720	1225	1550	650
AE116	11	3/14	1%	4*/10	7	SD10212	18	SD10212	1850	1445	1850	1035

According to using ABR9020 bracket and Wall length is 4.5m:-

Bracket capacity= 2.68 kN

The Number of brackets= 9.5/2.86=4 bracket

4- Wall to footing connection (shear resistance connection):-

- By using 6 brackets along the wall TITAN TCN240Angle Bracket along the wall.
- L_{wall}= 16.5m

Straining actions at connection From FE Analysis;-

- V_{wall}= 6.125 KN/m'
- $F_{bracket} = (16.5/6) \times 6.125 = 16.9 \text{ KN}.$

CONFIGURATION

uncracked concrete

• fixing on concrete: VINYLPRO M12 x 130 (steel grade 5.8) anchors installed internally (IN)

(Safe)

• fixing on timber: LBS Ø5 x 50 screws

$$R_{d} = min \begin{cases} \frac{R_{2/3,k} \text{ timber} \cdot k_{mod}}{\gamma_{m}} \\ \frac{R_{2/3,k} \text{ cls}}{\gamma_{cls}} \\ \frac{R$$

 $R_d = min \{ 20 ; 22.4 \} = 20 Kn$

 $R_d \ge F_{bracket}: 20 > 16,9 \text{ kN}$

GENERAL PRINCIPLES

Characteristic values are consistnt with EN 1995:2008 and in accordance with

ETA-11/0496.
 Design values can be obtained from characteristic values as follows:

$$R_{d} = \min \begin{cases} \frac{R_{2/3,k \text{ timber}} \cdot k_{mod}}{\gamma_{m}} \\ \frac{R_{2/3,k \text{ cls}}}{\gamma_{cls}} \end{cases}$$

Coefficients γ_m and k_{mod} must be taken according to the current Standard adopted for the design. Coefficients γ_{cls} are listed in the table and are in accordance with the product's certificates.

- For the calculations, a timber density ρ_k = 350 kg/m³ and a concrete grade C 25/30 have been considered.
- Dimensioning and verification of timber elements must be carried out separately.
 Strength values of the connection system are valid under the calculation
- hypotheses listed in the table; different boundary conditions (e.g., minimum edge distance) shall be verified.
- The use of two TITAN angle brackets, symmetrically-positioned, doubles the design strength of the joint.
- Admissible values are obtained according to DIN 1052:1988. The strength value is the minimum between the timber strength V_{adm,timber} and the concrete strength V_{adm,ds}.

5- Wall to footing connection (pull through resistance connection):-

• By using 2 WHT540 Angle brackets (total nailing anchor M20washer WHTBS50L-LBA Nails) at the 2 ends of the wall

Straining actions at connection From FE Analysis;-

• T_{wall}= 26.73 KN=5880.6 Ib

pull through connection resistance:-

G = 0.55

 $Twall < \{ Z_{timber} = 7066 \text{ Ib} ; Z_{steel} = 14253 \text{ Ib} \}$ (Safe)

Ztimber=7066 Ib

WHT540

F₁ ↑

			CHARAC	TERISTIC VALUE	S			
configuration		Holes Ø 6/32 ″			Z _{timber} [lbs]	Z steel [lbs]		
	type	ØxL[in]	n _v [pcs]	G = 0.42	G = 0.49	G = 0.55	Washer	Z _{steel} [lbs]
54 - 16 - C	LBA Nails	5/32 "x 1 5/8 "	45	5738	6482	7086		
• total nailing • anchor M20	LDA INdits	5/32"x 2 3/8"	45	5738	6482	7086	WILTECOL	14253
washer WHTBS50L	- LBS Screws	6/32 "x 1 5/8 "	45	4032	4556	4982	WHTBS50L	
		6/32 "x 2 "	45	4032	4556	4982		
partial nailing	LBA Nails	5/32"x1 5/8"	27	3443	3889	4252		14253
		5/32"x 2 3/8"	27	3443	3889	4252	WHTBS50L	
anchor M20 washer WHTBS50L	LBS Screws	6/32 "x 1 5/8 "	27	2419	2734	2989		
Washer Willosson		6/32 "x 2 "	27	2419	2734	2989		
and the site	LBA Nails	5/32"x1 5/8"	45	5738	6482	7086		
• total nailing • anchor M16	LDA INdits	5/32"x2 3/8"	45	5738	6482	7086	WHTBS50	14253
washer WHTBS50	LBS Screws	6/32 "x 1 5/8 "	45	4032	4556	4982	VICCOLLIN	14255
Washer Willbaso	LD2 SCIEWS	6/32 "x 2 "	45	4032	4556	4982		
	LBA Nails	5/32 "x 1 5/8 "	27	3443	3889	4252		
• partial nailing • anchor M16	LDA IVdIIS	5/32 "x 2 3/8 "	27	3443	3889	4252	WHTBS50	14253
washer WHTBS50	LBS Screws	6/32 "x 1 5/8 "	27	2419	2734	2989	UCCOLUM	14255
Husher Hillboso	LDS SCIEWS	6/32 "x 2 "	27	2419	2734	2989		

Zsteel=14253 Ib

⁽¹⁾ Length obtainable from MGS threaded rods (to be cut to measure)

11.1.5 Foundations Design Isolated Footing Design

Isolated footing is considered under columns by rebars Intensification under columns in distance (L) equal 145 cm

* Design of Isolated Footing

	Column	ı dim.			
	n (cm)	t (cm)		extension of P.C (cm)	
	30	60		30	
	B (cm)	_	L (cm)	0	t (cm)
	115		205		50
	B (cm) 115		L (cm) 145		t (cm) 60
21	Notes		Ctrans	about D.C.(Lalam
.,	safe		Sucas	2.55	<i>sgrem</i>
1	Notes				
	safe				
2)	Notes safe				
			Asmin	1	
		1	8.25	cm ²	
As /m	no.			total no.	
2.02	5	16	/m	6	
As/m	no.	+		total no.	
	2.02	n ²) Notes safe) Notes safe r ²) Notes safe safe 2.02 5 As /m no.	B (cm) 115 n²) Notes safe) Notes safe ,²) Notes safe safe ,²) Notes safe safe ,²) Notes safe safe	B (cm) L (cm) 115 145 n²) Notes safe Stress) Notes safe safe safe Stress safe safe 2.02 5 As /m no. As /m no.	B (cm) L (cm) 115 145 n²) Notes safe 2.55) Notes safe 2.55) Notes safe 2.55) Notes safe 2.55 2) Notes safe 8.25 cm² As/m As /m no. 2.02 5 16 /m As /m no.

Strip footing Design

								t.	calc. of R.C								
Strip footing									0.175								
Strip rooting								Fn _{R.c} =	57.14286		unsafe		if it unsafe , increase dimension				
Givens:	P= q _{sh} =	10 12	t/m²		fs= f _{bearing} =	1400 50	t/m²	C= M _{max} =	-0.0625		d=	3.81					
	ft= qb= t _{pt} =	60 16 0.3	t/m ² kg/cm ² m		q _{shear} = FC= k ₁ =	7 50 0.361	kg/cm ² kg/cm ²	d=	35	cm							
type (b= of wall	0.3 concrete	m		k ₂ =	1237	-	1	che	ech shea	r		-				_
		calc. of P.C		30				Q _{sh} =	-23.5714	ton							
A _{p.c} =	0.875		B'=	0.875				q _{sh} =	-6.73469		ОК		if it	unsafe	, încrease	dimension	
Fn _{p.c} =	11.42857		OK reinforcment														
X=	0.396863		X _{used} =	0.35				As main=	0.257783	cm ²	0.128	276	1	ø	16		
								As min	0.01225	cm ²	9					_	
								As'=	0.051557	cm ²	0.0456	509	5	ø	12		
								check of bond									
								Q _{bond} =	-3.57143	_	_						
								q _{bond} =	-23.3456	6	ок			ifitu	insfe , ic	rease dime	insion
						anchorage length							-				
								As=	2.0096	ŝ						-	

11.2 Structural analysis results

11.2.1 Walls

Max shear stresses on CLT Interior walls

Combination between Max. bending stresses + Max. compression stresses on CLT Interior walls

Max shear stresses on CLT Exterior walls

Combination between Max. bending stresses + Max. compression stresses on CLT Interior walls

Max. Compression/Tension forces on CLT walls (x-direction)

Max. Compression/Tension forces on CLT walls (y-direction)

Max. Shear force on CLT walls (x-direction)

Max. Shear force on CLT walls (y-direction)

Max. Bending Moment on CLT walls (x-direction)

Max. Bending Moment on CLT walls (y-direction)

Max shear stresses on CLT Floors

Combination between Max. bending stresses + Max. compression/tension stresses on CLT Floor

Combination between Max. bending stresses + Max. compression/tension stresses on CLT Floor

Max. bending stresses on CLT Floor

Max. bending stresses on CLT Floor

Max. compression/tension stresses on CLT Floor

Max. compression/tension stresses on CLT Floor

Max. Bending Moment on CLT Floor (x-direction)

Max. Bending Moment on CLT Floor (y-direction)

Max. Shear force on CLT Floor (x-direction)

Max. Shear force on CLT Floor (y-direction)

Max. Compression/Tension forces on CLT Floor (x-direction)

Max. Compression/Tension forces on CLT Floor (y-direction)

Max. Deflection on CLT Floor

Max. Deflection on CLT Floor

11.2.3 LVL Beams

Max. Bending moment on LVL Grid Beams (y-direction)

Max. Shear forces on LVL Grid Beams (z-direction)

Max. Normal forces on LVL Grid Beams

Max. Deflection on LVL Grid Beams

Max. Bending Moment on LVL Beams (y-direction)

Max. Shear forces on LVL Beams (z-direction)

Max. Shear forces on LVL Beams (y-direction)

Max. Normal forces on LVL Beams

Max. Defection on LVL Beams (z-direction)

Max. Defection on LVL Beams (y-direction)

Max. Defection on LVL Beams (x-direction)

11.2.4 Glulam Columns Max. Normal forces on GLULAM Columns

11.2.5 Foundations

Line support Reactions

TECHNICAL DESIGN CALCULATION REPORT

Egyptian Aquatic Centre Part 2

Masonry structures have been used in ancient Egypt in many monuments like temples, pyramids and sphynx; thus, masonry structures expresses Egyptian civilization. Masonry structures expresses also the greatness of other civilization in Architecture like Romanian civilization with coliseum. One of important types of masonry is stone. Stone is a very strong material, durable, resistance to weather conditions, fire and insects proof. Stone considered also as eco-friendly material. Based on the concept of mixing between ancient Egyptian civilization and modern design solution and to achieve the sustainability, Egyptian Aquatic Centre is proposed in Aswan province. The centre contains two Olympic swimming pools, diving platform and masonry amphitheater.

Egyptian Aquatic Centre Short Course Pool

I. Design codes and standards

1- ECP (203-2018)

Egyptian Code of Practice for Design and Construction of Concrete Structures.

2- ECP (201-2010)

Egyptian Code for Loading on Buildings.

3- FINA FACILITIES RULES (2017-2021)

International Swimming Federation.

1. INTRODUCTION

The concept for structural design focuses on satisfying both the functional and the economic requirements of the building without jeopardizing its aesthetic and architectural features. This Calculation Report presents the structural engineering aspect of the works due for the development construction work of Egypt Aquatic Centre.

Figure 1-1 Short Course Pool location

2. Pool Drawings Details

Figure 2-1 Pool Plan

Figure 2-2 HZ Section

Figure 2-3 VL Section 1

Figure 2-4 VL Section 2

Figure 2-5 VL Section 3

Figure 2- 6 3d wall to slab joint RFT

3. Calculation Software Used

Calculation software features

The software used is RFEM, developed by DLUBAL COMPANY (Germany).

Technical specifications

Name: RFEM

Version: 5.22.03

Producer: DLUBAL

www.dlubal.com

License registered is a student license

4. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES

REINFORCED CONCRETE

The grade of concrete will be according to the Egyptian Code of Practice (ECP). The grade of concrete is indicated in two numbers, the first one indicate the characteristic cube strength in (N/mm^2) while the second one indicates the maximum nominal size of the aggregate in (mm) to be used;

- Grade (20/40) for plain concrete of foundations of thickness >12 cm
- Grade (30/20) for all pool reinforced concrete elements.

Minimum thickness of blinding concrete is 100 mm.

Concrete cover is the concrete thickness to all steel reinforcement including links:

For all concrete (with protection) in contact with soil, cover shall be 70mm (or as will be recommended in the geotechnical report)

For all concrete elements above grade where concrete is protected from weathering, cover shall be 50mm for beams and 25 mm for slabs and walls.

• SLUMP VALUES

The following values are according to the Egyptian code of practice ECP 203-2018 section (2-3-1-2), Table (2-5).

Type of Structural Element	Type of Compaction	Slump-in mm (max.)
Massive concrete	Mechanical	25 - 50
 Concrete foundation. Concrete sections with low reinforcement ratio (< 80 kg/m³) 	Mechanical	50 - 75
Concrete sections with medium and high reinforcement ratio (80-150 kg/m³)	Mechanical/ Manual	75 – 125
Concrete sections with very high reinforcement ratio (> 150 kg/m³)	Light compaction	125 – 150**
Deep foundation	Light compaction	125 – 200**

** By using chemical additives.

REINFORCING STEEL

All reinforcing steel shall be complying with the Egyptian code of practice ECP203-2018, section 2-2-5-3, Table 2-4.

Reinforcing steel bars shall be uncoated high yield deformed bars of characteristic strength 360 N/mm².

Uncoated mild steel plain bars with characteristic strength 280 N/mm² may be used for links and binders.

Туре	Grade	Yield Strength, f _y (N/mm²)
Normal mild steel	280/450	280
High grade steel	360/520	360
Cold formed welded mesh	450/520	450

Note: Bar size increment = 6, 8, 10, 12, 16, 18, 20, 22, 25, 28 and 32

5. Calculation method and numerical model

5.1 Model Description

5.1.1 Hypothesis adopted for the elements

• Based on the pool dimension to it's height ratio, the pool considered as rested on rigid foundation; thus we can assume uniform stress distribution under it.

Figure 5.1 stress distribution under pool

• To achieve economy in design and logical concrete dimensions, the counterforts are modeled every 5 meter and a horizontal beam at the top of the pool. The horizontal beam converts the cantilever action of the wall into simply supported action, That can reduce the straining actions values in vertical direction of the wall. The counterforts lead a percentage of the wall loads to transfer in the horizontal direction depend on elastic analysis of plates (Grashoff's values).

Figure 5.2 Loads distribution on the wall in x and y directions

• From economy point of view, the bilinear variable thickness in walls and raft are modeled as shown in fig. 5.3.

 For simplicity, the soil is modeled as springs following this equation: Soil bearing capacity= 1cm * K_{spring}

N.	Found.		Spring Constants	Translatio	n Support or Spri	Shear Spring [kN/m]			
	No.	On Surfaces No.	RF-SOILIN	u _x	u _y	uz	V _{XZ}	V _{yz}	
	1	22,23,25,35,41-45	-	1500.000	1500.000	15000.000			
	Í								

6. Actions and design loads

6.1 STRUCTURAL LOADS

The following loads are considered in the design:

Structural Dead Loads which include:

The own weight of the structural elements, beams, raft and walls.

Superimposed dead load from water and soil weights.

Live loads which cover the weight and movement of equipment and people on the sides of the pool (surcharge).

The basis for the considered design loads are summarized in the followings sections.

Dead Loads

Unit weight of concrete elements

25.0 kN/m³

Live Loads

Live loads are considered equal to 30 kN/m^2 effect on the sides of the pool as a surcharge.

Earthquakes

from experience of prof. Eehab Khalil, the earthquake effect on pool is taken as increase by 15% of load combinations factors.

The following tables describe the load cases and load combinations on the pool:

Table 1, Load cases

Load	Load Case	No Standard	Self-Weight - Factor in Direction									
Case	Description	Action Category	Active	X	Y	Z						
LC1	Live load	Live										
LC2	Floor-Cover	Dead										
LC3	Water-Weight	Fluids - Well-defined										
LC4	Water-Pressure	Fluids - Well-defined										
LC5	Earth-Pressure	Lateral Earth Pressure										
LC6	Soil Weight	Dead										

Table 2, Load combinations

Load		Load Combination				
Combin.	DS	Description	No.	Factor	I	Load Case
CO1		Testing Case (Ultimate)	1	1.55	LC1	Live load
			2	1.35	LC2	Floor-Cover
			3	1.55	LC3	Water-Weight
			4	1.55	LC4	Water-Pressure
CO2		Testing Case (Working)	1	1.15	LC1	Live load
irameters			2	1.15	LC2	Floor-Cover
			3	1.15	LC3	Water-Weight
			4	1.15	LC4	Water-Pressure
CO3		Maintenance Case (Working)	1	1.15	LC1	Live load
			2	1.15	LC2	Floor-Cover
			3	1.15	LC5	Earth-Pressure
			4	1.15	LC6	Soil Weight
CO4		Maintenance Case (Ultimate)	1	1.55	LC1	Live load
			2	1.55	LC2	Floor-Cover
			3	1.55	LC5	Earth-Pressure
			4	1.55	LC6	Soil Weight

6.2 Calculations of water and earth pressure.6.2.1 water pressure.

W.P= 10*7= 70 KN/m²

W.P= 10*6= 60 KN/m²

E.P₃= 1/3*8*6+6= 22 KN/m²

6.3 CRACKING

It will be calculated as stated in the "ECP 203-2018 - section 4-3-2" for the following maximum design crack width:

• 0.15 mm for water-side exposure.

7. STRUCTURAL ANALYSIS

7.1 3d-model

7.2 ASSIGN OF LOADS

Figure 8.1.: Assign of Finishing Loads on the pool's raft (KN-M² Units)

Figure 8.2.: Assign of Water weight on the pool's raft (KN-M² Units)

Figure 8.3.: Assign of Soil weight on the pool's raft (KN-M² Units)

Figure 8.4.: Assign of Surcharge Load on the pool's HZ-Beams (KN-M² Units)

Figure 8.5.: Assign of Water on the pool's walls (KN-M² Units)

Figure 8.6.: Assign of Soil Pressure on the pool's walls (KN-M² Units)

8. STRUCTURAL DESIGN

8.1 Checks.

8.1.1 Bearing Capacity.

• From RFEM model, the maximum soil reaction equal 40664 KN when the tank is full

(Testing case), as shown in Fig. 8.1.

• The maximum stress distributed under soil = $\frac{40664/10}{29.8*24.8}$ = 5.5 t/m2 < 15 t/m² (Safe)

Figure 8.1: Soil Reaction under the pool, Testing case (KN)

8.1.2 Uplift.

- From RFEM model, the maximum soil reaction equal 35034 KN when the tank is empty (Maintenance case), as shown in Fig. 7.2.
- The maximum stress distributed under soil = $\frac{35034/10}{24.8*29.8}$ = 4.74 t/m² > 1.5 (Safe)

Figure 8.2: Soil Reaction under the pool, Maintenance case (KN)

8.1 Analysis

8.1.1 Analysis results as contour range

> Maintenance Case.

Figure 8.4: Bending Moment in x-direction (short direction) (KN-M).

Figure 8.5: Normal Force in x-direction (short direction) (KN).

Figure 8.6: Bending moment in y-direction (long direction) (KN-M)

Figure 8.7: Normal Force in y-direction (long direction) (KN).

> Working Case.

Figure 8.8: Deformations of pool's panels (mm).

Figure 8.9: Bending Moment in x-direction (short direction) (KN-M).

Figure 8.10: Normal Force in x-direction (short direction) (KN).

Figure 8.11: Bending moment in y-direction (long direction) (KN-M)

Figure 8.12: Normal Force in y-direction (long direction) (KN).

8.1.2 Analysis results as sections.

Figure 8.13: Sections through the pool.

> Maintenance Case.

Figure 8.14: Bending moments and Normal forces through section 1-1 (Mx,Nx,My,Ny)..

• Section 2-2.

Figure 8.15: Bending moments and Normal forces through section 2-2 (Mx,Nx,My,Ny).

Figure 8.17: Bending moments and Normal forces through section 1-1 (Mx,Nx,My,Ny)..

Figure 8.18: Bending moments and Normal forces through section 2-2 (Mx,Nx,My,Ny).

Figure 8.19: Bending moments and Normal forces through section 3-3 (Mx,Nx,My,Ny).

8.2 Design.

8.2.1 Design of Surfaces.

8.2.1.1 Concrete Dimensions.

					1						Р	roject No.			Date	e	
					DES	GN	CALC		ION			15-99			7 July 2	2020 ed by 1 ed by	
							SHEET				S	heet No.		C			
														ion Force" n n n n n n n n			
	ject			Egy	ptian Aqu						Checked by						
<u> </u>	ding			Free Jump Pool							_				E.K		
		tes of Cracking - Accord					g To EC	P 20	<u>17</u>		<u>SE</u>	<u>C NO :</u>	(1-	(1-1)			
Input	t Data	:															
	fcu			=	300	K	g/cm ²										
	fy			=	3500	K	g/cm ²										
	Unfact	ored	bendir	ng mo	ment (M) =	40.05	t.m.									
	Unfact	ored	norma	l force	e (N)	=	-6.00	t			"-V6	e sign for Co	mpressio	in For	rce"		
	Eleme	nt Ty	pe			=	wall										
Step	1:Unc	rack	ed se	ction	analysis	;											
	The Tł	nickne	ess t=	=((M/(b*ψ))^ ^{0.5})	± 3											
	t					=	110	cm					t _v	η			
	t chos	en				=	110	cm					10	1			
	fct(N)	= N/A	٨c			=	-0.5455	Kg/c	m ²				20	1			
	fct(M)	= (6*	M)/(b*	t ²)		=	19.86	Kg/c	m ²				40	1			
	fct=fct	(N)+f	ct(M)			=	19.31	Kg/c	m ²				60	1			
	tv=t*{1	+(fct((N)/fct	(M))}		=	1069.79	mm									
	η					=	1.4				Tat	ble (4-16) EC	P 2017				
	f _{ctr} /η :	=(1.89	99*fcu	^(1/2))	/η	=	23.49	Kg/c	m ² >	19	.31	Kg/cm ²	Sat	isfac	tory		

										Pr	•		Date					
									15-99		7 July 2020							
			ESIGN CALCULATION SHEET 15-89 7 July Sheet No. Compute M. Aquatic Centre Checked by Approv Jump Pool E.I corrding To ECP 2017 SEC NO : (1-1) M Sec NO : (1-1) Sec NO : Sec NO : (1-1) <th colspan="4"></th>															
Subject								Ch	necked by	_	Approved by							
Building	7											E.	ĸ					
		g - Accord	lin	g To EC	P 20	17		<u>SE</u>	<u>C NO :</u>	(1-	1)							
Input Dat										_								
fcu	=	300	Kg	/cm ²														
fy	=	3500	Kg	/cm ²														
Unfa	ctored bending m	noment (M)	=	10.30	t.m.													
Unfa	ctored normal for	ce (N)	=	6.50	t			"-ve	e sign for Comp	pressio	n Fo	rce"						
Eler	nent Type		=	wall														
Step 1:U	ncracked section	n analysis																
	Thickness t=((M		± 3															
t			=	80	cm					t v	η							
t ch	osen		=	80	cm													
fct(N	l) = N/Ac		=	0.8125	Kg/c	m ²				20	1							
fct(N	$(1) = (6*M)/(b*t^2)$		=	9.66	Kg/c	m ²				40	1							
fct=	fct(N)+fct(M)		=	10.47	Kg/c	m ²				60	1							
tv=t'	{1+(fct(N)/fct(M))]		=	867.31	mm													
η			=	1.4				Tab	ole (4-16) ECP 2	2017								
f _{ctr} /1	η =(1.899*fcu^(1/2	?))/ŋ	=	23.49	Kg/c	m ² >	10	.47	Kg/cm ²	Sat	isfac	tory						

									P	roject No.				Da			
			DESIC	GΝ	CALC							7 July 2020					
SHEET									heet No.		Computed by M.H						
Cubinet		_	A	n bi c	Caratas					aakad L.							
Subject Building			ptian Aqu Free Jum						U	necked by				Approv E.		JY .	
Building Limit Stat							47		сг		1	2-	21	E.			
nput Data		acking	ACCON		g 10 EC	,F 20	<u>11</u>		30	<u>C NO :</u>		2	<i>2)</i>				
	<u> </u>	=	300	12	1 2							-					
fcu					g/cm ²							_			_		
fy		=	3500	-	g/cm ²							_					
	tored ben	-			21.00	t.m.											
	tored norr	nal force	(N)	=	4.00	t			"-V	e sign for Co	mpress	sio	n Fo	rce"			
	ent Type			=	wall												
Step 1:Uno																	
The T	hickness	t=((M/(b)*ψ))^ ^{0.5})	± 3													
t				=	75	cm					t	,	η				
t chos	sen			=	75	cm					1	_	1		-		
	= N/Ac			=	0.53333		m ²				-	0	1		-		
	= (6*M)/(b*t ²)		=		Kg/c						0	1				
				-	22.40	Kg/c						0	1				
	t(N)+fct(M					-					0	U	1				
	1+(fct(N)/f	ct(IVI))}		=	767.86	mm			.			_					
η				=	1.4		2			ble (4-16) EC							
f _{ctr} /η =(1.899*fcu^(1/2))/η				=	23.49	Kg/c	m ² >	22.93 Kg/cm ²				Satisfactory					
			DESIG	IGN CALCULATION					Project No.				Date				
			DESIG	эN	SHEET		ION	15-99				7 July 2020 Computed by					
					JHEET				5	heet No.			Ľ	ompu. M		JY	
Subject		Eave	i Dtian Aqu	atic	Centre				Cł	necked by			_	Approv			
Building			Free Jum									E.K					
Limit Stat	es of Cra	acking -	Accord	lin	g To EC	P 20	17		SE	C NO :	6	2-	2)				
nput Data											- I'		·				
fcu		=	300	Ko	g/cm ²												
fy		=	3500	_	g/cm ²												
-	tored ben	dina mor			5.50	t.m.									-		
	tored norn	-		=	6.00	t			n	e sign for Co	moress	sio	n Fe	rce"	-	+	
	ent Type			=	wall				Ŷ			10			-		
Step 1:Und		oction a	analveie	-	wan												
	hickness			+ 2													
	ICALESS	-((IVI/(D	·Ψ),"]:								-	-			_		
t				=	55	cm					t	-	η				
t chos				=	55	ст						0	1				
	= N/Ac			=	1.09091	-					2	0	1				
fct(M)	= (6*M)/(b*t ²)		=	10.91	Kg/c	m ²				4	0	1				
fct=fct	(N)+fct(M)		=	12.00	Kg/c	m ²				6	0	1				
	I+(fct(N)/fe			=	605.00	mm											
η				=	1.4				Tal	ble (4-16) EC	P 2017						
	=(1.899*fc	·u^(1/2)\/	m	=	23.49	Kale	m ² >	12.				ati	isfac	tory	-	+	
ictr / η	-(1.03310	ur(1/2))/	Ч	-	23.43	rigic		12.	00	Ngrein		at	ISTAC	tory			

8.2.1.2 RFT Calculations.

- > Required Reinforcement areas as contour range.
 - External and Top Required Reinforcement.

<figure>

Required Reinforcement areas as sections.

Page 139 of 296

> Additional Reinforcement areas.

Section 3.

•

• By assume using 7 T 22/m' and 7 T 12/m' as external and top reinforcement as shown in Fig. 8.21, the additional reinforcement will follow the values shown in Fig. 8.22.

Figure 8.21: Provided Reinforcement Areas.

Figure 8.22: Required Additional Reinforcement Areas (External & Top).

• By assume using 7 T 18/m' and 7 T 12/m' as external and top reinforcement as shown in Fig. 8.23, the additional reinforcement will follow the values shown in Fig. 8.24.

Figure 8.24: Provided Reinforcement Areas.

Figure 8.24: Required Additional Reinforcement Areas (External & Top).

Figure 8.25: Required Additional Reinforcement Areas (Internal & Bottom).

• By assume using 7 T 18/m' and 7 T 12/m' as Internal and Bottom reinforcement as shown in Fig. 8.23, the additional reinforcement will follow the values shown in Fig. 8.26.

Figure 8.26 Required Additional Reinforcement Areas (Internal & Bottom).

Note That: For economic purposes, some of assumed reinforcement areas are reduced as shown in section 2.

8.2.2 Design of Horizontal Beams. 8.2.2.1 Design of As₁.

• The Reinforcement A_{s1} should resist The horizontal bending moment (Mz) and the Normal force (N) generated from Testing case as shown in Fig. 8.27 and Fig. 8.28.

Figure 8.27: Bending Moment in z-direction.

Figure 8.27: Normal Force.

* Design of Water Section

	* Project :		Egyptian Aquatic Centre								
1											
	Concrete f _{cu} =	30	MPa								
	Concrete f _{ctr} =	3.3	MPa								
	Steel f _y =	350	MPa								
	Working Momen	t	Norma	I Force							
Sec.				(kN)							
1	60.55		-2	12	Compi	ression					
	Dims of sec:		b (mm)	t (mm)		f_{ct} (N/mm ²)					
			250	1000		2.3					
					-						
	Properties of sec.		t _v (mm)	f _{ct all} (N	l/mm²)						
			1584	2.	3	Safe					
	Design of sec:		d (mm)	C1	J	As calc	As _{min}	As (mm ²)			
			670	9.57	0.826	1235	750	1235			
								•			
		use:	6	¢	18	β _{cr} =	0.85				

* Design of Water Section

				_				
	* Project :			Egy	otian Ad	quatic Centre	e	
	Concrete f _{cu} =	30	MPa					
	Concrete f _{ctr} =	3.3	MPa					
	Steel f _y =	350	MPa					
*								
	Working Momen	t	Norma	I Force				
Sec.	M _w (kN.m)		Nw	(kN)				
1	20.6		2	13	Ten	sion 💌		
	Dims of sec:		b (mm)	t (mm)		f _{ct} (N/mm ²)		
			250	1000		1.3		
	Properties of sec:	:	t _v (mm)	f _{ct all} (N	l/mm²)			
			2723	2.	3	Safe		
*	Design of sec:		d (mm)	C1	J	As calc	As _{min}	As (mm ²)
			670	11.99	0.826	1171	750	1171

8.2.2.2 Design of A_{s2}

• The Reinforcement A_{s1} should resist The horizontal bending moment (Mz) and the Normal force (N) generated from Maintenance case as shown in Fig. 8.29 and Fig. 8.30.

.

Figure 8.29: Bending Moment in z-direction (KN.m)

Figure 8.30: Normal Force (KN)

* Design of Water Section

* Project :

Egyptian Aquatic Centre

Concrete f _{cu} =	30	MPa
Concrete f _{ctr} =	3.3	MPa
Steel f _y =	350	MPa

	Working Moment	t	Norma	I Force				
Sec.	M _w (kN.m)		N _w ((kN)				
1	30.5		9	1	Ten	sion 🚬 💌		
	Dims of sec:		b (mm)	t (mm)		f_{ct} (N/mm ²)		
			250	1000		1.1		
	Properties of sec:		t _v (mm)					
			1497	2.	.3	Safe		
	Design of sec:		d (mm)	C1	J	As calc	As _{min}	As (mm ²)
			670	12.22	0.826	565	750	750
		use:	3	ф	18	β _{cr} =	0.85	•

* Design of Water Section

				_				
	<u>* Project :</u>			Egy	ptian Ad	quatic Centre	9	
	Concrete f _{cu} =	30	MPa					
	Concrete f _{ctr} =	3.3	MPa					
	Steel f _y =	350	MPa					
	Working Momen	t	Norma	I Force				
Sec.	M _w (kN.m)		Nw	(kN)				
1	11		7	4	Comp	ession 💌		
	Dims of sec:		b (mm)	t (mm)		f_{ct} (N/mm ²)		
			250	1000		0.0		
	Properties of sec:		t _v (mm)					
			-121	3.	2	Safe		
	Design of sec:		d (mm)	C1	J	As calc	As _{min}	As (mm ²)
			670	9.76	0.826	-182	750	750
		use:	3	φ	18	β _{or} =		•

8.2.2.3 Design of A_{s3} & Stirrups.

• The Reinforcement A_{s3} and the stirrups should resist The Torsional moment (M_T) and the Shear forces ($V_y \& V_z$) generated from Maintenance case as shown in Fig. 8.31, Fig. 8.32. and Fig. 8.33.

Figure 8.31: Torsional Moment (KN.m).

Figure 8.32: Shear Forces in y-direction (KN).

Figure 8.33: Shear Forces in z-direction (KN)

Egyptian Aquatic Centre Long Course Pool

I. Design codes and standards

5- ECP (203-2018)

Egyptian Code of Practice for Design and Construction of Concrete Structures.

6- ECP (201-2010)

Egyptian Code for Loading on Buildings.

7- FINA FACILITIES RULES (2017-2021)

International Swimming Federation.

1.INTRODUCTION

The concept for structural design focuses on satisfying both the functional and the economic requirements of the building without jeopardizing its aesthetic and architectural features. This Calculation Report presents the structural engineering aspect of the works due for the development construction work of Egyptain Aquatic Centre.

Figure 1-2 Long Course Pool location

2. Pool Drawings Details

Figure 2-1 Pool Plan

Figure 2-2 HZ Section (Detail)

Figure 2-4 Pool's Sections

Figure 2- 5 3d wall to slab joint RFT

Figure 2- 6 3d wall to slab joint RFT

3. Calculation Software Used

Calculation software features

The software used is SAP2000, developed by Computer & Structures (United States).

Technical specifications

Name: Sap2000

Version: 14.2.2

Producer:

Computer&Structures

https://www.csiamerica.com/

4. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES

REINFORCED CONCRETE.

The grade of concrete will be according to the Egyptian Code of Practice (ECP). The grade of concrete is indicated in two numbers, the first one indicate the characteristic cube strength in (N/mm^2) while the second one indicates the maximum nominal size of the aggregate in (mm) to be used;

Grade (20/20)	for plain concrete of foundations of thickness < 12 cm.
Grade (20/40)	for plain concrete of foundations of thickness >12 cm
Grade (30/20)	for all pool reinforced concrete elements.

Minimum thickness of blinding concrete is 100 mm.

Concrete cover is the concrete thickness to all steel reinforcement including links:

- For all concrete (with protection) in contact with soil, cover shall be 70mm (or as will be recommended in the geotechnical report)
- For all concrete elements above grade where concrete is protected from weathering, cover shall be 50mm for beams and 25 mm for slabs and walls.

• SLUMP VALUES.

The following values are according to the Egyptian code of practice ECP 203-2018 section (2-3-1-2), Table (2-5).

Type of Structural Element	Type of Compaction	Slump-in mm (max.)
Massive concrete	Mechanical	25 - 50
 Concrete foundation. Concrete sections with low reinforcement ratio (< 80 kg/m³) 	Mechanical	50 - 75
Concrete sections with medium and high reinforcement ratio (80-150 kg/m³)	Mechanical/ Manual	75 – 125
Concrete sections with very high reinforcement ratio (> 150 kg/m³)	Light compaction	125 – 150**
Deep foundation	Light compaction	125 – 200**

** By using chemical additives.

REINFORCING STEEL

All reinforcing steel shall be complying with the Egyptian code of practice ECP203-2018, section 2-2-5-3, Table 2-4.

Reinforcing steel bars shall be uncoated high yield deformed bars of characteristic strength 360 N/mm².

Uncoated mild steel plain bars with characteristic strength 280 N/mm² may be used for links and binders.

Туре	Grade	Yield Strength, f _y (N/mm²)		
Normal mild steel	280/450	280		
High grade steel	360/520	360		
Cold formed welded mesh	450/520	450		

Note: Bar size increment = 6, 8, 10, 12, 16, 18, 20, 22, 25, 28 and 32

5. Calculation method and numerical model

5.1 Model Description

5.1.1 Hypothesis adopted for the elements

• Based on the pool dimension to it's height ratio, the pool considered as rested on elastic foundation; thus we can assume nonuniformity in stress distribution under it.

Figure 5.1 stress distribution under pool

 For simplicity, the soil is modeled as springs following this equation: Soil bearing capacity= 1cm * K_{spring}

ocation Assignments	Loads			
Label 2539				
1000 B.000				
Constraints	None			
Restraint	None			
Local Axes	Default			
Springs		Tonf, m, C		
Coordinate System	Local			
U1	10.	Reset All		
U2	10.	Heset All		
03	375.			
Masses	None			
Panel Zone	None			
Joint Patterns	None			
Group	ALL			
Generalized Displs	None			
RS Named Sets	None	Update Displa		
Plot Functions	None	Modify Display		
Merge Number	0			
		OK		
		Cancel		

6. Actions and design loads

6.1 STRUCTURAL LOADS.

The following loads are considered in the design:

Structural Dead Loads which include:

The own weight of the structural elements, beams, raft and walls.

Superimposed dead load from water and soil weights.

Live loads which cover the weight and movement of equipment and people on the sides of the pool (surcharge).

The basis for the considered design loads are summarized in the followings sections.

A. Dead Loads

Unit weight of concrete elements

25.0 kN/m³

B. Live Loads

Live loads are considered equal to 30 kN/m^2 effect on the sides of the pool as a surcharge.

C. Earthquakes

from best Practices, the earthquake effect on pool is taken as increase by 15% of load combinations factors.

The following tables describe the load cases and load combinations on the pool:

Table 1: Load cases

Case	Туре	Self. Wt. Mult.	Design Type
DEAD	LinStatic	1.000000	DEAD
MODAL	LinModal	0.000000	OTHER
L.L	LinStatic	0.000000	OTHER
F.C	LinStatic	0.000000	DEAD
W.P	LinStatic	0.000000	OTHER
E.P	LinStatic	0.000000	OTHER
Water weight	LinStatic	0.000000	OTHER
W.P (soil)	LinStatic	0.000000	OTHER

Table 2: Load combinations

Table 2: Combination Definitions										
Combo. Name	Load Case	Combo. Type	Auto Design	Case Type	CaseName	Scale Factor	Steel Design			
	Case	туре	Design			Tactor				
Testing Case (working)	W.P	Linear Add	No	Linear Static	DEAD	1.150000	None			
Testing Case (working)	water weight			Linear Static	F.C	1.150000				

Testing Case (working)	DEAD			Linear Static	W.P	1.150000	
Testing Case (working)	F.C			Linear Static	water weight	1.150000	
Mainteinance Case (working)	E.P	Linear Add	No	Linear Static	DEAD	1.150000	None
Mainteinance Case (working)	W.P (soil)			Linear Static	F.C	1.150000	
Mainteinance Case (working)	DEAD			Linear Static	E.P	1.150000	
Mainteinance Case (working)	F.C			Linear Static	W.P (soil)	1.150000	
Testing case (ULT.)	W.P	Linear Add	No	Linear Static	DEAD	1.550000	None
Testing case (ULT.)	water weight			Linear Static	F.C	1.550000	
Testing case (ULT.)	DEAD			Linear Static	W.P	1.550000	
Testing case (ULT.)	F.C			Linear Static	water weight	1.550000	
Meintenance Case (ULT.)	E.P	Linear Add	No	Linear Static	DEAD	1.750000	None
Meintenance Case (ULT.)	W.P (soil)			Linear Static	F.C	1.750000	
Meintenance Case (ULT.)	DEAD			Linear Static	E.P	1.750000	
Meintenance Case (ULT.)	F.C			Linear Static	W.P (soil)	1.750000	

6.2 Calculations of water and earth pressure. 6.2.1 water pressure.

W.P= 10*3= 30 KN/m²

6.3 CRACKING

It will be calculated as stated in the "ECP 203-2018 - section 4-3-2" for the following maximum design crack width:

• 0.15 mm for water-side exposure.

7. STRUCTURAL ANALYSIS

7.1 3d-model

7.2 ASSIGN OF LOADS

Figure 7.1.: Assign of Finishing Loads on the pool's raft (T-M² Units)

Figure 7.2.: Assign of Water weight on the pool's raft (T-M² Units)

Figure 7.3.: Assign of Earth Pressure on the pool's Walls (T-M² Units)

Figure 7.4.: Assign of Water pressure induced from soil on the pool's Walls (T-M² Units)

Figure 7.5.: Assign of Water Pressure on the pool's walls (T-M² Units)

8. STRUCTURAL DESIGN.

8.1 Checks.

8.1.1 Bearing Capacity.

From SAP model, the maximum soil reaction equal 1.24 ton when the tank is full (Testing case)

Joint R	eactions								
File V	liew Forma	t-Filter-Sort Select O	ptions						
Units: A	As Noted				Joint Reactions				-
									_
_	L. Anima	Dutrut Care	Casting		52	ral			
	Joint Text	OutputCase Text	CaseType Text	F1 Tonf	F2 Tonf	F3 Tonf	M1 Tonf-m	M2 Tonf-m	4

The maximum stress distributed under soil = $\frac{1.24}{0.5*0.5}$ = 4.96 t/m2 < 15 t/m²

8.1.2 Uplift.

From SAP model, the maximum soil reaction equal 0.47 ton when the tank is empty

(Maintenance case).

Joint Re	eactions							
ile V	iew Forma	t-Filter-Sort Select Options						
Units: A	As Noted			Joint R	eactions			
_	Joint	OutputCase	CaseType	F1	F2	F3	M1	M2
							Track	Tonf-m
	Text	Text	Text	Tonf	Tonf	Tonf	Tonf-m	iom-m

The maximum stress distributed under soil = $\frac{0.47}{0.5*0.5}$ = 1.88 t/m² > 1.5 (Safe)

(Safe)

8.2 Analysis.

8.2.1 Short direction strip.

> Testing Case (Working straining actions).

Bending moment.

Page 177 of 296

Normal Forces.

Shear Forces.

8.2.2 Long direction strip.

> Testing Case (Working straining actions)

Bending Moment

Normal Forces.

Testing Case (Ultimate straining actions). Bending Moment

Shear Force.

8.3 Design.

8.3.1 Short direction strip.

> Testing Case.

- Wall Design.
 - Sec. 4-4

1														P	roject N	lo.				Date	
2						DES	SIGN			ULAT	10	N			2					25/3/202	
3								SHI	EET			-		5	Sheet N	o .				Computed	-
4															1				Mo	phamed Ham	
5	Subje						e Poo					_		C	hecked	by				Approved	by
6	Buildi					Diympic P					-				<u></u>				1	E.K	
7				rack	ing	- Acco	rain	<u>q 10</u>	ECF	201	<u>(</u>		_	SE	<u>C NO :</u>		_	(4-	4)		
8	Input D					200															
9		cu			=	300		g/cm ²					_								_
10		fy			=	3500		g/cm ²					_				_				
11						ment (M			50	t.m.											
12			ored n		forc	e (N)	=		80	t			_	"-ve	e sign fo	r Con	npress	sion	For	ce"	
13			nt Type				=	W	all												
14						analysis															
15	IT	he Th	icknes	s t=((M/(ł	o*ψ)) ^{∧0.5}) ± 3														
16	t						=	4	5	cm								t v	η		
17	to	chose	en				=	4	5	cm								10	1		
18	fc	:t(N) =	N/Ac				=	-0.6	222	Kg/cr	m²							20	1		
19	fc	t(M)	= (6*N	I)/(b*ť	²)		=		26	Kg/cr								40	1		
20			N)+fct		<u> </u>		=		.64	Kg/cr								60	1		
21			+(fct(N		1111		=		5.46	mm			-					00			
22			. (וכננוז	i)/ici(i	vi <i>))</i> {			1.31						Tak)le (4-16)	ECR	2017				
	η		(4.000	*	(4.10)	N/	_		.96	Kg/cr	m ²	_	40		Kg/cm						
23 24	Step 2:		(1.899					24	.90	Ky/Ci		~	18	.04	Kg/cm			Sati	ISIA	ctory	
24 25						, the loa	d fac	tor fo	r liau	iid con	itai	nina	stri	ictu	re is	=	1	.40		Clause [3-2-1	-1-(3)]
26						nt (Mu)	=	9.1		t.m.		g	Jure	lotai	0.0		- · ·	. 10			
27			d norn	-			=			t											
28					•	1) the st	ructu			ified a	is d	lass	3.F	or s	uch a c	lass,					
29						nimum co															
30	T	ne rei	nforcir	ng bar	s us	ed are	=	1	2	mm d	ian	neter									
31	C	oncre	ete Cov	/er			=	3.0	00	cm											
32	E1	ffectiv	/e Dep	th			=	41	.4	cm											
33	e	=M "/	N _u				=	232.	143	cm >	>	t/2 =	2	2.5	cm	B	ig ecc	ent	rici	ty	
34	es	=e-t/	2+cove	ər	=	= 251.	04	cm													
35	M	_{us} =N	_u *e _s		-	= 9.84	088	t.m.													
36	Fo	or f _v	= 350	0 Tal	ble (4	4-15) is i	used	to ge	t the	value	of	Bcr									
37	βι	cr			=	= 0.8	3														
38	Fr	rom d	=c ₁ *(N	/us/ (t	b x f _c	_{cu}))^0.5	get c	1													
39	C ₁			7.228					c/c				=	(0.0521						
40	c/	d _{min}	=	0.12					c/c	max			=		0.45						
41	c/		=	0.12					j				=		0.826		5	atis	fac	tory	
42	A	s =M	_{is} /(β _c	r x f _y x	(j x (d) ± Ν _u *γ	s/ (f	B _{cr} x fy	()												
43	A	s			=	= 8.353	357	cm ² /	m.			μ _{mi}	n. =		0.244	%	Clau	ise	(4-3	3-2-7>>)	
44	A	S min	(at ten	sion s	ide)	of slab =	-		10	.09 c		² /m									
45					/																
							(-								+				+

Sec. 3-3

	AE	B C D	EF) H		JK	LM	N	0 F	י Q	R	S	Τ	UV				Z AA	AB	AC	AE AE A	AFAC AH
1															P	roject N	o .				Date	_
2	-						DES	IGN				ПО				2					25/3/202	
3									SHI	EET			╞		S	Sheet No) .				Computed	-
4	- C.							D					-			1				IVIO	hamed Han	
5 6		ubject				0	Race						_		C	hecked	by				Approved E.K	ру
_		uilding		-	ki		mpic Po				2 2 0 4	17			05	<u></u>			(2	21	E.N	
7 8		<i>nit State</i> ut Data		Cr	acki	<u>ng</u> -	Accord	<u>aing</u>	<u>q 10</u>		201	<u> </u>			<u>5E</u>	<u>C NO :</u>		_	(3-	3)		
0 9	inpu		-			_	200		~ / a m ²									_				
		fcu		-		=	300	_	g/cm ²			-						_				
10		fy				=	3500		g/cm ²													
11					_		ent (M)	=		90	t.m.											
12		Unfact			mal f	orce	(N)	=	-2.		t				"-ve	e sign for	Com	pres	sion	Ford	:e"	
13		Eleme						=	W	all												
14	Ste	p 1:Unc																				
15		The Th	nickne	ess	t=((I	M/(b*	ψ)) ^{۸0.5})	± 3														
16		t						=	2	5	cm								t v	η		
17		t chos	en					=	2	5	cm								10	1		
18		fct(N)		C				=	-0.		Kg/o	2m ²							20	1		
19		fct(M)			(b*+ ²)						Kg/o								40			
			•			, 		=	18		_									1		
20		fct=fct						=	17.		Kg/o	cm-							60	1		
21		tv=t*{1	+(fct	(N)/	fct(M))}		=	237		mm											
22		η						=								ole (4-16)		201	7			
23		$f_{ctr}/\eta =$						=	26	98	Kg/o	cm²	>	17.	36	Kg/cm	2		Sat	isfac	tory	
24	<u>Ste</u>	p 2:Cra						faa	tor fo	e lieu	ينظ مع	ta		- atra		ra ia			4 40	`	ct [2.2.	4 (2)]
25							the load					onta	ining	j stru	ictu	reis	=		1.40)	Clause [3-2-	[-1-(3)]
26		factor			-			=	2.6 -3.		t.m. t											
27 28		factor									-	00	alacı	- 2 E	ore	such a c	locc					
20							mum co							5 3.1	01 3		iass,					
30		The re						=	1		mm			r								
31		Concr		-				=	3.0		cm											
32		Effect	ve De	epth				=	21		cm											
33		e=M "		-				_	86.3			~	+/2	= 1;	2 5	om	P	ig ec			6.	
34		e _s =e-t	-	ver		=	95.2	6	cm	030	CIII	-	UZ ·	- 14	2.5	CIII	D	ig et	cem	ricu	9	
35		M _{us} =N																				
				-00	Tab	=				the	volue	f	0	_								
36 37		βcr	- 3:	500	Tap	le (4-	15) is u 0.83		to ge	i une	value	9 OT	Pcr	_								
			* - 1		// -				4													
38 39					_s /(D .8428))^0.5 g	el C		c/c	4			=		0.0583						
		C ₁						_		-												_
40 41		c/d _{min}	=		0.125 0.125					i	1 _{max}			=		0.45 0.826		\square	Cat	efec	tom	
41) ± N _u *γ _s	/(6	} x f)]				-		0.020			Sati	sjac	wry	
			us ′ \	Pocr 4												0.160	0/	Cla		(1)	3-2-7>)	
43		As				=	4.4940	191	cm-/					nin. =		0.169	%0	Cia	use	(4-3	p-∠-1≈)	
44		As _{min}	(at te	ensi	on sid	de) o	f slab =			3.6	51	cm	² / m	ı.								
45				_																		
46													Use	,	5	Ø	12	/m'				

• Floor Design.

Sec. 1-1

1															Ρ	roject No						Date	
2	1						DESI	GN	CAL	CUL	A1	101	ΝĪ			2					25/	3/2020)
3	1								SHEE	Т					S	heet No.				(Com	puted	by
4																1				Moh	name	d Harr	dallah
5	Subjec	t					Race F	Pool							C	hecked b	y				Appr	oved	by
6	Buildin	g				Olym	pic Poo	l St	aduim													E.K	
7	Limit S	tates	of (Cracl	king	1 - A	ccord	ing	To EC	CP 2	201	7			SE	C NO :		(1-	1)			
8	Input Da	ata :										_											
9	fo	u			=		300	Kg	/cm ²														
10	f	y			=	3	3500	-	/cm ²														
11		factore	d b	endin	a m	ome	nt (M)	=	6.50	t.	m.												
12		factore			-			=	7.20						"-ve	sign for (Comr	ressi	ion	Force	e"		
13		ement -					-,	=	slab														
14					tion	ana	lveie		Jiub														
15))^ ^{0.5}) ±	. 2															
			lies	s i-(ψα	<u>))"] =</u>			_			_						_		_		
16	-							=	45	C	m								t v	η			
17	t c	hosen						=	45		m	_							10	1			
18	fct	(N) = N	l/Ac					=	1.6	K	ig/c	m ²						2	20	1			
19	fct	(M) = (6*N	l)/(b*t	²)			=	19.2 6	K	ig/c	m ²						4	40	1			
20	fct	=fct(N)	+fct	t(M)				=	20.86	K	ig/c	m²						(60	1			
21		t*{1+(1			M)))			=	487.3	8 m	nm												
22								=	1.3436						Tab	le (4-16) E	CP 2	017					
23		/η =(1	800)*fcu∧	(1/2	$\frac{1}{n}$		=	24.48		a/c	m ²	>			Kg/cm ²			lati	sfact	tory		
24									24.40		.g. e.		-	20.		r igi onn			Jati	SIAC	lory		
25								fac	tor for	liquio	d co	onta	inin	g str	uctu	ire is	=		1.4	0	Clau	se [3-2	-1-1-(3
26		ctored						=	9.10		m.											-	
27		ctored		-				=	10.08	3 t													
28	Ac	cordin	g to	Table	e (4-	-11)	the stru	ictu	ire is cl	assif	fied	as	clas	s 3.	For	such a c	lass,						
29	Та	ble (4-	13)	gives	a m	ninim	um co	ncre	ete cove	er of	25	mm											
30	Th	e reinf	orci	ng ba	irs u	ised	are	=	12	n	nm (diar	nete	er.									
31	Co	oncrete	Co	ver				=	2.50	С	m												
32	Ef	fective	Dep	oth				=	41.9	С	m												
	e=	M "/N						=	90.27	78 c	m	>	ť/2	= 2	22.5	cm	B	ig ec	cen	trici	ity		
	es	=e-t/2+	cov	er		=	70.8	3	cm														
33	N.	s =Nu*	e,			=	7.144	18	t.m.														
33 34				00 Ta	able	(4-1				he va	alue	e of	Ber										
33 34 35			350			=	0.83						- 01										
33 34 35 36	Fo	$f_y =$	350						1														
33 34 35 36 37	Fo βc	r f _y =		Mus/ (bх	f))	^U.5 a			c/d				=	:	0.0367		$\left \right $					
33 34 35 36 37 38	Fo βC	or f _y = r om d=		M _{us} / (8.58		f _{cu}))	^0.5 g							=		0.45							
33 34 35 36 37 38 39	Fo β β Γ Γ Γ Γ	or $f_y =$ r om d=	C₁*(I	8.58	860	f _{cu}))	^0.5 g									0.10							
33 34 35 36 37 38 39 40	Fo β β β β β β β β β β β β β β β β β β β	or $f_y =$ or d=0	C₁*(I	8.58 0.1	860 25	f _{cu}))	^0.5 g			c/d _m i	ax			=					Sat	isfac	tory		
33 34 35 36 37 38 39 40 41	Fo β Fr β C1 C/C	or $f_y =$ or d= d _{min}	c1*(I = = =	8.58 0.12 0.12	860 25 25						ax					0.826			Sat	isfac	etory		
33 34 35 36 37 38 39 40 41 42	Fo β From β From 0 C1 0 C/0 0 C/0 2 Ass	or $f_y =$ or $d =$ d_{min} d = M_{us}	c1*(I = = =	8.58 0.12 0.12	860 25 25	(d) :	± Nu*γs	/ ([:	B _{cr} x fy)	c/d _m j	ax			=		0.826	0/c						
33 34 35 36 37 38 39 40 41 42 43	Fo β Fr β C1 C/C C/C C/C C/C C/C C/C	$r f_y = r$ r d_{min} d_{min}	c ₁ *(Ι = = (β	8.58 0.12 0.12 _{cr} x f _y	860 25 25 xj)	(d) : =	± Ν _u *γ _s 11.09	/ ([:	B _{cr} x fy) cm ² / n	c/d _m j n.				= nin. ⁼			%					(هـ -7	
33 34 35 36 37 38 39 40 41 42	i Fo βc βc βc βc βc βc βc βc βc βc βc βc βc	or $f_y =$ or $d =$ d_{min} d = M_{us}	c ₁ *(Ι = = (β	8.58 0.12 0.12 _{cr} x f _y	860 25 25 xj)	(d) : =	± Ν _u *γ _s 11.09	/ ([:	B _{cr} x fy) cm ² / n	c/d _m j		cm	μ _n ²/n	= nin. ⁼		0.826	%						

Sec. 2-2

 t_{mm} = 0.88 * 75 = 63.75mm take t = 150 mm

 $A_{s} = \frac{75*1000}{0.85*(\frac{360}{1.15})} = 282 \text{ mm}^{2} \text{assume using T 12}$

Use 5 T 12 / m'

• Maintenance Case

• Wall Design.

Sec. 4-4

	ABCD	EFG	HI	J	K	LM	IN	UP	Q	К	S	T	UV				AA	AB	AC	AL			FAC	AH
1						DESI	-	C A1	~			.		Pr	roject No	•	_				Dat 25/3/2			
2						DESI	SN				101				2		-							
3 4								SHEE				⊦		S	heet No.		_		Ma		mpu ned F		-	h
4 5	Subject	T				Race F						-		0	necked b		_		IVIO		prov			n
6	Building					npic Poo		aduim				-		C	lecked b	y	-			Αр	E.I		у	
-	Limit Sta		Crao						<u></u>	201	7	-		00				(4-	1		L.I			
	nput Data		Craci	KIIIQ		400010	mg	10 E		201	<u>′</u>	_		320	<u>C NO :</u>			(4-	4)					
9	f cu			=		300	Ko	/cm ²				-												
J 10	fy			-		3500		/cm ²				-				_								
11		torod k	ondir				- rug			+ m		-	-									-		
		tored b					t t	6.50	_	t.m.			_						_	-		_		
12		tored r		ITOR	ce (N)	=	-3.70	-	t		_	_	"-ve	sign for (Comp	ress	ion	Ford	e"		_	_	
13		ent Typ					=	wall																
	Step 1:Un																							
15	The T	hickne	ss t=	((M/	(b*y	y))^ ^{0.5}) ±	: 3									_		_						
16	t						=	45		cm							1	t _v	η					
17	t chos	sen					=	45		cm								10	1					
18	fct(N)	= N/Ac	2				=	-0.822	22	Kg/c	m²							20	1					
19	fct(M) = (6*N	M)/(b*	ť²)			=	19.20	6	Kg/c	m²							40	1					
20		t(N)+fc		<u> </u>			=	18.44		Kg/c								60	1					
21		1+(fct(I		(M))	•		=	430.7	_	mm						_			-					
22	η	. (1,	,				1.3153						Tabl	e (4-16) E	CP 2	017							
23		=(1.89	O*foul	N(1/5	n_{r}		=	25.00		Kg/c	m ²	_	10		Kg/cm ²			Pati	sfac			-		
	Step 2:Cra							25.00		rtg/ c			10	.44	rtg/cm			Sau	ISTAC	.101	y			
25						the load	fac	tor for	liqu	uid co	onta	inir	g st	tructu	ire is	=		1.4	0	C	lause	[3-2	-1-1-	(3)]
26		red ber					=	9.10		t.m.												<u> </u>		
27		red nor	-				=	-5.1	8	t				_										
28	Acco	rding to	o Tabl	e (4	-11)	the stru	ictu	re is c	lass	sified	as	cla	ss 3	.For	such a c	lass,								
29	Table	(4-13)	gives	san	ninir	num cor	nore	ete cov	er o	of 25	mm	۱.												
30	The r	einforc	ing ba	ars u	ised	are	=	12		mm	diar	net	er.											
31	Conc	rete Co	over				=	3.00)	cm														
32	Effec	tive De	pth				=	41.4	4	cm														
33	e=M	,/N ,					=	175.6	76	cm	>	t/2	=	22.5	cm	B	ig eo	ccer	ntrio	city				
34	e _s =e-	t/2+cov	ver		=	194.5	8	cm																
					=	10.079	02	t.m.																
	M _{us} =	N _u *e _s							the	value	e of	βα												1
35			00 Ta	able	(4-	15) is us	seu	to get	uiv			1.01	-						-	_				1
35 36		N _u *e _s _y = 35	00 Ti	able	(4-	15) is us 0.83		to get																1
35 36 37	For f βcr	_y = 35			=	-																		
35 36 37 38	For f βcr	y = 35 d=c ₁ *((b x	=	0.83			c/c				=	=	0.0534									
35 36 37 38 39	For f βcr From	y = 35 d=c ₁ *((M _{us} / (7.14	(bx 425	=	0.83			c/c	d				=	0.0534 0.45									
35 36 37 38 39 40	For f βcr From c ₁	y = 35 d=c ₁ *((M _{us} / (7.14 0.1	(bx 425 25	=	0.83			c/c				:					Sai	tisfa	icto	ry			
35 36 37 38 39 40 41	For f βcr From c ₁ c/d _{min}	y = 35 d=c ₁ *(= =	(M _{us} / (7.14 0.1 0.1	(b x 425 25 25	= f _{cu})	0.83	et c	1	c/c c/c j	d			:	=	0.45			Sa	tisfa	icto	ry			
35 36 37 38 39 40 41 42	For f βcr From c ₁ c/d _{min}	y = 35 d=c ₁ *(= =	(M _{us} / (7.14 0.1 0.1	(b x 425 25 25	= f _{cu})	0.83)^0.5 gr ± N _u *γ _s /	et c	1 B _{cr} x fy)	c/c c/c j	d		μ	:	=	0.45	%	Cla				ry 2-7-	(هـ		
35 36 37 38 39 40 41 42 43	For f βcr From c ₁ c/d _{min} c/d As =I	y = 35 d=c ₁ *(= = M _{us} /(f	(M _{us} / (7.14 0.1 0.1 B _{cr} x f _y	(bx 425 25 25 , x j x	= f _{cu}) (d) =	0.83)^0.5 g ± N _u *γ _s /	et c	1 B _{cr} x fy)	c/c c/c j m.	d		μ ² /1	: : min.	=	0.45 0.826	%	Cla					(هـ		
 35 36 37 38 39 40 41 42 43 44 45 	For f βcr From c ₁ c/d _{min} c/d As =I	y = 35 d=c ₁ *(= = M _{us} /(f	(M _{us} / (7.14 0.1 0.1 B _{cr} x f _y	(bx 425 25 25 , x j x	= f _{cu}) (d) =	0.83)^0.5 gr ± N _u *γ _s / 8.0942	et c	1 B _{cr} x fy)	c/c c/c j m.	d d _{max}			: : min.	=	0.45 0.826	%	Cla					(هـ		

Sec. 3-3

	A B C	DEF	Gr	1 1	J	n	LIM	14	v 1	Ч.	п	3	1	U V		X roject No		AA	AB	AC				4(A
1 2							DESI	GN	CAL	CI			u F		PI		•				2	Date 5/3/20		
2 3	-						DESI	GN	SHEE							2								
5 4	-								SHEE				⊦		3	heet No.				Mo		npute ied Ha		
+ 5	Subjec	•	—				Race F	Dool							C1	necked b				WO		prove		
5 6	Buildin						npic Poc						-			leckeu b	y	_			Ah	E.K		
, 7	Limit S		fr	rack						CP	201	7	-		950	C NO :			(3-	31		E.R		
r B	Input Da		<u>10</u>	lacr	mg	- /	100010	my	TOL		201	<u> </u>			JEC	<u>. NO .</u>			(5-	J)				
9				_	_		300	14	2								_							
-	fo		-	_	=			-	1/cm ²				-				_							
0	f				=		3500		/cm ²				_											
1		factored			-			=	1.50		t.m.													
2		factored		rmal	for	ce (N)	=	-2.20		t				"-ve	sign for (Com	ores	sion	Forc	:e"			
3	Ele	ment Ty	/pe					=	wall															
4	Step 1:L	Incrac	(ed	sect	tion	ana	alysis																	
15	The	• Thickr	iess	5 t=((M/((b*ų	ا ((۱	± 3																
16	t							=	25		cm								t _v	η				
17	tel	nosen						=	25		cm						_		10	1				
18		N) = N/	۸.					=	-0.8	0	Kg/c	m ²	-				_		20	1				
-				1/1- *1	2						-				_					-				
19		M) = (6			.)			=	14.4		Kg/c		_						40	1				
20		=fct(N)+						=	13.5		Kg/c	m²							60	1				
21	tv=	t*{1+(fc	t(N)	/fct(l	M))}			=	234.7	2	mm													
22	η							=	1.217							e (4-16) E		2017						
23		/n =(1.8						=	27.0	2	Kg/c	m ²	>	13	.52	Kg/cm ²			Sat	isfac	tor	v		
24	Step 2:0					_																		
25		cording											ININ	ig st	tructu	ire is	=		1.4	0	Cla	ause [2	3-2-1-	1-(3)]
26		tored b		-				=	2.1		t.m.				_								_	
27		tored n				-	•	=	0.0		t		Ļ										_	
28		-												ss 3	.For	such a c	lass	,			_		_	
29		ble (4-1						ncre							_								_	
30 31		e reinfo ncrete (-	ars u	seo	are	=	12		mm	diar	net	er.	_			_			_		_	
								_	3.0		cm	-			_								-	
		ective E	Jept	In				=	21.4		cm												_	
		М _и /N _и						=	68.18	818	cm	>	ť/2	=	12.5	cm	B	ig e	ccei	ntric	ity			
33	es	=e-t/2+c		er		=	77.0	8	cm															
33						=	2.374	12	t.m.															
33 34	Mu	s =Nu*e	s										ßer											
33 34 35		$s = N_u * e_s$ r $f_y = 1$	-	0 Ta	able	(4-'	15) is u	sed	to get	the	value	e oi												
33 34 35 36	Fo	$f_y = 3$	-	0 Та	able	(4- =	15) is u 0.83		to get	the	value													
33 34 35 36 37	Fo βc	$f_y = 3$	- 350(=	0.83	}		the	value													
33 34 35 36 37 38	Fo βc Fro	r f _y = 3	3500 1*(M		b x	=	0.83	}		the c/c					=	0.0469								
33 34 35 36 37 38 39	Fo βc Fro c ₁	$r f_y = 3$ r om d=c	3500 1*(M	1 _{us} / (b x)72	=	0.83	}		c/0	1				=	0.0469 0.45								
33 34 35 36 37 38 39 40	Fo βc Fro c ₁ c/c	$r f_y = 0$ r r r $d=c_1$ l_{min}	3500 1*(M	l _{us} / (7.60	b x)72 25	=	0.83	}		c/0				:					Sa	tisfa	ctor	 V		
33 34 35 36 37 38 39 40 41	Fo βc Fro C ₁ c/c	$r f_y = 0$ r r r $d=c_1$ l_{min}	3500 1*(M = =	l _{us} / (7.60 0.12 0.12	b x)72 25 25	= f _{cu})	0.83)^0.5 g	et c	1	c/c c/c j	1			:	=	0.45			Sa	tisfa	ctoi	y		
32 33 34 35 36 37 38 39 40 41 42 43	Fo βc C ₁ c/c c/c As	$r f_y = 3$ r min $= M_{us} / 0$	3500 1*(M = =	l _{us} / (7.60 0.12 0.12	b x)72 25 25	= f _{cu})	0.83)^0.5 g	et c	1 B _{cr} x fy)	c/c c/c j	1			:	=	0.45	%	Cla				پ د7- ی	>)	
33 34 35 36 37 38 39 40 41 42 43	Fo βc Fro C1 c/c C2 As	$r f_y = 3$ r $d = c_1$ $d = m_{us} / c_1$	350(1*(Μ = = (β _c	1 _{us} / (7.60 0.12 0.12 r x f _y	b x 072 25 25 x j x	= f _{cu}) (d) =	0.83)^0.5 g ± N _u *γ _s 3.4036	et c	1 B _{cr} x fy)	c/c c/c j	t t _{max}			: : min.	=	0.45 0.826	%	Cla					s)	
33 34 35 36 37 38 39 40 41 42	Fo βc Fro C1 c/c C/c As As As	$r f_y = 3$ r min $= M_{us} / 0$	350(1*(Μ = = (β _c	1 _{us} / (7.60 0.12 0.12 r x f _y	b x 072 25 25 x j x	= f _{cu}) (d) =	0.83)^0.5 g ± N _u *γ _s 3.4036	et c	1 B _{cr} x fy)	c/c c/c j) m.	t t _{max}		μ	: : min.	=	0.45 0.826	%	Cla					>)	

Floor Design.

Sec. 1-1

1 2 3 4		DEFG					• .			-		-		/ X					· ·	AE		.,	•••
3													F	Project No	b .					Date			
					DESI	GN	CA	LCI	JLA	TIO	N			2					2	5/3/202	20		
1							SHE	ET						Sheet No					Con	npute	d by		
4														1				Moł	ham	ed Ha	mdal	lah	
5	Subje	ct			Race F	⁰ 00							С	hecked b	у				Арр	rove	d by		
6	Buildi	ng		Oly	mpic Poo	l St	aduim						_							E.K			
7	Limit S	States of	Crack	ing -	Accora	ing	<u>1 To I</u>	ECF	201	7			SE	<u>C NO :</u>		(1-	1)					
8	Input D)ata :																				_	
9	f	cu		=	300	K	g/cm ²																
10	f	fy		=	3500	K	g/cm ²																
11	Ur	nfactored b	pending	mom	ent (M)	=	6.1	10	t.m.														
12	Ur	nfactored r	normal f	force	(N)	=	-7.	50	t				"-ve	e sign for	Comp	oressi	ion	Forc	e"				
13	E	ement Typ	e			=	sla	b	-														
14	Step 1:	Uncracke	d secti	on ar	alysis																		
15	Th	ne Thickne	ss t=((M/(b*	ψ)) ^{^0.5}) ±	: 3																	
16	t					=	4	5	cm							1	t ,	η					
17		chosen				=	4	-	cm								· v 10	1					
		t(N) = N/Ac				-			Kg/c	-m ²							20	1					
18		· · ·				=			-								-	-				_	
19		t(M) = (6*N)		=	18.		Kg/c								10	1					
20		t=fct(N)+fc				=	16.		Kg/c	:m²						(60	1					
21	tv=	=t*{1+(fct(l	N)/fct(N	1))}		=	408	.50	mm													_	
22	η					=	1.30							ole (4-16)		2017							
23		/n =(1.89				=	25.	22	Kg/c	m ²	>	10	6.41	Kg/cm ²		5	sati	sfac	tor	v			
24 25		Cracked s				foo	tor fo	r liau	ينظ مح	unto	inin		truct	uro io	=			0	C1	Fa.		(2)]	
25 26		cording to					8.5			ла		ig s	Irucu	lieis			1.4	J	Cla	use [3-	2-1-1	-(3)]	
20		ctored ben ctored nori	-			=			t.m. t				_									_	
28		ccording to							-	96	clas	ee 3	Eor	such a c	lace							_	
29		ble (4-13)										55 5		Juch a c	1033,								
30		ne reinforci				=	1		mm			er.											
31		oncrete Co				=	2.5		cm														
32	Ff	fective De	oth			=	41	9	cm														
33		=M _u /N _u				_	81.3			>	t/2		22.5	cm	P	ig eco	0.00	trici	ity.				
33		=e-t/2+cov	/er	=	100.7	3	cm	555	UIII	-	υZ	-	22.0	CIII	DI	geci	en	ii iei	. y				
35		 _{us} =N _u *e _s			10.57		t.m.												$\left - \right $			_	
								t the	Volue	. of	0								\vdash				
36 37	βc	or $f_y = 350$		ie (4-	15) is us 0.83		to ge	i ine	value) TO E	pcr								$\left - \right $				
				- 			4												+				
38 39		om d=c ₁ *(M _{us} /(D 7.056		7°0.5 ge	ει C	1	c/c	4				=	0.0547					$\left \cdot \right $				
39 40	C1												_			$\left \right $			$\left - \right $				
40 41		d _{min} =	0.125			-		c/(d _{max}				=	0.45			Vert	infa-					
41 42	C/0	α = s=M _{us} /(β	0.125		+ N * /	(6	 } v fi) J					=	0.826			odti	isfac	<i>:101</i>	7			
			cr ^ 'y X											0.044	0/	Chr		14	20	7.			
43	As			=	6.3624	25	cm ⁻ /					min.	=	0.244	%	Cial	use	(4-,	3-2-	هـ -7)		
		of the	ncion ci	de) of	f slab =			10	.21	cm	² /r	n.											
44	As	min (at ter	131011 31					_											++				
	As																						

Sec. 2-2

 t_{mm} = 0.88 * 75 = 63.75mm take t = 150 mm

assume using 5 T 12 as section reinforcement.

Pu = 0.33 * 30 * (1000 * 150) + 0.67 * $\frac{0.85 * 360}{1.15}$ * 577 = 1586 KN > 75 KN (Safe) Use 5 T 12 / m'

8.3.2 Long direction strip.

Sec.1-1

Testing Case

Wall Design.

Sec. 4-4

1	-									ļ		P	roject N	o .				Date	
2					DESI	GN	CA	LCI	ULATI	DN			2					25/3/202	20
3	-						SHE	ET				5	Sheet No) .				Computed	-
4													1				М	ohamed Har	
5	Subje				Race							С	hecked	by				Approved	by
6	Buildi				mpic Poo													E.K	
7		States of C	rackii	<u>19</u> - /	Accord	ling	q To I	ECF	<u>2017</u>	_	_	<u>SE</u>	<u>C NO :</u>			(4-	4)		
8	Input D									_	_	_							
9		cu	=		300		g/cm ²					_							
10		fy	=		3500	-	g/cm ²					_							
11		nfactored be				=	6.1		t.m.		_								
12	U	nfactored no	ormal fo	orce	(N)	=	-1.9	90	t			"-ve	e sign for	Con	npress	sion	For	ce"	
13	E	lement Type				=	Wa	all											
14	Step 1	:Uncracked	sectio	on an	alysis														
15	T	he Thickness	s t=((N	۱/(b*۱	ψ))^ ^{0.5}) :	± 3													
16	t					=	4	5	cm							t v	η		
17	t	chosen				=	4	5	cm							10	1		
18	fc	:t(N) = N/Ac				=	-0.43	222	Kg/cm	2						20	1		
19		t(M) = (6*M))/(b*t ²)	_		=	18.		Kg/cm	_						40	1		
20		t=fct(N)+fct		_		=	17.		Kg/cm							40 60	1		
20 21		. ,				=	439		_	_	_					00	-		
		=t*{1+(fct(N)/101(101))}					mm		_	- .			0047				
22	η					=	1.31		14-1	2.			ole (4-16)						
23 24		_{tr} /η =(1.899				=	24.	92	Kg/cm	- >	17	.65	Kg/cm			Sati	isfa	ctory	
24 25		:Cracked se according to I				fac	tor for	liqu	uid cont	aining	ı str	uetu	re is	=	1	.40		Clause [3-2-	1-1-(3)]
23 26		actored bend				=	8.5		t.m.		Ju	uciu	6 13	-	- · ·	.40		Clause [5-2-	1-1-(5)]
27		actored norm			· ·	=	-2.6		t		-					-			
28		ccording to				ictu				clas	s 3.	For s	such a c	lass.					
29		able (4-13) g																	
30	Т	he reinforcin	g bars	used	are	=	12	2	mm dia	mete	r.								
31	C	oncrete Cov	er			=	3.0	0	cm										
32	E	ffective Dept	th			=	41.	4	cm										
33	e	$=M_u/N_u$				=	321.0)53	cm >	t/2	= 2	22.5	cm	B	ig ecc	enti	rici	ty	
34		s=e-t/2+cove	r	=	339.9	5	cm												
35	M	l _{us} =N _u *e _s		=	9.0427	'4	t.m.												
36	F	or $f_{y} = 350$	0 Tabl	e (4-'	15) is us	ed	to get	the	value o	β _{cr}									
37		cr		=	0.83						-								
38	F	rom d=c1*(N	l _{us} /(b	x f _{cu}))^0.5 ge	et c	1												
39	C		7.5407					c/d			=	(0.0478	-					
40	C	/d _{min} =	0.125					c/d	max		=		0.45						
41		/d =	0.125					j			=		0.826		S	atis	fac	tory	
42	A	s = $M_{us} / (\beta_c$	r x f _y x j	x d)	± N _u *γ _s /	(β	_{cr} x fy)											
43	A	s		=	8.0487	99	cm ² /	m.		μ,	in, =	=	0.244	%	Clau	se	(4-3	3-2-7- 🔊)	
44		s _{min} (at tens	sion sid	le) of	slab =			10.	09 cr	n ² /m									
					51010 -	-			- 01		-	-			+	+			
45																			

Sec. 3-3

1	AE	B C D					-								Project				/ 10	AE AE Dat	
2	1						DESI	GN	CA	LCI	JLA	τιο	N		2					25/3/2	
3									SHE						Sheet I	No.				Comput	
4															1				Мо		lamdallah
5	Su	ubject					Race	Pool							Checked	d by				Approv	ed by
6	Bu	uilding				Olyn	npic Poo	ol St	aduim											E.ł	-
7	Lim	nit Stat	es of	Crac	kin	a - /	Accord	lina	To I	ЕСР	201	7		S	EC NO	:		(3-	3)		
8		ut Data														-			·		
9		f cu	-		=		300	K	g/cm ²												
10		fy			=		3500	-	g/cm ²					_				_			
11		Unfact	orod I	ondir				=	-1.		t.m.							_			
					-														F		
12		Unfact				ce (I	N)	=	-1.:		t				ve sign f	or Co	mpre	ssion	For	ce"	
13		Eleme						=	Wa	all											
14	Ste	p 1:Unc																			
15		The Th	lickne	ss t=	((M/	(b* ψ	())^ ^{0.5}) :	£ 3													
16		t						=	2	5	cm							t v	η		
17		t chos	en					=	2	5	cm							10	1		
18		fct(N)	= N/A	_	-			=	-0.4		Kg/c	m ²						20	1		
19		fct(M)									Kg/c								1		
					() 			=	-14.		-							40			
20		fct=fct						=	-14.		Kg/c	m-						60	1		
21		tv=t*{1	+(fct(N)/fct	(M))	}		=	258		mm										
22		η						=	1.22	917					able (4-16	·	P 201	7			
23		f _{ctr} /η =	=(1.89	9*fcu	^(1/2	<mark>2))/</mark> η		=	26.	76	Kg/c	m ²	>	-14.8	Kg/cr	n²		Sat	isfa	ctory	
24	Ste	p 2:Cra																			
25							ne load	fact	tor for	liqu	id co	ntai	ning	struct	ure is	=	:	1.40)	Clause [3	-2-1-1-(3)]
26		factore		-				=	-2.1		t.m.										
27		factore						=	-1.6		t										
28														3.For	such a	class	,				
29				-			um con														
30		The re		-	irs u	sed	are	=	12		mm c	lian	neter.			_					
		Concr						=	3.0		cm		_				_				
31		Effecti	ve De	pth				=	21.	4	cm										
31 32			ΊN					=	12	5	cm	>	t/2 =	12.5	5 cm	1	Big eo	ccent	ricit	ty 🛛	
31 32		e=M "				=	133.9)	cm												
31 32 33		e=M "/ e _s =e-t		/er																	
31 32 33 34		-	2+cov				2.2495	2	t.m.												
31 32 33 34 35		e _s =e-t M _{us} =N	′2+cov I _u *e _s			=				the	value	of	β _{cr}								
31		e _s =e-t M _{us} =N	′2+cov I _u *e _s			=	2.2495	ed		the	value	of	β _{cr}								
31 32 33 34 35 36		$e_s = e_t$ $M_{us} = N$ For f_y βcr	2+cov I _u *e _s = 35	00 Ta	able	= (4-1 =	2.2495 5) is us	ed	to get	the	value	of	β _{cr}								
31 32 33 34 35 36 37 38		$e_s = e_t$ $M_{us} = N$ For f_y βcr	$I_{u}^{*}e_{s}$ = 35 $J=c_{1}^{*}($	00 Ta	able b x	= (4-1 =	2.2495 5) is us 0.83	ed	to get	the r		of	β _{cr}		0.0444						
31 32 33 34 35 36 37 38 39		$e_s=e_t$ $M_{us}=N$ For f_y βcr From c c_1	$I_{u}^{*}e_{s}$ = 35 $J=c_{1}^{*}($	00 Ta M _{us} / (7.81	able b x 150	= (4-1 =	2.2495 5) is us 0.83	ed	to get	c/d		of	β _{cr}		0.0444						
31 32 33 34 35 36 37 38 39 40		$e_s=e_t$ $M_{us}=N$ For f_y β cr From c	2 + cov $I_u * e_s$ = 350 $d = c_1 * ($	00 Ta M _{us} / (7.81 0.12	able b x 150 25	= (4-1 =	2.2495 5) is us 0.83	ed	to get			of	β _{cr}		0.45			Satis	sfac	tory	
31 32 33 34 35 36 37 38 39 40 41		$e_{s}=e-ti$ $M_{us}=N$ For f_{y} βcr From c c_{1} c/d_{min} c/d	2+cov I _u *e _s = 350 d=c ₁ *(= = =	00 Ta M _{us} / (7.81 0.12 0.12	able b x 150 25 25	= (4-1 = f _{cu})) ⁴	2.2495 5) is us 0.83 ^0.5 ge	ed f	to get	c/d c/d j		of	βcr	=				Satis	sfac	tory	
 31 32 33 34 35 36 37 38 39 40 41 42 		$e_{s}=e_{t}$ $M_{us}=N$ For f_{y} βcr From c c_{1} c/d_{min} c/d As =M	2+cov I _u *e _s = 350 d=c ₁ *(= = =	00 Ta M _{us} / (7.81 0.12 0.12	able b x 150 25 25	= (4-1 = f _{cu}))	2.2495 5) is us 0.83 ^0.5 ge	ed f et c ²	to get 1 _{cr} x fy	c/d c/d j		of		=	0.45 0.826		Cla)
31 32 33 34 35 36 37 38 39 40 41 42 43		$\begin{array}{c} e_{s}=e\text{-t}\\ M_{us}=N\\ For f_{y}\\ \beta cr\\ From 0\\ c_{1}\\ c/d_{min}\\ c/d\\ As=M\\ As \end{array}$	² +cov l _u *e _s = 350 d=c ₁ *(= = us / (β	00 Ta M _{us} / (7.81 0.12 0.12 B _{cr} x f _y	able b x 150 25 25 x j x	= (4-1) f _{cu})) ⁴ (d) 1	2.2495 5) is us 0.83 ^0.5 ge ± N _u *γ _s / 3.7152	ed f et c ²	to get 1 _{cr} x fy	c/d c/d j) m.	max		μ _{mir}	=	0.45		Cla			<i>tory</i> 3-2-7- ه)
 31 32 33 34 35 36 37 38 39 40 41 42 		$e_{s}=e_{t}$ $M_{us}=N$ For f_{y} βcr From c c_{1} c/d_{min} c/d As =M	² +cov l _u *e _s = 350 d=c ₁ *(= = us / (β	00 Ta M _{us} / (7.81 0.12 0.12 B _{cr} x f _y	able b x 150 25 25 x j x	= (4-1) f _{cu})) ⁴ (d) 1	2.2495 5) is us 0.83 ^0.5 ge ± N _u *γ _s / 3.7152	ed f et c ²	to get 1 _{cr} x fy	c/d c/d j	max			=	0.45 0.826		Cla				

• Floor Design. Sec. 1-1

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AL AE AFAC AH 1 Project No. Date DESIGN CALCULATION 2 25/3/2020 2 SHEET 3 Sheet No. Computed by 4 Mohamed Hamdallah 1 5 Subject Race Pool Checked by Approved by Olympic Pool Staduim 6 Building FK (1-1)7 Limit States of Cracking - According To ECP 2017 SEC NO : 8 Input Data : 9 f cu = 300 Kg/cm² 3500 Kg/cm² 10 fy = 11 Unfactored bending moment (M) = 6.10 t.m. 4.30 12 Unfactored normal force (N) = t "-ve sign for Compression Force" 13 Element Type = slab Step 1: Uncracked section analysis 14 The Thickness $t=((M/(b^*\psi))^{\Lambda^{0.5}}) \pm 3$ 15 t, 16 t η = 45 cm 10 17 t chosen 1 = 45 cm = 0.95556 Kg/cm² 18 fct(N) = N/Ac 20 1 19 $fct(M) = (6^{M})/(b^{t^2})$ Kg/cm² 40 18.07 1 = 20 fct=fct(N)+fct(M) Kg/cm² 60 1 = 19.03 21 tv=t*{1+(fct(N)/fct(M))} = 473.79 mm 22 1.3369 Table (4-16) ECP 2017 η = 23 Kg/cm² > 19.03 Kg/cm² $f_{ctr}/\eta = (1.899 fcu^{1/2})/\eta$ = 24.60 Satisfactory 24 Step 2:Cracked section analysis According to ECP 2017, the load factor for liquid containing structure is 25 = 1.40 Clause [3-2-1-1-(3)] 26 8.54 factored bending moment (Mu) = t.m. = 27 factored normal force (Nu) 6.02 t According to Table (4-11) the structure is classified as class 3. For such a class, 28 29 Table (4-13) gives a minimum concrete cover of 25 mm. 30 The reinforcing bars used are = 12 mm diameter 31 Concrete Cover = 2.50 cm 32 Effective Depth = 41.9 cm 33 $e=M_u/N_u$ 141.86 cm > t/2 = 22.5 cm Big eccentricity = es=e-t/2+cover 122.46 34 = cm 35 M_{us} =N_u*e_s = 7.37212 t.m. For $f_{\gamma} = 3500$ Table (4-15) is used to get the value of β_{cr} 36 37 βcr = 0.83 38 From $d=c_1^*(M_{us}/(b \times f_{cu}))^0.5$ get c1 39 = 8.4524 c/d 0.0379 C₁ = c/d_{min} 40 = 0.125 c/d_{max} = 0.45 = 41 c/d 0.125 = 0.826 Satisfactory 42 As = M_{us} / ($\beta_{cr} x f_y x j x d$) ± $N_u^* \gamma_s$ / ($\beta_{cr} x f y$) Clause (4-3-2-7- -») $= 9.714863 \text{ cm}^2/\text{ m}.$ 0.244 % 43 As $\mu_{min.} =$ 10.21 cm²/m. As min (at tension side) of slab = 44 45 Use 10 Ø 46 12 /m'

Sec. 2-2

 t_{mm} = 0.88 * 75 = 63.75mm take t = 150 mm

 $A_{s} = \frac{75*1000}{0.85*(\frac{360}{1.15})} = 282 \text{ mm}^{2} \text{assume using T 12}$

Use 5 T 12 / m'

• Maintenance Case

• Wall Design.

Sec. 4-4

_	AB	C D	EF	GI	H	I J	K	LM	N	0 P	Q	R	S	Т	UV		Х		AA AE	AC	AE		AFA	(Al
1	-							DESI		~^				.		Р	roject No).			26	Date 5/3/202		
2 3	-							DESI	GN	SHE				╹├			2							
3 4	-									эпс	- 1			┝		3	heet No	•				n pute ed Hai		
4 5	Su	bject						Race	Pool					+		C	hecked b	w		WO		rove		
6		ilding					Olvr	npic Po		aduim				┥			neckeu b	y			vhh	E.K	ТБу	
7		it Stat		of C	rac						CD	201	7	-		e E	C NO :		(1	-4)		LIN		
, 8		t Data	_		au	-KIII	<u> - </u>		my	101		201	<u> </u>	-	-	<u>3L</u>	<u>c no .</u>		(+					
- 9		f cu	-			=		300	Ko	/cm ²														
0		fy	-			=		3500		/cm ²						_								
1		Unfact	ore	d be	endi	na m			=	6.5	0	t.m.												
2		Unfact				-			=	-4.4		t		-		"-ve	sign for	Comp	ression	Forc	·e"			
3		Eleme						,	=	wa							Significi						_	
4	Stor	0 1:Unc				ction	an	alveie		wa														
- 5	olep							())^ ^{0.5}) :	+ 2															
			IICK	lies	ο ι-	-((11))	(D 4	///·//						_		_			4					
6		t							=	45		cm				-			t,					
7		t chos			_				=	45		cm	2			_			10					
8		fct(N)							=	-0.97									20	1				
9		fct(M)	= (6	5*M))/(b³	*t ²)			=	19.2	26	Kg/c	m ²						40	1				
20		fct=fct	(N)	+fct((M)				=	18.2	28	Kg/c	m ²						60	1				
1		tv=t*{1	+(fo	t(N))/fct	t (M))]	}		=	427.	15	mm												
2		η							=	1.313	358					Tab	le (4-16) l	ECP 2	017					
23		f _{ctr} /η =	=(1.	899	*fcu	I^(1/2	2))/n		=	25.0)4	Kg/c	m ²	>	18	.28	Kg/cm ²		Sat	isfac	tory	7		
24	Ste	p 2:Cra																						
25		Accor	ding	g to	EC	P 20	17, 1	the load	l fac	tor fo	r liqi	uid co	onta	inir	ıg s	truct	ure is	=	1.	40	Cla	ause [3	-2-1-1	-(3)]
26		factor			-				=	9.		t.m.												
27		factor							=	· · ·		t								_	_			
28															ss 3	.For	such a (class,						
29					-			num co	ncre												_			
30 31		The re Conce			_	arsi	isec	are	_	1 3.		mm cm	ular	net	er.	_				_				
32		Effect				_			=	41						_								
				Τİ	ui				-			cm									_			
33	_	e=M _u	-					400.0		147.	121	cm	>	t/2	=	22.5	5 cm	B	ig ecce	entric	city			
34		e _s =e-			er		=	166.0		cm										_	_			
35		M _{us} =					=	10.264													_			
36			, =	350	0	Table		15) is u		to ge	t the	value	e of	β _{cr}										
37		βcr	Ļ				=	0.8			_													
38			d=c				t _{cu}))^0.5 g	jet c	:1						_	0.0541						++	
39		C ₁				0778			_		c/(=	0.0544						+	_
10		c/d _{min}		=		125	-		_		C/0	d _{max}				=	0.45						++	
11 12		c/d	/ /	=		125 f vi	и dv	+ N *	110	2 v f	ן ע					=	0.826		Se	ıtisfa	ctor	y	+	
42			'us/	(Po	or X I	iy X J		± N _u *γ _s									0.041		0		0.0	-	+	_
43		As					=	7.892		cm²/					min.	=	0.244	%	Clau	se (4	-3-2	هـ -7-)	
		Δc ·	(at	ten	sior	n side	e) of	slab =			10	.09	cm	² /I	n.									
44		/ S mir	(a																					
44 45		, to mir																						

Sec. 3-3

	A					_									-							-			
1	-												.		Pr	roject No						Date			
2	-						DE	SIGN			JLA				-	2						5/3/20			
3 4									SHE				┝		S	heet No.						ipute ed Ha		-	
4 5	-	ubject					Dee	- D					_		~	1				IVIOI					in
5 6		uilding				Ob	mpic P	e Poo							Cr	necked b	y				Арр	rove E.K		y	
0 7		-		<u>Cr</u> 2	okin						201	7	_		0.5	2 10 .			(3-	21		E.N			
/ 8		<u>nit Stat</u> ut Data		Cla	CKIII	y -	ACCO	runi	1101		201	<u>/</u>		_	SEL	<u>: NO :</u>			(5-	<i>.</i> ,					
_	inp		•				200		2					_									_		
9		fcu			=	_	300		g/cm ²														_	-	
10		fy			=		3500		g/cm ²																
11		Unfact							1.4		t.m.														
12		Unfact	ored r	norn	nal fo	rce	(N)	=	-2.3	30	t				"-ve	sign for (Comp	ress	sion	Forc	e"				
13		Eleme	nt Typ	е				=	wa	all															
14	Ste	p 1:Unc	racke	d s	ectio	n an	alysis	<u>.</u>																	
5		The Th	nickne	ss t	t=((M	/(b*ı	ψ))^ ^{0.5}) ± 3																	
16		t						=	25	5	cm								t v	η					
17		t chos	20					=	25		cm								10	1					
						_					Kg/c	m ²								-					
18		fct(N)						=	-0.9									-	20	1				_	
19		fct(M)	= (6*1	M)/(N	b*t∸)			=	13.4		Kg/c								40	1			_		
20		fct=fct	(N)+fo	:t(M)			=	12.	52	Kg/c	m²							60	1					
21		tv=t*{1	+(fct(N)/f	ct(M))}		=	232	.89	mm														
22																									
22		η						=	1.216	644					Tabl	e (4-16) E	ECP 2	2017							
			=(1.89	9*fc	:u^(1/	(2)) /1	1	=			Kg/c	m²	>	12						sfac	tory	,			
23		η f _{ctr} /η = p 2:Cra									Kg/c	m²	>	12		e (4-16) E Kg/cm ²				sfac	tory	7			
23 24		f _{ctr} /η =	cked :	sect	tion a	analy	<u>/sis</u>	=	27.0	04					.52	Kg/cm ²		;				use [1	3-2-	1-1-	.(3)]
23 24 25		f _{ctr} /η = p 2:Cra	<mark>cked :</mark> ding to	b EC	t <mark>ion a</mark> CP 20	anal y)17, 1	<mark>/sis</mark> the loa	= ad fac	27.0	0 4 r liqu					.52	Kg/cm ²		;	Sati				3-2-	1-1-	•(3)]
23 24 25 26		f _{ctr} /η = p 2:Cra Accor	<mark>cked s</mark> ding to ed ber	sect DEC	t ion a CP 20 g moi	analy)17, ment	<mark>/sis</mark> the loa t (Mu)	= ad fac	27.0 ctor fo 1.9	0 4 r liqu 96	uid co				.52	Kg/cm ²		;	Sati				3-2-	1-1-	.(3)
23 24 25 26 27		f _{ctr} /η = p 2:Cra Accor factore factore	cked s ding to ed ber ed nor	sect DEC Inding mal	tion a CP 20 g moi force	analy)17, 1 ment e (Nu	<mark>/sis</mark> the loa t (Mu) J)	ad fao	27.0 ctor fo 1.9 -3.1	0 4 r liqu 96 22	uid co t.m. t	onta	inin	g st	ructu	Kg/cm ²			Sati				3-2-	1-1-	.(3)
23 24 25 26 27 28		f _{ctr} /η = p 2:Cra Accor factore factore	cked s ding to ed ber ed nor ding to	sect DEC Inding mal	tion a CP 20 g moi force ble (4	analy)17, ment e (Nu 1-11)	<mark>/sis</mark> the loa t (Mu) J) the s	ad fac = = truct	27.0 ctor fo 1.9 -3.1 ure is	r liqu 96 22 class	uid co t.m. t sified	onta as	inin clas	g st	ructu	Kg/cm ² re is			Sati				3-2-	1-1-	-(3)
23 24 25 26 27 28 29		f _{ctr} /η = p 2:Cra Accord factore factore Accord	cked s ding to ed ber ed nor ding to (4-13)	b EC ding mal D Ta give	tion a CP 20 g moi force ble (4 es a i	analy)17, ment e (Nu e (Nu 1-11) minir	<mark>/sis</mark> the loa t (Mu) t) the s mum c	ad fac = = truct	27.0 ctor fo 1.9 -3.3 ure is 0 ete co	04 r liqu 96 22 class ver d	uid co t.m. t sified	onta as mm	inin clas	g st ss 3	ructu	Kg/cm ² re is			Sati				3-2-	1-1-	-(3)]
23 24 25 26 27 28 29 30		f _{ctr} /η = p 2:Cra Accorr factore factore Accorr Table	cked s ding to ed ber ed nor ding to (4-13) inforc	sect DEC Iding mal DTa give ing	tion a CP 20 g moi force ble (4 es a i bars	analy)17, ment e (Nu e (Nu 1-11) minir	<mark>/sis</mark> the loa t (Mu) t) the s mum c	ad fac = tructu	27.0 ctor fo 1.9 -3.1 ure is ete co 12	04 r liqu 22 class ver d 2	uid co t.m. t sified of 25	onta as mm	inin clas	g st ss 3	ructu	Kg/cm ² re is			Sati				3-2-	1-1-	-(3)
23 24 25 26 27 28 29 30 31		f _{ctr} /η = p 2:Cra Accord factore factore Accord Table The re	cked s ding to ed ber ed nor ding to (4-13) inforc ete Co	b EC ding mal b Ta give ing	tion a CP 20 g moi force ble (4 es a i bars	analy)17, ment e (Nu e (Nu 1-11) minir	<mark>/sis</mark> the loa t (Mu) t) the s mum c	ad fac = tructu :oncr	27.0 ctor fo 1.9 -3.2 ure is ete co 12 3.0	04 r liqu 22 class ver o 2 00	uid co t.m. t sified of 25 mm	onta as mm	inin clas	g st ss 3	ructu	Kg/cm ² re is			Sati				3-2-		(3)
23 24 25 26 27 28 29 30 31 32		f _{ctr} /η = 2:Cra Accord factore factore Accord factore Accord Table The re Concr Effecti	cked s ding to ed ber ed nor ding to (4-13) inforc ete Co ve De	b EC ding mal b Ta give ing	tion a CP 20 g moi force ble (4 es a i bars	analy)17, ment e (Nu e (Nu 1-11) minir	<mark>/sis</mark> the loa t (Mu) t) the s mum c	ad fac = tructu concr = =	27.0 ctor fo 1.9 -3.1 ure is ete co 11 3.0 21	04 r liqu 22 class ver 0 2 00 .4	t.m. t sified of 25 mm cm cm	onta as mm diar	inin clas n. meto	g st ss 3 er.	.For	Kg/cm ² re is such a c	lass,		1.4	0	Cla		3-2-		-(3)]
23 24 25 26 27 28 29 30 31 32 33		$\begin{array}{c} f_{ctr}/\eta = \\ p \ 2.Cra \\ p \ 2.Cra \\ p \ 2.Cra \\ factore \\$	cked s ding to ed ber ed nor ding to (4-13) inforc ete Co ve De /// u	sect o EC inding mal o Ta give ing over pth	tion a CP 20 g moi force ble (4 es a i bars	analy)17, ment e (Nu e (Nu 1-11) minir	<mark>/sis</mark> the loa t (Mu) t) the s mum c	ad fac = tructu :oncr = = =	27.0 ctor fo 1.9 -3.3 ure is ete co 12 3.0	04 r liqu 22 class ver 0 2 00 .4	t.m. t sified of 25 mm cm cm	onta as mm diar	inin clas n. meto	g st ss 3 er.	.For	Kg/cm ² re is such a c	lass,		1.4	0	Cla		3-2-		-(3)
23 24 25 26 27 28 29 30 31 32 33 33 34		$f_{ctr}/\eta = \frac{1}{2} \frac{f_{ctr}}{2} \frac{\eta}{2} \frac{1}{2} $	cked s ding to ed ber ed nor ding to (4-13) inforc ete Co ve De //V_u /2+cov	sect o EC inding mal o Ta give ing over pth	tion a CP 20 g moi force ble (4 es a i bars	analy)17, ment e (Nu 4-11) minin useo	/sis the loa (Mu))) the s mum c d are 69.	ad fac = = tructu :oncr = = = = =	27.0 ctor fo 1.9 -3.1 ure is o ete co 11 3.0 21 60.8 cm	04 r liqu 22 class ver 0 2 00 .4	t.m. t sified of 25 mm cm cm	onta as mm diar	inin clas n. meto	g st ss 3 er.	.For	Kg/cm ² re is such a c	lass,		1.4	0	Cla		3-2-		-(3)
23 24 25 26 27 28 29 30 31 32 33 33 34 35		$f_{ctr}/\eta = \frac{1}{2} \frac{f_{ctr}}{2} f_{ctr$	cked s ding to ed ber ed nor ding to (4-13) inforc ete Co ve De N_u (2+cov) I_u *es	sect of EC ading mal of Ta give ing over pth	tion a CP 20 g moi force ble (4 es a i bars	anal) 17, "ment 9 (Nu 1-11) minin usec = =	/sis the loa (Mu)) the s num c 1 are 69. 2.24	= ad fac = = tructu concr = = = = 777	27.0 tor fo 1.9 -3.1 ure is o ete co 12 3.0 21 60.8 cm t.m.	04 r liqu 22 class ver (2 00 .4	t.m. t sified of 25 mm cm cm cm	as mm diar	inin clas n. mete	g st ss 3 ər.	.For	Kg/cm ² re is such a c	lass,		1.4	0	Cla		3-2-		-(3)
23 24 25 26 27 28 29 30 31 32 33 34 35 36		$f_{ctr}/\eta = \frac{1}{2} \frac{f_{ctr}}{2} f_{ctr$	cked s ding to ed ber ed nor ding to (4-13) inforc ete Co ve De N_u (2+cov) I_u *es	sect o EC ading mal o Ta give ing over pth	tion a CP 20 g moi force ble (4 es a i bars	anal) 17, "ment 9 (Nu 1-11) minin usec = =	/sis the loa (Mu)) the s num c 1 are 69. 2.24 15) is	ad fac = tructu concr = = = = 2 777 4658 used	27.0 tor fo 1.9 -3.1 ure is o ete co 12 3.0 21 60.8 cm t.m.	04 r liqu 22 class ver (2 00 .4	t.m. t sified of 25 mm cm cm cm	as mm diar	inin clas n. mete	g st ss 3 ər.	.For	Kg/cm ² re is such a c	lass,		1.4	0	Cla		3-2-		-(3)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37		$f_{ctr}/\eta = \frac{1}{2} \frac{f_{ctr}}{2} \frac{f_{ctr}}{2} \frac{f_{ctr}}{2} \frac{f_{ctr}}{2}$ According factors factors factors factors According Table The re Concr Effection $e=M_{ur}$ $e_s=e-tt$ $M_{us}=1$ For f_y βcr	cked sding toed bered nording to(4-13)inforcete Cove De N_u $(2+co)$ $V_u^*e_s$ = 35	sect o EC ading mal o Ta give ing over pth ver	tion a CP 20 g moi force ble (4 es a i bars	analy 17, ment e (Nu 4-11) minin usec = = = = = (4- =	<u>vsis</u> the loa (Mu))) the s num c 1 are 69. 2.24 15) is 0.8	ad fac = tructu concr = = = 777 l658 used 83	27.0 etor fo 1.9 -3.1 ure is o ete co 11 3.0 21 60.8 cm t.m. to get	04 r liqu 22 class ver (2 00 .4	t.m. t sified of 25 mm cm cm cm	as mm diar	inin clas n. mete	g st ss 3 ər.	.For	Kg/cm ² re is such a c	lass,		1.4	0	Cla		3-2-		-(3)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38		$f_{ctr}/\eta = \frac{f_{ctr}}{2}$ $p 2.Cra Accord factore factore factore Accord Table The re Concr Effecti e=M_{uv}e_s=e-tM_{us}=hFor f_y\betacrFrom 0$	cked sding toding toed nording to(4-13)inforcete Cove De (N_u) (2+cov) I_u *es= 35d=c1*(sect o EC ading mal o Ta give ing over pth ver	tion a CP 20 g moi force ble (4 es a i bars	analy 17, ment e (Nu 4-11) minin usec = = = = = (4- =	<u>vsis</u> the loa (Mu))) the s num c 1 are 69. 2.24 15) is 0.8	ad fac = tructu concr = = = 777 l658 used 83	27.0 etor fo 1.9 -3.1 ure is o ete co 11 3.0 21 60.8 cm t.m. to get	04 r liqu 22 class ver (2 00 .4 696 t the	tid co t.m. t sified of 25 mm cm cm cm cm value	as mm diar	inin clas n. mete	g st ss 3 er.	.For 12.5	Kg/cm ² re is such a c	lass,		1.4	0	Cla		3-2-		-(3)
23 24 25 26 27 28 29 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33		$f_{ctr}/\eta = \frac{f_{ctr}}{\rho} \frac{2.Cra}{2.Cra}$ According factored fa	cked 1 ding to ded her ded nor ding to ding to (4-13) inforc cete Co ve De VV_u (22+con $J_u^+e_s$ = 35 d=c_1*(sect o EC ading mal o Ta give ing over pth ver 00 00	tion a CP 2C g moi force ble (4 es a i bars Table / (b x 8201	analy 17, ment e (Nu 4-11) minin usec = = = = = (4- =	<u>vsis</u> the loa (Mu))) the s num c 1 are 69. 2.24 15) is 0.8	ad fac = tructu concr = = = 777 l658 used 83	27.0 etor fo 1.9 -3.1 ure is o ete co 11 3.0 21 60.8 cm t.m. to get	04 r liqu 22 class ver (2 00 .4 696 t the c/(tid cc t.m. t sified of 25 mm cm cm cm cm value	as mm diar	inin clas n. mete	g st ss 3 er.		Kg/cm ² re is such a c cm	lass,		1.4	0	Cla		3-2-		-(3)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		$f_{ctr}/\eta = \frac{f_{ctr}}{2} $	cked 1 cked 1 ding to doe ed nor doe ding to doe ding to doe dinforce contract ve De ve De V/V_a d=c1*(= d=c1*(= d=c1*(=	sect of EC ading mal of Ta give ing over pth ver 00 Muss 7. 0	tion a CP 2C P	analy 17, ment e (Nu 4-11) minin usec = = = = = (4- =	<u>vsis</u> the loa (Mu))) the s num c 1 are 69. 2.24 15) is 0.8	ad fac = tructu concr = = = 777 l658 used 83	27.0 etor fo 1.9 -3.1 ure is o ete co 11 3.0 21 60.8 cm t.m. to get	04 r liqu 22 class ver (2 00 .4 696 t the c/(tid co t.m. t sified of 25 mm cm cm cm cm value	as mm diar	inin clas n. mete	g st ss 3 er. =	2.52	Kg/cm ² re is such a c cm 0.0444 0.45	lass,		Ccen	0 	Cla ity	use [.	3-2-		-(3)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Ste	$f_{ctr}/\eta = \frac{f_{ctr}}{2} $	cked 1 cked 1 ding to doe ed nor doe ding to doe <tdo< td=""><td>sect o EC ading mal o Ta give ing over pth ver 00 Muse 7. 00 0</td><td>tion a CP 20 g mou force ble (4 es a I bars Table / (b y 8201 .125 .125</td><td>analy 117, ment e (Nu 4-11) minir usec = = = (4- = x f_{cu})</td><td>/sis the loa (Mu)) the s num c d are 69. 2.24 15) is 0.8)^0.5</td><td>ad fac = tructu concr = = = 777 4658 used 83 get c</td><td>27.0 27.0 21.0 21.0 21.0 60.8 cm t.m. to get 21.0</td><td>04 r liqu 22 class 22 00 .4 696 696 t the c/c c/c j</td><td>tid cc t.m. t sified of 25 mm cm cm cm cm value</td><td>as mm diar</td><td>inin clas n. mete</td><td>g st ss 3 er. =</td><td></td><td>Kg/cm² re is such a c cm</td><td>lass,</td><td></td><td>Ccen</td><td>0</td><td>Cla ity</td><td>use [.</td><td>3-2-</td><td></td><td>-(3)</td></tdo<>	sect o EC ading mal o Ta give ing over pth ver 00 Muse 7. 00 0	tion a CP 20 g mou force ble (4 es a I bars Table / (b y 8201 .125 .125	analy 117, ment e (Nu 4-11) minir usec = = = (4- = x f _{cu})	/sis the loa (Mu)) the s num c d are 69. 2.24 15) is 0.8)^0.5	ad fac = tructu concr = = = 777 4658 used 83 get c	27.0 27.0 21.0 21.0 21.0 60.8 cm t.m. to get 21.0	04 r liqu 22 class 22 00 .4 696 696 t the c/c c/c j	tid cc t.m. t sified of 25 mm cm cm cm cm value	as mm diar	inin clas n. mete	g st ss 3 er. =		Kg/cm ² re is such a c cm	lass,		Ccen	0	Cla ity	use [.	3-2-		-(3)
23 24 25 26 27 28 29 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33		$f_{ctr}/\eta = \frac{1}{2} \frac{f_{ctr}}{2} \frac{f_{ctr}}{2} \frac{f_{ctr}}{2}$ According factors factors factors factors factors Table The ref Concr Effective $e=M_{ur}$ $e_s=e-tt$ $M_{us}=th$ For f_y βcr From 0 c_1 c/d_{min} c/d As =M	cked 1 cked 1 ding to doe ed nor doe ding to doe <tdo< td=""><td>sect o EC ading mal o Ta give ing over pth ver 00 Muse 7. 00 0</td><td>tion a CP 20 g mou force ble (4 es a I bars Table / (b y 8201 .125 .125</td><td>analy 117, ment e (Nu 4-11) minir usec = = = (4- = x f_{cu})</td><td><u>vsis</u> the loa (Mu)) the s num c 1 are 69. 2.24 15) is 0.8)^0.5 ± Nu*</td><td>ad factorial fa</td><td>27.0 27.0 21 21 60.8 cm t.m. to get 3.0 21 60.8 cm t.m. to get 3.1 21 60.8 cm t.m.</td><td>04 r liqu 22 class ver (2 00 .4 696 696 t the c/(c/(j /)</td><td>tid cc t.m. t sified of 25 mm cm cm cm cm value</td><td>as mm diar</td><td>inin clas meto t/2</td><td>g st ss 3 er. =</td><td></td><td>Kg/cm² re is such a c cm 0.0444 0.45</td><td></td><td></td><td>Sati</td><td>0 htric</td><td>ctor</td><td>use [.</td><td></td><td></td><td></td></tdo<>	sect o EC ading mal o Ta give ing over pth ver 00 Muse 7. 00 0	tion a CP 20 g mou force ble (4 es a I bars Table / (b y 8201 .125 .125	analy 117, ment e (Nu 4-11) minir usec = = = (4- = x f _{cu})	<u>vsis</u> the loa (Mu)) the s num c 1 are 69. 2.24 15) is 0.8)^0.5 ± Nu*	ad factorial fa	27.0 27.0 21 21 60.8 cm t.m. to get 3.0 21 60.8 cm t.m. to get 3.1 21 60.8 cm t.m.	04 r liqu 22 class ver (2 00 .4 696 696 t the c/(c/(j /)	tid cc t.m. t sified of 25 mm cm cm cm cm value	as mm diar	inin clas meto t/2	g st ss 3 er. =		Kg/cm ² re is such a c cm 0.0444 0.45			Sati	0 htric	ctor	use [.			
23 24 25 26 27 28 30 31 32 33 33 33 33 33 33 33 35 36 37 38 39 40 41 42		$f_{ctr}/\eta = \frac{f_{ctr}}{2} $	cked 1 cked 1 ding to doe ed nor doe ding to doe <tdo< td=""><td>sect o EC ading mal o Ta give ing over pth ver 00 Muse 7. 00 0</td><td>tion a CP 20 g mou force ble (4 es a I bars Table / (b x 8201 .125 .125</td><td>analy 117, ment e (Nu 4-11) minir usec = = = (4- = x f_{cu})</td><td><u>vsis</u> the loa (Mu)) the s num c 1 are 69. 2.24 15) is 0.8)^0.5 ± Nu*</td><td>ad factorial fa</td><td>27.0 27.0 21.0 21.0 21.0 60.8 cm t.m. to get 21.0</td><td>04 r liqu 22 class ver (2 00 .4 696 696 t the c/(c/(j /)</td><td>tid cc t.m. t sified of 25 mm cm cm cm cm value</td><td>as mm diar</td><td>inin clas meto t/2</td><td>g st ss 3 er. =</td><td></td><td>Kg/cm² re is such a c cm 0.0444 0.45</td><td></td><td></td><td>Sati</td><td>0 htric</td><td>ctor</td><td>use [.</td><td></td><td></td><td></td></tdo<>	sect o EC ading mal o Ta give ing over pth ver 00 Muse 7. 00 0	tion a CP 20 g mou force ble (4 es a I bars Table / (b x 8201 .125 .125	analy 117, ment e (Nu 4-11) minir usec = = = (4- = x f _{cu})	<u>vsis</u> the loa (Mu)) the s num c 1 are 69. 2.24 15) is 0.8)^0.5 ± Nu*	ad factorial fa	27.0 27.0 21.0 21.0 21.0 60.8 cm t.m. to get 21.0	04 r liqu 22 class ver (2 00 .4 696 696 t the c/(c/(j /)	tid cc t.m. t sified of 25 mm cm cm cm cm value	as mm diar	inin clas meto t/2	g st ss 3 er. =		Kg/cm ² re is such a c cm 0.0444 0.45			Sati	0 htric	ctor	use [.			
23 24 25 26 27 28 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33	Ste	$f_{ctr}/\eta = \frac{1}{2} \frac{f_{ctr}}{2} \frac{f_{ctr}}{2} \frac{f_{ctr}}{2}$ According factors factors factors factors factors Table The ref Concr Effective $e=M_{ur}$ $e_s=e-tt$ $M_{us}=th$ For f_y βcr From 0 c_1 c/d_{min} c/d As =M	cked 1 cked 1 ding to cad ber ed nor ding to ding to cad ding to cad inforc ce ve De ve //2+cov a J= 25 a d=c_1*(a a a </td <td>sect b EC ading mal b Ta giv ing over pth ver 00 Muss 7. 0 0 0 3_{cr} x</td> <td>tion a CP 20 g mou force ble (4 es a l bars Table / (b x 8201 .125 .125 f_y x j</td> <td>analy p17, ment a (Nu (Nu</td> <td><u>vsis</u> the loa (Mu)) the s num c 1 are 69. 2.24 15) is 0.8)^0.5 ± Nu** 3.09</td> <td>ad fac = tructu concr = = = = = = = = =</td> <td>27.0 27.0 21 21 60.8 cm t.m. to get 3.0 21 60.8 cm t.m. to get 3.1 21 60.8 cm t.m.</td> <td>04 r liqu 22 class ver (2 00 .4 696 696 t the c/(c/(j /)</td> <td>tid cc t.m. sified of 25 mm cm cm cm cm value</td> <td>as mm diar</td> <td>inin clas meto t/2</td> <td>g st ss 3 er. =</td> <td></td> <td>Kg/cm² re is such a c cm 0.0444 0.45</td> <td></td> <td></td> <td>Sati</td> <td>0 htric</td> <td>ctor</td> <td>use [.</td> <td></td> <td></td> <td></td>	sect b EC ading mal b Ta giv ing over pth ver 00 Muss 7. 0 0 0 3 _{cr} x	tion a CP 20 g mou force ble (4 es a l bars Table / (b x 8201 .125 .125 f _y x j	analy p17, ment a (Nu (Nu	<u>vsis</u> the loa (Mu)) the s num c 1 are 69. 2.24 15) is 0.8)^0.5 ± Nu** 3.09	ad fac = tructu concr = = = = = = = = =	27.0 27.0 21 21 60.8 cm t.m. to get 3.0 21 60.8 cm t.m. to get 3.1 21 60.8 cm t.m.	04 r liqu 22 class ver (2 00 .4 696 696 t the c/(c/(j /)	tid cc t.m. sified of 25 mm cm cm cm cm value	as mm diar	inin clas meto t/2	g st ss 3 er. =		Kg/cm ² re is such a c cm 0.0444 0.45			Sati	0 htric	ctor	use [.			
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 37 38 39 40 41 42 43 44 45	Ste	$f_{ctr}/\eta = \frac{f_{ctr}}{\rho} \frac{2.Cra}{2.Cra}$ According factored fa	cked 1 cked 1 ding to cad ber ed nor ding to ding to cad ding to cad inforc ce ve De ve //2+cov a J= 25 a d=c_1*(a a a </td <td>sect b EC ading mal b Ta giv ing over pth ver 00 Muss 7. 0 0 0 3_{cr} x</td> <td>tion a CP 20 g mou force ble (4 es a l bars Table / (b x 8201 .125 .125 f_y x j</td> <td>analy p17, ment a (Nu (Nu</td> <td><u>vsis</u> the loa (Mu)) the s num c 1 are 69. 2.24 15) is 0.8)^0.5 ± Nu** 3.09</td> <td>ad fac = tructu concr = = = = = = = = =</td> <td>27.0 27.0 21 21 60.8 cm t.m. to get 3.0 21 60.8 cm t.m. to get 3.1 21 60.8 cm t.m.</td> <td>04 r liqu 22 class ver o 2 00 .4 696 696 t the c/c c/c j //)</td> <td>tid cc t.m. sified of 25 mm cm cm cm cm value</td> <td>as mm diar</td> <td>inin clas meta t/2 β_{cr}</td> <td>g st ss 3 er. =</td> <td></td> <td>Kg/cm² re is such a c cm 0.0444 0.45</td> <td></td> <td></td> <td>Sati</td> <td>0 htric</td> <td>ctor</td> <td>use [.</td> <td></td> <td></td> <td></td>	sect b EC ading mal b Ta giv ing over pth ver 00 Muss 7. 0 0 0 3 _{cr} x	tion a CP 20 g mou force ble (4 es a l bars Table / (b x 8201 .125 .125 f _y x j	analy p17, ment a (Nu (Nu	<u>vsis</u> the loa (Mu)) the s num c 1 are 69. 2.24 15) is 0.8)^0.5 ± Nu** 3.09	ad fac = tructu concr = = = = = = = = =	27.0 27.0 21 21 60.8 cm t.m. to get 3.0 21 60.8 cm t.m. to get 3.1 21 60.8 cm t.m.	04 r liqu 22 class ver o 2 00 .4 696 696 t the c/c c/c j //)	tid cc t.m. sified of 25 mm cm cm cm cm value	as mm diar	inin clas meta t/2 β _{cr}	g st ss 3 er. =		Kg/cm ² re is such a c cm 0.0444 0.45			Sati	0 htric	ctor	use [.			

• Floor Design.

Sec. 1-1

	A B C D	EFG	H	1.	JK	L	M I	0	P Q	R	S	Т	ע <u>י</u>	VW	Х	ΥZ	AA	AB	AC	AE	AE	AFA	(AH
1														P	roject No	D .					Date		
2							SIG		ALC		τιο	N			2						5/3/20		
3								SI	IEET					S	heet No).					npute		
4 5	Subject						D-	-1				_			1				MO		ed Ha		an
5 6	Building				0	mpic	ce Po		im					C	hecked k	у				Арр	E.K	зру	
7	Limit Stat		Cr	acki						2 201	17			eE.				(1-	1)		L.IX		
8	Input Data			ackii	<u>ı</u> g -	AUUU	<i>num</i>	<u>iy n</u>		201	-			<u>3E</u>	<u>C NO :</u>			(1-	<i>''</i>				
9	fcu	-		=		300	ŀ	≺ g/cr	n ²					_									
10	fy			=	_	3500		Kg/cr						_									
11		tored I	hon					-	6.50	t.m.				_			_						
12		tored						-	7.20	t.m.			_	"-1/0	sign for	Com	ores	cion	Forc				-
13		ent Typ			ЛСС	(11)		_	slab	L			_	-ve	Signitor	Com	pres	SIUH		C			
14	Step 1:Und			ventio		alvai		-	siab														
		hickne						2															
15		піскпе	55	ι=((IV	/// (D	Ψ))^	-	_					_					4					
16	t						=	=	45	cm				_				t _v	η				
17	t chos	en					=	=	45	cm				_				10	1				
18	fct(N)	= N/A	С				=	= •	-1.6	Kg/o	cm²							20	1				
19	fct(M)	= (6*	M)/	(b*t ²)			=	= 1	9.26	Kg/o	cm ²							40	1				
20	fct=fc	t(N)+f	ct(N	/)			=	= 1	7.66	Kg/o	cm ²							60	1				
21	tv=t*{	1+(fct(N)/1	fct(M)))}		=	= 4	12.62	mm													
22	η						=	= 1.3	30631					Tab	le (4-16)	ECP	2017	7					
23	f _{ctr} /η	=(1.89	9*f	cu^(1	/2))/	n	=	= 2	5.18	Kg/o	cm ²	>	17	7.66	Kg/cm ²	2		Sati	isfac	tor	7		
	Step 2:Cra	cked s	sec	tion a	analy	<u>/sis</u>																	
25	Accor	ding to	E E	CP 20)17, 1	the lo	ad fa	ctor	for liqu	uid co	onta	inin	g st	tructu	ire is	=		1.4	0	Clar	use [3-	2-1-1	-(3)]
26	factore			-			=		9.10	t.m.													
27	factore								0.08														
28		-											s 3	.For s	such a c	lass,							
29	Table	• •	-																				_
30 31	The re Concr		_		useo	are	=	_	12	mm	diar	nete	ər.										
					_		=		2.50	cm													
32	Effect		pın		_				11.9	cm			_										_
33	e=M _u						=		.2778	cm	>	ť/2	=	22.5	cm	B	ig e	ccen	trici	ity			_
34	e _s =e-t		/er		=		9.68	cm					_										
35	M _{us} =N				=		5552																
36	For f _y	= 35	00	Table	e (4 -			d to g	et the	value	e of	β _{cr}								\square			
37	βcr				=		83													\square			
38	From)^0.5	get	c1						_									
39	с ₁	=		.9022	!				c/0				:	=	0.0572		_			\downarrow			
40	c/d _{min}	=).125					c/0	d _{max}				=	0.45								
41	c/d	=).125					j				_=	=	0.826		_	Sat	isfac	ctory			
42	As =M	us / (β	S _{cr} X	(t _y x j													_					$\square \downarrow$	
43	As					7.00		cm					min.	=	0.244	%	Cla	ause	e (4-	3-2-	هـ -7)	
44	As _{min}	(at ter	nsic	on sid	e) of	f slab	=		10	.21	cm	² /n	n.										
45																							
45														10	Ø		/m			++			

Sec. 2-2

 t_{mm} = 0.88 * 75 = 63.75mm take t = 150 mm

assume using 5 T 12 as section reinforcement.

Pu = 0.33 * 30 * (1000 * 150) + 0.67 * $\frac{0.85 * 360}{1.15}$ * 577 = 1586 KN > 75 KN (Safe) Use 5 T 12 / m'

Egyptian Aquatic Centre Diving Platforms

I. Design codes and standards

9- ECP (203-2018)

Egyptian Code of Practice for Design and Construction of Concrete Structures.

10-ECP (201-2010)

Egyptian Code for Loading on Buildings.

11-FINA FACILITIES RULES (2017-2021)

International Swimming Federation.

1.INTRODUCTION

The concept for structural design focuses on satisfying both the functional and the economic requirements of the building without jeopardizing its aesthetic and architectural features. This Calculation Report presents the structural engineering aspect of the works due for the development construction work of Egyptain Aquatic Centre.

Figure 1-3 Diving Platform location

2. Diving Platform Drawings Details

Figure 2-1: 1st Platform Plan

Figure 2-2: 2nd Platform Plan

Figure 2-3: 3rd Platform Plan

Figure 2-5: 3D-Reinforcement

Figure 2-6: Sectional Elevation.

Figure 2-7: 3D-Arched Beam RFT

3. Calculation Software Used

Calculation software features

The software used is SAP2000, developed by Computer & Structures (United States).

Technical specifications

Name: Sap2000

Version: 14.2.2

Producer:

Computer&Structures

https://www.csiamerica.com/

4. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES.

REINFORCED CONCRETE.

The grade of concrete will be according to the Egyptian Code of Practice (ECP). The grade of concrete is indicated in two numbers, the first one indicate the characteristic cube strength in (N/mm^2) while the second one indicates the maximum nominal size of the aggregate in (mm) to be used;

Grade (20/20)	for plain concrete of foundations of thickness < 12 cm.
Grade (20/40)	for plain concrete of foundations of thickness >12 cm
Grade (30/20)	for all pool reinforced concrete elements.

Minimum thickness of blinding concrete is 100 mm.

Concrete cover is the concrete thickness to all steel reinforcement including links:

- For all concrete (with protection) in contact with soil, cover shall be 70mm (or as will be recommended in the geotechnical report)
- For all concrete elements above grade where concrete is protected from weathering, cover shall be 50mm for beams and 25 mm for Colmuns, slabs and walls.

• SLUMP VALUES.

The following values are according to the Egyptian code of practice ECP 203-2018 section (2-3-1-2), Table (2-5).

Type of Structural Element	Type of Compaction	Slump-in mm (max.)
Massive concrete	Mechanical	25 - 50
 Concrete foundation. Concrete sections with low reinforcement ratio (< 80 kg/m³) 	Mechanical	50 - 75
Concrete sections with medium and high reinforcement ratio (80-150 kg/m³)	Mechanical/ Manual	75 – 125
Concrete sections with very high reinforcement ratio (> 150 kg/m³)	Light compaction	125 – 150**
Deep foundation	Light compaction	125 – 200**

** By using chemical additives.

REINFORCING STEEL

All reinforcing steel shall be complying with the Egyptian code of practice ECP203-2018, section 2-2-5-3, Table 2-4.

Reinforcing steel bars shall be uncoated high yield deformed bars of characteristic strength 360 N/mm².

Uncoated mild steel plain bars with characteristic strength 280 N/mm² may be used for links and binders.

Туре	Grade	Yield Strength, f _y (N/mm²)
Normal mild steel	280/450	280
High grade steel	360/520	360
Cold formed welded mesh	450/520	450

Note: Bar size increment = 6, 8, 10, 12, 16, 18, 20, 22, 25, 28 and 32

5. Calculation method and numerical model

5.1 Model Description

5.1.1 Hypothesis adopted for the elements

- The Diving Platform is modeled as spatial model, all element is defined as shell elements except the columns.
- The arch section of the beam, enhances it's performance by reducing the tensioned area of the beam as shown in Fig. 5.1.

Figure 5.1: Tension side of the Platform's Beam.

• According to, depth to span ratio, the beam act as deep beam in the section near to the columns and act as shallow beam in the midspan's section; thus the reinforcement details follow the deep beams reinforcement requirements as shown in Fig. 5.2.

6. Actions and design loads

6.1 STRUCTURAL LOADS.

The following loads are considered in the design:

- Structural Dead Loads which include:
 - > The own weight of the structural elements, beams, Columns and Platforms.
 - Superimposed dead load from Finishing.
- Live loads which cover the spring boards and the movement of swimmers on the platform.
- Seismic loads according to ECP.

The basis for the considered design loads are summarized in the followings sections.

A. Dead Loads

Unit weight of concrete elements

25.0 kN/m³

B. Live Loads

Live loads are considered equal to 350 kg/m^{\prime} for platforms and supporting structure according to FINA requirements.

C. Earthquakes

٠	Response modification factor	(R = 5)
•	Importance factor	(x _i = 1.2)
•	The design acceleration	(a _g = 0.15g)
•	Design damping correction factor	(η = 1.0)
•	Zone 3	
	Eone o	

• Earthquake loads shall be comply with the (ECP 201-2010).

The following tables describe the load cases and load combinations on the pool:

Table 1: Load cases

Case	Туре	Modal Case	Design Type	Auto Type
DEAD	LinStatic		DEAD	None
MODAL	LinModal		OTHER	None
L.L	LinStatic		OTHER	None
F.C	LinStatic		DEAD	None
Ex	LinStatic		QUAKE	None
Ey	LinStatic		QUAKE	None
Resp. x	LinRespSpec	MODAL	QUAKE	None
Resp. y	LinRespSpec	MODAL	QUAKE	None

Table 2: Load combinations

Table: Combination Definitions, Part 1 of 3										
Combo .Name	Comb .Type	Auto Design	Case Type	Case Name	Scale Factor	Steel Design				
UDLPRx	Linear Add	No	Linear Static	DEAD	1.120000	None				
UDLPRx			Linear Static	L.L	0.500000					
UDLPRx			Response Spectrum	Resp. x	1.000000					
UDLPRx			Linear Static	F.C	1.120000					
UDLNRx	Linear Add	No	Linear Static	DEAD	1.120000	None				
UDLNRx			Linear Static	L.L	0.500000					
UDLNRx			Response Spectrum	Resp. x	-1.000000					
UDLNRx			Linear Static	F.C	1.120000					
UDLPRy	Linear Add	No	Linear Static	DEAD	1.120000	None				
UDLPRy			Linear Static	L.L	0.500000					
UDLPRy			Response Spectrum	Resp. y	1.000000					
UDLPRy			Linear Static	F.C	1.120000					
UDLNRy	Linear Add	No	Linear Static	DEAD	1.120000	None				
UDLNRy			Linear Static	L.L	0.500000					
UDLNRy			Response Spectrum	Resp. y	-1.000000					
UDLNRy			Linear Static	F.C	1.120000					
UDLPRxPRy	Linear Add	No	Linear Static	DEAD	1.120000	None				
UDLPRxPRy			Linear Static	L.L	0.500000					
UDLPRxPRy			Response Spectrum	Resp. x	1.000000					
UDLPRxPRy			Response Spectrum	Resp. y	0.300000					
UDLPRxPRy			Linear Static	F.C	1.120000					
UDLNRxNRy	Linear Add	No	Linear Static	DEAD	1.120000	None				
UDLNRxNRy			Linear Static	L.L	0.500000					
UDLNRxNRy			Response Spectrum	Resp. x	-1.000000					
UDLNRxNRy			Response Spectrum	Resp. y	-0.300000					
UDLNRxNRy			Linear Static	F.C	1.120000					
UDLPRxNRy	Linear Add	No	Linear Static	DEAD	1.120000	None				
UDLPRxNRy			Linear Static	L.L	0.500000					
UDLPRxNRy			Response Spectrum	Resp. x	1.000000					
UDLPRxNRy			Response Spectrum	Resp. y	-0.300000					
UDLPRxNRy			Linear Static	F.C	1.120000					
UDLNRxPRy	Linear Add	No	Linear Static	DEAD	1.120000	None				
UDLNRxPRy			Linear Static	L.L	0.500000					
UDLNRxPRy			Response Spectrum	Resp. x	-1.000000					
UDLNRxPRy			Response Spectrum	Resp. y	0.300000					
UDLNRxPRy			Linear Static	F.C	1.120000					
UDLPRyPRx	Linear Add	No	Linear Static	DEAD	1.120000	None				
UDLPRyPRx			Linear Static	L.L	0.500000	Hono				
UDLPRyPRx			Response Spectrum	Resp. x	0.300000					
UDLPRyPRx			Response Spectrum	Resp. y	1.000000					
UDLPRyPRx			Linear Static	F.C	1.120000					
UDLNRyNRx	Linear Add	No	Linear Static	DEAD	1.120000	None				
UDLNRyNRx		110	Linear Static	L.L	0.500000	None				
UDLNRyNRx			Response Spectrum	Resp. x	-0.300000					
UDLNRyNRx			Response Spectrum	Resp. x	-1.000000					
UDLNRyNRx			Linear Static	F.C	1.120000					
UDLNRyPRx	Linear Add	No	Linear Static	DEAD	1.120000	None				
		NO	Linear Static	L.L	0.500000	None				
					0.300000					
			Response Spectrum	Resp. x						
			Response Spectrum	Resp. y	-1.000000					
UDLNRyPRx			Linear Static	F.C	1.120000					

Page **220** of **296**

UDLPRyNRx	Linear Add	No	Linear Static	DEAD	1.120000	None
UDLPRyNRx			Linear Static	L.L	0.500000	
UDLPRyNRx			Response Spectrum	Resp. x	-0.300000	
UDLPRyNRx			Response Spectrum	Resp. y	1.000000	
UDLPRyNRx			Linear Static	F.C	1.120000	
UDL	Linear Add	No	Linear Static	DEAD	1.400000	None
UDL			Linear Static	F.C	1.400000	
UDL			Linear Static	L.L	1.600000	
Ub	Linear Add	No	Linear Static	DEAD	1.120000	None
Ub			Linear Static	F.C	1.120000	
Ub			Linear Static	L.L	1.280000	
Ub			Linear Static	W-x	1.280000	
Ua	Linear Add	No	Linear Static	DEAD	1.120000	None
Ua	Eniodi / Idd	110	Linear Static	F.C	1.120000	None
Ua			Linear Static	LL	1.280000	
Ua			Linear Static	Wx	1.280000	
Uc	Linear Add	No	Linear Static	DEAD	1.120000	None
Uc	Lineal Aug	INO	Linear Static	F.C	1.120000	None
Uc			Linear Static	L.L	1.280000	
			Linear Static			
Uc Ud	Linear Add	No	Linear Static	Wy DEAD	1.280000	None
		INU				None
Ud	-		Linear Static	F.C	1.120000	
Ud			Linear Static	L.L	1.280000	
Ud			Linear Static	W-y	1.280000	
WDL	Linear Add	No	Linear Static	DEAD	1.000000	None
WDL			Linear Static	F.C	1.000000	
WDL			Linear Static	L.L	1.000000	
WDLPRx	Linear Add	No	Linear Static	DEAD	1.000000	None
WDLPRx			Linear Static	L.L	0.420000	
WDLPRx			Response Spectrum	Resp. x	0.720000	
WDLPRx			Linear Static	F.C	1.000000	
WDLNRx	Linear Add	No	Linear Static	DEAD	1.000000	None
WDLNRx			Linear Static	L.L	0.420000	
WDLNRx			Response Spectrum	Resp. x	-0.720000	
WDLNRx			Linear Static	F.C	1.000000	
WDLPRy	Linear Add	No	Linear Static	DEAD	1.000000	None
WDLPRy			Linear Static	L.L	0.420000	
WDLPRy			Response Spectrum	Resp. y	0.720000	
WDLPRy			Linear Static	F.C	1.000000	
WDLNRy	Linear Add	No	Linear Static	DEAD	1.000000	None
WDLNRy			Linear Static	L.L	0.420000	
WDLNRy			Response Spectrum	Resp. y	-0.720000	
WDLNRy			Linear Static	F.C	1.000000	
WDLPRxPRy	Linear Add	No	Linear Static	DEAD	1.000000	None
WDLPRxPRy			Linear Static	L.L	0.420000	
WDLPRxPRy			Response Spectrum	Resp. x	0.720000	
WDLPRxPRy			Response Spectrum	Resp. y	0.220000	
WDLPRxPRy			Linear Static	F.C	1.000000	
WDLNRxNRy	Linear Add	No	Linear Static	DEAD	1.000000	None
WDLNRxNRy			Linear Static	L.L	0.420000	
WDLNRxNRy			Response Spectrum	Resp. x	-0.720000	
WDLNRxNRy			Response Spectrum	Resp. y	-0.220000	
WDLNRxNRy			Linear Static	F.C	1.000000	
WDLPRxNRy	Linear Add	No	Linear Static	DEAD	1.000000	None
WDLPRxNRy			Linear Static	L.L	0.420000	
WDLPRxNRy			Response Spectrum	Resp. x	0.720000	

Page **221** of **296**

WDLPRxNRy			Response Spectrum	Resp. y	-0.220000	
WDLPRxNRy			Linear Static	F.C	1.000000	
WDLNRxPRy	Linear Add	No	Linear Static	DEAD	1.000000	None
WDLNRxPRy			Linear Static	L.L	0.420000	
WDLNRxPRy			Response Spectrum	Resp. x	-0.720000	
WDLNRxPRy			Response Spectrum	Resp. y	0.220000	
WDLNRxPRy			Linear Static	F.C	1.000000	
WDLPRyPRx	Linear Add	No	Linear Static	DEAD	1.000000	None
WDLPRyPRx			Linear Static	L.L	0.420000	
WDLPRyPRx			Response Spectrum	Resp. x	0.220000	
WDLPRyPRx			Response Spectrum	Resp. y	0.720000	
WDLPRyPRx			Linear Static	F.C	1.000000	
WDLNRyNRx	Linear Add	No	Linear Static	DEAD	1.000000	None
WDLNRyNRx			Linear Static	L.L	0.420000	
WDLNRyNRx			Response Spectrum	Resp. x	-0.220000	
WDLNRyNRx			Response Spectrum	Resp. y	-0.720000	
WDLNRyNRx			Linear Static	F.C	1.000000	
WDLPRyNRx	Linear Add	No	Linear Static	DEAD	1.000000	None
WDLPRyNRx			Linear Static	L.L	0.420000	
WDLPRyNRx			Response Spectrum	Resp. x	-0.220000	
WDLPRyNRx			Response Spectrum	Resp. y	0.720000	
WDLPRyNRx			Linear Static	F.C	1.000000	
WDLNRyPRx	Linear Add	No	Linear Static	DEAD	1.000000	None
WDLNRyPRx			Linear Static	L.L	0.420000	
WDLNRyPRx			Response Spectrum	Resp. x	0.220000	
WDLNRyPRx			Response Spectrum	Resp. y	-0.720000	
WDLNRyPRx			Linear Static	F.C	1.000000	
UE	Envelope	No	Response Combo	UDL	1.000000	None
UE			Response Combo	UDLNRx	1.000000	
UE			Response Combo	UDLNRxNRy	1.000000	
UE			Response Combo	UDLNRxPRy	1.000000	
UE			Response Combo	UDLNRy	1.000000	
UE			Response Combo	UDLNRyNRx	1.000000	
UE			Response Combo	UDLNRyPRx	1.000000	
UE			Response Combo	UDLPRx	1.000000	
UE			Response Combo	UDLPRxNRy	1.000000	
UE			Response Combo	UDLPRxPRy	1.000000	
UE			Response Combo	UDLPRy	1.000000	
UE			Response Combo	UDLPRyNRx	1.000000	
UE			Response Combo	UDLPRyPRx	1.000000	
WE	Envelope	No	Response Combo	WDL	1.000000	None
WE			Response Combo	WDLNRx	1.000000	
WE			Response Combo	WDLNRxNRy	1.000000	
WE			Response Combo	WDLNRxPRy	1.000000	
WE			Response Combo	WDLNRy	1.000000	
WE			Response Combo	WDLNRyNRx	1.000000	
WE			Response Combo	WDLNRyPRx	1.000000	
WE			Response Combo	WDLPRx	1.000000	
WE			Response Combo	WDLPRxNRy	1.000000	
WE			Response Combo	WDLPRxPRy	1.000000	
WE			Response Combo	WDLPRy	1.000000	
WE			Response Combo	WDLPRyNRx	1.000000	
WE			Response Combo	WDLPRyPRx	1.000000	

6.2 CRACKING

It will be calculated as stated in the "ECP 203-2018 - section 4-3-2" for the following maximum design crack width:

• 0.20 mm for concrete exposed to dry soil or air.

6.3 Deflection

- Total deflection for beams/slabs and cantilevers calculated taking all loads into consideration in addition to the effects of self-straining forces shall not exceed the following values:
- a) For beams and slabs L/250
- b) For cantilevers L/450
 Immediate deflection due to live loads for beams and slabs supporting non-structural elements (which are not affected by deflection) shall not exceed L/360.
 Additional total deflection (that occur after adding the floorings) for beams and slabs supporting non-structural elements (which are affected by deflections, such as spring boards) calculated taking all loads into consideration in addition to the effects of self-straining forces shall not exceed L/480.

Where L is distance between the inflection points for beams and slabs or the cantilever length.

L is calculated for the short span of the two way slabs, and for the long span of the flat slabs.

• The spatial deformation of the front edge of the platforms as a result of Px = Py = Pz = 100 kiloponds (kilograms force) shall be a maximum of 1 mm.

FÉDÉRATION INTERNATIONALE DE NATATION FACILITIES RULES 2017 – 2021 Valid as of 22 September 2017

Fundamental frequency of tower 3.5 Hz Oscillation of total structure 3.5 Hz

The spatial deformation of the front edge of the platforms as a result of Px = Py = Pz = 100 kiloponds (kilograms force) shall be a maximum of 1 mm. See Drawing

6.4 Fundamental Frequency.

According to FINA, Fundamental frequency of platforms 10.0 Hz **TOLERANCES**:

PLATFORM	MINIMUM	MAXIMUM
10m	10 Hz	20 Hz
7.5m, 5m, 3m and 1m	10 Hz	30 Hz

Fundamental frequency of tower 3.5 Hz Oscillation of total structure 3.5 Hz

7. STRUCTURAL ANALYSIS

7.1 3d-model

7.2 ASSIGN OF LOADS

Figure 7.1.: Assign of Finishing Loads on the Platforms (T-M² Units)

Figure 7.2.: Assign of Live loads on the Platforms (T-M² Units)

8. STRUCTURAL DESIGN.

8.1 Checks.

8.1.1 Frequency

From SAP model, the maximum Frequency of total structure = 3.19 HZ as shown in Fig. 8.1

Maximum Frequency = 3.19 HZ < 3.5 HZ

(Acceptable)

8.1.2 Spatial Deformation.

From SAP model, the maximum deformation in the front edge of:

- 3rd platform = 1.8mm induced from 220 kg load; thus, for 100 kg load, it will equal 1.8/2.2=
 0.82mm > 1mm (Acceptable)
- 1st and 2nd platforms= 1.6mm induced from 340 kg load; thus, for 100 kg load, it will equal
 1.6/3.4= 0.47mm < 1mm (Acceptable)

8.1.3 Equivalent static loads.

According to clause 8.7.3.4 in ECP 201-2010, the equivalent static load shouldn't less than 80% of equivalent load calculated by using compound response spectrum method.

Table 3: Base Shear Reactions

Output Case	Case Type	Step Type	Global FX (Ton)	Global FY (Ton)
Ex	Lin. Static		<mark>-22.0827</mark>	3.164E-11
Ey	Lin. Static		-2.516E-11	<mark>-22.0827</mark>
Resp. x	Lin. Resp. Spec.	Max	<mark>22.0379</mark>	37.2215
Resp. y	Lin. Resp. Spec.	Max	12.3472	<u>20.8542</u>

8.1.4 Model Participation Mass Ratio.

According to clause 8.7.3.3.1, point 5.a in ECP 201-2010, The considered Eigenvalues mode shapes in design should excite mass not less than 0.9 of total structure's mass.

Table 4: Modal Participating Mass Ratios

Output Case	Step. Type	Step. Num.	Period (Sec)	UX	UY	UZ	Sum. UX	Sum. UY
MODAL	Mode	1.000000	0.313457	0.209093	0.119547	9.421E-06	0.209093	0.119547
MODAL	Mode	2.000000	0.234052	0.064936	0.343120	0.000290	0.274029	0.462667
MODAL	Mode	3.000000	0.230853	0.006611	0.002124	0.000084	0.280639	0.464791
MODAL	Mode	4.000000	0.193856	0.000462	3.707E-06	8.965E-06	0.281101	0.464794
MODAL	Mode	5.000000	0.187341	0.000058	9.715E-08	1.949E-07	0.281159	0.464794
MODAL	Mode	6.000000	0.185208	0.000013	4.052E-08	3.597E-08	0.281172	0.464794
MODAL	Mode	7.000000	0.184418	2.475E-06	1.544E-08	8.194E-09	0.281175	0.464794
MODAL	Mode	8.000000	0.177439	0.015936	0.060854	0.000045	0.297111	0.525648
MODAL	Mode	9.000000	0.130703	3.406E-06	0.003181	0.001976	0.297114	0.528829
MODAL	Mode	10.000000	0.122133	0.004049	0.225864	0.000530	0.301163	0.754692
MODAL	Mode	11.000000	0.120187	7.978E-06	0.014271	0.000030	0.301171	0.768963
MODAL	Mode	12.000000	0.117995	0.000695	0.007442	0.000191	0.301866	0.776406
MODAL	Mode	13.000000	0.116025	7.805E-06	0.000505	0.000015	0.301874	0.776911
MODAL	Mode	14.000000	0.115027	1.389E-08	0.000070	7.573E-06	0.301874	0.776981
MODAL	Mode	15.000000	0.114769	2.646E-07	0.000014	6.528E-07	0.301874	0.776995
MODAL	Mode	16.000000	0.113156	0.000480	0.000326	0.000083	0.302355	0.777321
MODAL	Mode	17.000000	0.108937	0.001857	0.009398	0.000376	0.304212	0.786719
MODAL	Mode	18.000000	0.102520	0.001114	0.004293	0.000022	0.305325	0.791012
MODAL	Mode	19.000000	0.101027	0.002156	0.003236	0.001141	0.307482	0.794248
MODAL	Mode	20.000000	0.092887	0.000742	0.008455	0.042936	0.308223	0.802703
MODAL	Mode	21.000000	0.089829	0.000816	0.000442	0.016445	0.309039	0.803145
MODAL	Mode	22.000000	0.085317	0.000585	0.000713	0.166644	0.309625	0.803859
MODAL	Mode	23.000000	0.077451	0.000012	0.001016	0.050161	0.309637	0.804874
MODAL	Mode	24.000000	0.074719	0.000511	0.000746	0.003557	0.310147	0.805620
MODAL	Mode	25.000000	0.070608	0.000178	0.001852	0.000344	0.310326	0.807472
MODAL	Mode	26.000000	0.066530	0.000816	0.010871	0.001701	0.311141	0.818343
MODAL	Mode	27.000000	0.060565	0.000055	0.005614	0.003322	0.311196	0.823957
MODAL	Mode	28.000000	0.055659	0.000224	0.000046	0.000090	0.311420	0.824003
MODAL	Mode	29.00000	0.053809	0.000400	0.000443	0.001237	0.311820	0.824445
MODAL	Mode	30.000000	0.052034	0.000126	0.000381	0.000694	0.311946	0.824827
MODAL	Mode	31.000000	0.050025	0.000868	0.009131	0.001337	0.312814	0.833958

Page **228** of **296**

MODAL	Mode	32.000000	0.048928	0.000327	0.001701	0.000152	0.313140	0.835659
MODAL	Mode	33.000000	0.046602	0.000985	0.000139	0.001797	0.314125	0.835798
MODAL	Mode	34.000000	0.045288	0.004698	0.000163	0.000316	0.318823	0.835961
MODAL	Mode	35.000000	0.040960	0.000030	0.002058	0.018340	0.318853	0.838019
MODAL	Mode	36.000000	0.040093	0.001530	0.017280	0.003272	0.320384	0.855299
MODAL	Mode	37.000000	0.037550	0.000111	0.026479	0.000060	0.320495	0.881779
MODAL	Mode	38.000000	0.037135	0.001401	0.000227	3.648E-07	0.321896	0.882006
MODAL	Mode	39.000000	0.036127	0.003696	0.006538	8.218E-07	0.325592	0.888543
MODAL	Mode	40.000000	0.035045	0.001617	0.002301	0.000176	0.327209	0.890844
MODAL	Mode	41.000000	0.034477	0.000100	0.000318	0.002295	0.327308	0.891163
MODAL	Mode	42.000000	0.033972	0.000124	0.000018	0.002296	0.327433	0.891180
MODAL	Mode	43.000000	0.033545	0.003712	0.000226	0.001503	0.331145	0.891406
MODAL	Mode	44.000000	0.032392	0.001432	0.001641	0.001540	0.332576	0.893047
MODAL	Mode	45.000000	0.031784	0.001108	0.000076	0.000785	0.333685	0.893124
MODAL	Mode	46.000000	0.031079	0.000012	0.000806	4.336E-06	0.333696	0.893929
MODAL	Mode	47.000000	0.030694	0.000138	0.001011	0.003334	0.333834	0.894940
MODAL	Mode	48.000000	0.030338	0.001311	0.000084	0.000410	0.335145	0.895024
MODAL	Mode	49.000000	0.029956	0.009726	0.000065	0.002178	0.344871	0.895089
MODAL	Mode	50.000000	0.029312	0.000746	0.001691	0.000947	0.345617	0.896780
MODAL	Mode	51.000000	0.028641	0.012178	0.000076	0.027823	0.357795	0.896856
MODAL	Mode	52.000000	0.028189	0.023713	0.000349	0.032400	0.381508	0.897205
MODAL	Mode	53.000000	0.027496	0.012505	0.001152	0.011996	0.394013	0.898357
MODAL	Mode	54.000000	0.027385	0.008744	0.001425	0.000107	0.402758	0.899782
MODAL	Mode	55.000000	0.026955	0.006122	0.000019	0.003727	0.408879	0.899802
MODAL	Mode	56.000000	<mark>0.026669</mark>	<mark>0.006180</mark>	<mark>0.001187</mark>	0.000239	<mark>0.415060</mark>	<mark>0.900989</mark>
MODAL	Mode	<mark>57.000000</mark>	<mark>0.026421</mark>	<mark>0.004929</mark>	1.455E-06	0.002927	<mark>0.419988</mark>	<mark>0.900990</mark>
MODAL	Mode	58.000000	<mark>0.025545</mark>	0.000604	0.001373	1.030E-06	0.420592	<mark>0.902364</mark>
MODAL	Mode	<mark>59.000000</mark>	<mark>0.024966</mark>	<mark>0.008190</mark>	0.003172	0.000072	<mark>0.428782</mark>	<mark>0.905536</mark>
MODAL	Mode	60.000000	<mark>0.023835</mark>	0.000432	5.359E-06	0.264635	<mark>0.429213</mark>	<mark>0.905542</mark>

8.1.5 Slenderness.

- **Y-Direction.** Unbraced Column He= 1.3*10= 13m $\lambda= 13/0.6= 21 > 23$ (Slender Column)
- X-Direction.

Unbraced Column He= 1.3*8=10.4m $\lambda= 10.4/0.5= 20.8 > 23$ (Slender Column)

Page 229 of 296

8.2 Analysis.

8.2.1 Beam and Cantilevers Analysis.

Figure 8.1: Internal Force in local axis 1 (red axis) direction (T-M').

Figure 8.2: Internal Force in local axis 2 (white axis) direction (T-M').

8.2.2 Columns Analysis.

Figure 8.3: Bending Moment around Global axis Y (T.M').

Figure 8.5: Axial Forces in Global axis Z direction (T-M').

Figure 8.6: Torsion Forces in Global axis Z direction (T-M').

8.3 Design.

8.3.1 Platforms & Wall

- By assume using 5 T 10/m' mesh in the short and long directions, the covered bending moment induced from 5 T 10/m' mesh is show in Fig. 8.6.
- No additional reinforcement required as show in Fig. 8.7 and Fig. 8.8.

<u>* Pro</u>	iect :		
Concre	te f _{cu} =	30	MPa
Steel	f _y =	350	MPa

Sec.	Ult. Moment	Normal	Breadth	Depth	Thick		C1		As	\mathbf{As}_{\min}	Used		Dff	
Sec.	M _u (kN.m)	N _u (kN)	b (mm)	d (mm)	t (mm)	ecc.	UT.	3	(mm ²)	(mm ²)	As	Rft.		
1	11	10	1000	135	160	Big	7.23	0.826	301	391	391	5	þ	10

Figure 8.8: Additional Reinforcement required in local axes 1 direction (short direction)

8.3.2 Beam Design.

8.3.2.1 Horizontal & Longitudinal RFT

• $A_{s1} = \frac{63*10000}{(\frac{360}{1.15})} = 2012.5 \text{ mm}^2$assume using T 22Use 6 T 22 • $A_{s2} = \frac{22*10000}{(\frac{360}{1.15})} = 703 \text{ mm}^2$assume using T 22Use 2 T 22 • $A_{s3} = \frac{12*10000}{(\frac{360}{1.15})} = 384 \text{ mm}^2$assume using T 16Use 2 T 116

8.3.2.2 Stirrups.

• $A_{st} = \frac{11*10000}{\binom{360}{1.15}} = 352 \text{ mm}^2$Use stirrups 5 T 10/m'

8.3.3 Columns Design.

8.3.3.1 Longitudinal RFT

- δ_x= (20.8² *0.5) / (2000)= 0.108 m
- M_{add.x}= 240*0.132= 31.68 KN.m
- M_{add.y}= 240*0.108=25.92 KN.m

• Column A (Left Column).

- Mx= 149.8 KN.m
- My= 56.5 KN.m
- M_{d-x}= 149.8 + 31.68= 181.48 KN.m
- M_{d-y}= 56.5 + 25.92= 82.42 KN.m
- Pu= 240 KN
- Use top and bottom steel ά=1
- $\zeta = \frac{550-50}{600} = 0.83$

•
$$R_b = \frac{pu}{Fcu*b*t} = \frac{240*1000}{30*500*600} = 0.027$$

•
$$\frac{Mdx}{Fcu*b*t^2} = \frac{181.48*100000}{30*500*600^2} = 0.034$$

- $\frac{Fcu*b*t^2}{Fcu*b*t^2} = \frac{62.42*1000000}{30*600*500^2} = 0.0183$
- From Interaction Diagram, ρ = 3
- μ= 3 * 30*10⁻⁴ =9*10⁻³
- As= 9*10⁻³ * 600*500 = 2700 mm².....Use 14 T 16
- Torsion RFT. (see part 8.3.2.2) 7 T 16
- Total vertical RFT. equal 22 T 16

• Column B (Right Column).

- Mx= 100.5 KN.m
- My= 37.5 KN.m
- M_{d-x}= 100.5 + 31.68= 132.18 KN.m
- M_{d-y}= 37.5 + 25.92= 63.42 KN.m
- Pu= 240 KN
- Use top and bottom steel ά=1

•
$$\zeta = \frac{550-50}{600} = 0.83$$

•
$$R_b = \frac{pu}{Fcu*b*t} = \frac{240*1000}{30*500*600} = 0.027$$

•
$$\frac{Mdx}{Fcu*b*t^2} = \frac{132.18*1000000}{30*500*600^2} = 0.025$$

- $\frac{Mdy}{Fcu*t*b^2} = \frac{63.42*1000000}{30*600*500^2} = 0.014$
- From Interaction Diagram, $\rho = 2.1$
- μ= 2.1 * 30*10⁻⁴ =6.3*10⁻³
- As= 6.3*10⁻³ * 600*500 = 1890 mm².....Use 10 T 16
- Torsion RFT. (see part 8.3.2.2) 6 T 16
- Total vertical RFT. equal 16 T 16

Results assessment by using Sap 2000 software (Design according to BS8110 97) X SAP2000 v14.2.2 Advanced - Diving Platform Modeling (With Wall) - [Longitudinal Reinforcing Area (BS8110 97)] 💢 Eile Edit Yiew Define Bridge Draw Select Assign Analyze Display Design Options Jools Help D 🛎 🖬 🖞 n つ 🥒 🙆 ・ 🔉 身身身身の 🕅 3d w z w m ひか キキ 詰回 治。 ロカM・m 。 I・ロ・ 四年 ・ ノノ英国 〇日日日 。 多なら経 「国ニ大十二日 。 849. 45 NO YO ZO GLOBAL 3DV · Toni 🗶 🙇 R 🕰 へ ● (小) ENG 6:22 PM 7/15/2020 Q × Ŧ • 1 7 w RA

8.3.2.2 Stirrups.

• Column A (Left Column).

.

8.3.4 Cantilevers

•	Horizontal RFT. F11= 18 T/m' By using Interior and Exterior mesh, the F_{11} for eash mesh will equal 18/2= 9 T/m'
	As = $\frac{9*10000}{360/1.15}$ = 288 mm ² UseUse 5 T 10 / m'
•	Vertical RFT. F22= 6 T/m' By using Interior and Exterior mesh, the F ₂₂ for eash mesh will equal 6/2= 3 T/m'
	As = $\frac{3*10000}{360/1.15}$ = 96 mm ² UseUse 5 T 10 / m'

Egyptian Aquatic Centre Coliseum

I. Design codes and standards

1- EN 1996-1-1

Eurocode 6 - Design of masonry structures - Part 1-1: General rules for reinforced and unreinforced masonry structures.

2- ECP (201-2010)

Egyptian Code for Loading on Buildings.

3- EN 1990:2002+A1

Eurocode - Basis of structural design.

4- Structural Designer's Manual

Second Edition.

- 5- DESIGN OF MASONRY STRUCTURES Book Third edition of Load Bearing Brickwork Design.
- 6- Design of Masonry Structures According Eurocode 6. Prof. em. Dr.-Ing. Wieland Ramm Technical University of Kaiserslautern.

7- Ain Shams Engineering Journal.

Study of physical and mechanical properties for some of Eastern Desert dimension marble and granite utilized in building decoration.

1. INTRODUCTION

The concept for structural design focuses on satisfying both the functional and the economic requirements of the building without jeopardizing its aesthetic and architectural features. This Calculation Report presents the structural engineering aspect of the works due for the development construction work of Egyptian Aquatic Centre.

Figure 1-4 Coliseum location

2. Coliseum Drawings Details

Figure 2-: Ground Floor.

Figure 2-2: Arched Slabs Peak Level.

Figure 2- 3: Audience Level.

Figure 2-4: Elevations & Section A-A.

Figure 2- 5: Masonry Walls Blocks Details.

Figure 2- 6: Arched Slabs Blocks Details.

3. Calculation Software Used

Calculation software features

The software used is RFEM, developed by DLUBAL COMPANY (Germany).

Technical specifications

Name:	RFEM
-------	------

Version: 5.22.03

Producer: DLUBAL

www.dlubal.com

License registered is a student license

4. OUTLINE SPECIFICATION AND MATERIAL PROPERITIES

Stone Masonry Blocks.

By using Red Aswanian Granit Blocks, the mechanical properties of Red Aswanian Granite shown in the following table (AinShams University Journal).

Sample No.	Wt. saturated W2	Weight in water W1	Weight dry W0	Dry density	Flexural strength kg/cm ²	Apparent weight	Water absorption	Compressive Strength Kg/cm2
Halaib	2569	1616	2565	2.692	155.0	2.703	0.156	1358
Aswan	2454	1545	2452	2.697	142.5	2.703	0.082	1050
Dawi	2535	1582	2520	2.627	124.0	2.703	1.075	827
Sinai	2594	1645	2591	2.730	125.0	2.739	0.116	1299
Telmet	2540	1585	2523	2.629	111.6	2.704	1.073	824

Mechanical testing results of some Egyptian granite and marble.

Mortar.

By using M12 mortar (the letter 'M' describes the compressive strength of the mortar), the mechanical properties of the mortar is:

- Compressive strength= 12 N/mm2.
- Mortar class= standard Mortar.
- Ratio g/t (width of the mortar bed to the thickness of bedded surface)= 1.
- Bed joint thickness around from 3mm to 5mm.
- Reinforced mortar cover= 30mm

Stone Masonry Combination.

According to EN 1996-1-1 Clause 3, the design characteristics strength of masonry combinations are:

- Compressive strength _{Fk}= 24.6 N/MM²
- Flexural Tensile strength parallel to bed joint direction, Fxk1 = 0.6 N/mm².
- Flexural Tensile strength perpendicular to bed joint direction, Fxk2= 1.2 N/mm².
- Shear strength _{Fvk0}= 0.6 N/mm².
- Final creep coeff.= 0.05
- Modules of Elasticity= 24600 N/mm²
- Shear Modules= 10250 N/mm²
- Poisson's ratio= 0.2
- Partial Safety Factor (assume high quality in manufacturing and execution)= 2

Reinforcing Steel.

Reinforcing steel bars shall be uncoated high yield deformed bars of characteristic strength 360 N/mm².

Note: Bar size increment = 6, 8, 10, 12, 16, 18, 20, 22, 25, 28 and 32

5. Calculation method and numerical model

5.1 Model Description

5.1.1 Hypothesis adopted for the elements

• Stine masonry is an orthotropic material, due to absence of testing data and for simplicity the material is modeled as nonlinear isotropic material as shown in the fig. 5.1.

Vaterial Model - Isotropic Masonry 2D	×
Failure Criterion Limit tension stresses σx,limit : 0.6 ↔ [N/mm ²] σy,limit : 1.2 ↔ [N/mm ²] Hardening factor CH : 1.0000E-04 ↔ [-]	Glimit E CHE E
	Option
D agg	OK Cancel

Figure 5.1 Material model of stone masonry.

- After tensile strength limits, the plastic behavior of masonry is obsesses and fracturing cracks appear.
- The masonry after this limit can resist the load as a cracked section, depending on it's stability moment of resistance.

6. Actions and design loads

6.1 STRUCTURAL LOADS.

The following loads are considered in the design:

- Structural Dead Loads which include:
 - > The own weight of the structural elements, walls and arched slabs.
 - Superimposed dead load from Stone above arched slabs and Finishing.
- Live loads which cover all variable occupants above the coliseum.
- Seismic loads according to ECP.

The basis for the considered design loads are summarized in the followings sections.

D. Dead Loads

Unit weight of Masonry elements

27.0 kN/m³

E. Live Loads

Live loads are considered equal to 500 \mbox{kg}/\mbox{m}^2

F. Wind Loads

The wind pressure shall be calculated in accordance with (ECP 201-2012)

Basic wind speed = 36 m/sec.

Wind pressure (or suction) distribution factor (Ce)

 C_e = +0.8 for areas subjected to wind pressure

 C_e = -0.5/-0.7 for areas subjected to suction wind

Exposure factor (according to height from ground level) (k = 1)

G. Earthquakes

٠	Response modification factor	(R = 2)
•	Importance factor	(x _i = 1.2)
•	The design acceleration	(a _g = 0.15g)
•	Design damping correction factor	(η = 1.0)
•	Zone 3	
٠	Soil Type	(C)
٠	Earthquake loads shall be comply with	the (ECP 201-2010).

> Earthquakes Input data and results.

Z	Activities	 Modal analysis (eiger Mass combination Forced vibrations Response spectra Accelerograms Time diagrams Equivalent static force 	15
//	Setting	Gravity acceleration	9.806 m/s ²
No.	Mass Case Description		Parameters
MC1	Self-Weight	Mass Case Type Masses	 Permanent From force components of Load Case LC5-Self-weight
MC2	Arch Load	Mass Case Type Masses	: Permanent : From force components of Load Case LC12-Arch Load
MC3	Imposed Load	Mass Case Type Masses	 Imposed - category C (independent, p=0.5) From force components of Load Case LC6-Imposed load
	Mass Combination	5	-
No. MCO1	Description DL + 0.5 LL	Mass Cases	Parameters
MCOT		Çomment	1.00 MC1 - Self - Weight 1.00 MC2 - Arch Load 0.50 MC3 - Imposed Load

	Response Spectrum		Time	Acceleration \	\vee \rightarrow
No.	Description	No.	T[s]	a [m/s ²]	~ //
RS1		1	0.000	1.350	
		2	0.070	1.700	
		3	0.133	2.050	
		4	0.200	2.410	
		5	0.330	2.410	
		6	0.470	2.410	
		7	0.600	2.410	
		8	0.900	1.650	
		9	1.160	1.250	
		10	1.440	1.000	
		11	1.720	0.840	
		12	2.000	0.720	
		13	2.330	0.530	
		14	2.670	0.410	6
		15	3.000	0.350	
		16	3.330	0.350	

SHAPES TO GENERATE

DLC	Dynamic Load Cases	Mode	To generate	Frequency ω [rad/s] f [Hz]		Period	Acceleration	
Case	Description	No.				T [s]	S _a [m/s ²]	
DLC1		1	8	49.014	7.801	0.128	2.023	
		2	\boxtimes	63.668	10.133	0.099	1.859	
1 8		3		70.291	11.187	0.089	1.808	
/ /		4	20	76.036	12.102	0.083	1.770	
1		5		89,150	14.189	0.070	1.703	
		6		90.995	14.482	0.069	1.695	
	>	7		103.003	16.394	0.061	1.655	
/ /		8		113.214	18.019	0.055	1.627	
11		9		122.136	19.439	0.051	1.607	
7 /	~ ~	10		125.137	19.916	0.050	1.601	

5.1 NATURAL FREQUENCIES

5.1 N/	ATURAL FREQUE	NCIES			NVC1
Mode	Eigenvalue	Angular frequency	Natural Frequency	Natural Period	
No.	λ. [1/s²]	ω [rad/s]	f [Hz]	T [s]	
1	2402.368	49.014	7.801	0.128	
2	4053.596	63.668	10.133	0.099	
3	4940.758	70.291	11.187	0.089	
4	/ 5781.477	76.036	12.102	0.083	
5	7947.635	89.150	14.189	0.070	
6	8280.085	90.995	14.482	0.069	
7	10609.709	103.003	16.394	0.061	
8	12817,348	/ / 113.214	18.019	0.055	
9	14917.178	122.136	19.439	0.051	
10	15659.199	125.137	19.916	0.050	

5.7 EFFECTIVE MODAL MASS FACTORS

5.7 E	FFECTIV	E MODA	L MASS	FACTO	RS					NVC1	
Mode	Modal Mass	7	//	Effective M	odal Mass	-		Effective	Effective Modal Mass Factor		
No.	M _i [t]	m _{ex} [t]	mey [t]	mez [t]	m _{ox} [t.m ²]	m _{oY} [t.m ²]	m _{oz} [t.m ²]	fmex [-]	fmey [-]	f _{mez} [-]	
1	3230.50	0.00	5020.75	0.66	95.498	0.000	36294.255	0.000	0.909	0.000	
2	1532.46	3756.08	1.87	8.90	17.356	2579.357	17116.636	0.680	0.000	0.002	
3	1929.15	133.41	40.95	0.04	1774.352	6.669	2585185.212	0.024	0.007	0.000	
4	1233.96	1299.49	1.07	3.09	692.159	94.774	37617.967	0.235	0.000	0.001	
5	1106.59	9.02	8.63	46.29	917.802	2.148	121698.288	0.002	0.002	0.008	
6	1377.24	11.70	31.05	15.01	6344.396	0.031	209874.453	0.002	0.006	0.003	
7	205.80	8.51	0.46	0.00	2457.496	67.419	1660.530	0.002	0.000	0.000	
8	174.19	6.49	0.18	0.29	180.056	247.940	333.941	0.001	0.000	0.000	
9	301.14	1.40	10.13	60.26	2/1360,189	89.104	5774.345	0.000	0.002	0.011	
10	186.48	0.82	2.91	0.26	/ 517.525	A 109.330	5380.205	0.000	0.001	0.000	
Sum	11277.52	5226.91	5118.03	134.80	/ 34356.829	3196.773	3020935.833	0.947	0.927	0.024	

6.2 Load Cases and Load combinations.

The following tables describe the load cases and load combinations on the Coliseum:

Table 1: Load cases

Load	Load Case	Case EN 1990 CEN		Self-Weight - F	actor in Direction	n
Case	Description	Action Category	Active	X	Y I	Z
LC1	DLC1 - Mode shape 1, direction - Y	Earthquake				
LC2	DLC1 - Mode shape 2, direction - X	Earthquake			1	
LC3	Imperfection	Imperfection		/		
LC4	DLC1 - Mode shape 2, direction - Y	Earthquake				1
LC5	Self-weight	Permanent		0.000	0.000	1.000
LC6	Imposed load	Imposed - Category C: congregation areas			//	2
LC7	Wind in +X	Wind				17
LC8	Wind in -X	Wind				1 5
LC9	Wind in +Y	Wind			\wedge	11
LC10	Wind in -Y	Wind			N	
LC11	DLC1 - Mode shape 4, direction - X	Earthquake				
LC12	Arch Load	Permanent/Imposed				11
LC13	DLC1 - Mode shape 4, direction - Y	Earthquake				

Load	Load Case		
Case	Description	Angular Frequency [rad/s]	Lehr's damping [-]
LC1 LC2	DLC1 - Mode shape 1, direction - Y	49.01	0.070
LC2	DLC1 - Mode shape 2, direction - X	63.67	0.070
LC4	DLC1 - Mode shape 2, direction - Y	63.67	0.070
LC11	DLC1 - Mode shape 4, direction - X	76.04	0.070
LC13	DLC1 - Mode shape 4, direction - Y	76.04	0.070

Table 2: Load combinations

Load	1	Load Combination	1	Sec. 1.		
Gombin	DS	Description	No.	Factor		Load Case
COI	STR	1,35G+Imp	2	1.35	LC5 LC3	Self-weight
CO2	STR	1.35G + 1.35Gg + Infp	1	1.35	LCS	Imperfection Self-weight
	17	in the second se	2	1.35	LC12	Arch Load
	1	and the s	3	1.00	LC3	Imperfection
CO3 \	STR	1,35G + 1:5QiC + Imp	2	1.35	LC5 LC6	Self-weight Imposed load
1000	NY	$1/ \frown$	3	1.00	LC3	Imperfection
CO4	STR	1.35G + 1.5QiC + 1.35Gg + Imp	1	1.35	LC5	Self-weight
			2	1.50	LC8 LC12	Imposed load Arch Load
	1		34	1.00	LC3	Imperfection
CO5	STR	G+Imp	1	1.00	LC5	Self-weight
C08	STR	G + 1.35Gg + Imp	2	1.00	LC3 LC5	Imperfection Self-weight
000	Silv		2	1.35	LC12	Arch Load
	1		3	1.00	LC3	Imperfection
C07	STR	G + 1.5QiC + Imp	1	1.00	LC5	Self-weight
			23	1.50	LC8 LC3	Imposed load Imperfection
COB	STR	G + 1.5QiC + 1.35Gq + Imp	1	1.00	LC5	Self-weight
			23	1.50	LC8	Imposed load
			3	1.35	LC12 LC3	Arch Load Imperfection
CO9	STR	1.35G + Imp	1	1.35	LC5	Self-weight
	100	· / /	2	1.00	LC3	Imperfection
CO10	STR	1.35G + 1.35Gq + Imp	1	1.35	LC5	Self-weight
	100		23	1.35	LC12 LC3	Arch Load Imperfection
C011	STR	1.35G + 1.5QiC + Imp	Ni.	1.35	LC5	Self-weight
	2.00		20	1.50	LC6	Imposed load
	000	1050 1500 000 1 100		1.00	LC3	Imperfection
CO12	STR	1.35G + 1.5QiC + 0.9Qw1 + Imp	13	1.35	LC5 LC8	Self-weight Imposed load
		//	23	09.0	LC7	Wind in +X
	-		4	1.00	LC3	Imperfection
CO13	STR	1.35G + 1.5QiC + 0.9Qw2 + Imp	12	1.35	LC5 LC8	Self-weight Imposed load
	1		23	0.90	LC8	Wind in -X
		Danal and the state of the second	4/	1.00	LC3	Imperfection
CO14	STR	1.35G + 1.5QiC + 0.9Qw3 + Imp	1/2/	1.35	LC5 LC6	Self-weight Imposed load
	-		23	0.90	LCB	Wind in +Y
		and a set of the set o	4	1.00	LC3	Imperfection
CO15	STR	1.35G + 1.5QiC + 0.9Qw4 + Imp		1.35	LCS	Self-weight
			3	1.50	LC8	Imposed load Wind in -Y
		a month of the world of the second	4	1.00	LC3	Imperfection
CO16	STR	1.35G + 1.5QiC + 0.9Qw1 + 1.35Gq + Imp	1	1.35	LC5	Self-weight
	-		2	1.50	LC6 LC7	Imposed load Wind in +X
				1.35	LC12	Arch Load
Jan Bak		A state of the second second second second	4 5	1.00	LC3	Imperfection
CO17	STR	1.35G + 1.5QiC + 0.9Qw2 + 1.35Gq + Imp	2	1.35	LCS	Self-weight
1000		and the second se	3	0.90	LCS	Wind in -X
			4	1.35	LG12	Arch Load
		the second second second second	5	1.00	LC3	Imperfection
CO18	STR	1.35G + 1.5QiC + 0.9Qw3 + 1.35Gq + Imp	1	1.35	LC5 LC8	Self-weight Imposed load
12.01	1		3	0.90	LC9	-Wind in +Y
			4	1.35	LC12	Arch Load
CO19	STR	1.35G + 1.5QiC + 0.9Qw4 + 1.35Gg + Imp	5	1.00	LC3 LC5	Imperfection Self-weight
0018	SIR	1.500 + 1.5000 + 0.80004 + 1.3500 + Imp		1.50	LC6	Imposed/load
			23	0.90	LC10	Wind in Y
			4	1.35	LC12	Arch Load
CO20	STR	1.35G + 1.5QiC + 1.35Gg + Imp	5	1.00	LC3 LC5	Imperfection Self-weight
0020	Sur.	Loss Choose Floored Fillip		1.50	LC8	Imposed load
	1		23	1.35	LC12	Arch Load
0004		1 250 - 1 50 - 1 - Imp	4	1.00	LC3	Imperfection
CO21	STR	1.35G + 1.5Qw1 + Imp	2	1.35	LC5 LC7	Self-weight Wind in +X
			3	1.00	LC3	Imperfection
					1000	

Load		Load Combination		1000		
Combin.	DS	Description	NO.	Factor	1	Load Case
C622	STR	1.35G + 1.5Qw2 + Imp	1	1.35	LCS	Self-weight Wind in -X
1º	1.0		23	1.00	LC8 LC3	Imperfection
CO23	STR	1.35G + 1.5Qw3 + Imp	1	1.35	LCS	Self-weight
11	r - 1		23	1.50	LC9 LC3	Wind In +Y Imperfection
C024	STR	1.35G + 1.5Qw4 + Imp	1	1.35	LCS	Self-weight
1	122	and a second second	2	1.50	LC10	Wind in -Y
C025	STR	1.35G + 1.05QIC + 1.5Qw1 + Imp	3	1.00	LC3 LC5	Impertection Self-weight
Cues	200	1.300 + 1.00 arc + 1.00 wr + 110		1.05	LC6	Imposed load
71	1		23	1.50	LC7	Wind In +X
C026	STR	1.35G + 1.05GIC + 1.5GW2 + Imp	4	1.00	LC3 LC5	Imperfection Self-weight
-000	~	1.000 Thomas Thomas The		1.05	LCE	Imposed load
1	17	11	234	1.50	LC8	Wind In -X
C027	STR	1.38G + 1:05QIC + 1.5QW3 + Imp	4	1.00	LC3 LC5	Impertection Self-weight
unes /	1500	Lydd T Harac T Hound T hip		1.05	LC6	Imposed load
	1	1/ ~	23	1.50	LC9	Wind In +Y
C028	ere.	1.35G+1.050iC+1.50w4+1mp	4	1.00	LC3 LC5	Imperfection Self-weight
0020	3115	Store a longer to and the		1.05	LCS	Imposed load
			23	1.50	LC10	Wind In -Y
C029	STR	1.35G + 1.05QIC + 1.5QW1 + 1.35Gg + Imp	4	1.00	LC3 LC5	Imperfection Self-weight
0023	SIR	Logo + Coord + Leaver + Sood + Inp		1.05	LC6	Imposed load
		912	23	1.50	LC7	Wind In +X
			4 5	1.35	LC12 LC3	Arch Load Imperfection
CO30	STR	1.35G + 1.05GIC + 1.5QW2 + 1.35Gg + Imp	1	1.35	LCS	Self-weight
	1000		2	1.05	LC6	Imposed load
		1/100	234	1.50	LC8 LC12	Wind in -X Arch Load
	1.0	V/ 26	5	1.00	LC3	Imperfection
CO31	STR	1.35G + 1.05QIC + 1.5QW3 4 1.35Gq + Imp	1	1.35	LCS	Self-weight
			23	1.05	LC6 LC9	Imposed load Wind in +Y
		1.1	4	1.35	LC12	Arch Load
			5	1.00	LC3	Imperfection
CO32	STR	1.35G + 1.05QIC + 1.5QW4 + 1.35Gkt + Imp	1. 1	1.35	LCS	Self-weight
			12	1.05	LC6 LC10	Imposed load Wind in -Y
		1	100	1.35	LC12	Arch Load
C033	OTD	1 350 + 1 50 ml + 1 350m + Imm	5	1.00	LC3 LC5	Imperfection
CUSS	STR	1.35G + 1.5Qw1 + 1.35Gq + Imp	1	1.50	LC7	Self-weight Wind in +X
		1.1	23	1.35	LC12	Arch Load
	STR	1750 11500 11750 1100	14	1.00	LC3	Imperfection
CO34	SIR	1.35G + 1.5QW2 + 1.35Gq + Imp	2	1.35	LCS LC8	Self-weight Wind in -X
	1.1		3/	1.35	LC12	Arch Load
C035	OTR	1 350 + 1 50+2 + 1 350+ 1 100	14	1.00	1.C3	Imperfection
0000	STR	1.35G + 1.5Qw3 + 1.35Gq + Imp	1/2/	1.35	LCS LC9	Self-weight Wind in +Y
			23	1.35	LC12	Arch Load
		1.35G + 1.5Gw4 + 1.35Gg + Imp	4	1.00		Imperfection Self-weight
CO36	STR	1.30G + 1.5GAV4 + 1.30GQ + IMD	2	1.35	LCS LC10	Wind in -Y
(and)	1.000		3	1.36		Arch Load
C037	OTD	C . Imp	4		LCS	Imperfection Self-weight
CUST	STR	G + Imp	2	1.00	LC3	Imperfection
CO38	STR	G + 1.35Gq + Imp	1	1,00	LC5 (Self-weight
	1000		23	1.35	LC12	Arch Ldad Imperfection
CO39	STR	G+1.5QIC+Imp	1	1.00	LOS	Self-weight
			23	1.50	Lde)	Imposed load
CO40	STR	G + 1.5QIC + 0.9QW1 + Imp	3	1.00	LCS	Imperfection Self-weight
0040	SIR	G + 1.5410 + 0.94W1 + IND	2	1.50	LC6	Imposed load
	1.00		3	0.90	LC7	Wind in +X
in the second	OTP		4	1.00	LC3 N	
CO41	STR	G + 1.5QIC + 0.9QW2 + Imp	2	1.00	LC5 LC6	Self-weight Imposed load
			3	0.90	LC8	Wind In -X
-		C L COIC L COOL LINE	4	1.00	LC3	Imperfection
CO42	STR	G + 1.5QIC + 0.9QW3 + Imp	2	1.00	LCS LC6	Self-weight / imposed load
			3	0.90	LC9	Wind In +Y
A.L.	-	a com com com	4	1.00	LC3	Imperfection
CO43	STR	G + 1.5QIC + 0.9QW4 + Imp	2	1.00	LC5 LC6	Self-weight Imposed load
			3	0.90	LC10	Wind In -Y
-	-		4	1.00	LC3	Imperfection (
CO44	STR	G + 1.5QIC + 0.9QW1 + 1.35Gq + Imp	12		LCS LC6	Self-weight Imposed load
			1 4	1.00	200	I interaction

Load		Load Combination				
Combin.	DS	Description	NO.	Factor		Load Case
Contraction	00		3	0.90	LC7	Wind In +X
11			1	1.35	LC12	Arch Load
n a			5		LC3	Imperfection
CO45	STR	G + 1.5QIC + 0.9Qw2 + 1.35Gg + Imp	1	1.00	LCS	Self-weight
1 / 1	P	Contractor the down in the 2002	2	1.50	LOS	Imposed load
//			3	0.90	LCB	Wind In -X
1	1		4	1.35	LC12	Arch Load
	2		5	1.00	LC3	Imperfection
CO46	STR	G + 1.5QIC + 0.9QW3 + 1.35Gq + Imp	1	1.00	LCS	Self-weight
. /	1	the second se	2	1.50	LCS	Imposed load Wind in +Y
7 1	1		4	1.35	LC12	Arch Load
- /	1	1 1	5	1.00	LC3	Imperfection
6047	STR	G + 1.5QIC + 0,9QW4 + 1.35Gq + Imp	1	1.00	LCS	Self-weight
~ /	11		2	1.50	LC6	Imposed load
1	1)*/	3	0.90	LC10	Wind In -Y
	1.	///	4	1.35	LC12	Arch Load
CO48	1	1 ratio and and	5	1.00	LC3	Imperfection
CO48	STR	G = 1.901C + 1.35Gq + Imp			LCS	Self-weight Imposed load
	1		2	1.50	LC6 LC12	Arch Load
	1	$(\land \land \land)$	4	1.00	LC3	Imperfection
CO49	STR	G + (.5QW1 + Imp.	1	1.00	LCS	Self-weight
			2	1.50	LC7	Wind In +X
			3	1.00	LC3	Imperfection
COSO	STR	G+(1.50)/2+ Imp	1		LCS	Self-weight
10000			2	1.50	LCB	Wind In -X
			3	1.00	LC3	Imperfection
COST	STR	G + 1.5Qw3 + Imp	1	1.00	LCS	Self-weight
	1.0		2	1.50	LC9 LC3	Wind in +Y Imperfection
CO52	STR	G+15Qw4+imp	1		LOS	Self-weight
CODE	ain	or isune the	2	1.50	LC10	Wind In -Y
	1		3	1.00	LC3	Imperfection
CO53	STR	G + 1.05QIC + 1.5QWT + Imp	1	1.00	LCS	Self-weight
			2	1.05	LOS	Imposed load
			3	1.50	LC7	Wind In +X
Charles 1	al. and	and an in the second of the	4	1.00	LC3	Imperfection
CO54	STR	G = 1.05QIC + 1.5Qw2 + Imp	1	1.00	LCS	Self-weight
I Prefer II		10	2	1.05	LCE	Imposed load Wind In -X
C. States of Land	(13	1.00	LC3	Imperfection
COSS	STR	G + 1.05QIC + 1.5Qw3 + Imp	1	1.00	LCS	Self-weight
		/	à	1.05	LC6	Imposed load
		/	1 3	1.50	LC9	Wind in +Y
		//	4	1.00	LC3	Imperfection
CO56	STR	G + 1.05QIC + 1.5Qw4 + Imp	1	1.00	LCS	Self-weight.
1.000		11-	12	1.05	LC6 LC10	Imposed load Wind In -Y
		15	1	1.50	LC3	Imperfection
CO57	STR	G + 1.05QIC + 1.5Qw1 + 1.35Gg + Imp	1	1.00	LCS	Self-weight
003.		a Property Property Property Prints	2/	1.05	LCE	Imposed load
			1	1.50	1.C7	Wind In +X
			14/		LC12	Arch Load
1			5	bo.v	UC3	Imperfection
CO58	STR	G = 1.05QIC + 1.5Qw2 + 1.35Gq + Imp	1:11		LCS	Self-weight
			12		LCB	Imposed load
			3	1.50	LCB CC12	Wind In -X Arch Load
			5		LC3	Imperfection
0059	STR	G + 1.05QIC + 1.5Qw3 + 1.35Gg + Imp	1		CC5	Self-weight
		a second a second s	2	1.05	LOS	Imposed load
			3		LC9	Wind to +Y
			4		LC12	firch Light
1000	(Second	and a second state of a second	5	1.00	LC3	Imperfection
COSO	STR	G = 1.05QIC + 1.5Qw4 + 1.35Gq + Imp	1		LCS	Self-weight
			23		LO5	Wind In -Y
			4	1.35	LC12	Arch Load
		A more to more and	5		LC3	Imperfection
COST	STR	G + 1.5Qw1 + 1.35Gg + Imp	1	1.00	LCS	Self-weight
	1.0	and the second	2	1.50	LC7	Wind in +X
	1.1		3		LC12	Arch Lped
and a	000	0. 400-0. 4000-1-	4		LC3	Impeffection
CO62	STR	G + 1.5Qw2 + 1.35Gg + Imp	1 1		LCS	Self-weight
			2		LCB	Whid In -X
		a province of the local	3		LC12 LC3	Arch Load Imperfection
CO63	STR	G + 1.5Qw3 + 1.35Gd + Imp	1		LCS	Self-weight
	S	and the second sec	2		LC9	Wind in +Y
		a been seen and seen a	3		LC12	Arch Load
			4	1.00	LC3	Imperfection
CO64	STR	G + 1.5Qw4 + 1.35Gq + Imp	1		LCS	Self-weight
	1000		2		LC10	Wind In-Y
			3		LC12	Arch Load
				1 00		Internation .

7. STRUCTURAL ANALYSIS

7.1 3d-model

7.2 ASSIGN OF LOADS

Figure 7.1.: Assign of stone masonry fill loads on the arched slab (KN-M² Units)

Figure 7.2.: Assign of Live loads on the arched slab (KN-M² Units)

Figure 7.3.: Assign of Wind loads in positive x-direction (KN-M² Units)

Figure 7.4.: Assign of Wind loads in positive x-direction (KN-M Units)

Figure 7.5.: Assign of Wind loads in negative x-direction (KN-M² Units)

Figure 7.6.: Assign of Wind loads in negative x-direction (KN-M Units)

Figure 7.7.: Assign of Wind loads in positive y-direction (KN-M Units)

Figure 7.5.: Assign of Wind loads in positive y-direction (KN-M² Units)

Figure 7.6.: Assign of Wind loads in negative y-direction (KN-M² Units)

Figure 7.7: Assign of Wind loads in negative y-direction (KN-M Units)

8. STRUCTURAL DESIGN.

8.1 Local Axis Definitions.

The following figure illustrates the definition of basic internal forces in surfaces:

8.2 Walls Design.

8.2.1 Axial Loading Design.

 The design vertical load resistance of a single leaf wall per unit length, NRd, is given by:

$$N_{Rd} = \frac{\Phi_{im} \cdot t \cdot f_k}{\gamma_M}$$

where:

- $\Phi_{i,m}$ is the capacity reduction factor Φ_i or Φ_m , as appropriate, allowing for the effects of slenderness and eccentricity of loading;
- is the characteristic compressive strength of masonry; f_k
- is the partial safety factor for the material; YM
- t is the thickness of the wall, taking into account the depth of recesses in joints greater than 5 mm.

Symbol: 0

At the top or bottom of the wall.

$$\Phi_i = 1 - 2 \frac{e_i}{t}$$

where:

t

1

is the eccentricity at the top or the bottom of the wall: e.

$$e_i = \frac{M_i}{N_i} + e_{hi} + e_a \ge 0.05 t$$

- is the design bending moment M at the top or the bottom of the wall resulting from the eccentricity of the floor load at the support,
- is the design vertical load N at the top or bottom of the wall,
- is the eccentricity at the top or bottom of the wall, if any, **ehi** resulting from horizontal loads (for example, wind),
- is the accidental eccentricity ea
- is the thickness of the wall.

An accidental eccentricity, ea,

- shall be assumed for the full height of the wall to allow for construction imperfections,
- may be assumed to be hef / 450 where her is the effective height of the wall.

ratio

design load

site and manufacture

- γ_M= 2
- t= 1 m
- f_k= 24649 KN/m²
- The eccentricity is calculated in RFEM model and add to applied straining actions.
- Slenderness Ratio (S.R)= H/t= 10100/1000= 10.1 > 27(Safe)
- $N_{RD} = \frac{1 * 24649 * 1}{2} = 12324.5 \text{ KN/m'}$

From RFEM model, the normal stresses bigger than N_{RD} , equal to zero as shown in Fig. 8.1.

Figure 8.1: Check on Normal Stresses in local axis y direction (KN-m')

8.2.2 Bending Moment Design.

According to mortar characteristics and test flexural test results, the Tensile flexural strength of Natural stone masonry equal to:

- F_{xk1}= 0.6 N/mm²
- F_{xk2}= 1.2 N/mm²

According to EN 1996-1-1, clause 6.3.1, the combined interaction between axial and bending moment will follow the following equations:

(4) When a vertical load is present, the favourable effect of the vertical stress may be taken into account either by:

(i) using the apparent flexural strength, $f_{xdl,app}$, given by equation (6.16), the orthogonal ratio used in (2) above being modified accordingly.

$$f_{\rm xd1,app} = f_{\rm xd1} + \sigma_{\rm d} \tag{6.16}$$

where:

 $f_{\rm xd1}$

is the design flexural strength of masonry with the plane of failure parallel to the bed joints, see 3.6.3;

 $\sigma_{\rm d}$ is the design compressive stress on the wall, not taken to be greater than $0.2 f_{\rm d}$

The design moment of lateral resistance of a masonry wall, $M_{\text{Rd}},$ is given by:

 $M_{Rd} = \frac{f_{xk} \cdot Z}{\gamma_M}$

where:

Z the section modulus of the wall.

(1)P At the ultimate limit state, the design value of the moment applied to the masonry wall, $M_{\rm Ed}$ (see 5.5.5), shall be less than or equal to the design value of the moment of resistance of the wall, $M_{\rm Rd}$, such that:

 $M_{\rm Ed} \leq M_{\rm Rd}$

(6.14)

> Plan of failure parallel to bed joints.

The average minimum compression force act on the wall is 26.5+40=66.5 $\rm KN/m^2$ as show in Fig. 8.2.

Figure 8.2: axial load induced from Favourable load combinations (KN-m²)

- σ_d = 66.5 KN/m² = 0.0665N/mm²
- $F_{cd1,app}$ = 0.6 + 0.0665= 0.67 N/mm²
- Z= bt²/6 = (1*1)/6= 0.17 m³
- $M_{RD} = \frac{666.5 \times 0.17}{2} = 56.65 \text{ KN.m/m'}$

The applied bending moment (M_{ED}) < the resistance bending moment (M_{RD}) except some regions shown in Fig.8.3; thus, these regions will need reinforcement.

Figure 8.3: unsafe regions in bending moment in loxal axes x direction (KN.m-m')

> Plan of failure perpendicular to bed joints.

The average minimum compression force act on the wall is 26.5+40=66.5 KN/m² as show in Fig. 8.2.

- σ_d = 66.5 KN/m² = 0.0665N/mm²
- F_{cd1,app}= 1.2 + 0.0665= 1.266 N/mm²
- Z= bt²/6 = (1*1)/6= 0.17 m³
- $M_{RD} = \frac{1266.5 * 0.17}{2} = 107.7 \text{ KN.m/m'}$

The applied bending moment (M_{ED}) > the resistance bending moment (M_{RD}) in the most regions of walls as shown in Fig.8.4 ; thus, walls will design as reinforced masonry walls in that direction.

Figure 8.4: unsafe regions in bending moment in loxal axes y direction (KN.m-m')

8.2.3 Shear Design.

Behaving of masonry under shear:

Element cut off a wall:

In the global system shear stresses τ act not only in horizontal but also in vertical direction (due to the equilibrium of moments at the element).

Locally in the perpend joints shear stresses cannot be transferred due to the following reasons:

- the surface of the unit heads are often very smooth,
- there are no normal stresses acting in the perpend joints, therefore there is no friction possible,
- the shrinkage of mortar reduces the possible adhesion,
- vertical joints often are not fully filled with mortar.

The characteristic shear strength $f_{\mbox{\tiny Vk}}$ of unreinforced masonry can be determined

- from the results of tests on masonry,
- by calculation in the following way:

For general purpose mortar and when all joints may be considered as filled, $f_{\nu k}$ will not fall below the least of the values described below:

$$f_{vk} = f_{vko} + 0.4 \sigma_d$$

or = 0,065 fb, but not less than fvko

or = the limiting value given in table 3.5

where:

fvko is the shear strength, under zero compressive stress

 σ_d is the design compressive stress perpendicular to the shear

So if shear stresses only act in the bed joints, there must be a change in the distribution of the vertical normal stresses, as the equilibrium of a single stone shows. The stresses must become a stepped distribution due to the kinematics of deformations.

Three failure modes occur:

 small load σ: 	failure in the bed joint, due to $\boldsymbol{\tau}$ under friction
 larger load σ: 	fracture of units, due to the principal tensile stress, deriving from σ and τ in the middle of units,
 very high load σ: 	failure of units, due to the pressure σ_a .

for vertical loading and for shear loading:

 $V_{sd} \le V_{Rd}$ V_{sd} : design v

 V_{sd} : design value of the applied shear load V_{Rd} : design shear resistance

$$V_{Rd} = \frac{f_{vk} t I_c}{\gamma_M}$$

According to EN 1996-1-1, clause 3.6.2, the shear strength of stone masonry with M2 mortar will equal 0.1 N/mm2.

Assume when use mortar M12, the shear strength will equal 0.6 N/mm².

• F_{vk0}= 0.6 N/mm²

The average minimum compression force act on the wall is 26.5+40=66.5 KN/m² as show in Fig. 8.2

- F_{vk}= 0.6 + 0.4*0.0665= 0.67 N/mm²
- l_c= 1m
- $V_{RD} = \frac{670 \times 1 \times 1}{2} = 335 \text{ KN/m'}$

the applied shear (V_{ED}) in bed joint direction is less than the resistance shear (V_{RD}) except some regions as shown in Fig.8.5; thus these regions will need reinforcement.

Figure 8.5: unsafe regions in Shear forces in loxal axes x direction (bed joints direction) (KN-m')

8.2.4 Reinforcement Calculations.

According to EN 1996-1-1, clause 6.6.2, eq. 6.26, the applied axial stress is less than 0.3*axil strength of masonry as show in fig. 8.6.

(8) Reinforced masonry members subjected to a small axial force may be designed for bending, only, if the design axial stress, σ_d , does not exceed:

Figure 8.6: Axial forces values, bigger than thirty percent of axial strength of masonry (KN-m')

According the EC 1996-1-1, clause 6.6.2, the design of reinforced masonry subjected to bending moment follows the following equations.

$$M_{d} = A_{s} z f_{y} / \gamma_{ms}$$
$$z = (d - d_{c} / 2)$$
$$A_{s} f_{y} / \gamma_{ms} = b d_{c} f_{k} / \gamma_{mm}$$

so that

$$d_c/d = A_s f_{y ; j_{mm}} / bdf_{k ; j_{ms}}$$
$$z = d(1 - 0.5A_s f_{y ; j_{mm}} / bdf_{k ; j_{ms}})$$

The methods of reinforcement shown in fig. 8.7.

A - Reinforcement surrounded by mortar

B - Reinforcement surrounded by concrete

Figure 8.7: Methods of Masonry Reinforcement.

By using Type A reinforcement method as show in fig. 8.7 and fig. 8.8.

Figure 8.8: Section in masonry wall.

> Plan of failure perpendicular to bed joints.

- d= 687 mm
- M_d= 260 KN.m/m'
- F_v= 360 N/mm²
- F_k= 24.6 N/mm²
- γ_{ms}= 1.15
- γ_{mm}= 2
- Z= 687*(1 $0.5*\frac{360*As*2}{24.6*1000*687*1.15}$)
- Z= 686.987 As
- 260*10⁶= As*(360/1.15)*686.987 As
- 260*10⁶= 215056.8 As

• As= 260*10⁶ / 215056.8 =1209 mm²/m'....use 5 T 18/m' as a vertical RFT By using 5 T 18/m' as a vertical RFT, the covered moment will equal:

- $Z = 687^{*}(1 0.5^{*} \frac{1272 \times 2}{24.6 \times 1000 \times 687 \times 1.15}) = 686.98 \text{ mm}$
- M_d= 1272*(360/1.15)*686.98= 272 KN*m/m'

By using 3 T 18/m' as additional RFT distributed in the regions shown in fig. 8.9, the covered moment

will equal:

- M_{d, additional}= 763*(360/1.15)*686.98= 164 KN*m/m'
- M_{d,total}= 164 + 272= 436 KN.m/m'

Figure 8.9: Covered bending moment in local axis y direction induced from 5 T 18/m' rebars.

> Plan of failure Parallel to bed joints.

By using 2 T 10/m' as horizontal RFT distributed in the total area of the wall except

the regions shown in fig.8.3.

the function of using 2 T 10/m' rebars is to tie vertical RFT together for ease the construction.

The covered bending moment induced from 7 T 10/m' rebars in the unsafe regions shown in fig. 8.3 will equal

M_{d, additional} = 549.7*(360/1.15)*686.98= 118.2 KN*m/m'

Figure 8.10: Covered bending moment in local axis x direction induced from 7 T 10/m' rebars.

There are small unsafe regions in bending moment in local x axis direction as shown in fig. 8.10. The author neglect these regions because of the following reasons:-

- These regions are small area regions.
- The unsafe bending moment in it, is low, equal to 47 KN.m/m'.
- EC 1996-1-1 assumes that, when design the reinforced masonry, the flexural tensile strength of masonry will be neglected and actually that doesn't occur because the masonry has flexural tensile strength as shown in part 8.3.2.

8.3 Arched Slab Design.

Most Masonry arches are considered to be fixed arches, there are no hinges. The downward loads on the arch creates lateral and comperession thrusts in the arch span (see fig. 8.11) which puch the masonry units against each other and compress them, and in turn the arch thrust against the abutments.

Figure: 8.11

If the line of thrust is on the center of the arch, the arch ring is under uniform compression stress (see fig. 8.12).

The line of thrust doesn't always pass along the centerline of the arch, and the arch isn't then in uniform compression (see fig.8.13)

In the fact, the line of thrust can lie outside the middle third of the arch thickness, tensile stress can develop and crack can occur. The line of thrust can move can move to the edge of the arch ring and a hinge will develop, but the arch necessary collapse.

8.3.1 Check on compression stresses.

- γ_M= 2
- t= 1 m
- Z= 0.17 m³
- f_k= 24.649 N/mm²
- Slenderness Ratio (S.R)= L/t= 9000/1000= 9 > 27(Safe)
- φ_i= 1
- $F_{RD} = \frac{1 \times 24.649}{2} = 12.3 \text{ N/mm}^2$

From RFEM model, the normal stresses bigger than F_{RD}, equal to zero as shown in Fig. 8.14.

8.3.2 Check on tension stresses.

The arched slab will divide into three regions as shown in the following figure, and the tension stresses will check in each region.

8.3.2.1 Region 1 & 3.

- γ_M= 2
- t_{eff}.= t_{arch} + t_{fill} = 1+1= 2m
- $t_{average, eff.} = (t_{eff.} + t_{arch}) / 2 = (2+1) / 2 = 1.5 m$
- Z_{average,eff}.= 0.375 m³
- Z_{eff.=} 0.67 m³

The minimum compression forces act on the arched slab are 40 KN/m^2 as show in Fig. 8.2.

Plan of failure parallel to bed joints. The Masonry tensile Strength.

- σ_{d1} = 40 KN/m² = 0.04N/mm²
- F_{cd,app1}= 0.6 + 0.04= 0.64 N/mm²
- $F_{Rd,app1} = \frac{0.64}{2} = 0.32 \text{ N/mm}^2$

The Maximum Applied Tensile Stresses.

- n_y= 100 KN/m'
- m_y= 225 KN.m/m'
- $\sigma_{y} = \frac{100 * 1000}{2000 * 1000} \frac{225 * 1000000}{0.67 * 10^{9}} = 0.285$ (Tension) N/mm2 > 0.32...... (Safe)

The Average Applied Tensile Stresses.

- n_y= 208 KN/m'
- m_y= 100 KN.m/m'
- $\sigma_{y} = \frac{208 \times 1000}{1500 \times 1000} \frac{100 \times 1000000}{0.375 \times 10^{9}} = 0.128$ (Tension) N/mm2 > 0.32...... (Safe)

Plan of failure Perpendicular to bed joints (Thrust line direction). The Masonry tensile Strength.

- σ_{d1} = 40 KN/m² = 0.04N/mm²
- F_{cd,app2}= 1.2 + 0.04= 1.24 N/mm²
- $F_{Rd,app2} = \frac{1.24}{2} = 0.62 \text{ N/mm}^2$

The Maximum Applied Tensile Stresses.

- n_x= 76 KN/m'
- m_x= 328 KN.m/m'
- $\sigma_x = \frac{76*1000}{2000*1000} \frac{328*1000000}{0.67*10^9} = 0.45$ (Tension) N/mm2 > 0.62...... (Safe)

The Average Applied Tensile Stresses.

- n_x= 60 KN/m'
- m_x= 127 KN.m/m'
- $\sigma_x = \frac{60*1000}{1500*1000} \frac{127*1000000}{0.375*10^9} = 0.29$ (Tension) N/mm2 > 0.62...... (Safe)

8.3.2.2 Region 2.

- γ_M= 2
- t₌1m
- Z_{.=} 0.17 m³

The minimum compression forces act on the arched slab are 26.5 KN/m^2 as show in Fig. 8.2.

- Plan of failure parallel to bed joints.
 The Masonry Tensile Strength.
 - σ_{d1} = 26.5 KN/m² = 0.026N/mm²
 - F_{cd,app1}= 0.6 + 0.026= 0.626 N/mm²
 - $F_{Rd,app1} = \frac{0.62}{2} = 0.31 \text{ N/mm}^2$

<u>From RFEM model, the Regions shown in fig. 8.15 describe the applied tension stresses (σ_y)</u> bigger than masonry tensile strength (F_{Rd,app1}).

<u>The masonry sections in these regions, (shown in fig. 8.15) will crack and considered as a cracked sections.</u>

It must check the cracked sections against stability, even not collapse as described in part 8.3.1 (check on compression stresses).

Figure 8.15: Check on Tensile Stresses in local axis y direction (N-mm²)

- Plan of failure Perpendicular to bed joints.
 The Masonry Tensile Strength.
 - σ_{d1} = 26.5 KN/m² = 0.026N/mm²
 - F_{cd,app2}= 1.2 + 0.026= 1.22 N/mm²
 - $F_{Rd,app2} = \frac{1.22}{2} = 0.61 \text{ N/mm}^2$

<u>From RFEM model, the Regions shown in fig. 8.16 describe the applied tension stresses (σ_x) bigger than masonry tensile strength ($F_{Rd,app2}$).</u>

<u>The masonry sections in these regions, (shown in fig. 8.16) will crack and considered as a cracked sections.</u>

It must check the cracked sections against stability, even not collapse as described in part 8.4.1 (check on compression stresses).

Figure 8.16: Check on Tensile Stresses in local axis x direction (Thrust line direction) (N-mm²)

8.3.3 Check on Shear stresses.

The minimum compression force act on the wall is 26.5 KN/m^2 as show in Fig. 8.2

• F_{vk}= 0.6 + 0.4*0.026= 0.61 N/mm²

the applied shear stress in the direction of bed joints (τ_{yz}) is less than the shear stength (F_{vk}) as shown in fig. 8.17.

Figure 8.17: Check on Shear Stresses in local axis Y direction (bed joints direction) (N-mm²)