

УНИВЕРЗИТЕТ У БАЊОЈ ЛУЦИ UNIVERSITY OF BANJA LUKA **АРХИТЕКТОНСКО-ГРАЂЕВИНСКО-ГЕОДЕТСКИ ФАКУЛТЕТ** FACULTY OF ARCHITECTURE, CIVIL ENGINEERING AND GEODESY

СТУДИЈСКИ ПРОГРАМ ГРАЂЕВИНАРСТВО УСМЈЕРЕЊЕ КОНСТРУКТИВНО

ЗАВРШНИ РАД ПРВОГ ЦИКЛУСА СТУДИЈА

Тема:

ПРОРАЧУН ЧЕЛИЧНОГ НОСАЧА КРАНСКЕ СТАЗЕ

Ментор:

кандидат:

Проф. др. Мирсад Тарић

Милан Крнета 45/15

Бања Лука, Октобар 2020. године

PRORAČUN ČELIČNOG NOSAČA KRANSKE STAZE

BANJA LUKA 2020. GODINA

Sažetak	4
1. UVOD	5
1.1 Tipovi mostnih dizalica	6
1.2 Ostali tipovi dizalica u industrijskim objektima	8
1.3 Konstrukcija mostne dizalice	9
2. ANALIZA OPTEREĆENJA USLJED DJELOVANJA KRANOVA	11
2.1 Vertikalna opterećenja usljed djelovanja mostnih kranova	13
2.2 Horizontalna opterećenja usljed djelovanja kranova	16
2.2.1 Podužne horizontalne sile usljed ubrzanja i kočenja krana	16
2.2.2 Poprečne horizontalne sile usljed ubrzanja i kočenja krana	17
2.2.3 Podužne i poprečne horizontalne sile usljed zakošenja krana	17
2.2.4 Sila usljed udara u odbojnik	
2.3 Kombinacije opterećenja	18
2.3.1 Kombinacije za granično stanje nosivosti ULS	
2.3.2 Kombinacije za granično stanje upotrebljivosti SLS	19
3. PRORAČUN KRANSKOG NOSAČA	
3.1 Kontrola graničnih stanja nosivosti – ULS	
3.1.1 Nosivost poprečnih presjeka	
3.1.2 Lokalna naprezanja usljed pritiska točka	
3.1.3 Kontrola interakcije lokalnih i globalnih naprezanja	
3.1.4 Nosivost nosača na bočno-torziono izvijanje	
3.1.5 Nosivost na izbočavanje rebra	
3.1.6 Kontrola nosivosti na zamor	67
3.2 Kontrola graničnih stanja upotrebljivosti – SLS	75
3.2.1 Kontrola vertikalnih pomjeranja	75
3.2.2 Kontrola horizontalnih pomjeranja	75
3.2.3 Kontrola napona	77
3.2.4 Kontrola treperenja rebra	77
3.2.5 Kontrola vibracija donje nožice	77

SADRŽAJ

4. IZBOR STATIČKOG SISTEMA	77
5. IZBOR POPREČNOG PRESJEKA	78
5.1 Dimenzije poprečnog presjeka	81
5.2 Variranje dimenzija poprečnog presjeka	82
6. OSLANJANJE KRANSKOG NOSAČA	82
7. SPREGOVI	84
7.1 Spregovi za prijem bočnih udara	84
7.2 Spregovi za kočenje	85
8. ODBOJNICI	87
9. KRANSKE ŠINE	89
10. PROJEKTNI ZADATAK	93
10.1 Analiza opterećenja usljed dejstva kranske dizalice	94
10.1.1 Dinamički koeficijenti φ_i	95
10.1.2 Vertikalna opterećenja	95
10.1.3 Horizontalna opterećenja	96
10.1.3.1 Podužne horizontalne sile usljed ubrzanja i kočenja krana	96
10.1.3.2 Poprečne horizontalne sile usljed ubrzanja i kočenja krana	96
10.1.3.3 Podužne i poprečne horizontalne sile usljed zakošenja krana	96
10.1.3.4 Horizontalna sila uzrokovana ubrzanjem ili kidanjem užeta	
10.1.3.5 Sila usljed udara u odbojnik	99
10.2 Proračun nosača kranske staze	99
10.2.1 Statički određen nosač kranske staze	100
10.2.2 Statički neodređen kontinualni nosač kranske staze	100
11. ZAKLJUČAK	101
LITERATURA	
PRILOZI	104

SAŽETAK:

U ovom radu biće obrađena tema proračuna čeličnog nosača kranske staze mostovske dizalice prema Evrokodu, kao najzastupljenijeg tipa dizalica u industrijskim objektima. Kroz rad će biti obrađena problematika izbora statičkog sistema ovih nosača, izbora profila (valjani ili zavareni), izbor dimenzija poprečnog presjeka nosača, način unošenja koncentrisane sile od točkova dizalice u nosač. Pored prethodno navedenih stavki u radu će se napraviti i poseban osvrt na podužna i poprečna ukrućenja, njihovu ulogu, kao i način optomizacije nosača njihovom primjenom. Poseban fenomen koji se javlja usljed složenog naponskog stanja u ovom tipu konstrukcija je i izbočavanje koje će u ovom radu biti obrađeno u onoj mjeri koja je potrebna za razumijevanje i pravilan način proračuna nosača kranske staze. Postojanje kranske staze u industrijskom objektu povlači za sobom i postojanje još nekih konstruktivnih elemenata kao što su spregovi za bočne udare, kočenje, elemente za oslanjanje na nosivi dio konstrukcije, pa shodno tome rad će sadržavati i poglavlje o ovim dijelovima industrijskog objekta. Rad će nadopuniti konkretan primjer proračuna ovog tipa nosača prema savremenim Evrokod normama. Na kraju rada će se navesti ishodi izrade rada kao i zaključak.

1. UVOD

Kranovi su nezamjenjivi tipovi uređaja u građevinarstvu koji služe za vertikalni i horizontalni transport tereta. Neki od tipova koji se koriste u građevinarstvu su: mostovski kranovi, derik kranovi, portalna dizalica, žičani kranovi itd.

Bitna osobina svakog industrijskog procesa je unutrašnji transport. Posebnu primjenu u industrijskim objektima nalaze mostni kranovi ili dizalice. Pored ovog tipa dvošinskih dizalica u manjem obimu javljaju se i jednošinske tzv. monorej dizalice (engl. *monorail* - jednošinske).

Konstrukcija na koju se postavljaju šine po kojima se kreću mostovske dizalice naziva se nosač kranske staze. Ovi nosači se izrađuju različitih statičkih sistema (prosta greda, kontinualni nosač, gerberov nosač itd.), a mogu biti i od različitih materijala (armirano-betonske i čelične).

Kranska staza je sadejstvujući sklop koga čine kranski nosač i šina.

U ovom radu akcenat je stavljen na čelične nosače kao i na fenomene koji se vezuju za ovaj tip materijala.

Mostovski kranovi se najčešće izvode na dva načina:

-kranovi koji se kreću po gornjoj pojasnici glavnog nosača (engl. Top running bridge cranes),

-kranovi koji se kreću po donjoj pojasnici glavnog nosača (engl. Underslung bridge cranes).

Osnovni konstruktivni elementi mostovske dizalice su: kuka, mačka, glavni nosač (most), čeoni poprečni nosači i kranski nosač sa šinom. Pored navedenog tu su još i pogonski uređaj kao i kabina sa sistemom za upravljanje.

Specifičnosti kranskih nosača u odnosu na ostale konstruktivne elemente industrijskog objekta (hale) ogledaju se u uticajima koji se u njima javljaju i koje je potrebno razmatrati: kombinacija poprečnih sila i momenata savijanja, bočno-torziono izvijanje, uticaj bočnih odn. horizontalnih dejstava, torziona naprezanja zbog ekscentriciteta šine i horizontalnih sila, a neophodno je kontrolisati i zamor jer su kranski nosači dinamički opterećene konstrukcije sa velikim brojem ciklusa opterećenja i rasterećenja u toku vijeka eksploatacije.

Dominantno opterećenje koje djeluje na kran je vertikalno, a prati ga bočno odn. horizontalno opterećenje. U toku rada krana nastaju opterećenja koja imaju i statičku i dinamičku komponentu, a mijenjaju se u funkciji vremena i zavise od položaja krana, težine tereta kojeg prenose, kao i od položaja tereta na kranskom mostu. Dinamičke sile koje nastaju pri pokretanju i zaustavljanju krana, pri podizanju tereta i zbog neravnosti šina zavise od vrste krana kao i od same izvedbe kranskog nosača. Dinamički uticaji se prema propisima uzimaju u obzir tako što se već poznata statička opterećenja množe dinamičkim koeficijentima čija se vrijednost kreće od 1 do 2. Zakošenje krana pri kretanju rezultuje bočnim opterećenjem, a pri pokretanju i zaustavljanju kranske dizalice javljaju se uzdužne sile.

Na krajevima kranske staze postavljaju se odbojnici koji moraju biti proračunati tako da mogu da private odbojnu silu. Od ostalih opterećenja potrebno je uzeti u obzir i opterećenja od revizijskih staza, penjalica i električnih vodova.

Kod nosača kranske staze jako je važno ograničiti i veličine deformacija, da bi se izbjegli neželjeni dinamički efekti, te radi trajnosti same konstrukcije i dizalice.

Podatke o mostovskim dizalicama bitne za projektovanje kranske staze daje sam proizvođač dizalice, a bitni parametri su: raspon dizalice, vlastita težina, nosivost i gabaritne mjere.

Bitno je napomenuti da se za kranski nosač pored I profila (valjanih ili zavarenih), mogu upotrebiti rešetkasti ili sandučasti nosači.

1.1 Tipovi mostovskih dizalica

Mostovske dizalice se koriste pri manipulaciji najrazličitijim vrstama tereta u proizvodnim halama, radionicama, skladišnim prostorima, energetskim objektima, valjaonicama, ljevaonicama, kod obavljanja tehnoloških procesa, montaže ili demontaže opreme itd.

U zavisnosti od zahtjevane nosivosti, mogućnosti ugradnje i raspona upotrebljavaju se sljedeći tipovi mostovskih dizalica:

- jednogredne mostovske dizalice,

- dvogredne mostovske dizalice i

- viseće mostovske dizalice.

Jednogredne mostovske dizalice se najčešće izrađuju nosivosti od 500 kg do 20 t i raspona do 25m.

Slika 1.1-Jednogredna mostovska dizalica nosivosti 10 t, raspona 15.2 m

Dvogredne mostovske dizalice se izrađuju nosivosti od 1 t pa do 50 t i raspona do 30m.

Slika 1.2-Dvogredna mostovska dizalica nosivosti 5 t, raspona 19.15 m

Viseće mostovske dizalice se najčešće izrađuju nosivosti 500 kg do 20 t i raspona do 25 m.

Slika 1.3-Viseća mostovska dizalica nosivosti 3.2 t, raspona 9.32 m

Sve radne kretnje dizalica mogu biti na elektromotorni pogon (jednobrzinske ili višebrzinske), na ručni lančani ili pneumatski pogon. Dizalicom se može upravljati putem ovješene upravljačke konzole koja visi sa same dizalice ili bežičnim putem pomoću radio daljinskog upravljača. Ugradnjom frekventnih pretvarača moguće je ostvariti finu regulaciju brzine svih pogona čime se uklanjaju udari prilikom pokretanja, smanjuje trošenje kočnica te je pogon znatno tiši.

1.2 Ostali tipovi dizalica u industrijskim objektima

U manjem obimu od mostovskih dizalica u industrijskim objektima (halama) se koriste konzolne dizalice i monorej (*engl. monorail*) dizalice.

Konzolne dizalice svoju primjenu nalaze u proizvodnji za opsluživanje različitih mašina i manjih tehnoloških cjelina. Proizvode se u više različitih varijanti u zavisnosti od tehnološkog procesa u okviru koga se ugrađuju. Mogu da budu:

- stubne konzolne dizalice (SKD) i,
- zidne konzolne dizalice (ZKD).

Slika 1.4-Stubna konzolna dizalica nosivosti 500 kg, raspona 3 m

Slika 1.5-Zidna konzolna dizalica

Konzolne dizalice mogu da imaju ograničen ugao rotacije ili neograničenu rotaciju (pun krug) konzolne grane. Sve radne kretnje dizalice (dizanje tereta, rotacija konzole i vožnja ovješenih kolica duž konzole) mogu biti na elektromotorni ili ručni pogon.

1.3 Konstrukcija mostovske dizalice

Mostovska dizalica ima oblik mosta po čemu je i dobila ime, a kao što je prethodno navedeno, kreće se po visoko podignutim šinama iznad operativne površine. Most dizalice služi za kretanje kolica koja nose zahvatni uređaj sa mehanizmom za dizanje i spuštanje tereta. Konstrukcija mosta treba da obezbjedi pozicioniranje zahvatnog uređaja dizalice po najkraćoj putanji u svakoj tački operativne površine. Most se sastoji od jednog ili dva glavna nosača i dva čeona nosača. U čeonim nosačima su smješteni pogonski i slobodni točkovi preko kojih se most oslanja na stazu i ostvaruje translatorno kretanje. Upravljanje mostovskom dizalicom može da bude iz radnog hodnika, kabine ili automatsko.

Slika 1.6-Šematski prikaz mostovskog krana

Slika 1.7-Konstruktivni elementi mostovske dizalice

Most kod lakih dizalica se na stazu oslanja preko četiri točka, a kod težih dizalica u cilju smanjenja specifičnog pritiska na stazu broj točkova je veći. Kod lakih dizalica pogon se vrši preko dva simetrično raspoređena pogonska točka na čeonim nosačima, a kod težih se izvodi u četiri tačke. Konvencionalne konstrukcije pogonske grupe su izvođene sa centralnim pogonom koji se sastoji od jednog centralno postavljenog motora i reduktora sa prenosom pogonske sile na pogonske točkove preko vratila. Danas se uglavnom koristi princip pojedinačnog pogona sa ugradnjom elektromotora i reduktora direktno na pogonski točak. Da bi se izbjeglo zakošenje mosta pri kretanju elektromotori se sinhronizuju.

Kolica predstavljaju najvažniji radni dio mostovskih dizalica. Koristi se niz različitih konstruktivnih oblika kolica, ali generalno se dijele na ležeća i viseća kolica. Konstrukcija kolica zavisi od namjene dizalice:

- standardne dizalice za rukovanje komadnim i rasutim teretom sa slobodno visećim teretom kod kojih se teret najčešće kači na kuku, ali u određenim slučajevima koriste se specijalni zahvatni uređaji kao što su elektromagneti, klješta, pneumatski uređaji i sl., za rukovanje rasutom robom koriste se posebno prilagođeni oblici kolica sa više užadi za zahvatanje i odlaganje pomoću grabilice;

- namjenske specijalne mostovske dizalice kod kojih su kolica posebno prilagođena i bitno se razlikuju od sistema koji se koriste kod dizalica opšte namjene.

U grupu namjenskih dizalica spadaju: dizalice prilagođene potrebama procesa u metalurgiji, slagači, specijalne dizalice za automatizovana skladišta profila i šipkastog materijala i viseće dizalice. Za prve navedene dizalice ovog tipa je karakteristično da posjeduju ekstremno velike nosivosti, izložene su uticaju visokih temperatura i konstruktivno su maksimalno prilagođene realizaciji specifičnih zahtjeva metalurških procesa koje opslužuju.

2. ANALIZA OPTEREĆENJA USLJED DJELOVANJA KRANOVA

Modeliranje opterećenja usljed dejstva kranova obrađeno je u dijelu Eurokoda 1 koji nosi oznaku EN 1991-3. Opterećenje kranovima se može razmatrati kao promjenjivo i kao izvanredno opterećenje pa su dani načini modeliranja za svaki od ta dva slučaja. Pri normalnim uslovima korištenja opterećenje radom krana može se smatrati promjenjivim i uključuje: gravitaciona opterećenja, inercijalne sile nastale zbog ubrzavanja odn. usporavanja i zakošenja kranskog mosta, te dinamičke uticaje. Ovi uticaji se uopšteno mogu podijeliti na:

- promjenjiva vertikalna opterećenja uzrokovana vlastitom težinom krana i korisnim teretom,

- promjenjva horizontalna opterećenja uzrokovana ubrzavanjem/usporavanjem i zakošenjem pri kretanju uz ostale dinamičke uticaje.

Dinamičke sile zbog vibracija i inercijalnih sila pri djelovanju krana uzimaju se u obzir množenjem vrijednosti statičkih sila sa odgovarajućim dinamičkim faktorima φ :

 $F_{\varphi,k} = \varphi_i \times F_k$, gdje su:

 $F_{\varphi,k}$ – karakteristična vrijednost opterećenja kranom

 φ_i – dinamički faktor odn. koeficijent

 F_k – karakteristična statička komponenta opterećenja kranom

Dinamički faktor	Učinci koji se razmatraju	Primjenjuje se na
φ_1	Vibracijska pobuda krana zbog podizanja tereta sa tla	Vlastita težina krana
φ_2	Dinamički učinak podizanja tereta od tla do krana	Teret koji se diže
φ_3	Dinamički učinak naglog otpuštanja korisnog opterećenja ako se koriste klješta ili magnet	Teret koji se diže
$arphi_4$	Dinamički učinci zbog kretanja krana po šinama ili kranskoj stazi	Vlastita težina krana i teret koji se diže
$arphi_5$	Dinamički učinci uzrokovani pogonskim silama i odnose se na horizontalne sile (horizontalne uzdužne i poprečne), a koje se pojavljuju prilikom kretanja ili kočenja krana po šinama	Vozne sile
$arphi_6$	Dinamički učinak zbog kretanja probnog tereta po kranskom mostu koji se kreće	Probni teret
$arphi_7$	Dinamički elastični učinak udarca u odbojnike	Sile u odbojniku

Tabela 2.1 – Dinamički faktori (1	koeficijenti)
-----------------------------------	---------------

Mogućnost istovremenog djelovanja više nabrojanih opterećenja kranom uzima se u obzir na način da se formiraju određene grupe opterećenja, pa se svaka od tih grupa može smatrati jednim karakterističnim opterećenjem kranom koje se onda može kombinovati sa ostalim vrstama (nekranskih opterećenja).

			Grupe opterećenja								
Djelovanje	Oznaka				GSN				PROBNI TERET	Izvan	redno
		1	2	3	4	5	6	7	8	9	10
Vlastita težina krana	Qc	φ1	φ1	1	φ4	φ4	φ4	1	φ1	1	1
Teret koji se diže	Q _H	φ2	φз	-	φ4	φ4	φ4	*η	-	1	1
Ubrzanje kranskog mosta	H∟ i H⊤	φ5	φ5	φ5	φ5	-	-	-	φ5	-	-
Iskošenje kranskog mosta pri kretanju	H₅	-	-	-	-	1	-	-	-	-	-
Ubrzanje ili kočenje mačke ili uređeja za podizanje tereta	Нтз	-	-	-	-	-	1	-	-	-	-
Vjetar pri radu	Fw*	1	1	1	1	1	-	-	1	-	-
Probni teret	QT	-	-	-	-	-	-	-	φ6	-	-
Sila na odbojnike	Нв	-	-	-	-	-	-	-	-	φ7	-
Sila prevrtanja	H _{TA}	-									1
*n je dio tereta koji se diže, a koji ostaje nakon uklanjanja korisnog opterećenja i nije uračunat u vlastitu težinu											

Tabela 2.2 – Grupe opterećenja i dinamički koeficijenti koje treba uzeti u obzir za modelovanje djelovanja krana kao jednog karakterističnog opterećenja

Pri određivanju vertikalnog opterećenja na kranski nosač zbog kretanja mačke po kranskom mostu potrebno je analizirati različite položaje iste (sa i bez tereta) i na taj način pronaći minimalne i maksimalne vrijednosti vertikalnog opterećenja koje se modelira kao koncentrisana sila na mjestima točkova. Vertikalna opterećenja je potrebno povećati množenjem sa odgovarajućim dinamičkim koeficijentima koji su navedeni u tabelama 2.1 i 2.2. Važno je naglasiti da je potrebno voditi računa i o mogućem ekscentricitetu vertikalnog opterećenja. Prema EN 1991-3 preporuka je da se taj ekscentricitet uzme kao 25% širine šine.

Horzontalna opterećenja koje je potrebno uzeti u obzir pri modeliranju su:

- horizontalne sile koje nastaju usljed ubrzavanja i usporavanja kretanja kranskog mosta po šinama

- horizontalne sile koje nastaju usljed ubrzavanja i usporavanja kretanja mačke po kranskom mostu

- horizontalne sile koje nastaju zbog zakošenja kranskog mosta pri kretanju

- udarne sile u branike usljed kretanja krana

- udarne sile zbog kretanja mačke.

Od svih ovdje nabrojanih slučajeva opterećenja, samo se jedno uzima u obzir u pojedinoj grupi

opterećenja prema tabeli 2.2. Ostala opterećenja koja treba uzeti u obzir su: temperaturni uticaji, opterećenja revizijskih staza, opterećenja platformi i ljestvi, eksperimentalna (testna) opterećenja, izvanredna opterećenja i opterećenja od zamora.

Slika 2.1-Kretanja koja su uzrok pojave horizontalnih inercijalnih dejstava

2.1 Vertikalna opterećenja usljed djelovanja mostovskih kranova

Vertikalna opterećenja se definišu u vidu parova koncentrisanih sila koje djeluju na mjestima točkova dizalice. Obavezno se uzima u obzir i dinamički koeficijent. Razmatraju se pojedinačna, karakteristična dejstva usljed sopstvene težine krana i najnepovoljnijih položaja tereta koji se diže. Vertikalna opterećenja (sile) se označavaju na sljedeći način:

- $Q_{\rm h,nom}$ težina tereta koji se diže,
- Q_{r,max} maksimalna sila u točku, opterećenog krana,
- $Q_{\rm r,(max)}$ odgovarajuća sila, na drugom kraju,
- $\sum Q_{r,max}$ suma maksimalnih sila,
- $\sum Q_{r,(max)}$ suma odgovarajućih sila, na drugom kraju,
- Q_{r,min} minimalna sila u točku, neopterećenog krana,
- $Q_{r,(min)}$ odgovarajuća minimalana sila, na drugom kraju,
- $\sum Q_{r,\min}$ suma minimalnih sila,

- $\sum Q_{r,(min)}$ – suma odgovarajućih sila, na drugom kraju.

Maksimalni pritisak točka $Q_{r,max}$ dobija se kada je maksimalni teret $Q_{h,nom}$ u najbližem mogućem položaju posmatranoj kranskoj stazi e_{min} . Na suprotnoj kranskoj stazi određuje se odgovarajući pritisak točka $Q_{r,(max)}$.

Slika 2.2-Šema opterećenja za dobijanje maksimalnih uticaja [3]

Minimalan pritisak točka $Q_{r,min}$ bez tereta, dobija se kada je "mačka" u najbližem mogućem položaju uz suprotnu kransku stazu. Na suprotnoj kranskoj stazi određuje se odgovarajući pritisak točka $Q_{r,(min)}$.

Slika 2.3-Šema za dobijanje minimalnih uticaja [3]

Ekscentričan položaj točka dizalice koji je predstavljen koncentrisanom silom Q_r treba da bude uzet kao dio širine glave šine b_r . Preporučuje se da ta vrijednost bude $e = 0.25 \cdot b_r$.

Slika 2.4-Ekscentričan položaj točka u odnosu na osu šine

Dinamički koeficijenti iz tabele 2.1 koji se odnose na vertikalna opterećenja (φ_i ; *i*=1,2,3,4) i njihove vrijednosti su date u tabeli ispod.

	Dinamički koeficijenti					
φ_1	$0,9 \le \varphi_1 \le 1,1$ 0,9 i 1,1 su gornja i donja vrednost	Hoisting class of appliance	β_2	$arphi_{2,min}$		
φ_2	$\varphi_2 = \varphi_{2,\min} + \beta_2 v_h$ v_h stabilna brzina podizanja (m/s) $\varphi_{2,\min}$ i β_2 zavise od klase uređaja za	→ HC1 HC2 HC3 HC4 podizanje (H	0,17 0,34 0,51 0,68 C1-HC4)	1,05 1,10 1,15 1,20		
φ_3	$\varphi_3 = 1 - \Delta m (1 + \beta_3)/m$ Δm deo mase tereta koji je ispušten, ili ispao, m ukupna masa koja se podiže (teret + uređaj za podizanje), $\beta_3 = 0.5$ u slučaju postepenog ispuštanja tereta, $\beta_3 = 1.0$ u slučaju naglog ispuštanja tereta (magnetni uređaji).					
φ_4	$\varphi_4 = 1,0$ Pod uslovom da su tolerancije šina 6. U suprotnom treba da se odredi p	u skladu sa n orema EN 130	avodima iz 1 001-2.	EN 1993-		

Tabela 2.3 Dinamički koeficijenti φ_i	za vertikalna	opterećenja
---	---------------	-------------

2.2 Horizontalana opterećenja usljed djelovanja kranova

2.2.1 Podužne horizontalne sile usljed ubrzanja i kočenja krana

Slika 2.5-Šema djelovanja datih sila [3]

 $H_{\rm L,i} = \varphi_5 \cdot \mathsf{K} \cdot \frac{1}{n_{\rm r}} - \text{vrijednost odgovarajuće podužne sile (i - oznaka ose šine; i=1,2)},$

 φ_5 – dinamički koeficijent,

 $n_{\rm r}$ – broj kranskih nosača (broj šina).

Vrijednost koeficijenta φ_5 uglavnom daje proizvođač dizalice. Ukoliko proizvođač nije dao vrijednost ovog koeficijenta on se može odrediti na osnovu preporuke u tabeli 2.4.

Vrijednost dinamičkog koeficijenta	Primjena
1.0≤ φ ₅≤1.5	U slučajevima "glatke" promjene sile
1.5≤ φ ₅≤2.0	U slučajevima kada se javljaju iznenadne promjene sile
φ ₅ =3.0	U slučajevima sa značajnim zazorom

Tabela 2.4 Dinamički koeficijent φ_5

2.2.2 Poprečne horizontalne sile usljed ubrzanja i kočenja krana

Ovim silama se obuhvata efekat asimetričnog položaja opterećenja, a sama dispozicija je data na slici ispod.

Slika 2.5-Šematski prikaz poprečnog opterećenja [3]

 $H_{\mathrm{T},1} = \varphi_5 \cdot \xi_2 \cdot \frac{M}{a} - \text{poprečna horizontalna sila na šini broj 1,}$ $H_{\mathrm{T},2} = \varphi_5 \cdot \xi_1 \cdot \frac{M}{a} - \text{poprečna horizontalna sila na šini broj 2.}$

$$\sum Q_{\rm r} = \sum Q_{\rm r,max} + \sum Q_{\rm r,(max)}; \ \xi_1 = \frac{\sum Q_{\rm r,max}}{\sum Q_{\rm r}}; \ \xi_2 = 1 - \xi_1; \ M = K \cdot l_s; \ l_s = (\xi_1 - 0.5) \cdot l$$

Pogonska sila K treba da bude data od strane proizvođača krana, u suprotnom se određuje prema preporukama iz EN 1991-3.

2.2.3 Podužne i poprečne horizontalne sile usljed zakošenja krana

Slika 2.6-Šematski prikaz sila [3]

$$\begin{split} H_{\mathrm{S},1,\mathrm{j},\mathrm{L}} &= f \cdot \lambda_{\mathrm{S},1,\mathrm{j},\mathrm{L}} \cdot \sum Q_{\mathrm{r}} ; \\ H_{\mathrm{S},1,\mathrm{j},\mathrm{T}} &= f \cdot \lambda_{\mathrm{S},1,\mathrm{j},\mathrm{T}} \cdot \sum Q_{\mathrm{r}} ; \\ H_{\mathrm{S},2,\mathrm{j},\mathrm{T}} &= f \cdot \lambda_{\mathrm{S},2,\mathrm{j},\mathrm{T}} \cdot \sum Q_{\mathrm{r}} ; \\ \end{split}$$

i – oznaka za redni broj šine; j – oznaka za par točkova; f – faktor koji zavisi od ugla zakošenja $f=0.3\cdot(1-e^{-250\cdot\alpha})\leq 0.3;$ $\lambda_{S,i,j,K}$ – faktor sile.

2.2.4 Sila usljed udara u odbojnik

$$H_{\mathrm{B},1} = \varphi_7 \cdot v_1 \cdot \sqrt{m_c \cdot S_B}$$
 – tražena sila.

 $v_1 - 70\%$ maksimalne brzine kretanja krana (m/s); m_c – masa krana ili tereta koji se diže (kg); S_B – elastična krutost odbojnika (N/m); φ_7 – dinamički koeficijent.

Tabela 2.5 Dinamički koeficijent φ_7

Dinamički koeficijent	Karakteristike odbojnika
<i>φ</i> ₇ =1,25	$0,0 \leq \xi_{\rm b} \leq 0,5$
$\varphi_7 = 1,25+0,7 (\xi_b - 0,5)$	$0,5 \leq \xi_{\rm b} \leq 1,0$

2.3 Kombinacije opterećenja

2.3.1 Kombinacije opterećenja za granično stanje nosivosti ULS

Kombinacije opterećenja za granična stanja nosivosti vrši se za sljedeće proračunske situacije: - stalne i prolazne proračunske situacije:

$$\sum_{j\geq 1}\gamma_{G,j}\cdot G_{k,j}+\gamma_p\cdot P+\gamma_{Q,1}\cdot Q_{k,1}+\sum_{i\geq 1}\gamma_{Q,i}\cdot \psi_{0,i}\cdot Q_{k,i}$$

- incidentne proračunske situacije:

$$\sum_{j\geq 1} G_{k,j} + P + A_d + \left(\psi_{1,1} \ ili \ \psi_{2,1}\right) \cdot Q_{k,1} + \sum_{i>1} \ \psi_{2,i} \cdot Q_{k,i}$$

- seizmičke kombinacije:

 $\sum_{j\geq 1}G_{k,j}+P+A_{Ed}+\sum_{i\geq 1}\psi_{2,i}\cdot Q_{k,i}$

Dejstva	Oznaka	Proračunske situacije		
		Stalne i	Incidentne	
		prolazne		
Stalna dejstva usljed krana:				
- nepovoljna:				
- povoljna:	γ _{G sup}	1.35	1.00	
	γ _G inf	1.00	1.00	
Promjenljiva dejstva usljed krana:				
- nepovoljna:	$\gamma_{0 sup}$	1.35	1.00	
- povoljna:	γ _{0 inf}			
kada je kran prisutan:	<i>i</i> q iii	1.00	1.00	
kada kran nije prisutan:		0.00	0.00	
Ostala promjenljiva dejstva:	γ ₀			
- nepovoljna:	Ľ	1.50	1.00	
- povoljna:		0.00	0.00	
Incidentna dejstva:	γ _A	-	1.00	

Tabela 2.6 Vrijednosti parcijalnih koeficijenata prema EN 1991-3

Tabela 2.7 Vrijednosti koeficijenata ψ_i prema EN 1991-3

Dejstva	Oznaka	ψ_0	ψ_1	ψ_2
Jedan kran ili				Odnos stalnog i
grupa	$Q_{ m r}$	1,0	0,9	ukupnog opterećenja
opterećenja				usled krana
usled kranova				

2.3.2 Kombinacije dejstava za granično stanje upotrebljivosti SLS

Sve kontrole se sprovode za uticaje dobijene na osnovu kombinacija dejstava za SLS. Kod graničnog stanja upotrebljivosti se izostavaljaju svi parcijalni koeficijenti. Analiza se sprovodi kroz kombinacije navedene u tabeli 2.8.

Vombinacija	Stalna	dejstva	Promenljiva dejstva		
Kombinacija	nepovoljna	povoljna	dominantno	ostala	
Karakteristična	$G_{kj,sup}$	$G_{kj,inf}$	Q _{k,1}	$\psi_{0,i}Q_{\mathrm{k},i}$	
Česta	G _{kj,sup}	G _{kj,inf}	$\psi_{1,1}Q_{k,1}$	$\psi_{2,i}Q_{k,i}$	
Kvazi-stalna	G _{kj,sup}	G _{kj,inf}	$\psi_{2,1}Q_{k,1}$	$\psi_{2,i}Q_{k,i}$	

Tabela 2.8 Kombinacije dejstava za SLS

3. PRORAČUN KRANSKOG NOSAČA

Dio Evrokoda koji se bavi proračunom čeličnih kranskih nosača je "EN 1993-6: Proračun čeličnih konstrukcija – Dio 6: Nosači kranskih staza". Proračun se sprovodi kroz kontrolu graničnih stanja nosivosti i graničnih stanja upotrebljivosti.

3.1 Kontrola graničnih stanja nosivosti - ULS

U svrhu proračuna nosača kranske staze prema EN 1993-6 zahtjevaju se sledeće provjere:

- nosivost poprečnih presjeka,
- lokalna naprezanja usljed pritiska točka,
- interakcija lokalnih i globalnih naprezanja,
- nosivost nosača na bočno-torziono izvijanje,
- nosivost na izbočavanje rebra (normalni naponi, smičući naponi, lokalni pritisak i interakcija),
- zamor.

3.1.1 Nosivost poprečnih presjeka

Kao dominantni uticaji u nosaču kranske staze na nivou poprečnog presjeka javljaju se momenti savijanja M_{Ed} i poprečne odnosno transverzalne sile V_{Ed} . Moment savijanja prihvata cijeli porečni presjek dok poprečnu silu prihvata dominantno rebro nosača uz zanemarljiv doprinos nožica, tako da se potvrda nosivosti poprečnog presjeka provodi zadovoljenjem sljedećih izraza: $M_{Ed} \leq M_{Rd}$ i $V_{Ed} \leq V_{Rd}$, gdje su M_{Rd} – nosivost popprečnog presjeka na savijanje, V_{Rd} – nosivost poprečnog presjeka odnosno rebra na smicanje.

Prema Evrokodu 3 u svim poprečnim presjecima elemenata opterećenih na savijanje potrebno je da bude ispunjen sljedeći uslov:

$$M_{Ed}/M_{c,Rd} \le 1.0,$$

gdje je $M_{c,Rd}$ proračunska vrijednost nosivosti poprečnog presjeka na savijanje, odnosno moment nosivosti poprečnog presjeka, a određuje se na sljedeći način:

$$M_{c,Rd} = \begin{cases} M_{pl,Rd} = (W_{pl} \cdot f_y) / \gamma_{M0} \text{ za presjeke klase 1 i 2} \\ M_{el,Rd} = (W_{el,min} \cdot f_y) / \gamma_{M0} \text{ za presjeke klase 3} \\ M_{eff,Rd} = (W_{eff,min} \cdot f_y) / \gamma_{M0} \text{ za presjeke klase 4} \end{cases}$$

 W_{pl} – plastičan otporni moment poprečnog presjeka za razmatranu osu,

Wel,min - minimalan elastičan otporni moment poprečnog presjeka za razmatranu osu,

 $W_{eff,min}$ – minimalan elastičan otporni moment efektivnog poprečnog presjeka za razmatranu osu.

Kontrola nosivosti poprečnog presjeka na smicanje prema Evrokodu 3 provjerava se u svim karakterističnim poprečnim presjecima u sljedećoj formi:

$$V_{Ed}/V_{c,Rd} \leq 1.0,$$

gdje je $V_{c,Rd}$ proračunska nosivost poprečnog presjeka na smicanje ($V_{y,Rd}$ ili $V_{z,Rd}$), a pri njenom određivanju postoji mogućnost da se odredi kao plastična nosivost ili prema teoriji elastičnosti.

Plastična nosivost poprečnog presjeka na smicanje određuje se prema izrazu:

$$V_{pl,Rd} = \frac{A_{\nu} \cdot (f_{\nu}/\sqrt{3})}{\gamma_{M0}} = (A_{\nu} \cdot \tau_{\nu})/\gamma_{M0} , \text{ gdje jes}$$

 A_v – površina smicanja koja generalno predstavlja površinu dijela ili dijelova poprečnog presjeka koji su paralelni sa pravcem djelovanja poprečne sile,

 $\tau_y = f_y / \sqrt{3}$ – granica razvlačenja pri smicanju.

U Evrokodu 3 ne postoji eksplicitno data elastična nosivost poprečnog presjeka na smicanje $(V_{el,Rd})$ već se u slučaju elastične analize preporučuje kontrola na naponskom nivou:

$$\frac{\tau_{Ed}}{(f_y/\sqrt{3})/\gamma_{M0}} \le 1.0 \text{ ili } \tau_{Ed} \le \tau_y/\gamma_{M0},$$

gdje je τ_{Ed} maksimalna vrijednost smičućeg napona u razmatranom poprečnom presjeku koja u slučaju smičuće sile $V_{z,Ed}$ može da se odredi prema izrazu:

 $\tau_{xz,Ed} = \frac{V_{z,Ed} \cdot S_y}{I_y \cdot t_w}$, gdje je S_y statički moment u odnosu na težište poprečnog presjeka za y osu. Za valjane i zavarene I profile dopušta se pojednostavljenje:

$$\tau_{xz,Ed} = \frac{V_{z,Ed}}{A_w} \text{ uz uslov } A_f / A_w \ge 0.6.$$

3.1.2 Lokalna naprezanja usljed pritiska točka

Pri kontroli napona potrebno je provjeriti i napon usljed lokalnog pritiska točka na gornjoj ivici rebra nosača.

Slika 3.1.1-Raspodjela napona σ_z usljed lokalnog pritiska točka dizalice [4]

Napon σ_z potrebno je provjeriti na spoju rebra i gornje nožice, a pri ovom tipu naprezanja javlja se i odgovarajući smičući napon τ_{xz} . Ekstremne vrijednosti ovih veličina određuju se pomoću izraza:

- $\sigma_{oz,Ed} = \frac{F_{z,Ed}}{l_{eff} \cdot t_W}$ maksimalna vrijednost normalnog napona na spoju nožice i rebra usljed lokalnog pritiska točka,

- $\tau_{xz} = 0.2 \cdot \sigma_{oz,Ed}$ maksimalna vrijednost smičućeg napona na spoju nožice i rebra usljed lokalnog pritiska točka.

Slika 3.1.2-Širenje normalnog napona pod uglom od 45° [4]

 $\sigma_{oz,Ed}(z) = \frac{F_{z,Ed}}{(l_{eff}+2\cdot z)\cdot t_W}$ vrijednost normalnog napona na udaljenosti z od donje ivice gornje pojasne lamele (sl. 3.1.2).

Efektivna dužina l_{eff} koja figuriše u prethodnim izrazima određuje se pomoću sljedećih izraza:

 $l_{eff} = 3.25 \cdot \sqrt[3]{I_{rf}/t_w}$ – kada je šina kruto vezana (zavarena) sa nožicom, $l_{eff} = 3.25 \cdot \sqrt[3]{(I_r + I_{f,eff})/t_w}$ – kada šina nije kruto vezana sa nožicom, $l_{eff} = 4.25 \cdot \sqrt[3]{(I_r + I_{f,eff})/t_w}$ – kada je šina oslonjena na nožicu preko podmetača od elastomera.

Slika 3.1.3-Geometrijske karakteristike sadejstvijućeg sklopa šine i nožice

 I_r – moment inercije šine oko horizontalne težišne ose (sl. 3.1.3).

 $I_{f,eff}$ – moment inercije efektivnog dijela nožice ($b_{f,eff} = b_{fr} + h_r + t_f ali \le od b_f$) oko horizontalne težišne ose (sl. 3.1.3).

 I_{rf} – moment inercije zajedničkog presjeka šine i efektivnog dijela nožice ($b_{f,eff}$) oko horizontalne težišne ose (sl. 3.1.3).

3.1.3 Kontrola interakcije lokalnih i globalnih naprezanja

Ova kontrola se sprovodi pomoću sledećeg izraza:

$$\sqrt{\sigma_{x,Ed}^2 + \sigma_{0z,Ed}^2 - \sigma_{x,Ed} \cdot \sigma_{0z,Ed}^2 + 3 \cdot (\tau_{xz,Ed} + \tau_{0xz,Ed}^2)^2} \le f_y / \gamma_{M0} .$$

Značenje veličina u prethodnom izrazu je sljedeće:

 $\sigma_{x,Ed}$ – proračunska vrijednost normalnog napona usljed globalnih uticaja u nosaču, tj. usljed M_{Ed} i eventualno N_{Ed} ($\sigma_{x,Ed} = \frac{N_{Ed}}{A} + \frac{M_{y,Ed}}{I_y} \cdot z$),

 $\tau_{xz,Ed}$ – proračunska vrijednost smičućeg napona usljed globalnih uticaja u nosaču, tj. usljed $V_{z,Ed}$ ($\tau_{xz,Ed} = \frac{V_{Ed} \cdot S_y}{I_y \cdot t_w}$), $\sigma_{oz,Ed}$ – proračunska vrijednost normalnog napona usljed pritiska točka krana (određuje se prema 3.1.2),

 $\tau_{oz,Ed}$ – proračunska vrijednost smičućeg napona usljed pritiska točka krana (određuje se prema 3.1.2).

3.1.4 Nosivost nosača na bočno-torziono izvijanje

Bočno-torziono izvijanje je fenomen koji se vezuje za nosače otvorenog poprečnog presjeka, koji su opterećeni na savijanje oko jače y-y ose inercije i koji nisu bočno pridržani. Karakteristično za ovu pojavu je to da kolaps nosača može da nastupi i prije dostizanja granične nosivosti poprečnog presjeka na savijanje M_{Rd} . Pri dostizanju kritične vrijednosti opterećenja dolazi do deformacije izvan ravni djelovanja opterećenja koja je praćena torzionom rotacijom pa stoga ovaj vid gubitka stabilnosti nosača i nosi naziv bočno-torziono izvijanje. Kod aksijalno pritisnutih elmenata do gubitka stabilnosti dolazi usljed napona pritiska, pri čemu usljed efekata II reda dolazi do progresivnog povećanja naprezanja u najopterećenijem poprečnom presjeku. Kod nosača, odnosno elemenata opterećenih na savijanje poprečni presjek je djelimično opterećen naponom pritiska, pri čemu ako je presjek obostrano simetričan tj. težište mu se nalazi na polovini visine, jedna polovina presjeka je pritisnuta, a druga zategnuta. Pritisnuti dio presjeka teži da se izvije oko slabije z-z ose inercije, dok zategnuti dio koji je po pitanju stabilitetnih problema inertan teži da zadrži položaj pritisnutog dijela i ima stabilizirajuću ulogu. Kao posljedica činjenice da su i pritisnuti i zategnuti dio integralni dijelovi cijelog poprečnog presjeka u nosaču se javlja i torziona rotacija. Po analogiji sa aksijalno pritisnutim elementima gdje je potrebno pronaći kritičnu silu pri kojoj element počinje da gubi stabilnost P_{cr} , kod elemenata opterećenih savijanjem traži se kritičan moment M_{cr} koji predstavlja minimalnu teorijsku vrijednost momenta savijanja u najopterećenijem poprečnom presjeku pri kojoj dolazi do gubitka stabilnosti elementa usljed bočno-torzionog izvijanja. Treba napomenuti da je vrijednost kritičnog momenta M_{cr} teorijska vrijednost značajno veća od granične nosivosti elementa na bočno-torziono izvijanje. Parametri koji direktno utiču na vrijednost ovog momenta su njegova dužina L, krutost na bočno savijanje EI_z i torzione krutosti GI_t i EI_w .

Problem bočno-torzionog izvijanja je prvi put razmatran od strane Timošenka, koji je posmatrao nosač statičkog sistema proste grede izložen čistom savijanju, a kao rezultat njegovog rada nastala je teorija linearno elastičnog bočno-torzionog izvijanja. Ova teorija se bazira na osnovnim pretpostavkama:

- materijal je idealno elastičan,
- nosač je idealno prav (nema početnih geometrijskih imperfekcija),
- spriječena je torziona rotacija oslonaca (radi se o viljuškastim osloncima),
- poprečni presjek zadržava oblik nakon deformacije,

- poprečni presjek je obostrano simetričan i konstantan duž cijelog nosača,

- nosač je obostrano simetričnog I presjeka kod koga je moment inercije oko slabije z-z ose znatno manji od momenta inercije oko jače y-y ose, ($I_z << I_y$),

- deformacije su male (sin $\varphi = \varphi$ i cos $\varphi = 1$),

- nosač je opterćen momentima istog intenziteta na njegovim krajevima (dijagram momenata je konstantan duž nosača).

Slika 3.1.4-Elementarni slučaj bočno-torzionog izvijanja grede [1]

Određivanje kritičnog momenta vrši se posmatrajući uslove ravnoteže na deformisanom obliku nosača, sl. 3.1.4. Ako se sa ξ i η označe glavne ose inercije poprečnog presjeka u deformisanom obliku nosača spoljašnji moment savijanja M_y može da se razloži na dvije komponente pri čemu se javlja koso savijanje:

 $M_{\xi} = M_y \cdot \cos \varphi = M_y$, $M_{\eta} = M_y \cdot \sin \varphi = M_y \cdot \varphi$, gdje je φ torziona rotacija.

Problem savijanja oko glavnih osa inercije u deformisanom položaju (ξ i η) može da se posmatra nezavisno:

 $M_{\xi} = M_y = -EI_y \cdot \frac{d^2 w(x)}{dx^2}$,(1) i $M_\eta = M_y \cdot \varphi = -EI_z \frac{d^2 v(x)}{dx^2}$,(2). Usljed rotacije nosača ravan poprečnog presjeka više nije paralelna ravni djelovanja momenta M_y , pa se ovaj moment razlaže na dvije komponente razlaže na dvije komponente, jednu koja leži u ravni poprečnog presjeka deformisanog nosača i drugu upravnu na nju i koja je u stvari moment torzije $M_T =$ $M_{\zeta} = M_y \cdot \frac{dv}{dx}$. Ako se u prethodni izraz uvrsti diferencijalna jednačina kombinovane torzije dobija se izraz: $M_T(x) = GI_t \cdot \frac{d\varphi}{dx} - EI_w \cdot \frac{d^3\varphi}{dx^3} = M_y \cdot \frac{dv}{dx}$,(3). Problem bočno-torzionog izvijanja može da se prikaže pomoću jednačina (1), (2) i (3), pri čemu je jednačina (1) nezavisna, a (2) i (3) su spregnute. Ako se jednačina (3) diferencira po x i na osnovu jednačine (2) eliminiše v izrazivši ga preko φ , dobija se diferencijalna jednačina kojom se definiše problem bočno-torzionog izvijanja:

$$EI_{w} \cdot \frac{d^{4}\varphi}{dx^{4}} - GI_{t} \cdot \frac{d^{2}\varphi}{dx^{2}} - \frac{M_{y}^{2}}{EI_{z}} \cdot \varphi = 0, (4).$$

Jednačina (4) je homogena diferencijalna jednačina četvrtog reda sa konstantnim koeficijentima čije rješenje se pretpostavlja u obliku:

 $\varphi(x) = A \cdot \sin(m \cdot x) + B \cdot \cos(m \cdot x) + C \cdot \sinh(n \cdot x) + D \cdot \cosh(n \cdot x) , \quad \text{uz granične}$ uslove koji odgovaraju viljuškastim osloncima $\varphi(0) = 0, \quad \frac{d^2 \varphi(0)}{dx^2} = \varphi''(0) = 0, \quad \varphi(L) = 0,$ $\frac{d^2 \varphi(L)}{dx^2} = \varphi''(L) = 0.$

Rješavanjem ovog problema dobija se vrijednost kritičnog momenta M_{cr} u vidu sljedećeg izraza (ovaj kritičan moment zato što važi i za elementarni slučaj obilježava se sa oznakom $M_{cr,E}$):

$$M_{cr} = \pi^{2} \cdot \frac{EI_{z}}{L^{2}} \cdot \sqrt{\frac{I_{w}}{I_{z}} + \frac{L^{2}}{\pi^{2}} \cdot \frac{GI_{t}}{EI_{z}}} = \sqrt{\pi^{2} \cdot \frac{EI_{z}}{L^{2}} \cdot \left(GI_{t} + \pi^{2} \cdot \frac{EI_{w}}{L^{2}}\right)} = \sqrt{N_{cr,z} \cdot \left(GI_{t} + \pi^{2} \cdot \frac{EI_{w}}{L^{2}}\right)}$$

gdje su:

 EI_z - krutost na savijanje oko slabije z-z ose,

 GI_t - torziona krutost,

 I_w - sektorski moment inercije,

L - raspon nosača odnosno razmak između tačaka bočnog pridržavanja,

 $N_{cr,z}$ – Ojlerova kritična sila za izvijanje oko slabije z-z ose.

Prethodni izraz važi za idealni odnosno elementarni slučaj prikazan na slici 3.1.4, dok vrijednost kritičnog momenta uopšteno zavisi od: geometrijskih karakteristika poprečnog presjeka nosača (I_t , I_z , I_w), uslova bočnog oslanjanja (sl. 3.1.5), načina naprezanja tj. oblika dijagrama momenta savijanja, položaja poprečnog opterećenja u odnosu na centar smicanja poprečnog presjeka kao i od oblika poprečnog presjeka (obostrano simetričan ili monosimetričan).

Granični uslovi

a) Osnovni (elementarni) slučaj $M_{cr,E}$ (6.66) b) Opšti slučaj - realne konstrukcije

Slika 3.1.5-Slučajevi oslanjanja i opterećenja [1]

Kada je nosač opterećen momentima različitih intenziteta na svojim krajevima kritičan moment može da se odredi pomoću sljedećeg izraza:

 $M_{cr} = \alpha_m \cdot \sqrt{\pi^2 \cdot \frac{EI_z}{L^2} \cdot \left(GI_t + \pi^2 \cdot \frac{EI_W}{L^2}\right)} = \alpha_m \cdot M_{cr,E}$, gdje je α_m faktor oblika dijagrama momenta savijanja i zavisi od β_m koji predstavlja osnos intenziteta momenata na krajevima nosača (sl. 3.1.6), $\alpha_m = 1.75 + 1.05 \cdot \beta_m + 0.3 \cdot {\beta_m}^2 \le 2.56$, (5).

Slika 3.1.6-Faktor dijagrama momenta α_m [1]

Opterećenje i dijagram momenata	Faktor $lpha_m$	
M B M	$1,75 + 1,05 \beta_m + 0,3 \beta_m^2$ 2,56	za $-1 \le \beta_m \le 0.6$ za $0.6 < \beta_m \le 1$
$Q = \frac{2a}{Q}$ $Q = $	1,0+0,35(1-2 a/L) ²	za 0<2 a/L ≤1
$Q = \frac{a}{QL}$ $Q = \frac{a}{QL}$ $Q = \frac{a}{4}$ $Q = \frac{a}{4}$ $Q = \frac{a}{4}$ $Q = \frac{a}{4}$	1,35+0,4(2 a/L) ²	za 0 < 2 a/L ≤ 1
$\begin{array}{c c} L/2 & L/2 \\ \hline Q & \hline 16 \\ \hline D & \hline 16$	$1,35 + 0,15 \beta_m$ -1,2 + 3,0 β_m	za $0 \le \beta_m \le 0.9$ za $0.9 < \beta_m \le 1$
$\begin{array}{c c} & L/2 & L/2 \\ \hline \beta_m QL & Q & \beta_m QL \\ \hline 8 & & & \\ \hline 9 & & \\ \hline 9 & & \\ \hline 9 & & & \\$	1,35 + 0,36 β _m	za 0 ≤ β _m ≤ 1
$\frac{q}{\frac{\beta_m qL^2}{8}} \frac{\beta_m qL^2}{8} \frac{qL^2}{8} (1-\beta_m/4)^2$	$1,13 + 0,10\beta_m$ -1,25 + 3,5 β_m	za $0 \le \beta_m \le 0.7$ za $0.7 < \beta_m \le 1$
$\frac{\beta_m q L^2}{12} \qquad q \qquad \beta_m q L^2 \qquad 12 \qquad 12 \qquad q \qquad $	$1,13 + 0,12\beta_m$ -2,38 + 4,8 β_m	za $0 \le \beta_m \le 0.75$ za $0.75 < \beta_m \le 1$

Tabela 3.1.4.1 – Vrijednost koeficijenta α_m za neke od slučajeva opterećenja [1]

Za slučajeve koji nisu obuhvaćeni prethodnom tabelom α_m može da se odredi približno pomoću izraza $\alpha_m = \frac{1.75 \cdot M_{max}}{\sqrt{M_2^2 + M_3^2 + M_4^2}}$, gdje su:

M_{max} – maksimalni moment savijanja u nosaču,

 M_2, M_4 – momenti savijanja u četvrtinama raspona,

 M_3 – moment savijanja u sredini raspona nosača.

Prethodni izrazi važe za obostranosimetrične presjeke, kod kojih se težište i centar smicanja poklapaju. Kritičan moment za monosimetrične presjeke se može odrediti opštim izrazom (prema *Clark, Hill i Galea*):

$$M_{cr} = C_1 \cdot \frac{\pi^2 \cdot EI_z}{(k_z \cdot L)^2} \cdot \left[\sqrt{\left(\frac{k_z}{k_w}\right)^2 \cdot \frac{I_w}{I_z} + \frac{(k_z \cdot L)^2 \cdot GI_t}{\pi^2 \cdot EI_z}} + \left(C_2 \cdot z_g - C_3 \cdot z_j\right)^2 - \left(C_2 \cdot z_g - C_3 \cdot z_j\right) \right], \text{ gdje}$$
su:

 C_1 – koeficijent koji uvodi u proračun različite oblike dijagrama momenta savijanja, $C_1 = \alpha_m$,

 C_2 – koeficijent kojim se uzima u obzir položaj poprečnog opterećenja u odnosu na centar smicanja,

 C_3 – koeficijent kojim se uzima u obzir nepoklapanje težišta i centra smicanja,

 k_w i k_z – koeficijenti kojima se obuhvataju različiti uslovi oslanjanja (k_z se odnosi na rotaciju oslonačkih poprečnih presjeka oko slabije z-z ose, a k_w na torziono krivljenje tj. deplanaciju presjeka i kada su ove deformacije spriječene na oba kraja imaju vrijednost $k_w = k_z = 0.5$, u slučaju da su ove deformacije slobodne $k_w = k_z = 1.0$, a kada su ove deformacije na jednom kraju spriječene a na drugom slobodne tada je $k_w = k_z = 0.7$),

 z_g – rastojanje između centra smicanja i tačke u kojoj djeluje opterećenje, sl. 3.1.7,

 z_j – parametar koji uzima u obzir stepen asimetrije poprečnog presjeka, sl. 3.1.7 i određuje se prema izrazu: $z_j = z_s - \frac{1}{2 \cdot l_y} \cdot \int_A (y^2 + z^2) \cdot z \, dA$.

	Statički sistem i opterećenje	k _z ik _w	C1	C ₂	C3
		1,0	1,000	-	1,000
1	M (2 M	0,7	1,000	-	1,113
		0,5	1,000	-	1,144
	* 1	1,0	1,323	-	0,992
2	Mi 2 (🖂 🛁 🖌 M/ 2	0,7	1,473	-	1,556
		0,5	1,514	-	2,271
		1,0	1,879	-	0,939
3	M (2	0,7	2,092	-	1,473
		0,5	2,150	-	2,150
	* `	1,0	2,704	-	0,676
4	M () M/2	0,7	3,009	-	1,059
		0,5	3,093	-	1,546
	* `	1,0	2,752	-	0,000
5	- M (<u>~</u>) M	0,7	3,063	-	0,000
		0,5	3,149	-	0,000
6	CONSTRUCTION OF A CONSTRUCTION	1,0	1,132	0,459	0,525
<u>с</u>	42	0,5	0,972	0,304	0,980
7	q	1,0	1,285	1,562	0,753
l '		0,5	0,712	0,652	1,070
	F	1.0	1.365	0.553	1.730
8		0,5	1,010	0,432	3,050
	F	1.0	1.565	1.267	2,640
9	}t	0,5	0,938	0,715	4,800
10	\$14 \$ \$1/2 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1,0 0,5	1,046 1,010	0,430 0,410	1,120 1,890

Tabela 3.1.4.2 – Koeficijenti C_1, C_2, C_3 za različite slučajeve opterećenja [1]

Slika 3.1.7-Monosimetrični poprečni presjek, označavanje pomoćnih parametara [1]

ruceiu stritte secondulijske narukteristike popreenog presjenu [1	Tabela 3.1.4.3 –	Geometrijske	karakteristike	poprečnog	presjeka	[1]
---	------------------	--------------	----------------	-----------	----------	-----

Veličina	Obostrano simetrični preseci	Monosimetrični I preseci		
Rastojanje između težišta preseka i centra smicanja $z_{s} = 0$ $z_{s} = \frac{b_{1}^{3} t_{1} h_{1} - b_{2}^{3} t_{2} h_{2}}{b_{1}^{3} t_{1} + b_{2}^{3} t_{2}}$				
Sektorski moment inercije	$I_w = I_z h_s^2 / 4$	$I_{w} = \beta (1 - \beta) I_{z} h_{s}^{2} \text{ili}$ $I_{w} \approx \frac{b_{1}^{3} t_{1} b_{2}^{3} t_{2}}{12(b_{1}^{3} t_{1} + b_{2}^{3} t_{2})} h_{s}^{2}$		
Torzioni moment inercije $I_t = \frac{1}{3} \left(2 b t^3 + d t_w^3 \right)$ $I_t = \frac{1}{3} \left(b_1 t_1^3 + b_2 t_2^3 + d t_w^3 \right)$				
Parametar \mathbf{z}_j $\mathbf{z}_j = 0$ $\beta > 0,5 \Rightarrow \mathbf{z}_j = 0,4 (2\beta - 1) \mathbf{h}_s$ $\beta \le 0,5 \Rightarrow \mathbf{z}_j = 0,5 (2\beta - 1) \mathbf{h}_s$				
$\beta = \frac{I_{fc}}{I_{fc} + I_{ft}}$				
Ifc moment inercije pritisnutog pojasa oko slabije z-z ose inercije,				
In moment inercije zategnutog pojasa oko slabije z-z ose inercije,				
h _s rastojanje između centara smicanja pritisnutog i zategnutog pojasa,				
NAPOMENE:				
(1) Kada su pojasevi izrađeni od ravnih limova hs je jednako rastojanju između težišta pojasnih lamela (h _s = h - t _t).				
(2) Rastojanje između težišta i centra smicanja (zs) je pozitivno kada se centar smicanja nalazi između težišta i pritisnute nožice.				

Kod nosača kranske staze se nerjetko vrši variranje dimenzije poprečnog presjeka pokrivanjem dijagrama momenta savijanja da bi se ostvarila ušteda materijala. Prethodno navedeni izrazi za proračun kritičnog momenta vrijede samo za prizmatične elemente (konstantan poprečni presjek), dok kod elemenata sa promjenljivim poprečnim presjekom vrijednost kritičnog

momenta se razlikuje zavisno od načina promjene presjeka. Kod nosača kod kojih se promjena geometrije ostvaruje promjenom visine poprečnog presjeka uticaj variranja dimenzija poprečnog presjeka ja neznatan, dok kod variranja dimenzija promjenom širine nožica uticaj je znatno veći. Kritičan moment se u ovom slučaju može odrediti primjenom metoda konačnih elemenata ili pomoću specijalizovanih softvera. Takođe postoje i neke približne metode, pa prema metodi *Trahair*-a kritičan moment nosača može da se odredi tako što se kritičan moment određen na osnovu karakteristika poprečnog presjeka maksimalnih dimenzija pomnoži sa redukcionim faktorom α_{st} :

$$\alpha_{st} = 1 - 1.2 \cdot \frac{L_r}{L} \cdot \left[1 - \left(0.6 + 0.4 \cdot \frac{h_{min}}{h_{max}} \right) \cdot \frac{A_{f,min}}{A_{f,max}} \right], \text{ gdje su:}$$

 h_{min} , h_{max} – minimalna i maksimalna visina nosača,

 $A_{f,min}$, $A_{f,max}$ – minimalna i maksimalna površina pojasne lamele,

L, L_r -raspon nosača, dužina nosača sa redukovanim poprečnim presjekom (kod nosača sa linearnom promjenom visine rebra duž nosača usvaja se $L_r = 0.5 \cdot L$).

Prema *Galea*-u kritičan moment za nosač sa promjenljivom visinom rebra koji je sistema proste grede i koji je viljuškasto oslonjen sa konstantnim dijagramom momenata može da se odredi pomoću ekvivalentne visine nosača:

 $h_{eq} = h_{max} \cdot \sqrt{0.283 + 0.434 \cdot \frac{h_{min}}{h_{max}} + 0.283 \cdot \left(\frac{h_{min}}{h_{max}}\right)^2}$, na osnovu ove visine računa se sektorski moment inercije I_w , moment inercije oko slabije ose z-z je konstantan duž nosača, a torziona konstanta se računa prema izrazu $I_t = \frac{I_{t,min}+I_{t,max}}{2}$, gje su $I_{t,min}$, $I_{t,max}$ torzione konstante za presjeke sa minimalnom i maksimalnom visinom rebra. Za dijagrame momenata koji odstupaju od elementarnog slučaja kritičan moment se može izračunati uvođenjem koefijcijenta α_m .

Pri proračunu granične nosivosti nosača na bočno-torziono izvijanje potrebo je uzeti u obzir uticaj geometrijskih imperfekcija, kao što su početne geometrijske imperfekcije i zaostali naponi. Iz ovog razloga granična nosivost nosača M_u je manja od kritične vrijednosti M_{cr} čiji način određivanja je prethodno razmatran. Početne geometrijske imperfekcije imajući u vidu prirodu bočno torzionog izvijanja vezuju se za imperfekciju savijanja oko slabije z-z ose v_0 i rotaciju poprečnog presjeka φ_0 . Ove imperfekcije se usvajaju u vidu sinusnih funkcija:

 $v_0(x) = \delta_0 \cdot \sin \pi \cdot \frac{x}{L}, \varphi_0(x) = \theta_0 \cdot \sin \pi \cdot \frac{x}{L},$ gdje su δ_0 i θ_0 amplitude početnih geometrijskih imperfekcija, u sredini raspona nosača i stoje u međusobnoj relaciji $\frac{\delta_0}{\theta_0} = \frac{M_{cr}}{N_{cr,z}}$. Imajući u vidu početne geometrijske imperfekcije jednačine koje opisuju bočno-torziono izvijanje dobijaju modifikovan oblik:

 $M_y \cdot (\varphi + \varphi_0) = -EI_z \frac{d^2 v(x)}{dx^2}$ i $GI_t \cdot \frac{d\varphi}{dx} - EI_w \cdot \frac{d^3 \varphi}{dx^3} = M_y \cdot \frac{d(v - v_0)}{dx}$. Rješenja modifikovanih jednačina su:

$$\nu(x) = \delta_0 \cdot \frac{M_y/M_{cr}}{1 - M_y/M_{cr}} \cdot \sin \pi \cdot \frac{x}{L} \quad \text{i} \quad \varphi(x) = \theta_0 \cdot \frac{M_y/M_{cr}}{1 - M_y/M_{cr}} \cdot \sin \pi \cdot \frac{x}{L}.$$

Granična nosivost nosača na bočno-torziono izvijanje dobija se izjednačavanjem maksimalnog normalnog napona u najopterećenijem poprečnom presjeku $\sigma_{max,Ed}$ (koji predstavlja zbir napona koji su posljedica savijanja oko jače y-y ose, savijanja oko slabije z-z ose i krivljenja poprečnog presjeka) sa nominalnom granicom razvlačenja čelika od koga je nosač izrađen f_v .

$$\sigma_{max,Ed} = \frac{M_{y,Ed}}{W_{el,y}} - \frac{EI_z}{W_{el,z}} \left\{ \frac{d^2 \left[v(x) + \varphi(x) \cdot \frac{h_s}{2} \right]}{dx^2} \right\}_{x = \frac{L}{2}} = f_y \text{ , gdje su:}$$

 $M_{y,Ed}$ – proračunski moment savijanja oko y ose,

 $W_{el,y}$ – elastični otporni moment za savijanje oko y ose,

 $W_{el,z}$ – elastični otporni moment za savijanje oko z ose,

 h_s – rastojanje između centara smicanja nožica (u slučaju monosimetričnih nosača između težišta nožica).

Uvrštavanjem rješenja modifikovanih jednačina u ovaj izraz dobija se sljedeći izraz:

 $M_u = M_{y,Rk} - \delta_0 \cdot \frac{N_{cr,z}}{M_{cr}} \cdot \left(1 + \frac{h_s}{2} \cdot \frac{N_{cr,z}}{M_{cr}}\right) \cdot \frac{W_{el,y}}{W_{el,z}} \cdot \frac{M_{y,Rk}/M_u}{1 - M_{y,Rk}/M_u}, \text{ gdje je } M_{y,Rk} \text{ nosivost nosača na savijanje oko y ose.}$

Nakon što se u prethodni izraz uvede relacija $\delta_0 \cdot \frac{N_{cr,z}}{M_{cr}} = \frac{W_{el,y}/W_{el,z}}{1 + \frac{h_s}{2} \frac{N_{cr,z}}{M_{cr}}} \cdot \eta$, gdje je η parametar nesavršenosti nosača, konačno se dobija bezdimenzionalni koeficijent redukcije za bočno-torziono izvijanje:

$$\chi_{LT} = \frac{M_u}{M_{y,Rk}} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \bar{\lambda}_{LT}^2}}, \ \Phi_{LT} = \frac{1}{2} \cdot \left(1 + \eta + \bar{\lambda}_{LT}^2\right), \ \text{gdje je } \bar{\lambda}_{LT} = \sqrt{\frac{M_{y,Rk}}{M_{cr}}} - \text{relativna}$$

vitkost nosača na bočno-torziono izvijanje. Parametar η može da se izračuna kao i u slučaju izvijanja pritisnutog elementa $\eta = \alpha \cdot (\bar{\lambda}_{LT} - 0.2)$, gdje je α parametar koji se određuje na osnovi Evropskih krivih izvijanja, sl. 3.1.8.

Slika 3.1.8-Evropske krive izvijanja [1]

Potvrda nosivosti nosača na bočno-torziono izvijanje prema Evrokodu 3 se verifikuje kroz ispunjenje uslova:

$$\frac{M_{Ed}}{M_{b,Rd}} \le 1.0 \; ,$$

gdje je M_{Ed} proračunska vrijednost momenta savijanja, a $M_{b,Rd}$ proračunska nosivost nosača na bočno-torziono izvijanje:

$$\begin{split} M_{b,Rd} &= \frac{\chi_{LT} \cdot W_{y} \cdot f_{y}}{\gamma_{M1}}, \\ W_{y} &= \begin{cases} W_{pl,y} \ za \ klasu \ presjeka \ 1 \ i \ 2 \\ W_{el,min,y} \ za \ klasu \ presjeka \ 3 \ - \ \text{odgovarajući otporni moment.} \\ W_{eff,min,y} \ za \ klasu \ presjeka \ 4 \end{cases}$$

Za određivanje bezdimenzionalnog koeficijenta χ_{LT} Evrokod 3 daje dvije alternativne metode:

- opšta metoda za sve oblike poprečnih presjeka,

- metoda za standardne vrućevaljane profile i ekvivalentne (obostrano simetrične) zavarene profile.

Pored ovih metoda postoji i uprošćena metoda za mjestimično bočno pridržane nosače u zgradarstvu.

Prema opštoj metodi:

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \bar{\lambda}_{LT}^2}} \le 1.0 ,$$

$$\phi_{LT} = 0.5 \cdot \left[1 + \alpha_{LT} \cdot \left(\bar{\lambda}_{LT} - 0.2 \right) + \bar{\lambda}_{LT}^2 \right], \text{ a } \alpha_{LT} \text{ se određuje prema tabeli } 3.1.4.4.$$

Oblik poprečnog pr	eseka	Kriva izvijanja	$a_{ m LT}$
Vrućevaljani I preseci	<i>h/b</i> ≤ 2	a	0,21
	<i>h/b</i> > 2	b	0,34
Zavareni I preseci	<i>h/b</i> ≤ 2	c	0,49
	<i>h/b</i> > 2	d	0,76
Ostali poprečni preseci	-	d	0,76

Tabela 3.1.4.4 – Koeficijent α_{LT} prema opštoj metodi [1]

Prema metodi za vrućevaljane profile:

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \beta \cdot \bar{\lambda}_{LT}^2}} \text{ uz uslov} \begin{cases} \chi_{LT} \leq 1.0\\ \chi_{LT} \leq \frac{1}{\bar{\lambda}_{LT}^2} \end{cases},$$
$$\phi_{LT} = 0.5 \cdot \left[1 + \alpha_{LT} \cdot \left(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}\right) + \beta \cdot \bar{\lambda}_{LT}^2\right] \text{ gdje je } \beta = 0.75 \text{ i } \bar{\lambda}_{LT,0} = 0.4.$$

Tabela 3.1.4.5 – Koeficijent α_{LT} prema metodi za vrućevaljane profile [1]

Poprečni preseci		Kriva izvijanja	a _{LT}
Vrućevaljani I preseci	<i>h/b</i> ≤ 2	b	0,34
	<i>h/b</i> > 2	c	0,49
Zavareni I preseci	<i>h/b</i> ≤ 2	c	0,49
	<i>h/b</i> > 2	d	0,76

Prethodni izrazi važe za konstantan dijagram momenata savijanja. Drugačiji oblici dijagrama savijanja mogu se obuhvatiti pomoću modifikovanog bezdimenzionalnog koeficijenta redukcije:

$$\chi_{LT,mod} = \frac{\chi_{LT}}{f} \quad \text{uz uslov } \chi_{LT,mod} \le 1.0 ,$$

$$f = 1 - 0.5 \cdot (1 - k_c) \cdot \left[1 - 2 \cdot \left(\bar{\lambda}_{LT} - 0.8 \right)^2 \right] \text{ uz uslov } f \le 1.0 .$$

Koeficijent k_c se može odrediti prema tabeli 3.1.4.5, a za slučajeve koji nisu obuhvaćeni u tabeli može se odrediti prema izrazu $k_c = 1/\sqrt{C_1} = 1/\sqrt{\alpha_m}$.

Tabela 3.1.4.5 – Koeficijent k_c [1]

Dijagram momenata	k _c
$\psi = 1$	1,0
[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	1 1,33 – 0,33 <i>ψ</i>
$-1 \le \psi \le 1$	
	0,94
	0,90
	0,91
	0,86
	0,77
	0,82

Problem bočno-torzionog izvijanja nije uvjek prisutan. Nosači koji su kontinualno ili dovoljno često bočno pridržani u nivou pritisnute nožice nisu osjetljivi na ovu pojavu, pa provjera nosivosti na bočno-torziono izvijanje nije potrebna. Takođe kvadratni i kružni šuplji profili kao i kvadratni zavareni sandučasti nosači zbog velike torzione krutosti nisu osjetljivi na bočno-torziono izvijanje. Pravougaoni šuplji profili i pravougaoni sandučasti nosači nisu osjetljivi na bočno-torziono izvijanje ukoliko odnos dimenzija poprečnog presjeka h(visina)/b(širina)<10, a prema *Kaim*-u ukoliko je $h/b < \frac{10}{\bar{\lambda}_z}$, gdje je $\bar{\lambda}_z$ relativna vitkost na izvijanje oko z ose. Takođe prema preporukama Evrokoda 3 bočno-torziono izvijanje nije mjerodavno ukoliko je nosač male vitkosti tj. kada je $\bar{\lambda}_{LT} \leq \bar{\lambda}_{LT,0} = 0.4$ i u slučaju malih vrijednosti momenata savijanja oko y ose odnosno kada je zadovoljen uslov $M_{y,Ed}/M_{cr} \leq \bar{\lambda}_{LT,0}^2 = 0.16$.

Na osnovu prethodno navedenih slučajeva u kojima problem bočno-torzionog izvijanja nije mjerodavan predlažu se sljedeće mjere za poboljšanje nosača u cilju povećanja nosivosti ili eliminisanja bočno-torzionog izvijanja:

- bočno pridržavanje pritisnute nožice,

- progušćavanje tačaka bočnog pridržavanja nosača u nivou pritisnute nožice,

- usvajanje poprečnih presjeka koji su manje osjetljivi na ovaj problem (HEA, HEB), ili koji nisu osjetljivi na ovaj problem, kao što su zatvoreni sandučasti presjeci.

Bočno-torziono izvijanje kod mjestimično bočno pridržanih nosača nije potrebno provjeravati kada je ispunjen sljedeći uslov:

$$\overline{\lambda}_{f} = \frac{k_{c} \cdot L_{c}}{i_{f,z} \cdot \lambda_{1}} \leq \overline{\lambda_{c,0}} \cdot \frac{M_{c,Rd}}{M_{y,Ed}} \quad \text{gdje su:}$$

 $\overline{\lambda_f}$ – relativna vitkost ekvivalentne pritisnute nožice,

L_c – razmak između susjednih tačaka bočnog pridržavanja,

 k_c – koeficijent korekcije kojim se uzima u obzir oblik dijagrama momenta savijanja između tačaka bočnog pridržavanja i dat je u prethodno navedenoj tabeli 3.1.4.5,

$$\lambda_1$$
 – vitkost na granici razvlačenja ($\lambda_1 = \pi \cdot \sqrt{\frac{E}{235}} \cdot \varepsilon = 93.9 \cdot \varepsilon$, $\varepsilon = \sqrt{\frac{235}{f_y}}$, f_y u Mpa),

 $i_{f,z}$ – poluprečnik inercije ekvivalentne pritisnute nožice koga čine pritisnuta nožica i trećina visine pritisnutog dijela rebra oko slabije z ose, slika 3.1.9,

(za presjeke klase 1, 2 i 3 $i_{f,z} = \frac{b_f}{\sqrt{12}} \cdot \sqrt{\frac{A_f}{A_f + A_{w,c}/3}}$, za presjeke klase 4 $i_{f,z} = \sqrt{\frac{I_{eff,f}}{A_{eff,f} + A_{eff,w,c}/3}}$ gdje su $I_{eff,f}$, $A_{eff,f}$, $A_{eff,w,c}$ – moment inercije efektivnog presjeka pritisnute nožice oko z ose, efektivna površina pritisnute nožice, efektivna površina pritisnutog dijela rebra),

 $\overline{\lambda_{c,0}}$ – granična vitkost ekvivalentne pritisnute nožice (Evrkod 3 preporučuje vrijednost $\overline{\lambda_{c,0}} = \overline{\lambda_{LT,0}} + 0.1 = 0.5$),

 $M_{y,Ed}$ – najveća proračunska vrijednost momenta savijanja između tačaka bočnog pridržavanja,
$M_{c,Rd}$ – proračunska nosivost poprečnog presjeka oko jače y ose.

Slika 3.1.9-Ekvivalentna pritisnuta nožica [1]

Kod bočno pridržanih nosača posebno se analiziraju segmenti između tačaka bočnog pridržavanja, a kao nosivost nosača na bočno-torziono izvijanje se usvaja nosivost najnepovoljnijeg segmeta. Interakcija susjednih segmenata pri bočno-torzionom izvijanju, iako postoji, se zanemaruje što je na strani sigurnosti.

U slučaju mjestimično bočno pridržanih nosača kod kojih nije ispunjen prethodno navedeni uslov Evrokod 3 dopušta uprošćen proračun. Prema ovoj metodi izraz za moment nosivosti na bočno-torziono izvijanje glasi:

$$M_{b,Rd} = k_{fi} \cdot \chi \cdot M_{c,Rd}$$
 uz uslov $M_{b,Rd} \le M_{c,Rd}$, gdje je:

 k_{fi} – koeficijent modifikacije kojim se uzima u obzir strog pristup postupka sa ekvivalentnom pritisnutom nožicom i čija je preporučena vrijednost $k_{fi} = 1.10$,

 χ – bezdimenzionalni koeficijent izvijanja ekvivalenetne pritisnute nožice koji se određuje na osnovu $\overline{\lambda_f}$ prema odgovarajućoj krivoj izvijanja koja se odabira na sljedeći način:

- kriva d za zavarene presjeke kod kojih je $h/t_f \le 44 \cdot \varepsilon$, gdje je h ukupna visina poprečnog presjeka, a t_f debljina pritisnute nožice,

- kriva c za sve ostale poprečne presjeke.

Bočno pridržavanje se može ostvariti spregovima ili nekim drugim konstruktivnim elementima, a oni moraju da posjeduju odgovarajuću krutost i da se sračunaju na uticaje koje preuzimaju. Prema Evrokodu 3 spregovi za stabilizaciju trebaju da se projektuju za prijem horizontalnog opterećenja koje djeluje u njihovoj ravni odnosno u ravni pritisnute nožice, a to opterećenje se određuje pomoću izraza:

$$q_d = 8 \cdot N_{Ed} \cdot \frac{e_0 + \delta_q}{L^2} = 8 \cdot \frac{M_{Ed}}{h} \cdot \frac{e_0 + \delta_q}{L^2}$$
, slika 3.1.10, gdje je:

 N_{Ed} – proračunska vrijednost aksijalne sile u pritisnutom pojasu nosača koji se pridržava spregom i za nosače konstantne visine može da se odredi kao $N_{Ed} = \frac{M_{Ed}}{h}$,

 e_0 – početna geometrijska imperfekcija zakrivljenja, $e_0 = \frac{\alpha_m \cdot L}{500}$ gdje je $\alpha_m = \sqrt{0.5 \cdot (1 + 1/m)}$ koeficijent kojim se uzima u obzir broj nosača (*m*) koji su stabilizovani istim spregom,

 δ_q – deformacija sprega u ravni usljed opterećenja q_d po teoriji prvog reda, a ako se proračun vrši po teoriji drugog reda može se usvojiti da je $\delta_q = 0$,

L – raspon nosača koji se pridržava spregom.

Slika 3.1.10-Opterećenje sprega za bočnu stabilizaciju u ravni [1]

3.1.5 Nosivost na izbočavanje rebra

Izbočavanje je lokalni fenomen gubitka stabilnosti tankih i vitkih elemenata poprečnog presjeka koji su izloženi naponima pritiska koji mogu biti posljedica savijanja, aksijalne sile ili njihove kombinacije. Takođe do izbočavanja može doći i usljed čistog smicanja, kao i usljed lokalnog pritiska točka krana ili usljed oslonačke reakcije nosača.

Kod kranskih nosača izbočavanje je mjerodavno:

- usljed normalnog napona pritiska kod poprečnih presjeka klase 4 kod kojih je vitkost rebra $h_w/t_w > 124 \cdot \varepsilon$ u slučaju čistog savijanja,

- usljed smičućih napona kada je za neukrućena rebra $h_w/t_w > 72 \cdot \varepsilon/\eta$, a za ukrućena rebra $h_w/t_w > 31 \cdot k_\tau^{0.5} \cdot \varepsilon/\eta$.

Problem izbočavanja može da se objasni pomoću modela pravougaone ploče oslonjene zglobno duž sve četiri strane opterećene naponom prtiska σ_x duž dvije paralelne ivice, slika 3.1.11. Pri malim naprezanjima deformacije ploče su upravne na njenu srednju ravan i elastične su prirode. Sa kontinuiranim povećavanjem napona u jednom trenutku dolazi do trajne plastične

deformacije – izbočine. Napon pri kojem dolazi do izbočine naziva se kritičan napon elastičnog izbočavanja $\sigma_{x,cr}$.

Slika 3.1.11-Izbočavanje pravougaone ploče [1]

Na sl. 3.1.11c je prikazan uprošćeni linijski roštiljni model koga čine podužna i poprečna srednja vlakna, pri čemu srednja podužna vlakna paralelna dejstvu normalnog napona teže da se izviju ali ih srednja poprečna vlakna upravna na njih u tome spriječavaju pa se njihovo dejstvo u modelu može zamjeniti elastičnim osloncem.

Ukoliko ploča nije oslonjena duž ivica paralelnih pravcu djelovanja opterećenja poprečna vlakna gube stabilizirajuću ulogu čime se izbočavanje svodi na izvijanje površinskog elementa upravno na svoju ravan. Problem se svodi na određivanje Ojlerovog kritičnog napona trake jedinične širine izdvojene iz ploče (sl. 3.1.12) koji glasi:

$$\sigma_{cr} = \pi^2 \cdot \frac{E}{\lambda^2} = \pi^2 \cdot \frac{E}{\left(b/(\sqrt{12} \cdot t)\right)^2} = \frac{\pi^2 \cdot E}{12} \cdot \left(\frac{t}{b}\right)^2 , \text{ gdje je } E \text{ Jungov modul elastičnosti, t debljina}$$

ploče, λ vitkost trake jedinične širine i *b* širina ploče.

Ukoliko je ploča oslonjena duž sve četiri strane stabilizirajući uticaj poprečnih vlakana se obuhvata tako što se u prethodni izraz umjesto E uvrsti $\frac{E}{1-\nu^2}$, gdje je v Poasonov koeficijent i za čelik iznosi 0.3, pa Ojlerov kritičan napon izbočavanja pravougaone ploče glasi:

$$\sigma_E = \frac{\pi^{2} \cdot E}{12 \cdot (1 - \nu^2)} \cdot \left(\frac{t}{b}\right)^2 = 189800 \cdot \left(\frac{t}{b}\right)^2.$$

Iz ovog izraza se vidi da se stabilizirajuća uloga poprečnih vlakana smanjuje ukoliko se širina ploče poveća. Treba naglasiti da konstruktivni element nakon pojave izbočine ne mora da izgubi odmah stabilnost kao što je slučaj kod izvijanja već nosač može da prenese i izvjesno post-kritično opterećenje.

Slika 3.1.12-Ojlerov kritičan napon izvijanja jedinične trake izdvojene iz ploče [1]

Osnovne pretpostavke linearno-elastične teorije izbočavanja pravougaone ploče (*Timošenko*) su:

- materijal je idealno elastičan,
- nema početnih geometrijskih i strukturnih imperfekcija,
- opterećenje djeluje u srednjoj ravni ploče,
- deformacije ploče upravne na njenu srednju ravan (w) su male.

Osnovni slučaj izbočavanja predstavlja zglobno oslonjena ploča na sve četiri strane opterećena konstantnim naponima pritiska σ_x duž dvije suprotne ivice. Polazeći od diferencijalne jednačine savijanja pravougaone ploče po teoriji drugog reda i uzimajući u obzir da nema poprečnog opterećenja ($q_z = 0$; $\sigma_x \neq 0$; $\sigma_y = \tau_{xy} = 0$) dolazi se do diferencijalne jednačine izbočavanja za osnovni slučaj:

$$\frac{\partial^4 w}{\partial x^4} + 2 \cdot \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = -\sigma_x \cdot \frac{t}{D} \cdot \frac{\partial^2 w}{\partial x^2},$$

E:*t*³

gdje je $D = \frac{E \cdot t^3}{12 \cdot (1 - \nu^2)}$ – krutost ploče na savijanje.

Rješenje ove diferencijalne jednačine se pretpostavlja u obliku dvostrukog Furijeovog reda:

$$w(x, y = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \cdot \sin(\frac{m \cdot \pi}{a} \cdot x) \cdot \sin(\frac{m \cdot \pi}{b} \cdot y) , \text{ gdje su } a \neq b \text{ dimenzije ploče.}$$

Diferenciranjem ovog pretpostavljenog rješenja i uvođenjem u diferencijalnu jednačinu izbočavanja dobija se:

$$A_{mn} \cdot \left\{ \pi^4 \cdot \left[\left(\frac{m}{a} \right)^2 + \left(\frac{n}{b} \right)^2 \right]^2 - \pi^2 \cdot \left(\frac{m}{a} \right)^2 \cdot \sigma_x \cdot \frac{t}{D} \right\} = 0 \; .$$

Iz uslova postojanja netrivijalnog rješenja slijedi da je $A_{mn} \neq 0$, pa se dobija sljedeći izraz:

$$\sigma_{\chi} = \left[\left(\frac{m}{a} \right)^2 + \left(\frac{n}{b} \right)^2 \right]^2 \cdot \pi^2 \cdot \left(\frac{a}{m} \right)^2 \cdot \frac{D}{t} \, .$$

Fizičko značenje parametrara *m* i *n* je sljedeće: *m*-broj polutalasa izbočavanja odnosno broj izbočina u pravcu x ose; *n*-broj polutalasa izbočavanja odnosno broj izbočina u pravcu y ose. Ako se odnos stranica pravougaone ploče (dužine i širine) iskaže kao $\alpha = a/b$ dobija se sljedeći izraz za napon izbočavanja:

$$\sigma_{\chi} = \left(\frac{m}{\alpha} + n^2 \cdot \frac{\alpha}{m}\right)^2 \cdot \frac{\pi^2 \cdot E}{12 \cdot (1 - \nu^2)} \cdot \left(\frac{t}{b}\right)^2 = \left(\frac{m}{\alpha} + n^2 \cdot \frac{\alpha}{m}\right)^2 \cdot \sigma_E = k \cdot \sigma_E$$

Slika 3.1.13-Neki od oblika izbočavanja [1]

Pomoću parametra $k = \left(\frac{m}{\alpha} + n^2 \cdot \frac{\alpha}{m}\right)^2$ se uzima u obzir uticaj cjelobrojnih vrijednosti *m* i *n* na vrijednost normalnog napona izbočavanja σ_x . Kritičan napon izbočavanja se dobija određivanjem minimuma parmetra *k*, a na osnovu izraza se uočava da se minimalna vrijednost ovog parametra dobija kada je n = 1, tj. kada se po širini ploče javlja samo jedna izbočina. Imajući ovo u vidu parametar *k* se dobija pomoću sljedećeg izraza:

 $k = \left(\frac{m}{\alpha} + \frac{\alpha}{m}\right)^2$, gdje je *m* cijeli broj koji može da ima vrijednost $m = 1, \dots, j$, pa se za parametar *k* koji je jednoparametarska funkcija ($k = k(\alpha)$) dobija familija krivih gdje svaka kriva odgovara jednoj vrijednosti m.

Minimumi ovih funkcija odrađuju se iz uslova $\frac{dk(\alpha)}{d\alpha} = 0$, a uobičajeno je da se minimum ove funkcije označava sa k_{σ} . Pokazuje se da minimum svake od ovih krivih ne pada ispod vrijednosti 4, a obvojnica familije krivih se sa povećavanjem broja izbočina približava

konstanti tj. četvorci, pa je na strani sigurnosti usvojiti da je $k_{\sigma} = 4$ kada je ispunjen uslov $\alpha \ge 1.0$. U slučaju da je $\alpha < 1.0$ koeficijent k_{σ} se može izračunati pomoću sljedeće aproksimacije:

Slika 3.1.14-Izbočavanje ploče u jednom i u dva polutalasa [1]

Slika 3.1.15-Familija krivih $k(\alpha)$ i njihova obvojnica [1]

Krittičan napon elastičnog izbočavanja pravougaone ploče zglobno oslonjene duž sve četiri strane, opterećene u svojoj ravni konstantnim naponima pritiska duž dvije suprotne strane, dobija se pomoću sljedećeg izraza:

$$\sigma_{x,cr} = k_{\sigma} \cdot \frac{\pi^{2} \cdot E}{12 \cdot (1 - \nu^{2})} \cdot \left(\frac{t}{b}\right)^{2} = k_{\sigma} \cdot \sigma_{E}$$

Parametri koji utiču na vrijednost kritičnog napona izbočavanja, što se može zaključiti na osnovu prethodnih razmatranja, su:

- dimenzije ploče (debljina *t*, dužina *a* i širina *b*), a uvode se u proračun pomoću Ojlerovog napona izbočavanja σ_E ,

- uslovi oslanjanja ploče, uvode se u proračun preko koeficijenta k (k_{σ} ili k_{τ} , pri čemu se koeficijent k_{τ} koristi kod smicanja),

- način naprezanja ploče, uvodi se u proračun takođe pomoću koficijenta k (k_{σ} ili k_{τ}).

Slika 3.1.16-Uticaj načina oslanjanja na vrijednost koeficijenta k_{σ} [1]

Sa slike 3.1.16 se vidi da koeficijent k_{σ} kod ploče koja je zglobno oslonjena po šrini na obe strane, a ukljštena po dužini na obe strane raste sa 4 (zglobno oslonjena ploča na sve četiri strane) na 6.97, dok kod ploča sa jednom slobodnom ivicom i tri zglobno oslonjene koeficijent k_{σ} iznosi 0.426.

Slika 3.1.17-Uticaj načina naprezanja na vrijednost koeficijenta k_{σ} [1]

Pomoću koeficijenta ψ se opisuje način promjene naprezanja duž opterećenih ivica ploče, pri čemu je σ_{x1} maksimalni napon pritiska, a koeficijent ψ ima negativnu vrijednost kada je drugi napon σ_{x2} napon zatezanja. U tabeli 3.1.5.1 dadi su vrijednosti koeficijenta k_{σ} za različite uslove oslanjanja i inaprezanja.

	Normalni naponi (k _o)					Smičući naponi (k.)
Uslovi	$\psi = 1$	$\psi = 0.5$	$\psi = 0$	$\psi = -0.5$	$\psi = -1$	5
oslanjanja	σΦ	$\sigma_{\sigma/2}$		Con Ca	o A	* 4 *
	4,00	5,32	7,81	13,40	23,90	$\alpha \ge 1: k_r = 5.34 + \frac{4}{\alpha^2}$ $\alpha < 1: k_r = 4 + \frac{5.34}{\alpha^2}$
	6,97	9,27	13,54	24,50	39,52	$\alpha \ge 1: k_r = 9 + \frac{3.3}{\alpha^2}$ $\alpha < 1: k_r = 7 + \frac{5.3}{\alpha^2}$
	5,41	-	11,73	-	23,94	$\alpha \ge 1: k_r = 7.5 + \frac{4}{\alpha^2}$ $\alpha < 1: k_r = 6.5 + \frac{5}{\alpha^2}$
	5,41	-	9,54	-		-
	1,28	-	5,91	-	2,134	-
	1,28	-	1,608	-		-
	0,426	-	1,702	-	0,851	-
	0,426	-	0,567	-		-

Tabela 3.1.5.1 - k_{σ} za različite uslove oslanjanja i naprezanja [1]

Za slučajeve naprezanja pravougaone ploče koja je zglobno oslonjena duž sve četiri strane koji nisu obuhvaćeni tabelom koeficijent k_{σ} se može odrediti pomoću izraza:

$$k_{\sigma} = \begin{cases} 8.2 \cdot (1.05 + \psi) & za & 0 < \psi < 1\\ 7.81 - 6.29 \cdot \psi + 9.78 \cdot \psi^2 & za & -1 < \psi < 0\\ 5.98 \cdot (1 - \psi)^2 & za & -3 < \psi < -1 \end{cases}$$

Sve prethodno navedeno važi za ploče bez geometrijskih i strukturnih imperfekcija, koje su izrađene od homogenog idealno elastičnog materijala. Stvarne ploče odnosno ravni limovi koji se koriste za izradu čeličnih konstrukcija, u manjoj ili većoj mjeri odstupaju od ovih pretpostavki. Sa druge strane ove imperfekcije manje utiču na graničnu nosivost elementa u odnosu na linijske elemente. Naime, pokazuje se da je ravni element sposban da prihvati i veće opterećenje od $\sigma_{x,cr}$ prije nego što dođe do gubitka stabilnosti. Preostali dio ploče od koga je izuzet izbočeni dio sposoban je da primi dodatno opterećenje, tj. preostali dio poprečnog presjeka posjeduje post-kritičnu rezervu nosivosti. Deformisani odnosno izbočeni dio ploče

ima manju krutost u odnodu na ostatak ploče, dužina vlakana u izbočenom dijelu je veća pa je relativno izduženje manje što rezultuje manjim naprezanjima u ovom dijelu ploče. Dijagram normalnih napona u ploči je u ovom slučaju nelinearan, što je nepogodno za praktičnu primjenu, pa je cilj ovaj nelinearan dijagram aproksimirati konstantnim dijagramom. Uslov koji je neophodno ispuniti pri ovoj aproksimaciji je da su rezultante *R* nelinearnog i konstantnog dijagrama jednake (uslov ravnoteže), što se može postići na dva načina, pa postoje dvije metode za određivanje granične nosivosti ploče na izbočavanje:

- metoda efektivne širine (b_{eff}) ,
- metoda redukovanog napona (σ_{lim}).

Rezultanta naprezanja u izbočenoj pravougaonoj ploči određuje se prema izrazu:

 $R = \int_0^b \sigma_{act}(x) t \, dx = f_y \cdot t \cdot b_{eff} = \sigma_{lim} \cdot t \cdot b$, gdje je:

 $\sigma_{act}(x)$ – funkcija kojom se definiše oblik stvarnog dijagrama napona izbočene ploče, b, t – širina i debljina ploče.

Slika 3.1.18-Proračunski modeli za određivanje granične nosivosti pritisnute ploče [1]

Efektivan poprečni presjek odnosno efektivna širina određuju se iz uslova da na efektivnom dijelu presjeka ne dođe do izbočavanja, tj. da je kritičan napon izbočavanja za pravougaonu ploču širine b_{eff} jednak granici razvlačenja čelika od koga je element izrađen:

$$\sigma_{x,cr}(b_{eff}) = k_{\sigma} \cdot \frac{\pi^{2} \cdot E}{12 \cdot (1-\nu^{2})} \cdot \left(\frac{t}{b_{eff}}\right)^{2} = f_{y} ,$$

$$\sigma_{x,cr}(b_{eff}) = k_{\sigma} \cdot \frac{\pi^{2} \cdot E}{12 \cdot (1 - \nu^{2})} \cdot \left(\frac{t}{b}\right)^{2} \cdot \left(\frac{b}{b_{eff}}\right)^{2} = \sigma_{x,cr} \cdot \left(\frac{b}{b_{eff}}\right)^{2} = f_{y} \rightarrow$$

 $\rightarrow \frac{b_{eff}}{b} = \sqrt{\frac{\sigma_{x,cr}}{f_y}} = \frac{1}{\overline{\lambda_p}} = \rho \text{, gdje je } \overline{\lambda_p} \text{ relativna vitkost ploče na izbočavanje } (\overline{\lambda_p} = \sqrt{\frac{f_y}{\sigma_{x,cr}}}) \text{ i } \rho$ je koeficijent redukcije usljed izbočavanja.

Zavisnost između efektivne širine i relativne vitkosti je hiperbola koja je u litereaturi poznata kao Karmanova hiperbola (*von Karman*). Karmanova hiperbola je teorijska kriva koja važi za ploče bez strukturnih i geometrijskih imperfekcija koje su izrađene od idealno-elastičnog materijala. Pošto je čelik materijal sa izrazitim elasto-plastičnim ponašanjem, kod koga postoje geometrijske i strukturne imperfekcije granična nosivost čeličnog elementa je manja od teorijskih vrijednosti. Džordž Vinter (*G. Winter*) je uzeo u obzir smanjenu vrijednost nosivosti realnih ploča i modifikovao zavisnost između efektivne širine i relativne vitkosti:

 $\rho = \frac{b_{eff}}{b} = \frac{1}{\overline{\lambda_p}} - \frac{0.22}{\overline{\lambda_p}^2}$, kriva koja je definisana ovim izrazom u literaturi se označava kao Vinterova kriva i koristi se u Evrekodu 3

Vinterova kriva i koristi se u Evrokodu 3.

Izraz koji definiše vezu između metode efektivnog presjeka i metode redukovanog napona glasi: $\frac{b_{eff}}{b} = \frac{\sigma_{lim}}{f_y} = \rho$, $b_{eff} = \rho \cdot b$, $\sigma_{lim} = \rho \cdot f_y$, i u slučaju pojedinačnih ploča dobijaju se iste granične nosivosti bez obzira koja metoda je korištena. Kod poprečnih presjeka elemenata čeličnih konstrukcija koji su sastavljeni od više različitih pločastih elemenata javlja se razlika između ove dvije metode u pogledu proračuna nosivosti poprečnog presjeka kao cjeline. Pri korištenju metode efektivnog poprečnog presjeka svi pritisnuti dijelovi se razmatraju posebno i za svaki od njih se određuje efektivna širina. Na ovaj način dolazi se do efektivnog poprečnog presjeka, a neefektivni dijelovi se tretiraju u proračunu kao da ne postoje. Nosivost poprečnog presjeka se određuje na osnovu geometrijskih karakteristika efektivnog presjeka (A_{eff}, W_{eff}, I_{eff}) uz uzimanje u obzir eventualno pomjeranje težišta poprečnog presjeka. Sa druge strane kod metode redukovanog napona zasebno se analiziraju dijelovi poprečnog presjeka i za svaki od njih se određuje redukovani napon ($\sigma_{lim,i}$), a kao mjerodavna usvaja se minimalna vrijednost $\sigma_{lim} = min(\sigma_{lim,i})$ i predstavlja redukovani napon najslabijeg dijela poprečnog presjeka koji će prvi da se izboči. Nosivost se određuje na osnovu geometrijskih karakteristika bruto poprečnog presjeka (A, W, I), elastičnog modela nosivosti (klasa 3 poprečnog presjeka) i redukovanog napona σ_{lim} . Prema tome metoda redukovanog napona daje manje nosivosti poprečnog presjeka u odnosu na metodu efektivne širine. Na osnovu svega navedenog vidi se da je metoda efektivne širine odnosno efktivnog presjeka znatno povoljnija za primjenu, pa je u Evrokodu 3 znatno razrađenija u odnosu na metodu redukovanog napona. Koristi se kao dominantna metoda za proračun neukrućenih i ukrućenih poprečnih presjeka. Metoda redukovanog napona je povoljnija za primjenu u slučaju neuniformnih elemenata, složenih poprečnih presjeka i složenih naprezanja. Takođe je pogodna i za proračun metodom konačnih elemenata, a može da se koristi i za ukrućene i za neukrućene limove. Nedostatak ove metode se ogleda u tome da nakon pojave prve izbočine u najslabijem dijelu poprečnog presjeka nema mogućnosti za preraspodjelu dilatacija, a samim tim i napona.

Metoda efektivne širine prema Evrokodu 3 može se primjenjivati ako su ispunjeni sledeći uslovi:

- polja su pravougaona, a nožice približno paralelne (može se smatrati da su nožice približno paralelne ukoliko nagib nije veći od 10°), u slučaju da je nagib veći od 10° polje se aproksimira pravougaonim sa maksimalnom visinom polja,

- rupe ili zasjeci su mali (prečnik rupe ili zasjeka ne prelazi 5% visine polja),
- ukrućenja, ako ih ima se postavljaju u podužnom, poprečnom ili u oba pravca,
- elementi su konstantnog poprečnog presjeka,
- nema izbočavanja usljed izvijanja pritisnute nožice.

Koeficijent redukcije usljed izbočavanja ρ prema Evrokodu 3 se određuje na sljedeći način:

- za unutrašnje dijelove poprečnog presjeka:

$$\rho = 1.0 \qquad \qquad \text{za} \quad \overline{\lambda_p} \le 0.5 + \sqrt{0.085 - 0.055 \cdot \psi}$$

$$\rho = \frac{\overline{\lambda_p} - 0.055 \cdot (3+\psi)}{\overline{\lambda_p}^2} \le 1.0 \qquad \text{za} \quad \overline{\lambda_p} > 0.5 + \sqrt{0.085 - 0.055 \cdot \psi}$$

- za konzolne dijelove poprečnog presjeka:

$$\rho = 1.0$$
za $\lambda_p \le 0.748$

$$\rho = \frac{\overline{\lambda_p} - 0.188}{\overline{\lambda_p}^2} \le 1.0 \qquad \text{za} \quad \overline{\lambda_p} > 0.748$$

$$\overline{\lambda_p} = \sqrt{\frac{f_y}{\sigma_{x,cr}}} = \sqrt{\frac{f_y}{k_\sigma \cdot \frac{\pi^2 \cdot E}{12 \cdot (1 - \nu^2)} \cdot \left(\frac{t}{\overline{b}}\right)^2}} = \frac{\overline{b}/t}{28.4 \cdot \varepsilon \cdot \sqrt{k_\sigma}}.$$

Dijagram napona (pritisak je pozitivan)				Efektivna širina b _{eff}			
σ_2				$\frac{1 > \psi \ge 0:}{\boldsymbol{b}_{eff} = \rho \boldsymbol{c}}$			
σ_2 σ_1 σ_1				$\frac{\psi < 0:}{b_{\rm eff}} = \rho \ b_c = \rho \ c \ l(1 - \psi)$			
$\psi = \sigma_2 / \sigma_1$ 1 0			-1	-1 1 ≥ ψ≥ -3			
Koeficijent izvijanja \pmb{k}_{σ}	0,43	0,57	0,85	0,85 0,57 - 0,21 ψ + 0,07 ψ ²			
σ_1				$\frac{1 > \psi \ge 0:}{\boldsymbol{b}_{eff} = \rho \boldsymbol{c}}$			
σ_1 b_{eff} σ_2 b_c b_1			ψ ⊲ b _{ef}	< 0:	. = ρ c/(1-ψ)		
$\psi = \sigma_2 / \sigma_1$	1	1 > ψ	> 0	0	0 > <i>ψ</i> > -1	-1	
Koeficijent izvijanja \pmb{k}_{σ}	0,43	0,578 / (ψ	+ 0,34)	1,70	$1,7 - 5\psi + 17,1\psi^2$	23,8	

Tabela 3.1.5.2 – Efektivne površine konzolnih dijelova presjeka [1]

Tabela 3.1.5.3 – Efektivne površine unutrašnjih dijelova presjeka [1]

Dijagram napona (pritisak je pozitivan)				Efektivna širina b _{eff}			
σ_1 σ_2				$\psi = 1$:			
bei j	k bez	$b_{\text{eff}} = \rho \overline{b}$ $b_{\text{eff}} = 0.5 b_{\text{eff}} \qquad b_{\text{eff}} = 0.5 b_{\text{eff}}$					
σ_1	σ_2	$\frac{1 > \psi \ge 0:}{\boldsymbol{b}_{eff} = \rho \overline{\boldsymbol{b}}}$ $\boldsymbol{b}_{e1} = \frac{2}{5 - \psi} \boldsymbol{b}_{eff} \boldsymbol{b}_{e2} = \boldsymbol{b}_{eff} - \boldsymbol{b}_{e1}$					
$\sigma_1 \xrightarrow{b_c} \sigma_2$				$\frac{\psi < 0:}{b_{\text{eff}} = \rho b_c = \rho \overline{b} l(1 - \psi)}$ $b_{\text{e1}} = 0.4 b_{\text{eff}} \qquad b_{\text{e2}} = 0$)),6 b _{eff}		
$\psi = \sigma_2 / \sigma_1$	1	$1 > \psi > 0$	0	0 > <i>ψ</i> > -1	-1	-1 > ψ≥ -3	
Koeficijent izvijanja $m{k}_{\sigma}$	4,0	8,2/(1,05+ψ)	7,81	7,81 - 6,29 ψ + 9,78 ψ^2	23,9	$5,98(1-\psi)^2$	

Slika 3.1.19-Referentne širine pritisnutih dijelova I presjeka: a) zavaren presjek; b) vrućevaljni profil [1]

Granične vitkosti pritisnutih dijelova poprečnog presjeka prema Evrokodu 3 su:

- za nožice-konzolne pritisnute elemente: $c/t_f \le 14 \cdot \varepsilon$, $(k_\sigma = 0.426 \ i \ \psi = 1)$,
- za rebra u slučaju čistog savijanja: $\overline{b}/t_w \le 124 \cdot \varepsilon$, $(k_\sigma = 23.9 \ i \ \psi = -1)$,
- za rebra u slučaju čistog pritiska: $\overline{b}/t_w \le 42 \cdot \varepsilon$, $(k_\sigma = 4.0 \ i \ \psi = 1)$.

Na osnovu izraza za kritičan napon elastičnog izbočavanja može se zaključiti da se njegovo povećanje može postići ili povećanjem koeficijenta izbočavanja k_{σ} ili povećanjem Ojlerovog napona izbočavanja σ_E . Ukoliko uslovi oslanjanja i naprezanja ploče ostaju nepromijenjeni na povećanje kritičnog napona može se uticati samo povećanjem σ_E . Napon σ_E je direktno proporcionalan kvadratu debljine ploče *t*, a obrnuto proporcionalan kvadratu širine ploče *b*. Na osnovu svega navedenog povećanje kritičnog napona izbočavanja, bez promjene koeficijenta k_{σ} , može se postići sljedećim mjerama:

- povećanje debljine ploče t,

- smanjenje širine ploče b, što se može postići postavljanjem podužnih ukrućenja.

Druga varijanta, sa stanovišta utroška materijala, je znatno povoljnija jer je postavljanje samo jednog ukrućenja na sredini ploče ekvivalentno dvostrukom povećanju debljine ploče, pod uslovom da ukrućenje ima dovoljnu krutost da obezbjedi linijski oslonac na mjestu spoja sa pločom. Na taj način pojedinačna polja širine b/2 imaju četvorostruko veči Ojlerov napon, a samim tim i kritičan napon izbočavanja.

Slika 3.1.20-Efekti podužnog ukrućivanja pritisnutog lima [1]

U zavisnosti od krutosti podužnog ukrućenja zavisi koji ti oslonca pružaju ploči, pa tako u slučaju "mekih" ukrućenja predstavljaju elastičan oslonac, a Ojlerov napon se nalazi izmađu vrijednosti za neukrućen lim i lim sa krutim ukrućenjem. Minimalna krutost ukrućenja koja obezbjeđuje krut oslonac može se odrediti na osnovu modifikovane diferencijalne jednačine izbočavanja koja u ovom slučaju ima sljedeći oblik:

$$\frac{\partial^4 w}{\partial x^4} + 2 \cdot \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \sigma_x \cdot \frac{t}{D} \cdot \frac{\partial^2 w}{\partial x^2} + A_s \cdot \sigma_{x,s} \cdot \frac{\partial^2 w}{\partial x^2} - EI_s \cdot \frac{\partial^4 w}{\partial x^4}, \text{ gdje je:}$$

A_s – površina poprečnog presjeka ukrućenja,

 $\sigma_{x,s}$ – normalni napon pritiska na mjestu ukrućenja,

 I_s – moment inercije ukrućenja u odnosu na srednju ravan ploče.

Da bi se pojednostavilo rješenje ove diferencijalne jednačine uvode se sljedeće bezdimenzionalne veličine:

- relativna krutost ukrućenja
$$\gamma_{s} = \frac{krutost ukrućenja}{krutost ploče} = \frac{EI_{s}}{D \cdot b} = 10.92 \cdot \frac{I}{b \cdot t^{3}}$$
- relativna površina ukrućenja
$$\delta_{s} = \frac{površina ukrućenja}{površina ploče} = \frac{A_{st}}{b \cdot t}.$$

Integracijom prethodne diferencijalne jednačine uz uslov da ugib duž ukrućenja bude jednak nuli, čime se obezbjeđuje nepokretno zglobno oslonjanje ploče, dobija se minimalna relativna krutost ukrućenja γ_s^* . Podužno ukrućenje treba da ima relativnu krutost $\gamma_s \ge \gamma_s^*$. Ukrućenja koja obezbjeđuju nepokretni oslonac na mjestu veze sa pločom se izrađuju L ili T otvorenih poprečnih presjeka koji nemaju značajnu torzionu krutost – torziono "meka" ukrućenja. Sa druge strane podužna ukrućenja zatvorenog poprečnog presjeka pored spriječavanja ugiba ploče, onemogućavaju i slobodno obrtanje ploče, pa u statičkom smislu predstavljaju elastično ukrućenje. Torziono kruta ukrućenja povećavaju koeficijent k_{σ} , a time i kritičan napon izbočavanja ploče. Optimalan položaj ukrućenja najviše zavisi od načina naprezanja, odnosno od oblika dijagrama napona pritiska. Postavljanje ukrućenja je posebno efikasno kod punih limenih nosača sa tankim visokim rebrima, gdje povećenje debljine rebra znatno povećava težinu konstrukcije. Ukrućenja se postavljaju na djelovima rebra koji su izloženi naponu pritiska.

Slika 3.1.21-Optimalni položaji podužnih ukrućenja za čisti pritisak i čisto savijanje [1]

Proračun nosivosti na izbočavanje prema Evrokodu 3 se zasniva na koceptu efektivne širine. U obzir se uzimaju efekti izbočavanja svakog pojedinačnog polja ukrućene ploče, kao i globalni efekti izbočavanja ukrućene ploče. Efektivna površina pritisnutog dijela ukrućene ploče $A_{c.eff}$ treba da se odredi prema izrazu:

$$A_{c,eff} = \rho_c \cdot \left(A_{sl,eff} + t \cdot \sum_i b_{i,eff} \right) + \sum_{edge,eff} t, \text{ gdje su:}$$

 ρ_c - koeficijent kojim se uzima u obzir uticaj globalnog izbočavanja ploče,

Asl,eff – suma efektivnih površina presjeka ukrućenja koja se nalaze u pritisnutoj zoni,

 $b_{i,eff}$ – efektivna širina *i*-tog pritisnutog pojedinačnog polja,

 $b_{edge,eff}$ – širine ivičnih pritisnutih polja koja na učestvuju u globalnom izbočavanju ploče.

Kod određivanja koeficijenta redukcije ρ_c pored površinskog ponašanja ploče odnosno čistog izbočavanja (*plate type behaviour*) potrebno je uzeti u obzir i stubni tip izbočavanja (*column-type buckling*), a određuje se na osnovu interpolacije između koeficijenta redukcije za čisto izbočavanje ρ i koeficijenta redukcije za stubno ponašanje χ_c .

Koeficijent redukcije za čisto izbočavanje ukrućene ploče određuje se kao i u slučaju neukrućene ploče ali na osnovu relativne vitkosti ekvivalentne ploče prema izrazu:

$$\overline{\lambda_p} = \sqrt{\frac{\beta_{A,c} \cdot f_y}{\sigma_{cr,p}}}$$
, gdje su:

 $\beta_{A,c}$ – koeficijent efikasnosti, određuje se prema izrazu $\beta_{A,c} = \frac{A_{c,eff,loc}}{A_c}$, A_c - bruto površina pritisnute zone izuzimajući ivične dijelove koji su oslonjeni na druge elemente; $A_{c,eff,loc}$ – efektivna površina pritisnute zone usljed izbočavanja pojedinačnih polja i ukrućenja,

 $\sigma_{cr,p}$ – kritičan napon izbočavanja ukrućene ploče.

Napon $\sigma_{cr,p}$ za ukrućenu ploče računa se prema izrazu:

 $\sigma_{cr,p} = k_{\sigma,p} \cdot \sigma_E$, gdje je $k_{\sigma,p}$ koeficijent izbočavanja za ukrućenu ploču i može se odrediti: na osnovu dijagrama za odgovarajuću dispoziciju podužnih ukrućenja, pomoću specijalizovanih softvera ili metodom konačnih elemenata – MKE.

Prema Evrokodu 3 za ukrućene ploče sa minimum tri ekvidistantna ukrućenja (ortotropna ploča) koeficijent $k_{\sigma,p}$ može se približno odrediti pomoću sljedećih izraza:

$$\begin{split} k_{\sigma,p} &= \frac{2 \cdot ((1+\alpha^2)^2 + \gamma - 1)}{\alpha^2 \cdot (\psi+1) \cdot (1+\delta)} \quad \text{uz uslov } \alpha \leq \sqrt[4]{\gamma} ,\\ k_{\sigma,p} &= \frac{4 \cdot (1+\sqrt{\gamma})}{(\psi+1) \cdot (1+\delta)} \quad \text{uz uslov } \alpha > \sqrt[4]{\gamma} , \text{ gdje je značenje oznaka:}\\ \delta &= \frac{A_{sl}}{A_p} - \text{relativna povvršina ukrućenja,} \end{split}$$

 $\gamma = \frac{I_{sl}}{I_p}$ - relativna krutost ukrućenja, $(A_{sl}$ – suma bruto površina svih podužnih ukrućenja, A_p – bruto površina ploče odn. lima, I_{sl} – moment inercije lima sa svim podužnim ukrućenjima, I_p – moment inercije lima bez podužnih ukrućenja, $I_p = \frac{b \cdot t^3}{12 \cdot (1 - v^2)}$). Izrazi vrijede kada su ispunjeni uslovi: $\psi = \sigma_{x2}/\sigma_{x2} \ge 0.5$ i $\alpha = a/b \ge 0.5$. Ovaj izraz se uglavnom ograničava na pojasne lamele sistema ortotropne ploče.

Prema Evrokodu 3 za nosače sa jednim ukrućenjem u pritisnutom dijelu ploče, što je čest slučaj kod rebara punih nosača dopušta se uprošćen proračun kritičnog napona izbočavanja pomoću modela preko koga se ukrućenje posmatra kao pritisnut stub na elastičnim osloncima koji reprezentuju uticaj lima uz zenemarenje ukrućenja u zategnutoj zoni, prema izrazu:

$$\begin{split} \sigma_{cr,sl,1} &= \frac{1.05 \cdot E}{A_{sl,1}} \cdot \frac{\sqrt{I_{sl,1} \cdot t^3 \cdot b}}{b_1 \cdot b_2} \quad \text{uz uslov } a \ge a_c, \quad a_c = 4.33 \cdot \sqrt[4]{\frac{I_{sl,1} \cdot b_1^2 \cdot b_2^2}{t^3 \cdot b}} \\ \sigma_{cr,sl,1} &= \frac{\pi^2 \cdot E \cdot I_{sl,1}}{A_{sl,1} \cdot a^2} + \frac{E \cdot t^3 \cdot b \cdot a^2}{4 \cdot \pi^2 \cdot (1 - \nu^2) \cdot A_{sl,1} \cdot b_1^{-2} \cdot b_2^{-2}} \quad \text{uz uslov } a < a_c \;, \\ \sigma_{cr,p} &= \sigma_{cr,sl,1} \cdot \frac{b_c}{b_{sl,1}}, \; \text{gdje je značenje oznaka sljedeće, slika } 3.1.22: \end{split}$$

a – dužina izvijanja pritisnutog ukrućenja i jednaka je razmaku između poprečnih ukrućenja,

 b_1 , b_2 – visine pojedinačni polja 1 i 2 ($b_1 + b_2 = b = h_w$),

 $A_{sl,1}$ – bruto površina poprečnog presjeka fiktivnog stuba koga čine ukrućenje i sadejstvujući dijelovi lima,

 $I_{sl,1}$ – moment inercije popregnog presjeka fiktivnog stuba oko vlastite težišne ose koja je paralelna ravni lima.

Slika 3.1.21-Rebro nosača sa jednim podužnim ukrućenjem u zoni pritiska [1]

Širine sadejstvujućih dijelova lima koji čine poprečni presjek fiktivnog stuba određuju se pomoću koeficijenta $\psi_i = \frac{\sigma_{x2,i}}{\sigma_{x1,i}}$ za svako pojedinačno polje:

- pojedinačno polje 1 ($\psi_1 > 0$): $b_{1,inf} = \frac{3-\psi_1}{5-\psi_1} \cdot b_1$
- pojedinačno polje 2:

- potpuno pritisnuto polje (
$$\psi_2 > 0$$
): $b_{2,sup} = \frac{2}{5-\psi_2} \cdot b_2$

- djelimično pritisnuto polje ($\psi_2 < 0$): $b_{2,sup} = 0.4 \cdot b_{2c} = 0.4 \cdot b_{sl,1}$.

Kod stubnog ponašanja ukrućenog ili neukrućenog lima elastičan kritičan napon izvijanja određuje se kao napon izvijanja pritsnute ploče kojoj su ukinuti oslonci duž podužnih ivica pritisnutog polja prema izrazima:

 $\sigma_{cr,c} = \frac{\pi^2 \cdot E \cdot t^2}{12 \cdot (1-\nu^2) \cdot a^2}$ za neukrućene limove,

 $\sigma_{cr,c} = \sigma_{cr,sl,1} \cdot \frac{b_c}{b_{sl,1}}$ za ukrućene limove, gdje je $b_{sl,1}$ rastojanje od neutralne ose do težišta ukrućenja koje je najbliže polju sa maksimalnim naponom pritiska.

Kritičan napon najnapregnutijeg ukrućenja može da se odredi pomoću izraza:

$$\sigma_{cr,sl,1} = \frac{\pi^2 \cdot E \cdot I_{sl,1}}{A_{sl,1} \cdot a^2}.$$

Koeficijent redukcije χ_c kod čistog izvijanja odnosno stubnog ponašanja pločastih elemenata određuje se na osnovu relatvne vitkosti $\overline{\lambda}_c$ za ovaj vid ponašanja pritisnutih pločastih elemenata i na osnovu odgovarajuće krive izvijanja:

$$-\overline{\lambda}_{c} = \sqrt{\frac{f_{y}}{\sigma_{cr,c}}} \qquad \text{za neukrućene limove}$$
$$-\overline{\lambda}_{c} = \sqrt{\frac{\beta_{A,c} \cdot f_{y}}{\sigma_{cr,c}}} \qquad \text{za ukrućene limove, gdje je } \beta_{A,c} = \frac{A_{sl,1,eff}}{A_{sl,1}}.$$

Izraz za određivanje koeficijenta redukcije χ_c je isti kao i kod izvijanja pritisnutih elemenata:

$$\chi_c = \frac{1}{\phi + \sqrt{\phi^2 - \overline{\lambda_c}^2}}, \text{ gje je } \Phi = \frac{1}{2} \cdot \left[1 + \alpha \cdot \left(\overline{\lambda_c} - 0.2 \right) + \overline{\lambda_c}^2 \right],$$

- za neukrućene limove $\alpha = 0.21 - kriva izvijanja a,$

- za ukrućene limove $\alpha_e = \alpha + \frac{0.09}{i/e}, \ \Phi = \frac{1}{2} \cdot \left[1 + \alpha_e \cdot (\overline{\lambda}_c - 0.2) + \overline{\lambda}_c^2\right],$

 $\alpha = 0.34$, kriva izvijanja b, za ukrućenja zatvorenog poprečnog presjeka (torziono kruta ukrućenja),

 $\alpha = 0.49$, kriva izvijanja c, za ukrućenja otvorenog poprečnog presjeka (torziono meka ukrućenja),

$$i = \sqrt{\frac{I_{sl,1}}{A_{sl,1}}}$$
 – poluprečnik inercije ukrućenja 1,

 $e = max\{e_1, e_2\}$, e_1 je rastojanje između težišta ukrućenja i težišta ekvivalentnog stuba, e_2 je rastojanje između težišta lima i težišta ekvivalentnog stuba.

Interakcija između izvijanja i izbočavanja ukrućene ploče uzima se u obzir preko koeficijenta ρ_c koji se određuje interpolacijom između koeficijenata ρ i χ_c prema formuli:

$$\rho_{c} = (\rho - \chi_{c}) \cdot \xi \cdot (2 - \xi) + \chi_{c} \text{, gdje je}$$

$$\xi = \frac{\sigma_{cr,p}}{\sigma_{cr,c}} - 1 \text{ ali } 0 \le \xi \le 1.$$

$$\rho_{c}$$

$$\chi_{c}$$

0 1 *E* Slika 3.1.22-Interakcija izvijanja i izbočavanja [1]

Kontrola nosivosti na izbočavanje ukrućenog ili neukrućenog lima opterećenog aksijalnom silom pritiska N_{Ed} i momentom savijanja oko jedne ose inercije M_{Ed} provodi se pomoću sljedećeg izraza:

$$\eta_{1} = \frac{N_{Ed}}{(A_{eff} \cdot f_{y})/\gamma_{M0}} + \frac{M_{Ed} + N_{Ed} \cdot e_{N}}{(W_{eff} \cdot f_{y})/\gamma_{M0}} \le 1.0$$

Za elmente izložene pritisku i kosom savijanju izraz za potvrdu nosivosti na izbočavanje glasi:

$$\eta_1 = \frac{N_{Ed}}{(A_{eff} \cdot f_y) / \gamma_{M0}} + \frac{M_{y,Ed} + N_{Ed} \cdot e_{y,N}}{(W_{y,eff,min} \cdot f_y) / \gamma_{M0}} + \frac{M_{z,Ed} + N_{Ed} \cdot e_{z,N}}{(W_{z,eff,min} \cdot f_y) / \gamma_{M0}} \le 1.0 .$$

Prethodna razmatranja su se odnosila na površimske elemente izložene naponima pritiska pri kojima se javlja fenomen izbočavanja. Međutim izbočavanje može da se javi i usljed napona smicanja. Pri čistom smicanju površinskog elementa do izbočavanja dolazi usljed glavnog normalnog napona pritiska σ_2 koji djeluje pod uglom od 45°, tj. u dijagonalnom pravcu. I u ovom slučaju naponi pritiska su uzrok pojave izbočine, ali izbočina je drugačijeg oblika nego što je to slučaj kod ploče izložene normalnim naponima pritiska. Izbočina se javlja u vidu jednog ili više nabora sa izduženjem u pravcu glavnih normalnih napona zatezanja σ_1 . Problem izbočavanja usljed čistog smicanja rješava se određivanjem kritičnog smičućeg napona izbočavanja τ_{cr} . Međutim i nakon dostizanja kritičnog smičućeg napona i pojave izbočine nosač je sposoban da prihvati dodatne uticaje, tj. posjeduje post-kritičnu rezervu nosivosti. Ova rezerva nosivosti ostvaruje se ponašanjem smičućeg polja kao fiktivnog rešetkastog nosača sa dijagonalno zategnutim poljem.

Slika 3.1.23-Izbočavanje smicanjem polja nosača [1]

Kritičan napon izbočavanja usljed smicanja određuje se na osnovi diferencijalne jednačine elastičnog izbočavanja pravougaone ploče smicanjem:

$$\frac{\partial^4 w}{\partial x^4} + 2 \cdot \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = -2 \cdot \tau_{xy} \cdot \frac{t}{D} \cdot \frac{\partial^2 w}{\partial x \partial y},$$

uz zadovoljenje graničnih uslova oslanjanja ploče kao i iz uslova postojanja netrivijalnog po analogiji sa izrazom za kritičan napon izbočavanja pritisnute ploče izraz za određivanje kritičnog smičućeg napona izbočavanja glasi:

$$\tau_{cr} = k_{\tau} \cdot \sigma_E$$
, gdje je:

 k_{τ} – koeficijent izbočavanja smicanjem čija vrijednost zavisi od geometrije ploče i uslova oslanjanja,

 σ_E – Ojlerov napon izbočavanja.

Koeficijent k_{τ} kod neukrućenih ploča za tri osnovna tipa oslanjanja može se odrediti prema izrazima datim u tabeli 3.1.5.4.

Uslov	i oslanjanja	Koeficijent izbočavanja $m{k}_{ au}$		
Tip 1 Zglobno oslanjanje duž sve četiri ivice	$\alpha = \mathbf{a}/h_{w}$	$k_r = 4 + \frac{5,34}{\alpha^2}$ za $\alpha < 1$ $k_r = 5,34 + \frac{4}{\alpha^2}$ za $\alpha \ge 1$		
Tip 2 Jedna podužna ivica uklještena		$k_{\tau} = 6,5 + \frac{5}{\alpha^2}$ za $\alpha < 1$ $k_{\tau} = 7,5 + \frac{4}{\alpha^2}$ za $\alpha \ge 1$		
Tip 3 Obe podužne ivice uklještene		$k_{\tau} = 7 + \frac{5.3}{\alpha^2} \text{za } \alpha < 1$ $k_{\tau} = 9 + \frac{3.3}{\alpha^2} \text{za } \alpha \ge 1$		

Tabele 3.1.5.4 – Izrazi za određivanje koeficijenta k_{τ} [1]

Koeficijent k_{τ} za ukrućene zglobno oslonjene ploče sa dva ili više podužnih ukrućenja kao i za ploče sa jednim ili dva podužna ukrućenja kod kojih je $\alpha \ge 3$ (α je odnos dužine i širine ploče, odnosno odnos dužine i visine polja posmatranog nosača) može se odrediti prema izrazima:

$$\begin{aligned} k_{\tau} &= 5.34 + \frac{4}{\alpha^2} + k_{\tau sl} \text{ kada je } \alpha \geq 1, \\ k_{\tau} &= 4 + \frac{5.34}{\alpha^2} + k_{\tau sl} \text{ kada je } \alpha < 1, \text{ gdje je:} \\ k_{\tau sl} &= 9 \cdot \left(\frac{h_w}{a}\right)^2 \cdot \sqrt[4]{\left(\frac{I_{sl}}{t_w^3 \cdot h_w}\right)^3} \text{ ali } k_{\tau sl} \geq \frac{2.1}{t_w} \cdot \sqrt[3]{\frac{I_{sl}}{h_w}}, \text{ značenje oznaka je sljedeće:} \end{aligned}$$

a – širina pomatranog polja, tj. razmak između poprečnih ukrućenja,

 h_w , t_w – visina i debljina rebra nosača,

 I_{sl} – moment inercije podužnog ukrućenja sa sadejstvujućim dijelovima ukrućenog rebra (po $15 \cdot \varepsilon \cdot t_w$ sa obe strane) oko težišne ose koja je paralelna ravni lima, kod rebara sa dva ili više podužnih ukrućenja koja ne moraju da budu ekvidistantna I_{sl} je zbir momenata inercije svih ukrućenja, bitno je napomenuti da je moment inercije I_{sl} potrebno redukovati na 1/3 njegove vrijednost što je i uzeto u obzir u datim izrazima.

Za ploče kod kojih je $\alpha < 3$ koeficijent k_{τ} određuje se prema izrazu:

$$k_{\tau} = 4.1 + \frac{\frac{6.3 + 0.18 \cdot \frac{I_{sl}}{t_{W}^{3} \cdot h_{W}}}{\alpha^{2}} + 2.2 \cdot \sqrt[3]{\frac{I_{sl}}{t_{W}^{3} \cdot h_{W}}}.$$

Nakon dostizanja kritičnog smičućeg napona izbočavanja i pojave izbočine nosač je sposoban da prenese i dodatno opterećenje prije gubitka nosivosti. Dodatna nosivost se ostvaruje formiranjem kvazi-rešetkaste strukture koju čine nožice kao pojasevi, poprečna ukrućenja kao

vertikale i dijagonalno izbočeno rebro kao zategnuta dijagonala. Do gubitka nosivosti dolazi tek nakon iscrpljenja nosivosti zategnutog polja. Da bi se ostvario ovakav mehanizam loma neophodna su oslonačka ukrućenja koja preuzimaju horizontalnu silu iz zategnutog polja. Osnova svih metoda za proračun nosivosti polja na izbočavanje smicanjem je superpozicija kritičnog napona izbočavanja au_{cr} sa post-kritičnom čvrstoćom polja koja se ostvaruje mehanizmom zategnutog polja. Nakon formiranja izbočine odnosno dostizanja kritičnog napona vrijednosti glavnih napona iznose $\sigma_1 = \tau_{cr}$ i $\sigma_2 = -\tau_{cr}$, i djeluju u dijagonalnom pravcu pod uglom od 45° pri čemu glavni napon zatezanja σ_1 djeluje u pravcu izbočine, a glavni napon pritiska σ_2 je upravan na pravac pružanja izbočine. Povećanje opterećenja nakon dostizanja kritičnog napona utiče na priraštaj glavnog napona zatezanja, dok je priraštaj glavnog napona pritiska zbog pojave izbočine zanemarljiv, tako da do iscrpljenja nosivosti dolazi tek nakon plastifikacije zategnutog polja. Posmatrajući ravnotežu elementarnog dijela u okviru zategnutog polja proizlazi da zbog povećanja glavnog napona zatezanja koje nije praćeno prirastom glavnog napona pritiska dolazi do rotacije polja napona za ugao ϕ na čemu se zasniva Heglundova (*Höglund*) metoda zarotiranog polja napona koja je osnov za proračun po Evrokodu 3. Na elementarni dio zategnutog polja pored napona smicanja djeluje i horizontalna komponenta napona σ_h koji je posljedica ankerisanja zategnutog polja u poprečno ukrućenje.

Slika 3.1.24-Post-kritiča nosivost prema metodi zarotiranog polja napona [1]

Ugao ϕ sa porastom napona zatezanja σ_1 se smanjuje, a njegova graničan vrijednost pri kojoj dolazi do plastifikacije zategnutog polja se određuje iz fon Mizesovog uslova tečenja:

 $\sigma_{1\phi}^2 - \sigma_{1\phi} \cdot \sigma_{2\phi} + \sigma_{2\phi}^2 = f_{yw}^2$, gdje je f_{yw} granica razvlačenja materijala od koga je rebro izrađeno.

Granični napon izbočavanja rebra smicanjem τ_u određuje se unošenjem vrijednosti $\sigma_{1\phi}, \sigma_{2\phi}$ prema slici 3.1.24 u prethodni izraz uz pretpostavku da je vitkost rebra $\overline{\lambda}_w \ge 1$ i da je glavni napon pritiska jednak kritičnom naponu izbočavanja smicanjem $\sigma_{2\phi} = -\tau_{cr}$, tako da izraz za granični napon izbočavanja smicanjem glasi:

$$\tau_u = \frac{\sqrt[4]{3}}{\overline{\lambda}_w} \cdot \sqrt{\sqrt{1 - \frac{1}{\overline{\lambda}_w}^4}} - \frac{1}{\overline{\lambda}_w^{-2} \cdot 2 \cdot \sqrt{3}} \cdot \tau_y \text{ , gdje je:}$$

 τ_y – granica razvlačenja rebra smicanjem i jednaka je $f_{yw}/\sqrt{3}$,

 $\overline{\lambda}_w$ – relativna vitkost rebra na izbočavanje smicanjem $\overline{\lambda}_w = \sqrt{\frac{\tau_y}{\tau_{cr}}} = \sqrt{\frac{f_{yw}/\sqrt{3}}{\tau_{cr}}}.$

Kod vitkih rebara gdje je $\overline{\lambda}_w \ge 2.5$ u izrazu za τ_u dio po korjenom je približno jednak jeddinici pa se izraz pojednostavljuje:

$$\tau_u = \frac{\sqrt[4]{3}}{\overline{\lambda}_w} \cdot \tau_y.$$

Prema tome granična nosivost rebra na izbočavanje smicanjem glasi:

 $V_{bw} = A_w \cdot \tau_u = \frac{1.32}{\overline{\lambda}_w} \cdot h_w \cdot t_w \cdot \tau_y$, A_w je površina poprečnog presjeka rebra.

Nakon dostizanja granične nosivosti rebra na izbočavanje potpunom plastifikacijom zategnutog polja rebra ne dolazi do sloma polja nosača, a razlog za to je učešće i nožica nosača u nosivosti smičućeg polja nosača. Tek nakon plastifikacije nožica odnosno formiranja plastičnih zglobova na nožicama (po 2 na svakoj nožici) dolazi do loma nosača usljed izbočavanja smicanjem. Doprinos nožica nosivosti nosača na izbočavanje smicanjem kod nosača sa monosimetričnim I presjekom može da se odredi kao zbir reakcija prostih greda na čijim krajevima su formirani plastični zglobovi:

$$V_{bf} = \frac{2 \cdot M_{pl,f1}}{c_1} + \frac{2 \cdot M_{pl,f2}}{c_2}$$
, gdje su:

 c_1 i c_2 – rastojanja između plastičnih zglobova na gornjoj i donjoj nožici,

 $M_{pl,f1}$ i $M_{pl,f2}$ – plastični momenti nosivosti gornje i donje nožice.

Slika 3.1.25-Doprinos nožica u plastičnom mehanizmu loma [1]

Razmak između plastičnih zglobova formiranih na nožicama prema Heglundu određuje se prema izrazu:

$$c_i = a \cdot \left(0.25 + 1.6 \cdot \frac{M_{pl,fi}}{M_{pl,w}}\right)$$
, gdje je:

a - razmak između poprečnih ukrućenja,

 $M_{pl,fi}$ – plastični moment nosivosti nožice *i*,

 $M_{pl,w}$ – plastični moment nosivosti rebra.

Kod obostrano simetričnih I presjeka doprinos nožica ukupnoj nosivosti na izbočavanje smicanjem gdje je $M_{pl,f1} = M_{pl,f2} = M_{pl,f}$ i $c_1 = c_2 = c$ dobije se prema izrazu:

$$V_{bf} = \frac{4 \cdot M_{pl,f}}{c}$$

Doprinos nožica ukupnoj nosivosti na izbočavanje je uglavnom mali pošto su nožice iskorištene za prijem globalnog momenta savijanja oko y ose $M_{y,Ed}$. Izuzetak su krajnja polja kod oslonaca gdje su momenti mali, a nožice imaju uglavnom veću debljinu.

Prema Evrokodu 3 proračunska nosivost ukrućenog ili neukrućenog rebra nosača određuje se kao:

$$V_{b,Rd} = V_{bw,Rd} + V_{bf,Rd}$$
, gdje su:

 $V_{bw,Rd}$, $V_{bf,Rd}$ – doprinosi rebra i nožice.

Proračunska nosivost rebra na izbočavanje smicanjem ne može biti veća od plastične proračunske nosivosti poprečnog presjeka na smicanje $V_{pl,Rd}$:

$$V_{b,Rd} \le V_{pl,Rd} = \eta \cdot \frac{f_{\mathcal{Y}W} \cdot h_W \cdot t_W}{\sqrt{3} \cdot \gamma_{M1}} = \frac{\eta \cdot A_W \cdot \tau_{\mathcal{Y}}}{\gamma_{M1}}$$

Doprinos rebra nosivosti na izbočavanje smicanjem za neukrućena ili ukrućena rebra prema Evrokodu 3 treba da se odredi pomoću izraza:

$$V_{bw,Rd} = \frac{\chi_w \cdot f_{yw} \cdot h_w \cdot t_w}{\sqrt{3} \cdot \gamma_{M1}}$$
, gdje je:

 χ_w – koeficijent redukcije za izbočavanje smicanjem, određuje se prema tabeli 3.1.5.5.

	Kruto krajnje ukrućenje	Meko krajnje ukrućenje
$\lambda_{\!$	η	η
0,83 / $\eta \leq \overline{\lambda_{w}} <$ 1,08	0,83/ $\overline{\lambda}_{w}$	0,83/ $\overline{\lambda_w}$
$\overline{\lambda}_{\!$	1,37 /(0,7 + $\overline{\lambda_w}$)	0,83 <i>I</i> $\overline{\lambda_w}$

Tabela 3.1.5.5 – Koeficijent redukcije χ_w [1]

Vrijednost parametra η prema preporukama Evrokoda 3 iznosi 1.20 za kvalitete čelika do S460 uključujući i S460, a vrijednost 1.00 za čelike višeg kvaliteta. Ipak u velikom broju zemalja u

nacionalnim prilozima usvaja se vrijednost $\eta = 1.00$. Koeficijent redukcije χ_w zavisi od vrste krajnjih ukrućenja i od relativne vitkosti rebra na izbočavanje smicanjem $\overline{\lambda}_w$. Izrazi iz tabele 3.1.5.5 mogu da se koriste za nosače koji imaju samo oslonačka ukrućenja, a mogu da se koriste i za nosače koji uz pomenuta imaju i međuukrućenja kao i podužna ukrućenja. Za nosače koji nemaju oslonačka ukrućenja ne važe izrazi dati u tabeli zbog nemogućnosti ankerisanja horizontalne sile iz zategnutog polja, zbog čega se ne može razviti značajna post-kritična rezerva nosivosti.

Slika 3.1.26-Tipovi krajnjih oslonačkih ukrućenja [1]

Relativna vitkost na izbočavanje $\overline{\lambda}_w$ čiji je izraz za određivanje dat ranije u tekstu, može se odrediti na pojednostavljen način:

- kod nosača sa poprečnim ukrućenjima samo nad osloncima gdje je $\alpha >> 1$:

$$\overline{\lambda}_w = \frac{h_w/t_w}{86.4 \cdot \epsilon}$$

- kod nosača koji imaju oslonačka ukrućenja i međuukrućenja, oslonačka i podužna ukrućenja ili sve nabrojano:

$$\overline{\lambda}_w = \frac{h_w/t_w}{37.4 \cdot \epsilon \cdot \sqrt{k_\tau}}$$
, gdje je k_τ minimalan koeficijent izbočacanja smicanjem

Slika 3.1.27-Prikaz rebra sa podužnim i poprečnim ukrućenjima [1]

Na sl. 3.1.27 dat je prikaz rebra nosača sa podužnim i poprečnim ukrućenjima gdje je jedno od međuukrućenja meko (fleksibilno) poprečno ukrućenje. U takvim slučajevima koeficijent k_{τ} usvaja se kao minimum koeficijenata izbočavanja za polje rebra između bilo koja dva poprečna ukrućenja npr. $a_2 \times h_w$ i $a_3 \times h_w$ i polja između dva kruta poprečna ukrućenja koja sadrže meko ukrućenje $a_4 \times h_w$. Što se tiče uslova oslanjanja za nepomjerljive uslove oslanjanja mogu da se usvoje polja oivičena nožicama i krutim poprečnim ukrućenjima, pa anliza izbočavanja rebra se tada zasniva na poljima između dva kruta poprečna ukrućenja (sl.3.1.27 $a_1 \times h_w$). Za polja sa mekim poprečnim ukrućenjima minimalna vrijednost koeficijenta k_{τ} može da se odredi na osnovu analize sljedećih slučajeva:

- kombinacija dva susjedna polja sa jednim mekim ukrućenjem,
- kombinacija tri susjedna polja sa dva meka ukrućenja.

Kod nosača sa podužnim ukrućenjima relativna vitkost rebra na izbočavanje λ_w usvaja se kao najveća vrijednost za pojedinačna neukrućena polja i vrijednosti za ukupno polje sa podužnim ukrućenjem sa odgovarajućim vrijednostina h_{wi} i $k_{\tau i}$. Pojedinačno polje sa najvećom vitkošću je po pravilu polje sa najvećom visinom h_{wi} . Vitkost polja sa podužnim ukrućenjem određuje se za čitavu visinu rebra h_w i na osnovu koeficijenta izbočavanja za polje sa podužnim ukrućenjem k_{τ} čiji način određivanja je dat ranije u tekstu (koeficijent izbočavanja za zglobno oslonjene ploče sa podužnim ukrućenjima).

Doprinos nožica nosivosti na izbočavanje smicanjem prema Evrokodu 3 može da se uzme u obzir kada njihova nosivost nije u potpunosti iskorištena za prihvatanje mometa savijanja oko jače y ose inercije poprečnog presjeka nosača, tj. kada je $M_{y,Ed} \leq M_{y,f,Rd}$ i u tom slučaju doprinos nožica određuje se prema izrazu:

$$V_{bf,Rd} = \frac{b_f \cdot t_f^{2} \cdot f_{\gamma f}}{c \cdot \gamma_{M1}} \cdot \left(1 - \left(\frac{M_{Ed}}{M_{f,Rd}}\right)^2\right), \text{ gdje su:}$$

 b_f i t_f – širina i debljina nožice sa manjom aksijalnom nosivošću, po pravilu nožica sa manjom površinom, uz uslov da se za b_f ne usvoji veća vrijednost od $15 \cdot \varepsilon \cdot t_f$ sa svake strane rebra,

 M_{Ed} – proračunska vrijednost momenta savijanja oko y ose koji djeluje na posmatrano polje nosača,

 $M_{f,Rd}$ – moment nosivosti poprečnog presjeka koga čine samo efektivne površine nožica,

c – razmak između plastičnih zglobova na nožicama, određuje se prema izrazu:

$$c = a \cdot \left(0.25 + 1.6 \cdot \frac{b_f \cdot t_f^{2} \cdot f_{yf}}{t_w \cdot h_w^{2} \cdot f_{yw}} \right),$$

 f_{yf} – granica razvlačenja materijala od koga je izrađena nožica sa manjom aksijalonom nosivošću,

 f_{yw} – granica razvlačenja materijala od koga je rebro izrađeno.

Kod monosimetričnih I presjeka moment nosivosti presjeka koga čine samo nožice određuje se prema izrazu:

$$M_{f,Rd} = \min\{(A_{f1} \cdot f_{yf1} \cdot h_f) / \gamma_{M0}; \ (A_{f2} \cdot f_{yf2} \cdot h_f) / \gamma_{M0}\}, \text{ gdje su:}$$

 A_{f1} i A_{f2} – površine gornje i donje nožice $(A_{f1} = b_{f1} \cdot t_{f1}, A_{f2} = b_{f2} \cdot t_{f2}),$

 f_{yf1} i f_{yf2} – granice razvlačenja materijala od koga su izrađene gornja i donja nožica u slučaju da se razlikuju,

 h_f – rastojanje između težišta gornje i donje nožice $(h_f = h_w + (t_{f1} + t_{f2})/2)$.

Kada je pored momenta savijanja M_{Ed} prisutna i aksijalna sila N_{Ed} moment nosivost nožica $M_{f,Rd}$ potrebno je redukovati koeficijentom:

$$k_r = 1 - \frac{N_{Ed}}{(A_{f1} \cdot f_{yf1} + A_{f2} \cdot f_{yf2})/\gamma_{M0}}$$

Kontrola stabilnosti rebra na izbočavanje sprovodi se za svako mjerodavno polje smicanja potrvdom uslova:

$$\eta_3 = \frac{V_{Ed}}{V_{b,Rd}} \le 1.0$$
,

gdje je V_{Ed} proračunska smičuća sila koja uključuje i uticaje torzije ukoliko su prisutni.

Prethodno su obrađeni slučajevi izbočavanja pločastih elemenata izloženih naponima pritiska i čistom smicanju. Pored navedenih slučajeva lokalni gubitak stabilnosti pločastog elemeta koji je u konkretnom slučaju rebro punog limenog nosača može da nastupi i usljed poprečne koncentrisane sile koja djeluje u ravni rebra. U slučaju djelovanja fiksnih koncentrisanih sila ovaj problem se rješava postavljanjem poprečnih ukrućenja na mjestu njihovog djelovanja. U slučaju pokretnih koncentrisanih sila što je naročito prisutno kod kranskih nosača, a dobar primjer su i mostovski nosači prilikom montaže podužnim lansiranjem, zbog promjenljivog položaja opterećenja nije moguće postaviti poprečna ukrućenja. Iz tog razloga neophodno je obezbjediti nosivost rebra na izbočavanje usljed lokalnih sila pritiska.

Iscrpljenje nosivosti rebra punog limenog nosača može nastupiti na neki od sljedećih načina:

- plastifikacijom (yielding) rebra neposredno ispod rebra uz lokalnu plastifikaciju nožice,

- ulubljenjem (*crippling*) rebra u obliku lokanog izbočavanja i platifikacije rebra neposredno ispod nožice uz plastifikaciju nožice,

- izbočavanjem (buckling) rebra čitavom visinom u vidu horizontalne izbočine.

Slika 3.1.28-Tipovi gubitka nosivosti rebra usljed dejstva popreče koncentrisane sile [1]

Mehanizam loma koji se koristi kao model za određivanje granične nosivosti rebra pri plastifikaciji sastoji se od četiri plastična zgloba na nožici i reaktivnog jednapodjeljenog opterećenja u plastifikovanom rebru koje je jednako granici razvlačenja materijala od koga je rebro izrađeno f_{yw} . Dva unutrašnja plastična zgloba formiraju se na krajevima djelovanja poprečnog opterećenja rastojanja $s_s + 2 \cdot t_f$, gdje je s_s dužina na kojoj djeluje poprečna sila. Moment pune plastičnosti unutrašnjih plastičnih zglobova $M_{pl,T}$ određuje se na osnovu T presjeka koga čini nožica i 14% rebra odnosno $0.15 \cdot h_w$. Plastični moment nosivosti dva spoljašnja plastična zgloba jednak je momentu plastične nosivosti nožice $M_{pl,f}$. Položaj plastičnih zglobova na nožicama određuje se na osnovu uslova ravnoteže plastičnog mehanizma loma. Ovaj vid loma karakterističan je za rebra male vitkosti kod kojih do plastifikacije dolazi prije ulubljivajna ili izbočavanja.

Slika 3.1.29-Mehanizam loma plastifikacijom rebra [1]

Mehanizam loma koji se koristi kao model za određivanje granične nosivosti rebra na ulubljivanje je modifikovani model mehanizma loma plastifikacijom rebra. Uz četiri plastična zgloba na nožici sa momentima plastične nosivosti nožica $M_{pl,f}$, u rebru se javljaju dvije poligonalne linije plastifikacije (plastične linije) sa momentom plastičanosti $M_{pl,w}$.

ulubljenje

Slika 3.1.30-Mehanizam loma ulubljenjem rebra [1]

U literaturi za nosivost rebra na plastfikaciju i ulubljenje najčešće se koristi zajednički termin *engl. patch loading resistence*. Rješenje se dobija određivanjem efektivne opterećene dužine

 l_y na osnovu koje se dobija plastična nosivost rebra na dejstvo poprečne sile u vidu sljedećeg izraza: $F_y = l_y \cdot t_w \cdot f_{yw}$.

Kod rebara velike vitkosti do gubitka nosivosti usljed dejstva kocentrisane poprečne sile može doći usljed globalnog izbočavanja u zoni djelovanja koncentrisanog opterećenja. Kritičan napon izbočavanja pravougaone ploče koja je opterećena lokalno poprečnim opterećenje može se odrediti po analogiji sa rješenjem za ploču opterećenu podužnim naponima pritiska u vidu izraza:

$$\sigma_{cr,F} = k_F \cdot \sigma_E = k_F \cdot \frac{\pi^2 \cdot E}{12 \cdot (1-\nu^2)} \cdot \left(\frac{t_w}{h_w}\right)^2$$
, gdje je:

 k_F – koeficijent izbočavanja koji zavisi od dispozicije opterećenja, uslova oslanjanja, geometrije ploče i dužine na kojoj djeluje poprečna sila.

Kritična poprečna sila se dobija kada se kritičan napon pomnoži sa površinom poprečnog presjeka rebra:

$$F_{cr} = k_F \cdot \frac{\pi^2 \cdot E}{12 \cdot (1-\nu^2)} \cdot \left(\frac{t_w}{h_w}\right)^2 \cdot h_w \cdot t_w \approx 0.9 \cdot k_F \cdot E \cdot \frac{t_w^3}{h_w}.$$

U Evrokodu 3 problem određivanja granične nosivosti na izbočavanje rebra usljed dejstva poprečne sile je analiziran za tri osnovna slučaja, odnosno tri modela nanošenja poprečnog opterećenja:

- Tip a, opterećenje djeluje preko jedne nožice i prihvata se smičućim silama u rebru nosača, slika 3.1.31 a),

- Tip b, opterećenje djeluje preko obe nožice i prenosi se direktno kroz rebro, slika 3.1.31 b),

Tip c, opterećenje djeluje preko jedne nožice u blizini neukrućenog kraja nosača, slika 3.1.31
c).

Slika 3.1.31-Koeficijent izbočavanja k_F za različite tipove nanošenja opterećenja [1]

Nosivost ukrućenih ili neukrućenih rebara na izbočavanje usljed dejstva poprečne sile određuje se prema izrazu:

$$F_{Rd} = \chi_F \cdot \frac{l_y \cdot t_w \cdot f_{yw}}{\gamma_{M1}} = \chi_F \cdot \frac{F_y}{\gamma_{M1}}$$
, gdje su:

 χ_F – koeficijent redukcije za izbočavanje usljed poprečne sile,

 l_y – efektivna opterećena dužina i odgovara dužini krutog oslonca s_s slika 3.1.32, kod kranskog nosača odgovara veličini l_{eff} koja se određuje na način prikazan u dijelu 3.1.2,

 t_w – debljina rebra,

 f_{vw} – granica razvlačenja rebra,

 F_y – nosivost rebra pri plastifikaciji.

Slika 3.1.32-Dužina krutog oslonca s_s [1]

Dužina krutog oslonca s_s je jednaka dužini na kojoj se naneseno opterećenje rasprostire na rebro nosača po uglom od 45°, odnosno pod nagibom 1:1, uz uslov $s_s \leq h_w$. Ukoliko nekoliko koncentrisanih sila djeluje na bliskom rastojanju nosivost rebra provjerava se za svaku silu pojedinačno, kao i za rezultantu ovih sila sa dužinom krutog odlonca s_s koja je jednaka razmaku između tačaka djelovanja ovih sila.

Koeficijent redukcije χ_F određuje se u funkciji relativne vitkosti rebra na izbočavanje usljed dejstva poprečne sile $\overline{\lambda}_F$ na osnovu izraza:

$$\chi_F = \frac{0.5}{\overline{\lambda}_F} \le 1.0 \; .$$

Relativna vitkost rebra na izbočavanje usljed dejstva poprečne sile $\overline{\lambda}_F$ određuje se prema izrazu:

$$\overline{\lambda}_F = \sqrt{\frac{F_y}{F_{cr}}} = \sqrt{\frac{l_y \cdot t_w \cdot f_{yw}}{F_{cr}}}$$
, način određivanja F_{cr} dat je ranije u tekstu

Kod rebara sa podužnim ukrućenjem, za tip a nanošenja opterećenja, koeficijent izbočavanja k_F može da se odredi pomoću izraza:

$$k_F = 6 + 2 \cdot \left(\frac{h_w}{a}\right)^2 + \left(5.44 \cdot \frac{b_1}{a} - 0.21\right) \cdot \sqrt{\gamma_s} \text{ , uz uslove } 0.05 \le \frac{b_1}{a} \le 0.3 \text{ i } \frac{b_1}{h_w} \le 0.3 \text{ , gdje su:}$$

a – razmak između susjednih poprečnih ukrućenja,

 b_1 – visina opterećenog pojedinačnog polja, koja odgovara vertikalnom rastojanju između opterećene nožice i podužnog ukrućenja,

 γ_s – relativna krutost podužnog ukrućenja.

Relativna krutost podužnog ukrućenja određuje se prema izrazu:

$$\gamma_s = 10.9 \cdot \frac{I_{sl,1}}{h_w \cdot t_w^3} \le 13 \cdot \left(\frac{a}{h_w}\right)^3 + 210 \cdot \left(0.3 - \frac{b_1}{a}\right)$$
, gdje je:

 $I_{sl,1}$ – moment inercije podužnog ukrućenja koje je najbliže opterećenoj nožici zajedno sa sadejstvujućim dijelovima rebra (po $15 \cdot \epsilon \cdot t_w$ sa svake strane podužnog ukrućenja).

Oblik loma rebra usljed izbočavanja poprečnom silom zavisi od relativne krutosti podužnog ukrućenja γ_s , slika 3.1.33.

Slika 3.1.33-Uticaj krutosti podužnog zkrućenja na oblik loma rebra [1]

Efektivna opterećena dužina za modele opterećenja tip a i tip b određuje se prema izrazu:

$$l_y = s_s + 2 \cdot t_f \cdot (1 + \sqrt{m_1 + m_2}) \le a$$
.

Efektivna opterećena dužina za model opterećenja tip c određuje se prema izrazu:

$$l_{y} = \min\{l_{y_{1}}, l_{y_{2}}\},\$$

$$l_{y_{1}} = l_{e} + t_{f} \cdot \sqrt{\frac{m_{1}}{2} + \left(\frac{l_{e}}{t_{f}}\right)^{2} + m_{2}},\$$

$$l_{y_{2}} = l_{e} + t_{f} \cdot \sqrt{m_{1} + m_{2}},\$$

 $l_e = \frac{k_F \cdot E \cdot t_w^2}{2 \cdot f_{yw} \cdot h_w} \le s_s + c$, gdje je c rastojanje od kraja prepusta do mjesta početka djelovanja poprečnog opterećenja.

Koeficijenti m_1 i m_2 određuju se na sljedeći način:

$$\begin{split} m_1 &= \frac{f_{yf} \cdot b_f}{f_{yw} \cdot t_w}, \text{ us slučaju da je } f_{yf} = f_{yw} \to m_1 = \frac{b_f}{t_w}, \\ m_2 &= 0.02 \cdot \left(\frac{h_w}{t_f}\right)^2 \text{ za } \overline{\lambda}_F > 0.5 , \\ m_2 &= 0 \text{ za } \overline{\lambda}_F \le 0.5. \end{split}$$

Kontrola nosivosti na izbočavanje usljed dejstva poprečne koncentrisane sile sprovodi se potvrdom uslova:

$$\eta_2 = rac{F_{Ed}}{F_{Rd}} \le 1.0$$
, gdje je:

 F_{Ed} – proračunska vrijednost poprečne koncentrisane sile,

 F_{Rd} – proračunska nosivost na izbočavanje usljed dejstva poprečene koncentrisane sile.

Ukoliko je u nosaču prisutno više tipova izbočavanja potrebno je provjeriti i interakciju između njih:

- interakcija izbočavanja uljed normalnih i smičućih napona,

- interakcija izbočavanja usljed normalnih napona i poprečne koncentrisane sile.

Interakciju između savijanja i smicanja nije potrebno provjeravati ukoliko je ispunjen uslov:

$$\overline{\eta}_3 = \frac{V_{Ed}}{V_{bw,Rd}} \le 0.5$$
 , gdje je:

V_{Ed} – proračunska vrijednost smičuće sile,

V_{bw,Rd} – doprinos rebra nosivosti na izbočavanje smicanjem.

Ukoliko je $\overline{\eta}_3 > 0.5$ kontrola interakcije je neophodna (izuzetak su presjeci koji se nalaze na rastojanju manjem od $h_w/2$ od oslonca sa vertikalnim poprečnim ukrućenjem) u vidu sljedećeg uslova:

$$\overline{\eta}_1 + \left(1 - \frac{M_{f,Rd}}{M_{pl,Rd}}\right) \cdot \left(2 \cdot \overline{\eta}_3 - 1\right)^2 \le 1.0 \text{ pri čemu je } \overline{\eta}_1 \ge \frac{M_{f,Rd}}{M_{pl,Rd}}, \text{ gdje je:}$$
$$\overline{\eta}_1 = \frac{M_{Ed}}{M_{pl,Rd}},$$

 M_{Ed} – proračunska vrijednost momenta savijanja,

 $M_{f,Rd}$ – proračunski plastični moment nosivosti poprečnog presjeka koga čine samo efektivne površine nožica,

 $M_{pl,Rd}$ – proračunski plastični moment nosivosti poprečnog presjeka koga čine efekrivne površine nožica i rebro, bez obzira kojoj klasi poprečni presjek pripada.

Ako je nosač izložen istovremenom dejstvu poprečne koncentrisane sile koja djeluje na pritisnutoj nožici (F_{Ed}), momenta savijanja (M_{Ed}) i dejstvu aksijalne sile (N_{Ed}), interakcije izbočavanja potrebno je provjeriti kroz sljedeći uslov:

$$\eta_2 + 0.8 \cdot \eta_1 \le 1.4$$
 .

U slučaju da koncentrisana sila djeluje na zategnutoj nožici, osim pojedinačnih kontrola rebra na izbočavanje usljed normalnih napona pritiska i izbočavanja usljed dejstva poprečne sile, potrebno je izvršiti i kontrolu uporednog odnosno ekvivalentnog napona prema fon Mizesovom (*von Mises*) uslovu plastifikacije:

$$\sigma_{eq,Ed} = \sqrt{\sigma_{x,Ed}^2 + \sigma_{x,Ed} \cdot \sigma_{z,Ed} + \sigma_{z,Ed}^2 + 3 \cdot \tau_{Ed}^2} \le f_{yd} = f_y / \gamma_{M0}$$

Pored pomenutih glavnih uzroka izbočavanja rebra punog limenog nosača do izbočavanja može doći i usljed savijanja nožica. Tom prilikom sile pritiska i zatezanja u nožicama izazivaju skretne sile pri čemu se javlja poprečni normalni napon σ_z u rebru nosača koji kod izuzetno vitkih rebara može izazvati izbočavanje. Evrokod 3 u cilju sprječavanja izbočavanja rebra usljed savijanja nožica preporučuje da vitkost rebra zadovolji sljedeći uslov:

$$\frac{h_w}{t_w} \le k \cdot \frac{E}{f_{yf}} \cdot \sqrt{\frac{A_w}{A_{fc}}}$$
, gdje je:

 A_w – površina poprečnog presjeka rebra ($A_w = h_w \cdot t_w$),

 A_{fc} – efektivna površina poprečnog presjeka pritisnute nožice,

k – koeficijent koji se usvaja na sljedeći način:

k = 0.55 kada se koristi elastičan moment nosivosti,

k = 0.40 kada se koristi plastičan moment nosivosti,

k = 0.30 kada se koristi plastična rotacija.

3.1.6 Kontrola nosivosti na zamor

Otpornost čeličnih konstrukcija na zamor je obrađena u Evrokodu 3, dio ENV 1993-1-1: 1992, gdje su date osnovne definicije potrebne za analizu ovog problema:

Zamor je oštećenje dijela konstrukcije usljed postepene propagacije prsline izazvane promjenama naprezanja koje se ponavljaju.

Opterećenja koja prouzrokuju zamor čelične konstrukcije su skup reprezentativnih događaja opterećenja opisanih položajem opterećenja, njihovim intenzitetima i relativnim frekvencijama događanja (broj izmjerenih vrijednosti varijable koje pripadaju datoj kategoriji podijeljen sa ukupnim brojem varijabli koje pripadaju datoj kategoriji).

Događaj opterećenja je definisani skup razvoja opterećenja na konstrukciju, nivoa koji stvara istorijat naprezanja.

Opterećenje koje prouzrokuje zamor ekvivalentne konstantne amplitude je uprošćeno opterećenje konstantne amplitude usljed zamora od realnih događaja opterećenja promjenljive amplitude.

Istorijat naprezanja je zapis ili proračun toka promjene napona određene tačke konstrukcije u toku događaja opterećenja.

Naponska razlika je algebarska razlika između dva naponska ekstrema cikličnog opterećenja iz dijela istorijata naprezanja: $\Delta \sigma = \sigma_{max} - \sigma_{min}$ i $\Delta \tau = \tau_{max} - \tau_{min}$.

Nominalni napon je napon u osnovnom materijalu na mjestu potencijalne prsline, određen prema teoriji elastičnosti, bez obuhvatanja efekata koncentracije napona.

Modifikovani nominalni napon je nominalni napon uvećan odgovarajućim koeficijentom koncentracije napona sa ciljem obuhvatanja geometrijskog diskontinuiteta koji nije obuhvaćen karakterističnom klasifikacijom detalja konstrukcije.

Geometrijski napon je maksimalni glavni napon u osnovnom materijalu neposredno uz ivicu šava koji uzima u obzir efekte koncentracije napona usljed geometrijskih karakteristika detalja konstrukcije, ali isključivo lokalne efekte koncentracije napona usljed geometrije šava i diskontinuiteta u šavu u susjednom osnovnom materijalu. Ovaj pojam je poznat kao "napon tople tačke" (*engl. hot-spot stress*).

Metoda "Kišnog toka" (*engl. Rainflow analysis*) i metoda "Rezervoara" (*engl. Reservoir method*) su specijalne metode za izradu spektra naponskih razlika iz datog istorijata naprezanja.

Spektar naponskih razlika odnosno spektar promjene napona je histogram frekvencije svih naponskih razlika koji je registrovan ili izračunat za dati događaj opterećenja.

Računski spektar je komplet svih spektara naponskih razlika, relevantan za dokaz na zamor.

Slika 3.1.34-Dijagram koji ilustruje računski spektar

Naponska razlika ekvivalentne konstantne amplitude je naponska promjena koja bi pri konstantnoj amplitudi promjene opterećenja proizvela isti vijek trajanja sklopa na zamor kao za slučaj spektra promjene napona pri promjenljivoj amplitudi. Ovo poređenje je zasnovano na *Palmgren-Miner*-ovoj linearnoj teoriji sumiranja tj. akumulacije oštećenja, a po ovom konceptu može se smatrati da se ekvivalentna konstantna promjena napona odnosi na broj od dva miliona ciklusa promjene napona promjenljive amplitude.

Vijek trajanja na zamor je broj ciklusa promjene napona koji dovodi do loma usljed zamora.

Granica zamora pri konstantnoj amplitudi $\Delta \sigma_D$ je granična vrijednost promjene napona $\Delta \sigma$ iznad koje je potrebno dokazivati otpornost na zamor.

Kategorija detalja je određena konstruktivna kategorija sklopa, zavarenog ili sa zavrtnjevima, koja se odlikuje istom klasom osjetljivosti na zamor. Svakoj kategoriji detalja odgovara određena kriva otpornosti na zamor koja se primjenjuje kod dokazivanja otpornosti na zamor.

Kriva otpornosti na zamor je kvantitativna kriva koja definiše lom usljed zamora u zavisnosti naponske razlike i broja naponskih ciklusa tačno određene kategorije detalja konstrukcije. Na krivoj otpornosti na zamor sa $\Delta\sigma_c$ je označena referentna otpornost na zamor pri N_C = 2 × 10⁶ ciklusa promjene normalnog napona. N_D = 5 × 10⁶ je broj promjena opterećenja za koji je definisana granica zamora pri konstantnoj amplitudi. N_L = 100 × 10⁶ je broj promjena napona pri kome je definisana rubna granica. Nagib krive na zamor je definisan koeficijentima m = 3 i m = 5.

Slika 3.1.35-Prikaz krive otpornosti na zamor

Računski vijek trajanja je referentan period vremena u kome se traži da konstrukcija sigurno funkcioniše sa prihvatljivim stepenom vjerovatnoće da do loma neće doći usljed prslina izazvanih zamorom.

Rubna granica je granica ispod koje naponske promjene računskog spektra nemaju uticaj na sračunato kumulativno oštećenje.

Analiza opterećenja koje prouzrokuje zamor se vrši na osnovu poznatog dinamičkog ponašanja konstrukcije. Dinamičko ponašanje je određeno režimom rada i tehnologije eksploatacije mašina ili je snimljeno na istoj ili sličnoj konstrukciji, pri čemu se izrađuju istorijati naprezanja. U ovm slučaju se radi o tačnom proračunu na zamor jer se bazira na kompletnom spektru

događaja opterećenja. Prostiji metod proračuna je zasnovan na ekvivalentnom opterećenju koje prouzrokuje zamor. U slučajevima kada ne postoje tačni podaci mogu se koristiti faktori dinamičke amplifikacije koji se primjenjuju na proračune statičkog graničnog stanja. Cilj proračuna na zamor – granično stanje zamora je projektovanje konstrukcija sa zadatim vijekom trajanja. Da bi se to postiglo potrebno je provjeriti sve odgovorne dijelove i detalje strukture sa detaljnošću na nivou tehničkog rješenja. Ovakav proračun podrazumjeva primjenu parcijalnih koeficijenata sigurnosti. Proračun tretira konstrukciju u elastičnom domenu ponašanja, sa maksimalnom temperaturom sredine do 150 °C u blagoj korozionoj sredini.

Provjeri na zamor podliježu sljedeći tipovi konstrukcija:

- kostrukcije opterećene radom dizalica (za ovaj rad bitni nosači kranske staze mostovske dizalice),

- konstrukcije vibro mašina,

- konstrukcije izložene oscilatornom dejstvu vjetra.

Provjera na zamor ne mora se sprovoditi ako su ispunjeni uslovi:

$$\gamma_{Ff} \cdot \Delta \sigma \leq 26 / \gamma_{Mf}$$
 u $[N/mm^2]$, $N \leq 2 \cdot 10^6 \cdot \frac{36 / \gamma_{Mf}}{\gamma_{Ff} \cdot \Delta \sigma_{E,2}}$, gdje su:

 $\Delta \sigma_{E,2}$ – naponska razlika ekvivalentne konstantne amplitude u N/mm^2 ,

 γ_{Ff} – parcijalni koeficijent sigurnosti na zamor, uzima u obzir nepovoljne devijacije dejstava, nepreciznost modeliranja dejstva i neizvjesnost procjene uticaja, a usvaja se najčešće da je jednak 1.0 osim ako nije drugačije definisan u nacionalnim prilozima Evrokoda 3,

 γ_{Mf} – parcijalni koeficijent sigurnosti presjeka ili veze na zamor.

Pregled i pristup	"Lom-bezbjedni" elementi	"Lom-nebezbjedni" elementi				
Pristupačan detelj veze	1.00	1.25				
Nedovoljna pristupačnost detalja	1.15	1.35				
Periodičnim pregledom mogu da se utvrde prsline usljed zamora prije nego što izazovu oštećenje. Periodičan						
pregled je vizuelan, osim ako to nije drugačije specificirano.						

Tabela 3.1.6.1 – Parcijalni koeficijent γ_{Mf}

U dijelu Evrkoda 3 koji se bavi određivanjem čvrstoće nosača dizalica na zamor izvršena je klasifikacija dizalica odnosno svrstavanje dizalice u određenu grupu naprezanja. Klasifikacija se izvodi korišćenjem kolektiva napona $(S_0 \div S_3)$ i ukupnog broja naponskih ciklusa $(N_1 \div N_4)$.

Kolektivi napona podliježu Gausovoj normalnoj raspodjeli i dati su na slici 3.1.36. Grupe naprezanja su date klasama $(B_1 \div B_6)$ i date su u tabeli 3.1.6.2.

Slika 3.1.36- Idealizovani kolektivi napona

Kolektiv napona	N1	N2	N3	N4		
Ukupan broj predviđenih ciklusa napona	Više od 2·10 ⁴ do 2·10 ⁵	Više od 2·10⁵ do 6·10⁵	Više od 6·10⁵ do 2·10 ⁸	Više od 2·10 ⁶		
	Povremena i neredovna upotreba sa dugim intervalima mirovanja	Redovna upotreba kod rada sa prekidima	Redovna upotreba kod neprekidnog rada	Redovna upotreba kod teškog neprekidnog rada		
Kolektiv napona		Grupa naprezanja nosača dizalica				
S ₀ vrlo lak	B1	B2	B3	B4		
S ₁ lak	B2	B3	B4	B5		
S ₂ srednji	B3	B4	B5	B6		
S₃ težak	B4	B5	B6	B6		

Tabela 3.1.6.2 – Grupe naprezanja

Dokaz otpornosti se izvodi za normalne i smičuće napone u vidu relacija:

 $\gamma_{Ff} \cdot \varphi \cdot \lambda \cdot \Delta \sigma_{max} \leq \Delta \sigma_c \cdot \gamma_{Mf} ,$

 $\gamma_{Ff} \cdot \varphi \cdot \lambda \cdot \Delta \tau_{max} \leq \Delta \tau_c \cdot \gamma_{Mf} \; .$

 $\Delta \sigma_{max}$ i $\Delta \tau_{max}$ su maksimalne vrijednosti promjene normalnih i smičućih napona. λ je koeficijent koji zavisi od grupe naprezanja, tabela 3.1.6.3,

Grupa naprezanja	B1	B2	B3	B4	B5	B6
za normalne napone $\Delta\sigma$	0.147	0.215	0.316	0.464	0.681	1.00
za smičuće napone Δτ	0.316	0.398	0.501	0.631	0.794	1.00
φ je dinamički koeficijent dizalice. $\Delta \sigma_c$ i $\Delta \tau_c$ su granične vrijednosti čvrstoće na zamor pri $2 \cdot 10^6$ promjena opterećenja za odgovarajuću kategoriju detalja. Kategorije detalja su sistematizovane tabelarno i svaka je označena određenim brojem: 36, 40, 45, 50, 56, 63, 71, 80, 90, 100, 112, 125, 140 i 160. Ove kategorije detalja obuhvataju spojeve odnosno presjeke izvedene: nezavarenim detaljima, zavarenim složenim presjecima, poprečnim sučeonim šavovima, zavarenim priključnim vezama sa nenosećim šavovima i zavarenim vezama sa nosećim šavovima, pri čemu su ovi spojevi klasifikovani prema osjetljivosti na zamor.

Koeficijent redukcije λ prema EN 1991-3-2006 može da se odredi na osnovu klase zamora konstrukcije, S-klasa.

Classes S	S ₀	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S9
normal stresses	0,198	0,250	0,315	0,397	0,500	0,630	0,794	1,00	1,260	1,587
shear stresses	0,379	0,436	0,500	0,575	0,660	0,758	0,871	1,00	1,149	1,320

Tabela 3.1.6.4 – Koeficijent redukcije λ u zavisnosti od klase zamora (S-klasa)

Klasifikacija kranova prema osjetljivosti na zamor određuje se na osnovu preporuka iz EN 1991-3-2006, u zavisnosti od broja ciklusa promjene napona kojoj će konstrukcija biti izložena i u zavisnosti od grupe naprezanja.

Tabela 3.1.6.5 – C	Određivanje S-klase	$(Q_0 \div Q)$	₽ ₅ odgovara	grupama	naprezanja	B_1	$\div B_6)$
--------------------	---------------------	----------------	-------------------------	---------	------------	-------	-------------

(Class of load spectrum	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5
		$kQ \leq 0.03$ 13	$0,0313 < kQ \le 0,0625$	$0,0625 < kQ \le 0,125$	$0,125 < kQ \le 0,25$	$0,25 < kQ \le 0,5$	$< \substack{0.5 \\ kQ \\ 1,0} \le$
	class of						
t	otal number of cycles						
U ₀	$C \le 1,6.10^4$	S ₀	S_0	S_0	S_0	S ₀	S ₀
U_1	$1,6 \times 10^4 < C \le 3,15 \times 10^4$	S ₀	S ₀	S ₀	S ₀	S ₀	S1
U_2	$3,15 \times 10^4 < C \le 6,30 \times 10^4$	S 0	S_0	S_0	S ₀	S ₁	S ₂
U_3	$6,30 \times 10^4 < C \le 1,25 \times 10^5$	S ₀	S ₀	S ₀	S ₁	S ₂	S ₃
U_4	$1,25 \times 10^5 < C \le 2,50 \times 10^5$	S ₀	S_0	S1	S_2	S ₃	S_4
U ₅	$2,50 \times 10^5 < C \le 5,00 \times 10^5$	S ₀	S1	S_2	S_3	S_4	S_5
U_6	$5,00 \times 10^5 < C \le 1,00 \times 10^6$	S ₁	S_2	S ₃	S_4	S ₅	S ₆
U ₇	$1,00 \times 10^6 < C \le 2,00 \times 10^6$	S ₂	S ₃	S_4	S ₅	S ₆	S ₇
U_8	$2,00 \times 10^6 < C \le 4,00 \times 10^6$	S ₃	S_4	S ₅	S ₆	S ₇	S ₈
U9	$4,00 \times 10^6 < C \le 8,00 \times 10^6$	S_4	S ₅	S ₆	S ₇	S ₈	S9

U nedostatku ovih podataka S-klasa može da se odredi na osnovu Aneksa B ovog dijela Evrokoda 1.

Slika 3.1.37-Krive otpornosti na zamor za promjene normalih napona

Slika 3.1.38-Krive otpornosti na zamor za promjene smičućih napona

U slučaju kombinovanog prisustva normalnih i smičućih napona u postupku dokaza nosivosti na zamor potrebno je uzeti u obzir njihovo zajedničko dejstvo. U slučaju kada je ekvivalentna nominalna naponska razlika smičućih napona manja od 15% ekvivalentne nominalne naponske razlike normalnih napona, uticaji naponskih razlika smičućih napona mogu da se zanemare. U suprotnom potrebno je sprovesti dokaz nosivosti na zamor u sljedećem vidu:

$$\left(\frac{\gamma_{Ff}\cdot\Delta\sigma_{max}}{\Delta\sigma_c/\gamma_{Mf}}\right)^3 + \left(\frac{\gamma_{Ff}\cdot\Delta\tau_{max}}{\Delta\tau_c/\gamma_{Mf}}\right)^5 \le 1.0 \; .$$

3.2 Kontrola graničnih stanja upotrebljivosti - SLS

Proračun kranskog nosača sa aspekta njegove upotrebljivosti prema EN 1993-6 zahtjeva sledeće kontrole:

- kontrola vertikalnih pomjeranja (ugib kranskog nosača, denivelacija susjednih kranskih nosača),
- kontrola horizontalnih pomjeranja (horizontalan ugib kranskog nosača, horizontalno pomjeranje stuba rama u nivou gornje ivice šina-GIŠ, horizontalno razmicanje šina, razlika horizontalnih pomjeranja susjednih stubova – ramova),
- kontrola napona (povratno elastično ponašanje pri SLS),
- kontrola treperenja rebra (engl. web breathing),
- kontrola vibracija donje nožice.

3.2.1 Kontrola vertikalnih pomjeranja

Izvjesna vertikalna pomjeranja kranskog nosača potrebno je ograničiti na dopuštene vrijednosti radi nesmetanog obavljanja funkcije samog krana kao i radi smanjenja troškova održavanja dizalice i nosača.

Dopušteni vertikalni ugib kranskog nosača δ_z (ukupna deformacija umanjena za nadvišenje ako postoji) iznosi $\delta_z \leq L/600$ ali $\delta_z \leq 25$ mm, gdje je L raspon nosača.

Dopuštena razlika vertikalnih pomjeranja lijevog i desnog kranskog nosača Δh_c treba da bude manja ili jednaka s/600 gdje je s razmak između osa lijevog i desnog kranskog nosača.

Dopušteni vertikalni ugib za monorej kransku stazu usljed pokretnog opterećenja treba biti $\delta_{pay} \leq L/500$.

3.2.2 Kontrola horizontalnih pomjeranja

Hotizontalni ugib kranskog nosača δ_y trebao bi biti: $\delta_y \leq L/600$ gdje je L raspon nosača. Horizontalno pomjeranje rama odnosno stuba usljed dejstva krana mjereno u nivou oslanjanja kranske dizalice (gornje ivice šine ili gornje nožice nosača) trebalo bi biti: $\delta_u \leq h_c/400$, gdje je h_c visina na kojoj se kran oslanja na stub (gornja ivica šine ili gornja nožica nosača), sl. 3.2.1.

Slika 3.2.1-Horizontalno pomjerannje rama na nivou oslanjanja dizalice [4]

Razlika $\Delta \delta_y$ horizontalnih pomjeranja susjednih ramova odnosno stubova na nivou gornje ivice šine unutrašnjeg kranskog nosača treba biti: $\Delta \delta_y \leq L/600$ gdje je L razmak između stubova odnosno tačaka oslanjanja kranske staze (sl. 3.2.2). U slučaju spoljašnjih kranskih nosača važe sledeće preporuke:

- usljed kombinacije poprečnih sila usljed dejstva dizalice i dejstva vjetra kada je kran u eksploataciji: $\Delta \delta_y \leq L/600$ (sl. 3.2.2),
- usljed spoljašnjeg dejstva vjetra kada kran nije u eksploataciji: $\Delta \delta_y \leq L/400$ (sl.3.2.2).

Slika 3.2.2-Razlika horizontalnih pomjeranja susjednih ramova odnosno stubova [4]

Promjena rastojanja između centara kranskih šina uključujući termičke uticaje treba biti: $\Delta s \leq 10mm$, sl. 3.2.3.

Slika 3.2.3-Promjena rastojanja između centara šina lijevog i desnog kranskog nosača [4]

3.2.3 Kontrola napona

Ova kontrola je neophodna zato što je potrebno obezbjediti povratno elastično ponašanje usljed servisnog opterećenja. Vrši se kontrola normalnih, smičućih i uporednih napona:

$$\begin{split} \sigma_{x,Ed,ser} &\leq \frac{f_y}{\gamma_{M,ser}} \ , \\ \tau_{Ed,ser} &\leq \frac{f_y/\sqrt{3}}{\gamma_{M,ser}} \ , \\ \sqrt{\sigma_{x,Ed,ser}^2 + \sigma_{z,Ed,ser}^2 - \sigma_{x,Ed,ser} \cdot \sigma_{z,Ed,ser} + 3 \cdot \tau_{Ed,ser}^2} \leq \frac{f_y}{\gamma_{M,ser}} \end{split}$$

gdje je f_y granica popuštanja materijala, a $\gamma_{M,ser}$ koeficijent za materijal pri servisnom opterećenju i iznosi 1.00.

3.2.4 Kontrola treperenja rebra

Treperenje rebra je karakteristično za rebra velike visine i vitkosti. Kada je $h_w/t_w > 120$ porebno je numerički provjeriti da treperenje nije prekomjerno kroz sledeći uslov:

 $\sqrt{\left(\frac{\sigma_{x,Ed,ser}}{k_{\sigma} \cdot \sigma_{E}}\right)^{2} + \left(\frac{1.1 \cdot \tau_{Ed,ser}}{k_{\tau} \cdot \sigma_{E}}\right)^{2}} \leq 1.1$, gdje je σ_{E} kritičan Ojlerov napon izbočavanja rebra, a k_{σ} i k_{τ} su koeficijenti izbočavanja usljed napona pritsika i napona smicanja.

3.2.5 Kontrola vibracija donje nožice

Da bi se izbjegao problem vibracija donje nožice njenu vitkost je potrebno ograničiti na 250: $L/i_z \le 250$.

4. IZBOR STATIČKOG SISTEMA

Statički odnosno konstruktivni sistemi koji se koriste za kranske nosače su: prosta greda, kontinualni gredni nosač i gerberov nosač.

Najčešće se nosači kranskih staza izvode kao proste grede. Razlozi za to su jednostavnija statička analiza, jeftinija radionička izrada i jednostavnija montaža. Preporuka je da se koristi

za raspone oko 6m. Veći rasponi se mogu koristiti kada ugib nije mjerodavan, a u slučaju da jeste dobijaju se neracionalni porečni presjeci.

Kontinualni nosači se koriste za veće razmake glavnih stubova u podužnom pravcu (kranski nosači se oslanjaju na glavne stubove). Koriste se u slučajevima kada primjena sistema proste grede nije opravdana. Nedostaci ovih nosača u odnosu na prostu gredu je komplikovanija statička analiza, a montaža se komplikuje zbog izrade montažnih nastavaka.

Gerberov nosač se koristi veoma rijetko, nedostatak mu je komplikovana montaža zbog izrade zglobova.

U računskom dijelu ovoga rada biće prikazana uporedna analiza kontinualne i proste grede kao zastupljenijih konstruktivnih sistema kod kranskih nosača u odnosu na gerberov nosač.

5. IZBOR POPREČNOG PRESJEKA

Ako su mostovske dizalice nosivosti do 10t, a rasponi nosača oko 6 m za poprečni presjek se usvaja neki od valjanih I profila, samostalno ili sa ojačanom gornjom nožicom. Takođe u ovom slučaju može se koristiti i zavareni nesimetričan I presjek formiran zavarivanjem limova.

Slika 5.1-I profili, samostalni ili sa ojačanom gornjom nožicom [2]

Slika 5.2-Zavareni nesimetrični I profili [2]

U slučaju kranskih staza većeg raspona i dizalica veće nosivosti usvajaju se puni zavareni limeni nosači I presjeka sa horizontalnim nosačem, od rebrastog lima ili rešetkast. Ovaj nosač ima funkciju sprega protiv bočnih udara, a istovremeno služi i kao staza za opsluživanje dizalica.

Slika 5.3-Poprečni presjek zavarenog I nosača sa horizontalnim spregom [2]

Visina kranskih nosača H statičkog sistema proste grede iznosi L/10 do L/12, gdje je L raspon kranskog nosača (razmak glavnih stubova u podužnom pravcu hale). U slučajevima da ugib nije mjerodavan visina može biti L/15. Kod zavarenih I nosača potrebno je obratiti pažnju na vezu gornje nožice i rebra. Obično se koristi K šav ili obostrani ugaoni šavovi. Kod obostranog ugaonog šava nastaje veliko dejstvo zaraza što uzrokuje niske dopuštene napone, a postoji opasnost da će se javiti takva deformacija pri kojoj će se gornja nožica osloniti na ivice rebra, tako da je neophodno pojasnoj lameli dati preddeformaciju zagrijavanjem.

Slika 5.4-Uticaj obostranih uzaonih šavova na vezu rebra i nožice [2]

Da bi se bolje prihvatili lokalni pritisci točkova gornji dio rebra se može izvesti veće debljine ili sa dodatnim limovima i četiri ugaona šava.

Slika 5.5-Mogućnosti formiranja limenih I nosača [2]

Kranske staze većih raspona koje su opterećene teškim dizalicama racionalno je izvoditi kao rešetkaste ili sandučaste. Visina rešetkastih kranskih nosača kreće se u opsegu od L/7 do L/10. Gornji pojas rešetke izrađuje se od krutih profila T ili I poprečnog presjeka. Gornji pojas je

pored pritiska opterećen i na lokalno savijanje usljed pritiska točka dizalice P. Momenat savijanja usljed lokalnog savijanja gornjeg pojasa može se izračunati pomoću izraza:

 $M_{lok} = \frac{P \cdot d}{3}$ gdje je d dužina pojasnog štapa između čvorova.

Slika 5.6-Rešetkaste kranske staze [2]

Slika 5.7-Sandučasti kranski nosač [2]

Kranske staze za teške dizalice izvode se kao proste grede, a ugib takvih staza ne smije prekoračiti vrijednost od L/1000. U slučaju da se upotrebljava puni limeni nosač konstrukcija se sastoji od sledećih elemenata:

- a) kranski nosač,
- b) gornji horizontalni spreg,
- c) sekundarni nosač za oslanjanje gornjeg horizontalnog sprega,
- d) donji horizontalni spreg,
- e) poprečno ukrućenje.

Slika 5.8-Konstrukcija kranske staze za teške dizalice [2]

Kod višebrodnih hala kod kojih uz središnje glavne stubove postoje sa obe strane kranske staze, tada one imju zajednički spreg za bočne udare. U takvim slučajevima može se oblikovati zajednički sandučasti torziono krut nosač.

Slika 5.9-Zajednički nosač za dvije susjedne kranske staze [2]

5.1 Dimenzije poprečnog presjeka

Visinu poprečnog presjeka nosača kranske staze treba usvajati u opsegu $h=(L/10 \div L/12)$ za sistem proste grede, a kod sistema kontinualnog nosača ova vrijednost može biti manja.

Širina gornje pojasne lamele ne bi trebala biti manja od 300mm, izuzetno kada je to opravdano može iznositi 250mm. Debljine pojasnih lamela se usvajaju do 40mm.

Debljina vertikanog lima odnosno rebra se usvaja u granicama $h_w/150$ do $h_w/200$, gdje je h_w visina rebra kranskog nosača i unosi se u mm. Pošto sa na gornjoj nožici veliki lokalni pritisci od točka, debljina rebra na visini od približno $h_w/10$ mjereno od spoja sa gornjom nožicom se izvodi veća u opsegu od 20mm do 25mm.

Bitno je napomenuti da su nosači kranskih staza najčešće visoki, što povlači za sobom činjenicu da imaju "vitke" poprečne presjeke pa su im potrebna poprečna i podužna urućenja. Tematika poprečnih i podužnih ukrućenja je obrađena u dijelu o samom proračunu, a ovdje je bitno napmenuti da se, pošto su kranske staze dinamički opterćene konstrukcije, treba obratiti pažnja na oblikovanje veze poprečnog ukrućenja i nožice nosača. Zbog otpornosti na zamor veza poprečnog ukrućenja i donje zategnute nožice kod sistema proste grede, a kod kontinualnog nosača i gornje nožice ostvaruje se pomoću "pas" pločica koje nisu zavarene za nožicu nego su postavljene oko 5mm od nje.

Slika 5.10-Ugrađivanje "pas" pločica za a) prostu gredu i b) kontinualni nosač [2]

5.2 Variranje dimenzija poprečnog presjeka

Zbog racionalnijeg utroška materijala neophodno je varirati statičke karakteristike poprečnog presjeka duž nosača. Cilj je prilagoditi nosač stvarnim uticajima koji se javljaju, što se najčešće ostvaruje promjenom širine pojasnih lamela. Bitno je napomenuti da ova metoda nije racionalna kod nosača manjih raspona. Određivanje mjesta promjene poprečnog presjeka određuje se na osnovu postupka pokrivanja anvelope momenta savijanja.

Slika 5.11-Pokrivanje anvelope momenta savijanja projenom širine gornje pojasne lamele [2]

6. OSLANJANJE KRANSKOG NOSAČA

Nosači kranske staze se oslanjaju na glavne stubove hale. Oslanjanje se može izvršiti direktno kod stepenastih stubova na mjestu promjene poprečnog presjeka stuba, ili preko konzole montirane na stub kod stubova uniformnog poprečnog presjeka.

Slika 6.1-Kranski nosač oslonjen na stepenasti stub

Slika 6.2-Kranski nosač oslonjen na konzolu

Kranski nosači se za oslonce vezuju na dva načina: preko ispuštenih čeonih ploča i preko tangencijalnog ležišta. Veza preko tangencijalnog ležišta omogućuje rotaciju poprečnog presjeka, tako da je ovakva veza najbliža idealnom zglobu.

Slika 6.3-Veza preko ispuštenih čeonih ploča

Slika 6.4-Tangencijalno ležište

7. SPREGOVI

7.1 Spregovi za prijem bočnih udara

Primaju bočne udare dizalice, a najčešće se izvode od rebrastog lima debljine 5mm do 8mm, sa jednim pojasem od UPN (UPE) profila ili ugaonika. Drugi pojas je gornji pojas kranskog nosača. Ovakav spreg je efikasan ako je razmak njegovih pojaseva manji od 1 m.

Slika 7.1-Spregovi za prijem bočnih udara od rebrastog lima

Ukoliko je ovaj razmak veći od 1 m, spreg se projektuje u rešetkastoj izradi. Rešetka je sa paralelnim pojasevima, sa ispunom od dijagonala ili dijagonala i vertikala.

Slika 7.2-Spreg za prijem bočnih udara u rešetkastoj izradi

Za manji razmak glavnih stubova za spoljašnji pojas sprega se usvaja UPN profil ili ugaonik (sl. 7.3a), a u slučaju većih razmaka glavnih stubova potrebno je izvesti poseban pojas u vidu lakog rešetkastog nosača koji je paralelan kranskom nosaču i sa njim je povezan poprečnim ukrućenjima. Kod kranskih nosača čiji su rasponi veći od 12 m između donjih pojaseva se postavlja stabilizirajući horizontalni spreg (sl. 7.3b). Kod visokih limenih nosača, preko 2 m, treba postaviti po jedan horizontalni spreg u ravni gornjeg i donjeg pojasa (sl. 7.3c).

Slika 7.3-Princip konstruisanja spregova za bočne udare

Slika 7.4-Različiti sistemi horizontalnih spregova

7.2 Spregovi za kočenje

Postavljaju se iz razloga što su glavni stubovi uklješteni samo u poprečnom pravcu, dok su u podužnom "pendel" stubovi, tako da svaka industrijska hala sa mostovskim kranovima mora da ima spreg za kočenje, najbolje u sredini. Ovaj spreg se dimenzioniše na silu kočenja H_k. Izvodi se u vidu rešetkastog nosača ili u vidu punog okvira.

Slika 7.5-Statički sistemi spregova za kočenje

Slika 7.6-Mogući položaji spregova za kočenje (označeno crvenom linijom)

Zbog ekscentričnosti sprega za kočenje u odnosu na kranski nosač, u glavnim stubovima hale između kojih se nalazi ravan sprega za kočenje javlja se uticaj sprega sila:

- P = $H_k \cdot \frac{e}{l}$ gdje su: *e*-ekscentričnost i *l*-razmak glavnih stubova.

Slika 7.7-Ekscentričan položaj sprega za kočenje

Slika 7.8-Spregovi za kočenje u industrijskoj hali

8. ODBOJNICI

Pri statičkoj analizi kranske staze potrebno je obuhvatiti i slučajni udar dizalice u odbojnike. U pitanju je izuzetni slučaj opterećenja, pa se prilikom dimenzionisanja može primjeniti manji koeficijent sigurnosti. Ranije su u upoterebi uglavnom bili drveni odbojnici, a mana im je bila velik uticaj od udara i na sam odbojnik i na dizalicu. U cilju smanjivanja kinetičke energije ugrađivali su se klinovi za ublaženje udara nagiba od 1:4 do 1:6.

Savremeni princip konstruisanja odbojnika podrazumjeva različite sisteme čiji je zadatak da zaustave dizalicu i ublaže udar sabijanjem odbojnika čime se eliminiše energija kretanja. Težnja je da povratno odbijanje bude što manje.

Slika 8.1-Neki od uobičajenih oblika odbojnika na kraju kranske staze [2]

Prema principu rada, na osnovu dijagrama sila-pomjeranje razlikuju se elastični odbojnici, prigušni odbojnici i elastično-prigušni odbojnici.

U slučaju elastičnog odbojnika sa konstantom opruge C kinetička energija se pretvara u rad opruge, a sila udara se može sračunati pomoću sljedećeg izraza:

 $F_u = C \cdot \Delta = v \cdot \sqrt{\frac{C \cdot m}{2}}$, gdje je *m* masa dizalice, *v* brzina kretanja dizalice i Δ maksimalno utiskivanja odbojnika

utiskivanje odbojnika.

U slučaju prigušnog odbojnika koji radi na principu trenja koriste se sljedeći izrazi za dobijanje sile udara:

$$\Delta = v^2 \cdot \frac{m}{4 \cdot F_t}$$
 i $F_t = F_u$, gdje je F_t sila trenja.

Gumeni odbojnici se najčešće proizvode od masivnog elastomera, čvrstoće po Shore-u 70° do 90° (sl. 8.2 a).

Mogu da se rade i od ćelijastog poliuretan-elastomera i tada se nazivaju ćelijasti odbojnici(sl. 8.3 b). Energija koju odbojnik može da primi raste sa povećanjem utiska, a kod ćelijastog odbojnika zavisi i od brzine udara što je uslovljeno procesom potiskivanja gasa koji se nalazi u šupljinama.

Kod hidrauličkog odbojnika pri utiskivanju klipa potiskuje se ulje, a vraćanje u početni položaj omogućeno je pomoću ugrađene opruge. Pri brzom udaru nastaje zaustavni pritisak koji djeluje suprotno kočionoj masi kao sila prigušenja.

Slika 8.2-a) masivni gumeni odbojnik, b) ćelijasti odbojnik, c) hidraulički odbojnik [2]

Karakteristike odbojnika zavise od proizvođača. Energija koju odbojnik može da prihvati zavisi od veličine odbojnika i mogućnosti sabijanja (bez razaranja odbojnika), kao i od maksimalne sile koja se sa odbojnika prenosi na konstrukciju.

Slika 8.3-Odbojnik zajedno sa nosačem i dijelom kranske staze na prepustu [2]

9. KRANSKE ŠINE

Kranske šine su element koji neposredno prima opterećenje od točka dizalice i prenosi ga na kranski nosač.

Točkovi dizalica se uglavnom izrađuju od livenog gvožđa ili od livenog čelika. Postoje dva tipa točkova dizalice: sa vjencima i oni bez kod kojih se bočno držanje točka na šini ostvaruje horizontalnim valjcima-vođicama. Točkovi sa vjencima imaju veće trenja, a time i veće habanje od onih sa horizontalnim valjcima.

Slika 9.1-Točkovi sa vjencem: a) nepokretna osovina točka, b) osovina se okreće oko točka [2]

Slika 9.2-Točkovi sa horizontalnim valjcima vođicama [2]

U inženjerskoj praksi upotrebljavaju se različiti oblici šina i prikazani su na slici ispod (sl. 9.3).

Slika 9.3-Poprečni presjeci kranskih šina [2]

Za dizalice manje nosivosti mogu se primjeniti šine pravougaonog poprečnog presjeka, koje su prikazane na slici 9.3 a, sa dimenzijama 50x30, 50x40, 60x30, 60x40, 60x50, 70x50 mm. U zavisnosti od oblika i dimenzije točkova gornja ivica ovakve šine može biti oborena ili zaobljena. Veza ovog tipa šina sa gornjim pojasem kranskog nosača je najčešće ostvarena obostranim kontinualnim ugaonim šavovima. Mana ovog rješenja je teža zamjena pohabanih šina.

Dizalice većih nosivosti zahtjevaju ugrađivanje pravih kranskih šina (sl. 9.3 b-e) ili željezničkih šina (sl. 9.3 f). Koji od ovih tipova šina će biti upotrebljen zavisi od pritiska i oblika točka dizalice. Tipovi kranskih šina sa slike 9.3 pod c) i d) koriste se za teške dizalice sa velikim pritiscima točkova. Željezničke šine koje se i dalje u regiji koriste umjesto kranskih šina imaju niz neadekvatnih karakteristika za korištenje u ove svrhe. Domaći proizvođači dizalica preporučuju korištenje normalinih željezničkih šina tipa 22, 45 i 49. U tabeli 9.1 date su statičke karakteristike navedenih tipova šina.

Tip šine	а	b	h	Težina	Površina	Statičke veličine	
	mm	mm	mm	kg/m	$A[cm^2]$	$I_x[cm^4]$	$W_{x}[cm^{3}]$
22	46±0.5	90±1	100±0.5	22.12	28.18	375.5	73.6
45	67±0.5	125±1	142±0.5	45.44	57.84	1552	215
49	67±0.5	125±1	149±0.5	49.43	62.97	1819	240

Tabela 9.1 Statičke karakteristike željezničkih šina 22, 45 i 49

Veza kranske šine za gornji pojas kranskog nosača može se ostvariti na više načina. U slučaju kontinualne veze šine za kranski nosač (zavarivanjem, zavrtnjevima ili ranije zakivcima), sa stanovišta statičkog ponašanja, šina se može uzeti u obzir pri određivanju statičkih karakteristika poprečnog presjeka kranske staze. Zbog habanja glave šine potrebno je redukovati statičke karakteristike šine za 25%. Mjestimično prekinute šavove treba izbjegavati zbog dejstva zareza. Prije nego što se usvoji statičko sadejstvo šine, treba provjeriti da li je čelik od koga je napravljena šina zavarljiv, jer se čelici visoko otporni na habanje ne mogu zavariti.

Bolja rješenja od prethodno navedenih za vezu kranske šine za gornji pojas nosača su ona koja daju mogućnost jednostavnog podešavanja položaja šine, kako u fazi montaže, tako i u fazi eksploatacije. Zbog uslova nesmetanog kretanja krana po šinama moraju biti ispunjene oštre geometrijske tolerancije, jer bi u supreotnom došlo do neravomjernog habanja šina (bočno), loma vjenca točka dizalice, pa i do pada dizalice sa kranske staze. Pri montaži šina potrebno je ispoštovati sljedeće tolerancije:

- visinsko odstupanje između šina u poprečnom pravcu $\Delta h \leq L_D/1000$,
- visinska razlika kota gornje ivice šine između dva susjedna oslonca $\Delta h \leq l/1000$,
- razmak osa šina $\Delta L_D \leq \pm 10$ mm,
- rastojanje ose šine od ose rebra kranskog nosača $\Delta e \leq t_w$ ili 15 mm.

Slika 9.4-Veza kranske šine za kranski nosač [2]

Jedno od najčešće primjenjvanih rješenja za vezu kranske šine za nosač je veza ostvarena kukastim zavrtnjevima (sl. 9.4 a) koji se obostrano naizmjenično ugrađuju na razmaku od približno 600 mm. Ovakva veza je pogodna zato što se pritezanjem ili popuštanjem matice šina može lako dovesti u projektovani položaj. Prečnik kukastih zavrtnjeva kreće se u opsegu M20 do M24.

Veza se takođe može ostvariti i obostranim priključnim pločicama sa ovalnim rupama (sl. 9.4 b) na razmaku od 600-700 mm u zavisnosti od dimenzija šine. Podešavanje položaja šine vrši se popuštanjem zavrtnjeva i pomjeranjem pločica u pravcu ovalnih rupa.

Slika 9.5-Veza šine pomoću patentiranih klema [2]

Na slici 9.5 prikazan je savremeni načni vezivanja šine za kranski nosač pomoću patentirane kleme sa kosom rupom. Pomoću klema moguće je izvršiti dotjerivanje položaja šine. Nožica šine je kod ovog tipa veze elastično spregnuta pomoću vulkaniziranih neoprenskih oslonaca. Zajedno sa neoprenskom podložnom pločom kod ovog tipa veze postiže se dobra zvučna izolacija i povoljna raspodjela opterećenja.

Montažni nastavci šina se najčešće zavaruju, u suprotnom ih je potrebno oblikovati sa kosinom, obično pod uglom od 45° što je prikazano na slici 9.6.

Slika 9.6-Oblici izvođenja montažnih nastavaka kranskih šina [2]

Poprečno postavljene rupe pri prelasku dizalice uzrokuju udarce i habanje, pa je ovakve nastavke potrebno pomjeriti za 200 do 500 mm u odnosu na montažni nastavak kranskog nosača. Ako nije moguće ispuniti ovaj uslov potrebno je predvidjeti obostrani bandaž za vođenje, da bi se osigurala nesmetana prolaznost na mjestu montažnog nastavka.

Bitno je napomenuti da je kod dugačkih kranskih staza sistema kontinualnog nosača potrebno predvidjeti dilatacione spojnice na nosaču, pa samim time dilatacione spojnice se predviđaju i na šinama. Na raspolaganju je više sistema za izvođenje dilatacione spojnice šine.

10. PROJEKTNI ZADATAK

Predmet projektnog zadatka predstavlja proračun čeličnog nosača kranske staze mostovskog krana koji opslužuje čelični industrijski objekat dimenzija u osnovi 26x40 m. Visina glavnog stuba ovog objekta iznosi 6 m, nagib krovne ravni iznosi 6°, a visina objekta u sljemenu je 7.366 m. Za glavnu noseću konstrukciju odabran je puni limeni nosač i ukupo ih je 6 na međusobnom razmaku od 8 m (polazna verzija statičkog sistema). Glavni stubovi i glavni nosači su kruto vezani i zajedno čine uklješteni ram u statičkom smislu. Objekat čitavom dužinom opslužuje dvogredna mostovska dizalica nosivosti 12.5 t i raspona 24 m.

Nosač kranske staze u statičkom smislu čini po 5 prostih greda u svakom pravcu gdje je razmak između oslonaca 8 m, a ukupna dužina iznosi 40 m. Oslonci kranskog nosača su ispuštene konzole na glavnim stubovima.

Proračun kranskog nosača će biti sproveden pomoću programa "CRANEWAY Dlubal", a proračun samog objekta nije predmet ovoga rada zbog obimnosti proračuna.

Akcenat u projektnom zadatku je na nosaču kranske staze, a elementi na koje se oslanja nosač kranske staze kao i sam industrijski objekat predmet su statičkog proračuna konstrukcije objekta i u ovom projektnom zadatku nije sproveden.

Dizalica koja opslužuje objekat je dvogredna mostovska dizalica, model DEMOD-K-12.5, prozvođača "Vulkan" Rijeka.

Slika 10.1-Oznake dimenzija dizalice [5]

U tabeli 10.1 date su dimezije i osnovni podaci o modelu dizalice DEMOD-K-12.5 u zavisnosti od raspona dizalice, tabela je preuzeta iz kataloga proizvođača.

Tip Type	Tip Tip Type								Brzina diz. m/min Lifting speed m/min		Opterećenje kotača [kN] Wheel load [kN]				
	[kN]	over up to	L2	L3	L4	L5	H1	H2	H3	H4	H max	Nor.	Fina Creep	Max	Min
		8	3066	2000		1000	700	150	1950	350	- - 4500 do 1 3 000 4500 up to 13 000			78	19.4
		8 - 12	2716	2000				265	2035	435		12	1.2	86.5	23.7
DEMOD K 19.5	105	12 - 16	3320	2500	1000			380	2135			6	0.6	98.2	28.5
DEMOD-K-12.5	125	16 - 20	3970	3150	1000	1000	/00	470		505				108.5	31
		20 - 25	4820	4000	1			560		232		4	0.4	128.3	34.6
		25 - 27	5380	4560				600						137.5	36.2

Tabela 10.1 – Osnovni tehnički podaci o dizalici [5]

Iz tabele se vidi da su za raspon dizalice od L1= 24 m dimenzije sljedeće:

L2=4820 mm; L3=4000 mm; L4=L5=1000 mm;

H1=700 mm; H2=560 mm; H3=2135 mm; H4=535mm; H max=4500 – 13000 mm. Brzina dizanja tereta iznosi $v_h = 4 \frac{m}{min}$. Minimalna i maksimalna sila po točku krana iznosi $P_{min} = 34.6 \ kN$ i $P_{max} = 128.3 \ kN$.

10.1 Analiza opterećenja usljed dejstva kranske dizalice

Prvi korak u analizi opterećenja ja određivanje sopstvene težine krana Q_{c1} i sopstvene težine kolica zajedno sa kukom Q_{c2} na osnovu: poznate težine maksimalnog tereta $Q_{h,nom} = 125 kN$, na osnovu maksimalne i minimalne sile pritiska po točku i na osnovu ostalih podataka koji su dati u katalogu. Dizalica ima po dva točka na svakom čeonom nosaču i za potrebe proračuna pretpostavka je da se opterećenje dijeli simetrično na svaki točak u ravni čeonog nosača. Najmanje rastojanje težišta kolica u odnosu na točak krana (mjesto oslanjanja dizalice na šine kranske staze) je jednako dimenziji L4, odnosno $e_{min} = 1000 mm = 1 m$.

Maksimalna reakcija oslonca grede kojom se modelira dizalica je $V_{max} = 2 \cdot P_{max} = 256.6 \ kN$, i jednaka je reakciji oslonca grede kada se kolica zajedno sa maksimalnim teretom nalaze na rastojanju e_{min} od razmatranog oslonca. Minimalna reakcija oslonca grede kojom se modelira dizalica je $V_{min} = 2 \cdot P_{min} = 69.2 \ kN$, i jednaka je reakciji oslonca grede kada se kolica bez tereta nalaze na rastojanju e_{min} od oslonca na suprotnoj strani.

Postavljajući uslove ravnoteže za ova dva slučaja dobijaju se dvije jednačine sa dvije nepoznate:

$$V_{max} \cdot L - (Q_{c2} + Q_{h,nom}) \cdot (L - e_{min}) - Q_{c1} \cdot (L/2) = 0$$
(1)

$$V_{min} \cdot L - Q_{c2} \cdot e_{min} - Q_{c1} \cdot (L/2) = 0$$
(2) - 256.6 \cdot 24 - (Q_{c2} + 125) \cdot 23 - Q_{c1} \cdot 12 = 0 (1)
69.2 \cdot 24 - Q_{c2} \cdot 1 - Q_{c1} \cdot 12 = 0 (2).

Rješavanjem ovih jednačina dobijaju se sljedeće vrijednosti:

 $Q_{c1} = 132.25 \ kN$ - sopstvena težina krana bez kolica,

 $Q_{c2} = 73.75 \ kN$ - sopstvena težina kolica zajedno sa kukom.

10.1.1 Dinamički koeficijenti φ_i

Koeficijent φ_1 koji uzima u obzir dinamičku pobudu konstrukcije usljed vertikalnog podizanja tereta i primjenjuje se na sopstvenu težinu krana nalazi se u granicama $0.9 \le \varphi_1 \le 1.1$. Za potrebe proračuna u ovom primjeru usvaja se gornja vrijednost $\varphi_1 = 1.1$.

Koeficijent φ_2 koji uzima u obzir dinamičke efekte usljed podiznja tereta do krana i primjenjuje se na težinu tereta određuje se prema formuli:

 $\varphi_2 = \varphi_{2,min} + \beta_2 \cdot v_h$, za klasu podizanja usvaja se klasa HC2 $\rightarrow \varphi_{2,min} = 1.1$ i $\beta_2 = 0.34$, tako da je $\varphi_2 = 1.1 + 0.34 \cdot (4m/60s) = 1.123$. Usvaja se vrijednost $\varphi_2 = 1.12$.

Koeficijent φ_3 koji uzima u obzir dinamičke efekte usljed naglog ispuštanja tereta u ovom primjeru, a prema preporuci Evrokoda 1, usvaja se $\varphi_3 = 1$.

Koeficijent φ_4 koji uzima u obzir dinamičke efekte usljed kretanja krana po šinama ili po kranskoj stazi u ovom primjeru, a prema preporuci Evrokoda 1, usvaja se $\varphi_4 = 1$.

Koeficijent φ_5 koji uzima u obzir dinamičke efekte usljed pogonske sile u slučaju glatke promjene pogonske sile nalazi se u granicama $1.0 \le \varphi_5 \le 1.5$, a u ovom primjeru usvaja se gornja granica $\varphi_5 = 1.5$.

Koeficijent φ_6 koji uzima u obzir dinamičke efekte usljed probnog opterećenja dobija se pomoću izraza $\varphi_6 = 0.5 \cdot (1 + \varphi_2)$ i usvaja se u ovom primjeru $\varphi_6 = 1.06$.

Koeficijent φ_7 koji uzima u obzir dinamičke efekte usljed udara krana u odbojnik za karakteristike odbojnika $0 \le \xi_b \le 0.5$ njegova vrijednost, a ujedno i usvojena u ovom primjeru je $\varphi_7 = 1.25$.

10.1.2 Vertikalna opterećenja

U ovom dijelu neće biti data vertikalna opterećenja množena sa dinamičkim faktorima i svrstana u grupe opterećenja zato što kompjuterski softver Dlubal Craneway nakon unesenih dinamičkih faktora i osnovnih uslovno statičkih veličina sam pravi kombinacije, multiplikaciju dinamičkim faktorima i svrstava opterećenja u grupe.

 $Q_{r,max} = 256.6/2 = 128.3 \ kN$ - maksimalna sila u točku opterećenog krana, $Q_{r,(max)} = 74.4/2 = 37.2 \ kN$ - odgovarajuća maksimalna sila, na drugom kraju, $\sum Q_{r,max} = 256.6 \ kN$ - suma maksimalnih sila, $\sum Q_{r,(max)} = 74.4 \ kN$ - suma odgovarajućih maksimalnih sila, na drugom kraju, $Q_{r,min} = 69.2/2 = 34.6 \ kN$ - minimalna sila u točku neopterećenog krana, $Q_{r,(min)} = 136.8/2 = 68.4 \ kN$ - odgovarajuća minimalna sila u točku krana na drugom kraju, $\sum Q_{r,min} = 69.2 \ kN$ - suma minimalnih sila, $\sum Q_{r,(min)} = 136.8 \ kN$ - suma odgovarajućih minimalnih sila.

10.1.3 Horizontalna opterećenja

10.1.3.1 Podužne horizontalne sile usljed ubrzanja i kočenja krana

$$\begin{split} H_{L,i} &= \varphi_5 \cdot K \cdot (1/n_r) \\ K &= \mu \cdot \sum Q^*_{r,min} = \mu \cdot m_w \cdot Q_{r,min} = 0.2 \cdot 2 \cdot 34.6 = 13.84 \ kN \\ \mu &= 0.2 - \text{koeficijent trenja između točka i šine,} \\ m_w &= 2 - \text{broj točkova na jednom čeonom nosaču dizalice.} \\ H_{L,1} &= H_{L,2} = 1.5 \cdot 13.84 \cdot (1/2) = 10.38 \ kN = \varphi_5 \cdot 6.92 \ kN. \end{split}$$

10.1.3.2 Poprečne horizontalne sile usljed ubrzanja i kočenja krana

$$\begin{split} H_{T,1} &= \varphi_5 \cdot \xi_2 \cdot (M/a) , H_{T,2} = \varphi_5 \cdot \xi_1 \cdot (M/a) \\ a &= 4000 \ mm = 4 \ m - \text{rastojanje između točkova na jednom čeonom nosaču, dimenzija L3} \\ \xi_1 &= \sum Q_{r,max} / \sum Q_r = \sum Q_{r,max} / \left(\sum Q_{r,max} + \sum Q_{r,(max)} \right) \\ \xi_1 &= 256.6 / (256.6 + 74.4) = 0.775 \\ \xi_2 &= 1 - \xi_1 = 1 - 0.775 = 0.225 \\ M &= K \cdot l_s = K \cdot (\xi_1 - 0.5) \cdot l = 13.84 \cdot (0.775 - 0.5) \cdot 24 = 91.344 \ kNm \\ H_{T,1} &= 1.5 \cdot 0.225 \cdot (91.344/4) = 7.707 \ kN = \varphi_5 \cdot 5.138 \ kN \\ H_{T,2} &= 1.5 \cdot 0.775 \cdot (91.344/4) = 26.547 \ kN = \varphi_5 \cdot 17.7 \ kN \ . \end{split}$$

10.1.3.3 Podužne i poprečne horizontalne sile usljed zakošenja krana

 $\alpha = \alpha_F + \alpha_V + \alpha_0 \le 0.015 \ rad$ – ugao zakošenja krana $\alpha_F = (0.75 \cdot x)/a_{ext}$, $0.75 \cdot x \ge 10 \ mm$, prema tabeli 2.7 iz Evrokoda 1 (En 1991-3-2006), $a_{ext} = a = 4000 \ mm$, $\alpha_F = (0.75 \cdot x)/a_{ext} = 10/4000 = 0.0025 \ rad$ $\alpha_V = y/a_{ext}$, $y \ge 0.10 \cdot b$ prema tabeli 2.7 iz Evrokoda 1 (En 1991-3-2006) gdje je b širina glave šine, $\alpha_V = (0.10 \cdot 45)/4000 = 0.001125 \ rad$ $\alpha_0 = 0.001 \ rad$ $\alpha = 0.0025 + 0.001125 + 0.001 = 0.004624 \ rad$

$$f = 0.3 \cdot (1 - e^{-250 \cdot \alpha}) = 0.3 \cdot (1 - e^{-1.15625}) = 0.206$$
 – faktor zakošenja

Faktori sile $\lambda_{S,i,j,T}$ i $\lambda_{S,i,j,L}$ se određuju prema sljedećim tabelama koje se nalaze u dijelu Evrokoda 1.

Fixing of wheels	Combination	of wheel pairs	h						
according to lateral	coupled (c)	independent (i)							
Fixed/Fixed FF	CFF		$\frac{m\xi_1\xi_2 ^2 + \Sigma e_j^2}{\Sigma e_j}$						
Fixed/Movable FM			$\frac{m\xi_1 ^2 + \Sigma e_j^2}{\Sigma e_j}$						
 Where: <i>h</i> is the distance between the instantaneous centre of rotation and the relevant guidance means; <i>m</i> is the number of pairs of coupled wheels (<i>m</i> = 0 for independent wheel pairs); ξ₁ is the distance of the instantaneous centre of rotation from rail 1; ξ₁ is the distance of the instantaneous centre of rotation from rail 2; 									
ℓ is the span of the e_i is the distance of	appliance; the wheel pair <i>j</i> from the	relevant guidance mear	15.						

Tabela 10.1 – Određivanje veličine h, [3]

Veličina *m* je u primjeru jednaka nuli jer nema grupisanih točkova.

Veličine e_i u date u prethodnoj tabeli u ovom primjeru iznose:

 $e_1 = 0 -$ točkovi dizalice imaju graničnike

 $e_2 = a = 4 m.$

System	$\lambda_{\mathrm{s},\mathrm{j}}$	$\lambda_{\mathrm{S},\mathrm{I},\mathrm{j},\mathrm{L}}$	$\lambda_{\mathrm{S},\mathrm{I},\mathrm{j},\mathrm{T}}$	$\lambda_{\mathrm{S},2,\mathrm{j,L}}$	$\lambda_{\mathrm{S},2,\mathrm{j},\mathrm{T}}$
CFF	$1-\sum e_{j}$	$\frac{\xi_1\xi_2}{n}\frac{1}{h}$	$\frac{\xi_2}{n} \left(1 - \frac{e_j}{h} \right)$	$\frac{\xi_1\xi_2}{n}\frac{1}{h}$	$\frac{\xi_1}{n} \left(1 - \frac{e_j}{h} \right)$
IFF	nh	0	$\frac{\xi_2}{n} \left(1 - \frac{e_j}{h} \right)$	0	$\frac{\xi_1}{n} \left(1 - \frac{e_j}{h} \right)$
CFM	$\mathcal{E}\left(1-\frac{\Sigma e_{j}}{\Sigma}\right)$	$\frac{\underline{\xi}_1 \underline{\xi}_2}{n} \frac{1}{h}$	$\frac{\xi_2}{n} \left(1 - \frac{e_j}{h} \right)$	$\frac{\xi_1 \xi_2}{n} \frac{I}{h}$	0
IFM	$S_2(\frac{1}{nh})$	0	$\frac{\xi_2}{n} \left(1 - \frac{e_j}{h}\right)$	0	0

Tabela 10.2 – Faktori sile $\lambda_{S,i,j,k}$ [3]

Where:

n is the number of wheel pairs;

 ξ_1 is the distance of the instantaneous centre of rotation from rail 1;

 ξ_2 is the distance of the instantaneous centre of rotation from rail 2;

l is the span of the appliance;

e_j is the distance of the wheel pair j from the relevant guidance means;

h is the distance between the instantaneous centre of rotation and the relevant guidance means.

$$h = \frac{m \cdot \xi_1 \cdot \xi_2 \cdot l^2 + \sum e_j^2}{\sum e_j} = \frac{0 + 4^2}{4} = 4 m, n = 2,$$
$$\lambda_S = 1 - \frac{\sum e_j}{n \cdot h} = 1 - \frac{4}{2 \cdot 4} = 0.5,$$
$$\lambda_{S,1,L} = \lambda_{S,2,L} = 0,$$

- za par točkova 1 (par točkova podrazumjeva naspramne točkove koji se nalaze na lijevom i desnom čeonom nosaču:

 $\lambda_{S,1,1,T} = \frac{\xi_2}{n} \cdot \left(1 - \frac{e_1}{h}\right) = \frac{0.225}{2} \cdot (1 - 0) = 0.1125$ $\lambda_{S,2,1,T} = \frac{\xi_1}{n} \cdot \left(1 - \frac{e_1}{h}\right) = \frac{0.775}{2} \cdot (1 - 0) = 0.3875$ - za par točkova 2: $\lambda_{S,1,2,T} = \frac{\xi_2}{n} \cdot \left(1 - \frac{e_2}{h}\right) = \frac{0.225}{2} \cdot (1 - 1) = 0$ $\lambda_{S,2,2,T} = \frac{\xi_1}{n} \cdot \left(1 - \frac{e_2}{h}\right) = \frac{0.775}{2} \cdot (1 - 1) = 0$ - podužne sile: $H_{S,1,L} = f \cdot \lambda_{S,1,L} \cdot \sum Q_r = 0.206 \cdot 0 \cdot 331 = 0$

 $H_{S,2,L} = f \cdot \lambda_{S,1,L} \cdot \sum Q_r = 0.206 \cdot 0 \cdot 331 = 0$

- poprečne sile:

$$\begin{split} H_{S,1,1,T} &= f \cdot \lambda_{S,1,1,T} \cdot \sum Q_r = 0.206 \cdot 0.1125 \cdot 331 = 7.67 \ kN \\ H_{S,2,1,T} &= f \cdot \lambda_{S,2,1,T} \cdot \sum Q_r = 0.206 \cdot 0.3875 \cdot 331 = 26.42 \ kN \\ \text{Sila S dobija se prema izrazu (sila vođenja, pravac dejstva joj je dat na sl. 2.6):} \\ S &= f \cdot \lambda_S \cdot \sum Q_r = 0.206 \cdot 0.5 \cdot 331 = 34.1 \ kN \\ H_{S,1,T} &= S - H_{S,1,1,T} = 34.1 - 7.67 = 26.43 \ kN \\ H_{S,2,T} &= H_{S,2,1,T} = 26.42 \ kN \\ H_{S,1,2,T} &= f \cdot \lambda_{S,1,2,T} \cdot \sum Q_r = 0.206 \cdot 0 \cdot 331 = 0 \\ H_{S,2,2,T} &= f \cdot \lambda_{S,2,2,T} \cdot \sum Q_r = 0.206 \cdot 0 \cdot 331 = 0 \end{split}$$

10.1.3.4 Horizontalna sila uzrokovana ubrzanjem ili kidanjem užeta

Ova sila predstavlja 10% zbira sopstvene težine kolica zajedno sa užetom i nominalnog tereta:

 $H_{T,3} = 0.1 \cdot (Q_{c,2} + Q_{h,nom}) = 0.1 \cdot (73.75 + 125) = 19.875 \, kN.$

10.1.3.5 Sila usljed udara u odbojnik

$$H_{B,1} = \varphi_7 \cdot v_1 \cdot \sqrt{m_c \cdot S_B}$$

Brzina kretanja mostne dizalice v u nedostatku podataka u katalogu proizvođača, a u poređenju sa kranovima sličnih karakteristika drugih proizvođača za potrebe primjera usvaja se 50 *m/min*.

$$v_1 = 0.7 \cdot 50 \cdot (1/60) = 0.58 \ m/s$$
$$m_c = (Q_{c,1} + Q_{c,2} + Q_{h,nom})/9.81 = 331/9.81 = 33.74 \ t = 33740 \ kg$$

Za odbojnike na krajevima kranske staze odabran je ćelijasti elastični odbojnik "Demag DPZ 100" dimenzija 7.62x7.62x96.52 mm, konstanta odbojnika je $\xi_b = 0.25$. Elastična krutost odbojnika S_B za brzinu kretanja krana 0.58 m/s iznosi približno 337 kN/m.

$$H_{B,1} = 1.25 \cdot 0.58 \cdot \sqrt{33740 \cdot 337000} = 77308 N = 77.308 kN = \varphi_7 \cdot 61.85 kN$$

10.2 Proračun nosača kranske staze

Proračun je sproveden u programskom paketu "CRANEWAY Dlubal", a pored analize nosača koji je u statičkom smislu sastavljen od pet prostih greda urađen je i proračun kontinualnog nosača. Poređenjem ova dva rješenja pokazalo se da prvo rješenje ne zadovoljava uslov ograničenja horizontalnih pomjeranja nosača ($\delta_y \leq L/600 = 13.3 \text{ mm}$) dok je u slučaju kontinualnog nosača ovaj uslov zadovoljen.

10.2.1 Statički određen nosač kranske staze

U slučaju statički određenog nosača (pet prostih greda) odabran je zavareni poprečni presjek:

h = 600 mm - visina p.p.

 $b_{f,1} \times t_{f,1} = 350 \times 28 \ mm$ – dimenzije gornje nožice,

 $b_{f,2} \times t_{f,2} = 300 \times 28 \ mm$ – dimenzije donje nožice,

 $h_w \times t_w = 544 \times 8 \ mm$ – dimenzije rebra.

Spoj između rebra i nožica je ostvaren K šavovima. U određivanju geometrijskih karakteristika poprečnog presjeka uzet je u obzir i poprečni presjek šine, ali redukovan za 25% zbog habanja šine.

Na nosaču su postavljena poprečna ukrućenja: nad svim osloncima i na svakoj gredi na sredini raspona.

Nakon proračuna i variranja dimenzija poprečnog presjeka pokazalo se da horizontalni pomak na segmentu 3 uvjek premašuje dozvoljenu vrijednost, pa je iz tog razloga neophodan spreg protiv bočnih udara.

Detaljni rezultati proračuna kao i unos podataka biće dati u prilogu na kraju rada u vidu izvještaja programa za proračun.

10.2.2 Statički neodređen nosač kranske staze

U slučaju statički neodređenog nosača kranske staze zadržana je ista geometrija kao i u prethodnom slučaju. Nakon sprovedenog proračuna pokazalo se da su svi kriterijumi nosivosti i upotrebljivosti ispunjeni tako da je za ovo dispoziciono rješenje hale odabran ovaj konstruktivni sistem nosača uz prethodno navedene karakteristike poprečnog presjeka i položaje poprečnih ukrućenja. Montažni nastavci se predviđaju na kotama 6 m, 18 m, 22 m i 34 m od početka nosača. Nastavci su proračunati u programu "Idea Statica", a izvještaj proračuna kao i radionički crteži biće dati u prilogu na kraju rada.

11. ZAKLJUČAK

U ovom radu predstavljen je proračun nosača kranske staze usljed dejstva dvogredne mostovske dizalice. Standard prema kome je vršen proračun je Evrokod 3, dio 6, koji se bavi čeličnim kostrukcijama opterećenim dejstvom kranova. Opterećenja nastala radom kranova određivana su prema Evrokodu 1, dio 3, koji se bavi dejstvima na konstrukcije usljed rada kranova i mašina. Sprecifičnost nosača koji je predmet ovog rada je činjenica da se radi o dinamički opterećenoj konstrukciji sa velikim brojem ciklusa opterećenja i rasterećenja što je čini podložnom zamoru. Takođe važnost tačnosti pri izradi i montaži ove konstrukcije, kao i šina po kojima se kreće mostovska dizalica je velika, iz razloga trajnosti i funkcionalnosti dizalice. U prvom dijelu ovog rada dati su osnovni podaci o mostovskim dizalicama kao i njihova podjela, a dati su i prikazi stubnih i konzolnih dizalica. U drugom dijelu data je analiza opterećenja mostovskim dizalicama, tj. način modeliranja opterećenja prema pomenutom dijelu Evrokoda 1. Dinamička komponenta dejstva mostovskih dizalica na nosač kranske staze obuhvaćena je dinamičkim koeficijentima kojima se množe statičke veličine, koje su u ovom slučaju i horizontalne i vertikalne. U trećem dijelu rada dat je sam postupak proračuna nosača kranske staze prema graničnim stanjima nosivosti i upotrebljivosti. Što se tiče graničnih stanja nosivosti pored neophodne provjere nosvosti poprečnih presjeka nosača na savijanje i dejstvo poprečne sile, obrađeni su i problemi unošenja poprečne koncentrisane sile od točka dizalice u nosač, bočno-torziono izvijanje, zamor i najobimnije problem izbočavanja rebra. Izbočavanje rebra je problem koji se vezuje za pune limene nosače sa vitkim rebrom i može se javiti usljed napona pritiska, napona smicanja i lokalne poprečne sile, ili usljed njihove kombinacije. Usljed dejstva kranske dizalice mogu nastupiti svi od navedenih slučajeva izbočavanja pa je bitno izvršiti provjeru izbočavanja rebra, uz činjenicu da se nosivost na izbočavanje može povećati postavljanjem podužnih i poprečnih ukrućenja, što je takođe obrađeno u ovom dijelu. Kod graničnih stanja upotrebljivosti date su granične vrijednosti vertikalnih i horizontalnih pomjeranja, kontrola napona (pošto je potrebno obezbijediti povratno elastično ponašanje nosača pri servisnom opterećenju), kao i kontrole neophodne za dinamički opterećene nosače I presjeka: kontrola treperenja rebra i kontrola vibracija donje nožice. U četvrtom dijelu rada navedeni su statički sistemi ovih nosača (prosta greda, kontinualni nosač i gerberov nosač), kao i njihove prednosti i mane. U petom dijelu date su smjernice koje su dostupne u literaturi za izbor poprečnog presjeka nosača. Navedeno je u kom slučaju su bolji vruće valjani profili, a kada zavareni nosači kod kojih je objašnjeno nepovoljno dejstvo zareza na spoju gornje nožice i rebra. Takođe navedeno je i kada nosač kranske staze treba biti izveden kao rešetkasti nosač, a u nastavku je dato kako treba da izgleda nosač za teške dizalice. U slučaju višebrodnih hala navedeno je kao racionalan pristup dva susjedna nosača izvesti kao jedan torziono krut sandučasti nosač. U ovom dijelu date su i smjernice za izbor dimenzija poprečnog presjeka, kao i variranje dimenzija duž nosača postupkom pokrivanja anvelope momenata savijanja u cilju uštede materijala. U šestom dijelu dati su načini oslanjanja nosača kranske staze na nosivi dio konstrukcije, kao i tipovi ležišta tj. oslonaca. U sedmom dijelu su prikazani spregovi: spregovi za prijem bočnih udara i spregovi za kočenje. Što se tiče spregova za prijem bočnih udara dat je princip odabira: ravan lim ili rešetkasti nosač, a kod spregova za kočenje dat je način njihovog dimenzionisanja, statički sistemi i njihov položaj u industrijskom objektu. U osmom dijelu obrađeni su odbojnici na krajevima kranskih staza čija je uloga apsorbovanje kinetičke enegije usljed udara dizalice, tj. usljed incidentnog opterećenja. Dati su tipovi

odbojnika sa njhovim opisom i skicama. U devetom dijelu su obrađene kranske šine. Prikazani su tipovi šina, odnosno njihovi poprečni presjeci, kao i način odabira tipa šine u zavisnosti od tipa dizalice (opterećenja usljed dejstva dizalice) i točkova dizalice. Pored navedenog prikazan je i način vezivanja šine za gornju pojasnicu nosača, kao i način izvođenja montažnih nastavaka šine. U desetom poglavlju dat je primjer proračuna nosača kranske staze. Objekat čiju radnu površinu opslužuje dizalica je dimenzija u osnovi 26x40 m. Visina glavnog stuba objekta je 6 m, a nagib krovne ravni objekta je 6° tako da je visina u sljemenu objekta 7.366 m. Nosač kranske staze se oslanja na kratke konzole pričvršćene na glavne stubove objekta, na koti 3.215m od poda objekta. Dizalica koja opslužuje objekat je raspona 24m, a njene dimenzije i nosivost dati su u ovom dijelu rada. Nakon određivanja opterećenja usljed rada dizalice prema drugom poglavlju, proračun nosača kranske staze je sproveden u specijalizovanom softveru upravo za ovaj tip čeličnih nosača "Craneway Dlubal". U radu je dat način unosa neophodnih podataka u ovaj program (materijal, tip dizalice, geometrija nosača, poprečni presjek nosača, tip šine, spoj rebra i nožice, statički sistem, imperfekcije nosača i način unošenja opterećenja). Program nudi i izbor standarda po kojima se vrši proračun, a što se tiče Evrokoda koji je u ovom primjeru korišten program nudi korekciju parcijalnih koeficijenata prema nacionalnim aneksima zemalja u kojima je Evrokod zastupljen. Korištenjem ovog programa proveden je proračun nosača kranske staze za dva statička sistema: statički određen nosač tj. pet prostih greda ukupne dužine 40m i kontinualni nosač. Oba ova nosača su iste geometrije poprečnog presjeka. Što se tiče statički određenog nosača svi kriterijumi nosivosti su ispunjeni, a što se tiče kriterijuma upotrebljivosti jedino kriterijum ograničenja horizontalnih pomjeranja nije ispunjen. Kod kontinualnog nosača za istu geometriju i ovaj kriterijum graničnih stanja je ispunjen. Razlog za to je nepromjenjivost statičkog sistema nosača i za horizontalna i za vertikalna dejstva. Za osnovni materijal nosača odabran je konstruktivni čelik S235. Kroz variranje konstruktivnog čelika za statički određen nosač (S275, S355, S450) pokazalo se da izbor vrste čelika neznatno smanjuje horizontalni ugib koji i za tip čelika S450 prekoračuje dopuštenu vrijednost. Prethodno je navedeno da je za kontinualni nosač i za tip čelika S235 ovaj uslov ispunjen, pa se može zaključiti da je ovaj konstruktivni sistem i ekonomski opravdaniji i pored komplikovanije montaže. Svi izvještaji proračuna kao i neophodni crteži dati su u prilogu na kraju rada.

LITERATURA

[1] Zlatko Marković: Granična stanja čeličnih konstrukcija prema Evrokodu, Akademska misao, Beograd, 2014.

[2] Dragan Buđevac: Metalne konstrukcije u zgradarstvu, Građevinska knjiga, Beograd, 2009.

[3] EN 1991-3:2006: Eurocode 1 – Actions od structures – Part 3: Actions induced by cranes and machinery, July 2006.

[4] EN 1993-6:2007: Eurocode 3 – Design of steel structures – Part 6: Crane supporting structures, April 2007.

[5] Katalog proizvoda preduzeća "Vulkan nova d.o.o", dostupno na stranici <u>www.vulkan-nova.hr</u>.

PRILOZI

IZVJEŠTAJ PRORAČUNA ZA STATIČKI ODREĐEN NOSAČ KRANSKE STAZE

1/12 Milan Krneta Page: Sheet: 1 Trg dr. Milana Jeliæa br. 15, 74480 Modrièa CRANEWAY Project: Projects Model: Kranska staza, staticki odredjen nosac Date: 12.3.2020. Design of crane runway DETAILS Standard Used : CEN* - European Union 40.000 m 7748.1 kg 193.7 kg/m Total girder length The total weight of the beam The total weight of the beam The cross-sectional weight per meter Total weight of the beam after 25% reduction in rail section due to wear The cross-sectional weight per meter 7748.1 748.1 kg 193.7 kg/m

A DATA FOR NATIONAL ANNEX

girders

CEN* - European Union - Eurocode 3: Design of ste	el structures - Part 6: Crane supporting structures
Partial Safety Factors	
- Resistance of cross-section	_{γM0} : 1.00
-Member resistance to stability failure	γ _{M1} : 1.00
-Weld resistance	γ _{Mw} : 1.25
- Fatigue stiffness	γ _{M,f} : 1.15
- Permanent actions	$\gamma_{\rm G}$: 1.35
- Variable Actions, Crane	γ_{Ω} : 1.35
- Variable Actions, Other	γ_{Qo} : 1.50
- Fatigue actions	γ _{F.f} : 1.00
- Combination factor	ψ : 1.00
Coefficient for shear resistance	η: 1.20
USED STANDARDS 💟 🕖	
[1] EN 1993-6:2007/AC:2009-07	Eurocode 3: Design of steel structures - Part 6: Crane supporting structures
[2] EN 1993-1-1:2005/AC:2009-04	Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings
[3] EN 1993-1-5:2006/AC:2009-04	Eurocode 3: Design of steel structures - Part 1-5: Plated structural elements
[4] EN 1993-1-8:2005/AC:2009-07	Eurocode 3: Design of steel structures - Part 1-8: Design of joints
[5] EN 1993-1-9:2005/AC:2009-04	Eurocode 3: Design of steel structures - Part 1-9: Fatigue strength of steel structures
[6] EN 1991-3:2006/AC:2012-12	Eurocode 1: Actions on structures - Part 3: Actions induced by cranes and machinery
[7] EN 1990:2002/A1:2005/AC:2010-04	Eurocode 0: Basis of structural design

GEOMETRY - SUPPORT

1

				/ /								
Support	Location		Di	Displacement			Rotation				Support [mm]	
No.	x [m]	Type of Support	in X	in Y	in Z	ab. X	ab. Y	ab. Z	Warping	Release	Stiffener	Length a
1	0.000	Hinged	(\boxtimes)	\times	\times	\times					Rigid	
2	8.000	Hinged movable	Q		\boxtimes					\boxtimes	Rigid	
3	16.000	Hinged movable		\times	\boxtimes					\times	Rigid	
4	24.000	Hinged movable		\boxtimes	\boxtimes					\boxtimes	Rigid	
5	32.000	Hinged movable		\times	\boxtimes					\times	Rigid	
6	40.000	Hinged	\boxtimes	\boxtimes		Í 🖄 🎽					Rigid	

// _____

GEOMETRY - RELEASES

					/			
Support	Location	N-/V-Release				T-/M-Release	Warping	
No.	x [m]	N	Vy	Vz	M _T	M _y M _z	Μ _ω	
2	8.000							
3	16.000							
4	24.000						/ 🖾	
5	32.000							
							$) \setminus$	

GEOMETRY - STIFFENERS

No. L [m] Int. Panels Location	
1 8.000 2 Regularly x[m]: {0.000; 4.000; 8.000}	
2 8.000 2 Regularly x[m]: {0.000; 4.000; 8.000}	/
3 8.000 2 Regularly x[m]: {0.000; 4.000; 8.000}	//
4 8.000 2 Regularly x[m]: {0.000; 8.000}	51
5 8.000 2 Regularly x[m]: {0.000; 4.000; 8.000}	//

MATERIAL

	Material Description		: Steel S 235	EN 10025-2;2004-11
1	CROSS-SECTIONS			
ĺ	Girder	:	Welded Section IU 600/350/28	8/8/300/28/0/0
	Rail profile	:	Rail SA 45 (worn-out)	
	Cross-section description	:	KB(IU+SA) IU 600/350/28/8/30	0/28/0/0 + SA 45 (worn-out)
	25% reduction of the rail section due to wear	:	\boxtimes	
	Consider rail section for the cross-section properties	:	\times	
	Additional Design			
	Perform fatigue design	:	\boxtimes	
4				

www.dlubal.com

CRANEWAY Student 8.21.02 - Design of crane runway girders

www.dlubal.com

Sheet: 1
CRANEWAY

3/12

Page:

Date:

Project: Projects

Model: Kranska staza, staticki odredjen nosac

12.3.2020.

CRANE LOADS - W-MIN

Axle		Vertical Wh	neel Loads	Hori	zontal Wheel Lo	ads	Long. Loadings	Distance	Skew Force
	Nø.	Q _C [kN]	Q _H [kN]	H _T [kN]	H _S [kN]	H _{T3} [kN]	H _L [kN]	e [m]	S [kN]
\sim	1	34.60	0.00	-17.70	26.43	9.94	3.46	0.000	0.00
	2	34.60	0.00	17.70	0.00	9.94	3.46		

DESCRIPTION OF LOAD CASES

) LC		
No.	No.	Description	
1 /	LC1	Self-Weight + Additional Permanent Load	
2	LC2	Additional Variable Loads	
>3 /	LC3,11	Q _c	
< 4⁄	LC4,12	Q _C φ ₁	
5	/LC5,13	Q _C (p4	
6 /	LC6,14	$Q_{H} \max(\varphi_2, \varphi_3)$	
7	LC7,15	Q _{H \(\phi_4\)}	
8	LC8,16	$H_T \phi_5 + H_L \phi_5$	
9	LC9,17	$(H_s + S)$	
10	LC10,18	H _{T3}	
1	LC835,838	Qc	
2	LC836,839	Q _H	
3	LC837,840	Η _B φ ₇	
	. (•

DESCRIPTION OF LOAD CASES - FATIGUE

		LC		
	No.	No.	Description	
I	1	LC1	Self-Weight + Additional Permanent Load	
	2	LC2,4	$Q_{c}(1 + \phi_{1})/2$	
	3	LC3,5	$Q_{\rm H} (1 + \varphi_2)/2$	
1		•		•

• COEFFICIENT OF LOAD CASES

Resistance						
Partial Safety Factors						
Permanent Actions	S	(1	γG	1.350	
Variable Actions - Crane				γQ	1.350	
Variable Actions - Other		/		YQo	1.500	
Combination Factor		/	\sim	Ψ	1.000	
Crane No. 1						
Dynamic Coefficient for						
Weight of crane			\sum	φ1	1.100	
Load lifting				φ2	1.120	
Sudden pull-off weight				φ3	1.000	
Crane travel			\frown	Φ4	1.000	
Driving force				Φ5	1.500	
Fatigue						
Partial Safety Factors						
Permanent Actions				γG	1.000	
Variable Actions - Crane)Ya	1.000	
Variable Actions - Other				/100 >	1.000	
Combination Factor				/ v	1.000	
Crane No. 1			/			
Dynamic Coefficient for			\sim	/ /		
Weight of crane				φ1	1.100	
Load lifting			\setminus (φ2	1.120	
Sudden pull-off weight			\square	φ3	1.000	
Crane travel				/φ4	1.000	_
Driving force				φ5	1.500	\bigcirc
				$\sum_{i=1}^{n}$		\bigcirc
Deformation						
Partial Safety Factors				\sim		
Permanent Actions				γG	1.000	
Variable Actions - Crane				γα	1.000	
Variable Actions - Other				γοο	1.000	
Combination Factor				Ψ	1.000	
Crane No. 1						
Dynamic Coefficient for					V / . / .	
Weight of crane				φ1	1,000	/)
Load lifting				φ2	/1.000	
Sudden pull-off weight				φ3	\ 1.000	
Crane travel				φ4	(1.000	
Driving force				φ5	1.000	
					<u> </u>	
Support Forces						
Partial Safety Factors					\$	

4/12 Page: Sheet: 1

12.3.2020.

CRANEWAY

Date:

Project: Projects

Model: Kranska staza, staticki odredjen nosac

COEFFICIENT OF LOAD CASES

_	Permanent Actions	γG	1.000
1	Variable Actions - Crane	γο	1.000
	Variable Actions - Other	γοο	1.000
	Combination Factor	Ψ	1.000
	Crane No. 1		
\backslash	Dynamic Coefficient for		
	Weight of crane	φ1	1.100
	Load lifting	φ2	1.120
	Sudden pull-off weight	φ3	1.000
	Crane travel	φ4	1.000
	Driving force	φ5	1.500
1	Y /		

DESCRIPTION OF LOAD COMBINATIONS

,	/ _ CO _	V	Location	of 1st Wheel of (Crane [m]	Load
No.	No.	Girder	Crane 1	Crane 2	Crane 3	Description
1	CO1					ve LC1
2	C02	Max	1 310			$y_{0} = 0$
3	COV	Max	1 310			$y_{G}(1 G 1 + 1 G 3) + y_{G}(1 G 8 + y_{G} + 1 G 2)$
4	CO4	Max	1.310			$y_{0}(1 C1 + 1 C5) + y_{0}(1 C7 + 1 C8) + y_{0}(1 C2)$
5	C05	Max	1.310			$y_{0}(1 C1 + 1 C5) + y_{0}(1 C7 + 1 C9) + y_{0}(1 C2)$
6	CO6	Max	1.310			$y_{0}(101 + 105) + y_{0}(107 + 1010)$
7	000	Max	2 060			$y_{G}(1 C1 + 1 C12) + y_{G}(1 C14 + 1 C16) + y_{G}(1 C2)$
8	CO8	Max	2.000			$y_{0}(1 C1 + 1 C11) + y_{0}(2 C1 + 2 C10) + y_{0}(2 C10) + y_{0}($
a	000	Max	2.000			$y_{0}(1 C1 + 1 C13) + y_{0}(1 C15 + 1 C16) + y_{0} = 1 C2$
10	CO10	Max	2,000			$\gamma_{\rm G}$ (LC1 + LC13) + $\gamma_{\rm Q}$ (LC13 + LC17) + $\gamma_{\rm Q}$ LC2
10	CO10	Max	2.000			$\gamma_{\rm G}$ (LC1 + LC13) + $\gamma_{\rm Q}$ (LC13 + LC17) + $\gamma_{\rm Q_0}$ LC2
10	0012	Mox o	2.000			$\gamma_{G}(1C1 + 1C10) + \gamma_{Q}(1C13 + 1C10)$
12	CO12	Max	2.010			$\gamma_{G}(LC1 + LC20) + \gamma_{Q}(LC22 + LC24) + \gamma_{Q_{0}}LC2$
14	CO13	Max	2.010			$\gamma_{G}(LC1 + LC19) + \gamma_{Q}(LC24 + \gamma_{Q_{0}}LC2)$
14	0014	Max	2.010			$\gamma_{G}(LC1 + LC21) + \gamma_{Q}(LC23 + LC24) + \gamma_{Q_{0}}LC2$
10	0015	Max	2.010		[/	$\gamma_{G}(LC1 + LC21) + \gamma_{Q}(LC23 + LC25) + \gamma_{Q_{0}}LC2$
10	0017	Max	2.010			$\gamma_{\rm G}$ (LC1 + LC21) + $\gamma_{\rm Q}$ (LC23 + LC20)
10	CO17	Mox	3.500			$\gamma_{\rm G}$ (LC1 + LC28) + $\gamma_{\rm Q}$ (LC30 + LC32) + $\gamma_{\rm Q0}$ LC2
10	0010	Max	3.500		\sim	$\gamma_{G}(LC1 + LC27) + \gamma_{Q}(LC32 + \gamma_{Q_{0}}LC2)$
19	0019	Max	3.500			$\gamma_{G}(LC1 + LC29) + \gamma_{Q}(LC31 + LC32) + \gamma_{Q_{0}}LC2$
20	0020	Max	3.560	($\gamma_{\rm G}$ (LC1 + LC29) + $\gamma_{\rm Q}$ (LC31 + LC33) + $\gamma_{\rm Q0}$ LC2
21	0021	Max	3.500	\subseteq	-	$\gamma_{\rm G}$ (LC1 + LC29) + $\gamma_{\rm Q}$ (LC31 + LC34)
22	0022	Max	4.310			$\gamma_{\rm G}$ (LC1 + LC36) + $\gamma_{\rm Q}$ (LC36 + LC40) + $\gamma_{\rm Q_0}$ LC2
23	0023	Max	4.310			$\gamma_{\rm G}$ (LC1 + LC35) + $\gamma_{\rm Q}$ LC40 + $\gamma_{\rm Q_0}$ LC2
24	0024	Max	4.310			$\gamma_{\rm G}$ (LC1 + LC37) + $\gamma_{\rm Q}$ (LC39 + LC40) + $\gamma_{\rm Qo}$ LC2
25	0025	Max	4.310			$\gamma_{G}(LC1 + LC37) + \gamma_{Q}(LC39 + LC41) + \gamma_{Q0}LC2$
20	0020	Max	4.310			$\gamma_{\rm G}$ (LC1 + LC37) + $\gamma_{\rm Q}$ (LC39 + LC42)
27	0027	Max	5.060			$\gamma_{G}(LC1 + LC44) + \gamma_{Q}(LC40 + LC40) + \gamma_{Q_{0}}LC2$
20	0020	Max	5.060			$\gamma_{G}(LC) + LC43) + \gamma_{Q}(LC48 + \gamma_{Q_{0}}LC2)$
29	CO29	Mox	5.000			$\gamma_{\rm G}$ (LC1 + LC45) + $\gamma_{\rm Q}$ (LC47 + LC48) + $\gamma_{\rm Q_0}$ LC2
30	0030	Max	5.060			$\gamma_{G}(LC1 + LC45) + \gamma_{Q}(LC47 + LC49) + \gamma_{Q_{0}}LC2$
20	0031	Mox	5.000			γ_{G} (LC1 + LC43) + γ_{Q} (LC47 + LC50)
32	0032	Mox	5.010		/	$\gamma_{\rm G}$ (LC1 + LC52) + $\gamma_{\rm Q}$ (LC34 + LC50) + $\gamma_{\rm Q0}$ LC2
24	0033	Mox	5.010		/	$\gamma_{G}(LC1 + LC51) + \gamma_{Q}(LC50 + \gamma_{Q_{0}}LC2)$
25	CO34	Mox	5.010			$\gamma_{\rm G}$ (LC1 + LC53) + $\gamma_{\rm Q}$ (LC55 + LC57) + $\gamma_{\rm Q0}$ LC2
36	CO36	Max	5.810			$\gamma_{Q}(1 C1 + 1 C53) + \gamma_{Q}(1 C55 + 1 C58)$
37	CO37	Max	6.560			$\gamma_{G}(1 C1 + 1 C60) + \gamma_{G}(1 C62 + 1 C64) + \dots + 1 C2$
38	CO38	Max	6 560			$\gamma_{G}(1C1 + 1C50) + \gamma_{G}(1C01 + 1C01) + \gamma_{G}(1C1 + 1C50) + \gamma_{$
30	CO30	Max	6.560			$y_{G}(LC1 + LC61) + y_{G}(LC63 + 1)C64) + y_{G}(LC2)$
40	CO40	Max	6 560			$\gamma_{\rm G}$ (LC1 + 2 G61) + $\gamma_{\rm G}$ (LC63 + 2 G65) + $\gamma_{\rm G}$ LC2
40	CO40	Max	6.560			$\gamma_{\rm G}$ (LG1 + LG61) + $\gamma_{\rm Q}$ (LG03 + LG66)
12	CO42	Max	7 310			$y_{0}(1 C1 + 1 C68) + y_{0}(1 C70 + 1 C72) + y_{0}(1 C2)$
42	CO43	Max	7.310			$y_{0}(1C1 + 1)C67) + y_{0}(2070 + 2012) + y_{0}(202)$
43	CO43	Max	7.310			$y_{G}(1C1 + 1C69) + y_{G}(1C71 + 1C72) + y_{G}(1C2)$
45	CO45	Max	7.310			$\gamma_{0}(1 C1 + 1 C69) + \gamma_{0}(1 C71 + 1 C73) + \gamma_{0} 1 C2$
46	CO46	Max	7.310			$y_{0}(1C1 + 1C60) + y_{0}(1C71 + 1C74)$
47	CO47	Max	8.060			$y_{G}(1 C1 + 1 C76) + y_{G}(1 C78 + 1 C80) + y_{G}(1 C28)$
48	CO48	Max	8.060			$\gamma_{0}(1 C1 + 1 C75) + \gamma_{0}(2010 + 2000) + \gamma_{0}(202)$
40	CO49	Max	8.060			$y_{0}(1 C1 + 1 C77) + y_{0}(1 C79 + 1 C80) + y_{0} = 1 C2$
50	CO50	Max	8.060			$y_{0}(1 C1 + 1 C77) + y_{0}(1 C79 + 1 C81) + y_{0}(1 C2)$
51	CO51	Max	8.060			$y_{0}(1 C1 + 1 C77) + y_{0}(1 C70 + 1 C82)$
52	CO52	Max	8 810			$y_{0}(1 C1 + 1 C84) + y_{0}(1 C86 + 1 C88) + y_{0}(1 C2) =$
53	CO53	Max	8 810			$y_{\rm C}(1C1 + 1C83) + y_{\rm C}(1C88 + y_{\rm C}) + C2$
54	CO54	Max	8 810			$y_{c}(1C1 + 1C85) + y_{c}(1C87 + 1C88) + y_{c}(1C2$
55	C055	Max	8.810			$y_{0}(101 + 1085) + y_{0}(1087 + 1080) + y_{0}(102)$
56	CO56	Max	8,810			$y_{0}(LC1 + LC85) + y_{0}(LC87 + LC90)$
57	C057	Max	0.510			$y_{0}(1 C1 + 1 C92) + y_{0}(1 C94 + 1 C96) + y_{0}(1 C2)$
58	C058	Max	9.500			$y_{0}(101 + 1091) + y_{0}(100 + 1000) + y_{0}(102)$
50	CO59	Max	9.500			$y_{0}(101 + 1091) + y_{0}(1095 + 1096) + y_{0}(102)$
60	CO60	Max	9.500			$y_{0}(1 \text{ C}1 + 1 \text{ C}93) + y_{0}(1 \text{ C}95 + 1 \text{ C}97) + y_{0}(1 \text{ C}2$
61	CO61	Max	9 560			$y_{0}(1 \text{ C}1 + 1 \text{ C}93) + y_{0}(1 \text{ C}95 + 1 \text{ C}98)$
01			0.000	1		

CRANEWAY Student 8.21.02 - Design of crane runway girders

Trg dr. Milana Jeliæa br. 15, 74480 Modrièa

CRANEWAY

Page:

Date:

5/12

Project: Projects

Model: Kranska staza, staticki odredjen nosac

12.3.2020.

	CO		Location	of 1st Wheel of	Crane [m]	Load
No	No.	Girder	Crane 1	Crane 2	Crane 3	Description
62	CO62	Max	10.310			γ_{G} (LC1 + LC100) + γ_{Q} (LC102 + LC104) + γ_{QQ} LC2
63	CO63	Max	10.310			γ_{G} (LC1 + LC99) + γ_{O} LC104 + γ_{OO} LC2
64	CO64	Max	10.310			γ_{G} (LC1 + LC101) + γ_{O} (LC103 + LC104) + γ_{OO} LC2
65	CO65	Max	10.310			γ_{G} (LC1 + LC101) + γ_{Q} (LC103 + LC105) + γ_{QQ} LC2
.66	CO66	Max	10.310			γ_{G} (LC1 + LC101) + γ_{Q} (LC103 + LC106)
67	CO67	Max	11.060			γ_{G} (LC1 + LC108) + γ_{Q} (LC110 + LC112) + γ_{QQ} LC2
68	CO68	Max	11.060			$\gamma_{G}(LC1 + LC107) + \gamma_{Q}LC112 + \gamma_{Q0}LC2$
69	CØ69	Max	11.060			γ_{G} (LC1 + LC109) + γ_{Q} (LC111 + LC112) + $\gamma_{Q_{Q}}$ LC2
70	C070	Max	11.060			γ_{G} (LC1 + LC109) + γ_{Q} (LC111 + LC113) + $\gamma_{Q_{Q}}$ LC2
71	C071	Max	11.060			γ_{G} (LC1 + LC109) + γ_{Q} (LC111 + LC114)
72	C072	Max	11.810			γ_{G} (LC1 + LC116) + γ_{Q} (LC118 + LC120) + $\gamma_{Q_{Q}}$ LC2
73	CO73	Max	11.810			γ_{G} (LC1 + LC115) + γ_{Q} LC120 + γ_{Qo} LC2
74	C074	Max	> 11.810			γ_{G} (LC1 + LC117) + γ_{Q} (LC119 + LC120) + $\gamma_{Q_{Q}}$ LC2
75	CO75	Max	11.810			γ_{G} (LC1 + LC117) + γ_{Q} (LC119 + LC121) + $\gamma_{Q_{0}}$ LC2
76 /	CØ76	Max	11.810			γ_{G} (LC1 + LC117) + γ_{Q} (LC119 + LC122)
77	CO77	Max	12.560			γ_{G} (LC1 + LC124) + γ_{Q} (LC126 + LC128) + $\gamma_{Q_{0}}$ LC2
78	CO78	Max	12.560			γ_{G} (LC1 + LC123) + γ_{Q} LC128 + γ_{Q0} LC2
79	CO79	Max	12.560			γ_{G} (LC1 + LC125) + γ_{Q} (LC127 + LC128) + $\gamma_{Q_{Q}}$ LC2
80	CO80	Max	12.560			γ_{G} (LC1 + LC125) + γ_{Q} (LC127 + LC129) + $\gamma_{Q_{0}}$ LC2
81	CO81	Max	12.560			γ_{G} (LC1 + LC125) + γ_{Q} (LC127 + LC130)
82	CO82 > /	Max	13.310			γ _G (LC1 + LC132) + γ _Q (LC134 + LC136) + γ _{Qo} LC2
83	CO83	Max	13.310			γ_{G} (LC1 + LC131) + γ_{Q} LC136 + γ_{Qo} LC2
84	CO84	Max	13.310			γ _G (LC1 + LC133) + γ _Q (LC135 + LC136) + γ _{Qo} LC2
85	CO85	Max	13.310			γ _G (LC1 + LC133) + γ _Q (LC135 + LC137) + γ _{Qo} LC2
86	CO86	Max	13.310	\triangleright		γ _G (LC1 + LC133) + γ _Q (LC135 + LC138)
87	CO87	Max	14.060	1		γ _G (LC1 + LC140) + γ _Q (LC142 + LC144) + γ _{Qo} LC2
88	CO88	Max	14.060			γ _G (LC1 + LC139) + γ _Q LC144 + γ _{Qo} LC2
89	CO89	Max 🔨	14.060			γ _G (LC1 + LC141) + γ _Q (LC143 + LC144) + γ _{Qo} LC2
90	CO90	Max	14.060			γ _G (LC1 + LC141) + γ _Q (LC143 + LC145) + γ _{Q0} LC2
91	CO91	Max	14.060			γ_{G} (LC1 + LC141) + γ_{Q} (LC143 + LC146)
92	CO92	Max	14.810		7	γ_{G} (LC1 + LC148) + γ_{Q} (LC150 + LC152) + γ_{Q0} LC2
93	CO93	Max	14.810			γ_{G} (LC1 + LC147) + γ_{Q} LC152 + γ_{Qo} LC2
94	CO94	Max	14.810			γ _G (LC1 + LC149) + γ _Q (LC151 + LC152) + γ _{Qo} LC2
95	CO95	Max	14.810		\bigtriangledown	γ _G (LC1 + LC149) + γ _Q (LC151 + LC153) + γ _{Qo} LC2
96	CO96	Max	14.810			γ _G (LC1 + LC149) + γ _Q (LC151 + LC154)
97	CO97	Max	15.560			γ _G (LC1 + LC156) + γ _Q (LC158 + LC160) + γ _{Qo} LC2
98	CO98	Max	15.560			γ _G (LC1 + LC155) + γ _Q LC160 + γ _{Qo} LC2
99	CO99	Max	15.560			$\gamma_{\rm G}$ (LC1 + LC157) + $\gamma_{\rm Q}$ (LC159 + LC160) + $\gamma_{\rm Qo}$ LC2
100	CO100	Max	15.560			γ_{G} (LC1 + LC157) + γ_{Q} (LC159 + LC161) + $\gamma_{Q_{0}}$ LC2
101	CO101	Max	15.560			γ_{G} (LC1 + LC157) + γ_{Q} (LC159 + LC162)
102	00102	Max	16.310			$\gamma_{\rm G}$ (LC1 + LC164) + $\gamma_{\rm Q}$ (LC166 + LC168) + $\gamma_{\rm Qo}$ LC2
103	CO103	Max	16.310			γ_{G} (LC1 + LC163) + γ_{Q} LC168 + γ_{Q0} LC2
104	CO104	Max	16.310			$\gamma_{\rm G}$ (LC1 + LC105) + $\gamma_{\rm Q}$ (LC107 + LC108) + $\gamma_{\rm Q_0}$ LC2
105	CO105	Max	16.310			$\gamma_{\rm G}$ (LC1 + LC105) + $\gamma_{\rm Q}$ (LC107 + LC109) + $\gamma_{\rm Q_0}$ LC2
100	CO100	Mox	17.060			$\gamma_{\rm G}$ (LC1 + LC103) + $\gamma_{\rm Q}$ (LC107 + LC170)
107	CO107	Mox	17.000			$\gamma_{\rm G}$ (LC1 + LC172) + $\gamma_{\rm Q}$ (LC174 + LC170) + $\gamma_{\rm Q_0}$ LC2
100	CO100	Max	17.000			$\gamma_{0}(101 \pm 10^{17}) \pm \gamma_{0}(10176 \pm 10176) \pm \gamma_{0} = 102$
110	CO110	Max	17.000			$y_{0}(1 \in 1 + 1 \in 173) + y_{0}(1 \in 175 + 1 \in 177) + y_{0}(1 \in 22)$
111	CO111	Max	17.000		/	$y_{0}(101 + 10173) + y_{0}(10175 + 10178)$
112	CO112	Max	17 810			$y_{c}(1C1 + 1C180) + y_{c}(1C182 + 1C184) + y_{c}(1C2$
112	CO113	Max	17.010			$y_{0}(101 + 10100) + y_{0}(10102 + 10104) + y_{0}(102)$
114	CO114	Max	17 810			$v_{c}(LC1 + LC181) + v_{c}(LC183 + LC184) + v_{c}(LC2$
115	CO115	Max	17 810			$v_{c}(1) = 1000 + 10000 + 10000 + 10000 + 1000 + 1000 + 1000 + 1000 + 10000 + 1000 + 1000 + 1000 +$
116	CO116	Max	17 810			$v_{\rm G}$ (LC1 + LC181) + $v_{\rm O}$ (LC183 + LC186)
117	CO117	Max	18 560			$v_{G}(LC1 + LC188) + v_{O}(LC190 + LC192) + v_{Oa}LC2$
118	CO118	Max	18.560			$y_{G}(LC1 + LC187) + y_{O}LC192 + y_{O}LC2$
119	CO119	Max	18 560			$\gamma_{\rm G}$ (LC1 + LC189) + $\gamma_{\rm O}$ (LC191 + LC192) + $\gamma_{\rm Oa}$ LC2
120	CO120	Max	18 560			γ_{G} (LC1 + LC189) + γ_{O} (LC191 + LC193) + γ_{O} LC2
121	CO121	Max	18.560			γ _G (LC1 + LC189) + γ _G (LC191 + LC194)
122	CO122	Max	19.310			$\gamma_{\rm C}$ (LC1 + LC196) +/ $\gamma_{\rm O}$ (LC198 + LC200) + $\gamma_{\rm Op}$ LC2
123	CO123	Max	19.310			γ _G (LC1 + LC195) + γ _O LC200 + γ _O LC2
124	CO124	Max	19.310			$\gamma_{G}(LC1 + LC197) + \gamma_{O}(LC199 + LC200) + \gamma_{O}LC2$
125	CO125	Max	19.310			γ _G (LC1 + LC197) + γ _Q (LC199 + LC201) + γ _{On} LC2
126	CO126	Max	19.310			γ _G (LC1 + LC197) + γ _Q (LC199 + LC202)
127	CO127	Max	20.060			γ _G (LC1 + LC204) + γ _Q (LC206 + LC208) + γ _{Qo} LC2
128	CO128	Max	20.060			γ _G (LC1 + LC203) + γ _Q LC208 + γ _{Q0} LC2
129	CO129	Max	20.060			γ _G (LC1 + LC205) + γ _Q (LC207 + LC208) + γ _{Qo} LC2
130	CO130	Max	20.060			γ _G (LC1 + LC205) + γ _Q (LC207 + LC209) + γ _{Qo} LC2
131	CO131	Max	20.060			γ _G (LC1 + LC205) + γ _Q (LC207 + LC210)
132	CO132	Max	20.810			$\gamma_{\rm G}$ (LC1 + LC212) + $\gamma_{\rm Q}$ (LC214 + LC216) + $\gamma_{\rm Qo}$ LC2
133	CO133	Max	20.810			γ_{G} (LC1 + LC211) + γ_{Q} LC216 + $\gamma_{Q_{0}}$ LC2
134	CO134	Max	20.810			γ _G (LC1 + LC213) + γ _Q (LC215 + LC216) + γ _{Q0} LC2
135	CO135	Max	20.810			γ_{G} (LC1 + LC213) + γ_{Q} (LC215 + LC217) + γ_{Q0} LC2
136	CO136	Max	20.810			$\gamma_{\rm G}$ (LC1 + LC213) + $\gamma_{\rm Q}$ (LC215 + LC218)
137	00137	Max	21.560			γ_{G} (LC1 + LC220) + γ_{Q} (LC222 + LC224) + $\gamma_{Q_{0}}$ LC2
138	00138	Max	21.560	1		$ \gamma_{G} (LC1 + LC219) + \gamma_{Q} LC224 + \gamma_{Q_{0}} LC2$

Trg dr. Milana Jeliæa br. 15, 74480 Modrièa

Page:

Date:

6/12

Project: Projects

Model: Kranska staza, staticki odredjen nosac

12.3.2020.

~ ~	CO		Location	of 1st Wheel of (Crane [m]	Load
No,	No.	Girder	Crane 1	Crane 2	Crane 3	Description
139	CO139	Max	21.560			γ_{G} (LC1 + LC221) + γ_{O} (LC223 + LC224) + γ_{OO} LC2
140	CO140	Max	21.560			γ_{G} (LC1 + LC221) + γ_{Q} (LC223 + LC225) + γ_{QQ} LC2
141	CO141	Max	21.560			γ_{G} (LC1 + LC221) + γ_{O} (LC223 + LC226)
142	CO142	Max	22.310			γ_{G} (LC1 + LC228) + γ_{O} (LC230 + LC232) + γ_{OO} LC2
143	CO143	Max	22.310			γ_{G} (LC1 + LC227) + γ_{Q} LC232 + γ_{QQ} LC2
144	CO144	Max	22.310			γ_{G} (LC1 + LC229) + γ_{Q} (LC231 + LC232) + $\gamma_{Q_{0}}$ LC2
145	CO145	Max	22.310			γ _G (LC1 + LC229) + γ _Q (LC231 + LC233) + γ _{Qo} LC2
146	CO146	Max	22.310			$\gamma_{\rm G}$ (LC1 + LC229) + $\gamma_{\rm Q}$ (LC231 + LC234)
147	CO147	Max	23.060			γ _G (LC1 + LC236) + γ _Q (LC238 + LC240) + γ _{Qo} LC2
148	CØ148	Max	23.060			γ _G (LC1 + LC235) + γ _Q LC240 + γ _{Qo} LC2
149	CO149	Max	23.060			γ _G (LC1 + LC237) + γ _Q (LC239 + LC240) + γ _{Qo} LC2
150	CO150	Max	23.060			γ _G (LC1 + LC237) + γ _Q (LC239 + LC241) + γ _{Qo} LC2
151	CO151	Max	> 23.060			γ _G (LC1 + LC237) + γ _Q (LC239 + LC242)
152	CO152	Max	23.810			γ _G (LC1 + LC244) + γ _Q (LC246 + LC248) + γ _{Qo} LC2
153	CØ153	Max	23.810			γ _G (LC1 + LC243) + γ _Q LC248 + γ _{Qo} LC2
154	CO154	Max	23.810			γ _G (LC1 + LC245) + γ _Q (LC247 + LC248) + γ _{Qo} LC2
155	CO155	Máx	23.810			γ _G (LC1 + LC245) + γ _Q (LC247 + LC249) + γ _{Qo} LC2
156	CO156	Max	23.810			$\gamma_{\rm G}$ (LC1 + LC245) + $\gamma_{\rm Q}$ (LC247 + LC250)
157	CO15/	Max	24.560			γ_{G} (LC1 + LC252) + γ_{Q} (LC254 + LC256) + γ_{Qo} LC2
158	CO158	Max	24.560			$\gamma_{\rm G}$ (LC1 + LC251) + $\gamma_{\rm Q}$ LC256 + $\gamma_{\rm Qo}$ LC2
159	C0159 ~	Мах	24.560			γ_{G} (LC1 + LC253) + γ_{Q} (LC255 + LC256) + $\gamma_{Q_{0}}$ LC2
160	00160	Max	24.560			γ_{G} (LC1 + LC253) + γ_{Q} (LC255 + LC257) + $\gamma_{Q_{0}}$ LC2
161	CO161	Max	24.560			γ_{G} (LC1 + LC203) + γ_{Q} (LC203 + LC208)
102	CO162	Max	25.310			$\gamma_{G}(LC1 + LC250) + \gamma_{Q}(LC252 + LC254) + \gamma_{Q_{0}}LC2$
163	CO163	Max	25.310	ľ		γ_{G} (LC1 + LC209) + γ_{Q} LC204 + $\gamma_{Q_{0}}$ LC2
104	CO164	Max	25.310			γ_{G} (LC1 + LC201) + γ_{Q} (LC203 + LC204) + $\gamma_{Q_{0}}$ LC2
166	CO165	Max	25.310			$\gamma_{\rm G}$ (LC1 + LC261) + $\gamma_{\rm Q}$ (LC263 + LC266) + $\gamma_{\rm Q_0}$ LC2
167	CO167	Max	25.310			$\gamma_{\rm G}$ (LC1 + LC268) + $\gamma_{\rm Q}$ (LC203 + LC200)
168	CO168	Max	20.000			$y_{\rm G}$ (LC1 + LC267) + $y_{\rm G}$ (LC270 + LC272) + $y_{\rm G_0}$ LC2
169	CO169	Max	26.000			$y_{0}(1C1 + 1C269) + y_{0}(1C271 + 1C272) + y_{0} + 1C2$
170	CO170	Max	26.000			$y_{0}(1C1 + 1C269) + y_{0}(1C271 + 1C273) + y_{0}(1C2$
171	CO171	Max	26.060			$v_{\rm C}$ (LC1 + LC269) + $v_{\rm C}$ (LC271 + LC274)
172	CO172	Max	26.810		\triangleright	$\gamma_{\rm G}$ (LC1 + LC276) + $\gamma_{\rm G}$ (LC278 + LC280) + $\gamma_{\rm O2}$ LC2
173	CO173	Max	26.810			$\gamma_{\rm C}$ (LC1 + LC275) + $\gamma_{\rm O}$ LC280 + $\gamma_{\rm O}$ LC2
174	CO174	Max	26.810			γ_{G} (LC1 + LC277) + γ_{Q} (LC279 + LC280) + $\gamma_{Q_{Q}}$ LC2
175	CO175	Max	26.810	(γ_{G} (LC1 + LC277) + γ_{Q} (LC279 + LC281) + $\gamma_{Q_{Q}}$ LC2
176	CO176	Max	26.810	\leq	Ω	γ_{G} (LC1 + LC277) + γ_{O} (LC279 + LC282)
177	CO177	Max	27.560			γ_{G} (LC1 + LC284) + γ_{Q} (LC286 + LC288) + $\gamma_{Q_{0}}$ LC2
178	CO178	Max	27.560			γ _G (LC1 + LC283) + γ _Q LC288 + γ _{Q0} LC2
179	CO179	Max	27.560			γ _G (LC1 + LC285) + γ _Q (LC287 + LC288) + γ _{Qo} LC2
180	CO180	Max	27.560			γ _G (LC1 + LC285) + γ _Q (LC287 + LC289) + γ _{Qo} LC2
181	CO181	Max	27.560			γ _G (LC1 + LC285) + γ _Q (LC287 + LC290)
182	CO182	Max	28.310			γ _G (LC1 + LC292) + γ _Q (LC294 + LC296) + γ _{Qo} LC2
183	CO183	Max	28.310			γ _G (LC1 + LC291) + γ _Q LC296 + γ _{Qo} LC2
184	CO184	Max	28.310			γ _G (LC1 + LC293) + γ _Q (LC295 + LC296) + γ _{Qo} LC2
185	CO185	Max	28.310			χα (LC1 + LC293) + γα (LC295 + LC297) + γαο LC2
186	CO186	Max	28.310		/	γ _G (LC1 + LC293) + γ _Q (LC295 + LC298)
187	CO187	Max	29.060		/	γ _G (LC1 + LC300) + γ _Q (LC302 + LC304) + γ _{Qo} LC2
188	00188	Max	29.060			$\gamma_{G} (LC1 + LC299) + \gamma_{Q} LC304 + \gamma_{Q_{0}} LC2$
189	CO189	Max	29.060			γ_{G} (LC1 + LC301) + γ_{Q} (LC303 + LC304) + $\gamma_{Q_{0}}$ LC2
190	CO190	wax	29.060			$\gamma_{G}(LC1 + LC301) + \gamma_{Q}(LC303 + LC305) + \gamma_{Q_{0}}LC2$
191	00191	Mox	29.060			γ_{G} (LC301) + γ_{Q} (LC303 + LC300)
192	CO192	Max	29.010			$\gamma_{G}(LC1 + LC300) + \gamma_{Q}(LC312 + m + LC312) + \gamma_{Q_{0}}(LC2)$
104	CO193	Max	29.010			$\gamma_{Q} = 0.12 + 10.0017 + \gamma_{Q} = 0.012 + \gamma_{Q_0} = 0.02$
105	CO195	Max	29.010			$\gamma_{0}(1C1 + 1.6309) + \gamma_{0}(1C311 + 1.6313) + \gamma_{0}(1C2$
195	CO196	Мах	29.010			$\gamma_{G}(1C1 + 1C309) + \gamma_{G}(1C311 + 1C314)$
190	CO197	Мах	29.010			$y_0(1C1 + 1)C316) + y_0(1C318 + 1C320) + y_0(1C2$
198	CO198	Max	30.560			v_{c} (LC1 + LC315) + v_{c} LC320 + v_{c} LC2
199	CO199	Max	30,560			y_{c} (LC1 + LC317) + y_{c} (LC319 + LC320) + y_{c} LC2
200	CO200	Max	30,560			$v_{\rm C}$ (LC1 + LC317) + $v_{\rm C}$ (LC319 + LC321) + $v_{\rm Co}$ LC2
201	CO201	Max	30.560			γ _G (LC1 + LC317) + γ _G (LC319 + LC322)
202	CO202	Max	31.310			γ _G (LC1 + LC324) + γ _G (LC326 + LC328) + γ _{On} LC2
203	CO203	Max	31.310			γ_{G} (LC1 + LC323) + γ_{O} LC328 + γ_{OO} LC2
204	CO204	Max	31.310			γ _G (LC1 + LC325) + γ _Q (LC327 + LC328) + γ _{Qo} LC2
205	CO205	Max	31.310			γ _G (LC1 + LC325) + γ _Q (LC327 + LC329) + γ _{Qo} LC2
206	CO206	Max	31.310			γ _G (LC1 + LC325) + γ _Q (LC327 + LC330)
207	CO207	Max	32.060			γ _G (LC1 + LC332) + γ _Q (LC334 + LC336) + γ _{Qo} LC2
208	CO208	Max	32.060			$\gamma_{\rm G}$ (LC1 + LC331) + $\gamma_{\rm Q}$ LC336 + $\gamma_{\rm Qo}$ LC2
209	CO209	Max	32.060			γ _G (LC1 + LC333) + γ _Q (LC335 + LC336) +/γ _{Qo} LC2
210	CO210	Max	32.060			γ _G (LC1 + LC333) + γ _Q (LC335 + LC337) + γ _{Qo} LC2
211	CO211	Max	32.060			γ _G (LC1 + LC333) + γ _Q (LC335 + LC338)
212	CO212	Max	32.810			γ _G (LC1 + LC340) + γ _Q (LC342 + LC344) + γ _{Q0} LC2
213	CO213	Max	32.810			γ_{G} (LC1 + LC339) + γ_{Q} LC344 + $\gamma_{Q_{0}}$ LC2
214	CO214	Max	32.810			γ _G (LC1 + LC341) + γ _Q (LC343 + LC344) + γ _{Qo} LC2
215	CO215	Max	32.810			γ _G (LC1 + LC341) + γ _Q (LC343 + LC345) + γ _{Qo} LC2

Sheet: CRANEWAY

Page:

Date:

Project: Projects

Model: Kranska staza, staticki odredjen nosac

12.3.2020.

7/12

1

~ ~	CO		Location	of 1st Wheel of (Crane [m]	Load
No	No.	Girder	Crane 1	Crane 2	Crane 3	Description
.216	CO216	Max	32 810	-		$x_{0}(C1 + C341) + x_{0}(C343 + C346)$
217	CO217	Max	33 560			$y_0 (C1 + C348) + y_0 (C350 + C352) + y_0 C2$
218	CO218	Max	33,560			$y_{0}(1 C1 + 1 C347) + y_{0}(25000 + 25002) + y_{0}(25000 + 25002)$
210	CO210	Max	33,560			$y_0 (1 C1 + 1 C349) + y_0 (1 C351 + 1 C352) + y_0 1 C2$
220	CO220	Max	33,560			$y_{0}(1 C1 + 1 C349) + y_{0}(1 C351 + 1 C353) + y_{0}(1 C2$
221	CO221	Max	33,560			$y_{0}(1C1 + 1C349) + y_{0}(1C351 + 1C354)$
222	CO222	Max	34 310			$y_{\rm G}$ (1 C1 + 1 C356) + $y_{\rm G}$ (1 C358 + 1 C360) + $y_{\rm G}$ 1 C2
223	CO223	Max	34 310			$y_{0}(1 C1 + 1 C355) + y_{0}(1 C360 + y_{0}) = 1 C2$
224	C0224	Max	34 310			y_0 (1 C1 + 1 C357) + y_0 (1 C359 + 1 C360) + y_0 1 C2
225	CØ225	Max	34 310			$y_{0}(1 C1 + 1 C357) + y_{0}(1 C359 + 1 C361) + y_{0}(1 C2$
226	CO226	Max	34 310			$y_{0}(1 C1 + 1 C357) + y_{0}(1 C359 + 1 C362)$
227	CO227	Max	35.060			$y_{0}(1 C1 + 1 C364) + y_{0}(1 C366 + 1 C368) + y_{0}(1 C2$
228	CO228	Max	35.060			$y_{c}(LC1 + LC363) + y_{c}(LC368 + y_{c}) LC2$
229	CO229	Max	35.060			y_{c} (LC1 + LC365) + y_{c} (LC367 + LC368) + y_{c} LC2
230	CØ230	Max	35.060			γ_{G} (LC1 + LC365) + γ_{O} (LC367 + LC369) + γ_{O} LC2
231	CO231	Max	35.060			γ_{G} (LC1 + LC365) + γ_{O} (LC367 + LC370)
232	CO232	Max	35.810			γ_{G} (LC1 + LC372) + γ_{O} (LC374 + LC376) + γ_{OO} LC2
233	CO233	Max	35.810			$v_{G}(LC1 + LC371) + v_{O}LC376 + v_{O}LC2$
234	CO234	Max	35.810			γ_{G} (LC1 + LC373) + γ_{O} (LC375 + LC376) + γ_{OO} LC2
235	CO235	Max	35.810			γ_{G} (LC1 + LC373) + γ_{O} (LC375 + LC377) + γ_{OO} LC2
236	CO236	Max	35.810			γ_{G} (LC1 + LC373) + γ_{O} (LC375 + LC378)
237	CO237	Max	36.560			γ_{G} (LC1 + LC380) + γ_{Q} (LC382 + LC384) + γ_{Qo} LC2
238	CO238	Max	36.560			γ_{G} (LC1 + LC379) + γ_{Q} LC384 + γ_{Qo} LC2
239	CO239	Max	36.560			γ _G (LC1 + LC381) + γ _Q (LC383 + LC384) + γ _{Qo} LC2
240	CO240	Max	36.560	\triangleright		γ _G (LC1 + LC381) + γ _Q (LC383 + LC385) + γ _{Qo} LC2
241	CO241	Max	36.560	1		γ _G (LC1 + LC381) + γ _Q (LC383 + LC386)
242	CO242	Max	37.310			γ _G (LC1 + LC388) + γ _Q (LC390 + LC392) + γ _{Qo} LC2
243	CO243	Max 🚫	37.310			γ _G (LC1 + LC387) + _{γQ} LC392 + _{γQo} LC2
244	CO244	Max	37.310			γ _G (LC1 + LC389) + γ _Q (LC391 + LC392) + γ _{Qo} LC2
245	CO245	Max	37.310			γ _G (LC1 + LC389) + γ _Q (LC391 + LC393) + γ _{Qo} LC2
246	CO246	Max	37.310			$\gamma_{\rm G}$ (LC1 + LC389) + $\gamma_{\rm Q}$ (LC391 + LC394)
247	CO247	Max	38.060		K	$\gamma_{\rm G}$ (LC1 + LC396) + $\gamma_{\rm Q}$ (LC398 + LC400) + $\gamma_{\rm Qo}$ LC2
248	CO248	Max	38.060			$\gamma_{\rm G}$ (LC1 + LC395) + $\gamma_{\rm Q}$ LC400 + $\gamma_{\rm Qo}$ LC2
249	CO249	Max	38.060		~	$\gamma_{\rm G}$ (LC1 + LC397) + $\gamma_{\rm Q}$ (LC399 + LC400) + $\gamma_{\rm Q_0}$ LC2
250	CO251	Max	38.000			$\gamma_{\rm G}$ (LC1 + LC397) + $\gamma_{\rm Q}$ (LC399 + LC401) + $\gamma_{\rm Q_0}$ LC2
252	CO252	Мах	38,810	($\gamma_{G}(1C1 + 1C404) + \gamma_{G}(1C406 + 1C408) + \gamma_{G}(1C2)$
253	CO253	Max	38 810	\leq	1	$y_{G}(1C1 + 1C403) + y_{G}(1C408 + y_{G}) + C2$
254	CO254	Max	38 810			$y_{G}(1C1 + 1C405) + y_{G}(1C407 + 1C408) + y_{G}(1C2)$
255	CO255	Max	38.810			γ_{G} (LC1 + LC405) + γ_{O} (LC407 + LC409) + γ_{O} LC2
256	CO256	Max	38.810			γ_{G} (LC1 + LC405) + γ_{Q} (LC407 + LC410)
257	CO257	Max	39.190			γ_{G} (LC1 + LC412) + γ_{Q} (LC414 + LC416) + $\gamma_{Q_{0}}$ LC2
258	CO258	Max	39.190			γ_{G} (LC1 + LC411) + γ_{Q} LC416 + γ_{Q0} LC2
259	CO259	Max	39.190		11-	γ _G (LC1 + LC413) + γ _Q (LC415 + LC416) + γ _{Qo} LC2
260	CO260	Max	39.190			γ _G (LC1 + LC413) + γ _Q (LC415 + LC417) + γ _{Qo} LC2
261	CO261	Max	39.190			γ _G (LC1 + LC413) + γ _Q (LC415 + LC418)
262	CO262	Min	1.310			χ _G (LC1 + LC420) + γ _Q (LC422 + LC424) + γ _{Qo} LC2
263	CO263	Min	1.310		/	γ_{G} (LC1 + LC419) + γ_{Q} LC424 + $\gamma_{Q_{0}}$ LC2
264	CO264	Min	1.310		/	γ_{G} (LC1 + LC421) + γ_{Q} (LC423 + LC424) + γ_{Qo} LC2
265	CO265	Min	1.310			γ_{G} (LC1 + LC421) + γ_{Q} (LC423 + LC425) + $\gamma_{Q_{0}}$ LC2
200	00266	Min	1.310			$\gamma_{\rm G}$ (LC1 + LC421) + $\gamma_{\rm Q}$ (LC423 + LC426)
267	00267	Min	2.060			$\gamma_{G}(LC1 + LC428) + \gamma_{Q}(LC430 + LC432) + \gamma_{Q_0}LC2$
200	CO260	Min	2.000			$\gamma_{G} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
209	CO209	Min	2.000			$\gamma_{G}(1C1 + 1C429) + \gamma_{Q}(1C431 + 1C432) + \gamma_{Q_{0}}(1C2)$
270	CO271	Min	2.000			$\gamma_{G}(101 + 10429) + \gamma_{O}(10431 + 10434)$
272	CO272	Min	2.000			$y_{0}(101 + 16436) + y_{0}(10438 + 16440) + y_{0}(102$
273	CO273	Min	2 810			γ_{G} (LC1 + LC435) + γ_{O} LC440 + γ_{O} LC2
274	CO274	Min	2 810			$\gamma_{\rm C}$ (LC1 + C437) + $\gamma_{\rm C}$ (LC439 + LC440) + $\gamma_{\rm C2}$ LC2
275	CO275	Min	2.810			y _c (LC1 + LC437) + y _c (LC439 + LC441) ≠ y _{cc} LC2
276	CO276	Min	2.810			γ_{G} (LC1 + LC437) + γ_{O} (LC439 + LC442)
277	CO277	Min	3.560			γ_{G} (LC1 + LC444) + γ_{Q} (LC446 + LC448) + γ_{QQ} LC2
278	CO278	Min	3.560			$\gamma_{\rm G}$ (LC1 + LC443) + $\gamma_{\rm Q}$ LC448 + $\gamma_{\rm Q0}$ LC2
279	CO279	Min	3.560			γ _G (LC1 + LC445) + γ _Q (LC447 + LC448) + γ _{Qo} LC2
280	CO280	Min	3.560			γ _G (LC1 + LC445) + γ _Q (LC447 + LC449) + χ _{Qo} LC2
281	CO281	Min	3.560			$\gamma_{\rm G}$ (LC1 + LC445) + $\gamma_{\rm Q}$ (LC447 + LC450)
282	CO282	Min	4.310			γ _G (LC1 + LC452) + γ _Q (LC454 + LC456) + γ _{Q0} LC2
283	CO283	Min	4.310			$\gamma_{\rm G}$ (LC1 + LC451) + $\gamma_{\rm Q}$ LC456 + $\gamma_{\rm Qo}$ LC2
284	CO284	Min	4.310			$\gamma_{\rm G}$ (LC1 + LC453) + $\gamma_{\rm Q}$ (LC455 + LC456) + $\gamma_{\rm Qo}$ LC2
285	00285	Min	4.310			$\gamma_{\rm G}$ (LC1 + LC453) + $\gamma_{\rm Q}$ (LC455 + LC457) + $\gamma_{\rm Q0}$ LC2
286	CO286	Min	4.310			γ_{G} (LC1 + LC453) + γ_{Q} (LC455 + LC458)
287	CO287	Min	5.060			γ_{G} (LC1 + LC460) + γ_{Q} (LC462 + LC464) + $\gamma_{Q_{0}}$ LC2
200	CO280	Min	5.060			γ_{G} (LC1 + LC459) + γ_{Q} LC404 + $\gamma_{Q_{0}}$ LC2
209	CO290	Min	5.060			$\gamma_{G}(1C1 + 1C461) + \gamma_{G}(1C463 + 1C465) + \gamma_{G}(1C2)$
291	CO291	Min	5.060			y _G (LC1 + LC461) + y _G (LC463 + LC466)
292	CO292	Min	5.810			γ_{G} (LC1 + LC468) + γ_{O} (LC470 + LC472) + γ_{OD} LC2.
				1		

Date:

Project: Projects

Model: Kranska staza, staticki odredjen nosac

12.3.2020.

_	~ ~	CO		Location	of 1st Wheel of 0	Crane [m]	Load
ľ	No.	No.	Girder	Crane 1	Crane 2	Crane 3	Description
1	203	CO293	Min	5.810			$x_{1} = (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $
	200	CO204	Min	5.810			$y_{0}(1 C1 + 1 C469) + y_{0}(1 C471 + 1 C472) + y_{0} = 0 C2$
1	205	CO294	Min	5.810			$y_{G}(1C1 + 1C469) + y_{G}(1C471 + 1C473) + y_{G}(1C2$
	206	CO296	Min	5.810			$y_{0}(1C1 + 1C469) + y_{0}(1C471 + 1C474)$
	207	CO207	Min	6 560			$y_{\rm G}$ (1 C1 + 1 C476) + $y_{\rm G}$ (1 C478 + 1 C480) + $y_{\rm G}$ 1 C2
	298	CO298	Min	6 560			$y_{0}(101 + 10475) + y_{0}(10475) $
1	200	CO299	Min	6 560			$y_{0}(1 C1 + 1 C477) + y_{0}(1 C479 + 1 C480) + y_{0}(1 C2$
	300	CO300	Min	6.560			$y_{\rm C}$ (1 C1 + 1 C477) + $y_{\rm C}$ (1 C479 + 1 C481) + $y_{\rm C2}$ 1 C2
1	301	CO301	Min	6.560			$y_{\rm G}$ (LC1 + LC477) + $y_{\rm G}$ (LC479 + LC482)
J	302	CØ302	Min	7 310			$y_{\rm C}$ (1 C1 + 1 C484) + $y_{\rm C}$ (1 C486 + 1 C488) + $y_{\rm Ce}$ 1 C2
1	303	CO303	Min	7 310			$y_{\rm c}$ (1 C1 + 1 C483) + $y_{\rm c}$ (C488 + $y_{\rm co}$ 1 C2
	304	CO304	Min	7.310			y_{G} (LC1 + LC485) + y_{G} (LC487 + LC488) + y_{G} LC2
	305	CO305	Min	7.310			v_{G} (LC1 + LC485) + v_{G} (LC487 + LC489) + v_{G} LC2
	306	CO306	Min	7 310			$y_{\rm C}$ (1 C1 + 1 C485) + $y_{\rm C}$ (1 C487 + 1 C490)
	307	CO307	Min	8.060			$y_{\rm C}$ (1 C1 + 1 C492) + $y_{\rm C}$ (1 C494 + 1 C496) + $y_{\rm C2}$ 1 C2
	308	00308	Min	8.060			$y_{c}(1C1 + 1C491) + y_{c}(26496 + y_{c}) + C2$
	309	00309	Min	8.060			$y_{0}(1 C1 + 1 C493) + y_{0}(1 C495 + 1 C496) + y_{0}(1 C2$
	310	CO310	Min	8.060			$y_{0}(101 + 10493) + y_{0}(10495 + 10493) + y_{0}(10295) + y_{0}$
	311	CO311	Min	8.060			$y_{G}(1 G 1 + 1 G 493) + y_{G}(1 G 495 + 1 G 498)$
	312	CO312	Min	8 810			$y_{\rm C}$ (LC1 + LC500) + $y_{\rm C}$ (LC502 + LC504) + $y_{\rm C}$ LC2
	313	CO313	Min	8.810			$y_{0}(101 + 10499) + y_{0}(10002 + 10004) + y_{0}(10204)$
	314	CO314	Min	8.810			y_0 (1 C1 + 1 C501) + y_0 (1 C503 + 1 C504) + y_0 1 C2
	315	CO315	Min	8.810			$\gamma_{0}(1C1 + 1C501) + \gamma_{0}(1C503 + 1C505) + \gamma_{0}(1C2)$
	316	CO316	Min	8.840			$\gamma_{0}(1C1 + 1C501) + \gamma_{0}(1C503 + 1C506)$
	317	CO317	Min	0.610			$\gamma_{\rm Q}$ (1 C1 + 1 C508) + $\gamma_{\rm Q}$ (1 C510 + 1 C512) + $\gamma_{\rm C}$ 1 C2
	319	CO318	Min	9.000			$\gamma_{Q}(1C1 + 1C507) + \gamma_{Q}(1C010 + 1C012) + \gamma_{Q_0}(1C2)$
	310	CO310	Min	9.500			$\gamma_{G}(101 + 10500) + \gamma_{Q}(10512 + \gamma_{Q_{0}} 102)$
	320	00319	Min	9.000			$\gamma_{G}(LO1 + LO500) + \gamma_{Q}(LO511 + LO512) + \gamma_{Q0}(LO2)$
	321	CO321	Min	9.500	11		$\gamma_{Q}(1C1 + 1C509) + \gamma_{Q}(1C511 + 1C514)$
	321	CO322	Min	9.500			$r_{G}(1C1 + 1C516) + r_{G}(1C518 + 1C520) + r_{G}(1C2)$
	322	00322	Min	10.310	$\langle \rangle$		$\gamma_{G}(LOT + LOSTO) + \gamma_{Q}(LOSTO + LOSZO) + \gamma_{Q_{0}}LOZ$
	323	00323	N/In	10.310			$\gamma_{\rm G}$ (LC1 + LC515) + $\gamma_{\rm Q}$ LC520 + $\gamma_{\rm Q_0}$ LC2
	324	00324	Nin	10.310			$\gamma_{\rm G}$ (LC1 + LC517) + $\gamma_{\rm Q}$ (LC519 + LC520) + $\gamma_{\rm Q_0}$ LC2
	320	CO325	Min	10.310		\searrow	$\gamma_{G}(1C1 + 1C517) + \gamma_{Q}(1C519 + 1C527) + \gamma_{Q_{0}} = 02$
	320	CO320	Min	11.060		*	$\gamma_{G}(1C1 + 1C517) + \gamma_{Q}(1C516 + 1C528) + \gamma_{C}(1C2)$
	328	CO328	Min	11.000			$\gamma_{\rm G}$ (LC1 + LC524) + $\gamma_{\rm Q}$ (LC520 + LC526) + $\gamma_{\rm Q_0}$ LC2
	320	CO320	Min	11.000	($y_{0}(101 + 10525) + y_{0}(10527 + 10528) + y_{0}(102$
	330	CO330	Min	11.000	5	~	$\gamma_{0}(101 + 10525) + \gamma_{0}(10527 + 10526) + \gamma_{0}(102$
	331	CO331	Min	11.000			$y_{0}(101 + 10525) + y_{0}(10527 + 10525) + y_{0}(10527 + 10525))$
	332	CO332	Min	11.000			$y_{0}(101 + 10523) + y_{0}(10524 + 10536) + y_{0}(1024)$
	333	CO333	Min	11.010			$\int_{1}^{1} \sqrt{(1-C_1 + 1-C_2)^2} + \sqrt{(1-C_2)^2} + \sqrt$
	334	CO334	Min	11.810			$y_{0}(1 \oplus 1 \oplus 1 \oplus 2 \oplus 2 \oplus 1) + y_{0}(1 \oplus 2 \oplus $
	335	CO335	Min	11.810			$y_{0}(1C1 + 1C533) + y_{0}(1C535 + 1C537) + y_{0}(1C2$
	336	CO336	Min	11.810			$\gamma_{0}(1 \text{ C}1 + 1 \text{ C}533) + \gamma_{0}(1 \text{ C}535 + 1 \text{ C}538)$
	337	CO337	Min	12 560			$v_{\rm C}$ (I C1 + I C540) + $v_{\rm C}$ (I C542 + I C544) + $v_{\rm C}$ I C2
	338	CO338	Min	12.560			$y_{\rm G}$ (1 C1 + 1 C539) + $y_{\rm G}$ (20042 + 20044) + $y_{\rm G}$ 202
	339	CO339	Min	12,560			$y_{c}(1 C1 + 1 C541) + y_{c}(1 C543 + 1 C544) + y_{c}(1 C2$
	340	CO340	Min	12,560			$v_{C}(VC1 + IC541) + v_{C}(IC543 + IC545) + v_{C}(IC2)$
	341	CO341	Min	12,560			$y_{C}(1 C1 \pm 1 C541) + y_{C}(1 C543 \pm 1 C546)$
	342	CO342	Min	13 310		/	$v_{c}(LC1 + LC548) + v_{c}(LC550 + LC552) + v_{c} + LC2$
	343	CO343	Min	13 310			v_{c} (LC1 + LC547) + v_{0} LC552 + v_{0} LC2
	344	CO344	Min	13 310			$v_{c}(LC1 + LC549) + v_{c}(LC551 + LC552) + v_{c}(LC2)$
	345	CO345	Min	13 310			$y_{\rm c}(\rm LC1 + \rm LC549) + y_{\rm c}(\rm LC551 + \rm LC553) + y_{\rm c}(\rm LC2$
	346	CO346	Min	13 310			vc (LC1 + LC549) + vc (LC551 + LC554)
	347	CO347	Min	14 060			$v_{\rm C}$ (LC1 + LC556) + $v_{\rm C}$ (LC558 + LC560) + $v_{\rm C}$ LC2
	348	CO348	Min	14 060			vg (LC1 + LC555) + vg LC560 + vg LC2
	349	CO349	Min	14.060			$v_{\rm c}$ (LC1 + LC557) + $v_{\rm c}$ (LC559 + LC560) + $v_{\rm c}$ LC2
	350	CO350	Min	14.000			$\gamma_{0}(1C1 + 1C557) + \gamma_{0}(1C559 + 1C561) + \gamma_{0}(1C2$
	351	CO351	Min	14.000			v_0 (LC1 + LC557) + v_0 (LC559 + LC567)
	352	CO352	Min	14.000			$r_{G}(1C1 + 1C564) + r_{G}(1C566) + 1C568) + r_{G}(1C2)$
	353	CO353	Min	14.010			$\gamma_{0}(1C1 + 1C563) + \gamma_{0}(1C568 + \gamma_{0} / C2)$
	354	CO354	Min	1/ 810			vo (1 C1 + 1 C565) + vo (1 C567 + 1 C568) + vo 1 C2
	355	CO355	Min	14.010			$y_{0}(1C1 + 1C565) + y_{0}(1C567 + 1C560) + y_{0}(1C2)$
	355	CO356	Min	14.010			$\gamma_{G}(1C1 + 1C565) + \gamma_{Q}(1C567 + 1C570)$
	357	CO357	Min	14.010			$\gamma_{G}(101 + 10503) + \gamma_{G}(10504 + 10570)$
	359	CO358	Min	15.500			$\gamma_{G}(LOT + LOS(2) + \gamma_{Q}(LOS(4 + LOS(0) + \gamma_{Q0}LO2))$
	350	CO359	Min	15.500			γ_{G} (LC1 + LC571) + γ_{Q} LC375 + LC576) + LC2 -
	360	CO360	Min	15.500			$\gamma_{G}(LC) + LC(T) + \gamma_{Q}(LC)(T) + LC(T) + \gamma_{Q}(LC)$
	361	CO361	Min	15.500			$\gamma_{G}(LOT + LOSTS) + \gamma_{G}(LOSTS + LOSTT) + \gamma_{O0} LOZ$
	362	CO362	Min	16.300			$\gamma_{G}(LOT + LOS(3) + \gamma_{G}(LOS(3 + LOS(3))))$
	362	CO362	Min	10.310			$\gamma_{G}(LOT + LO300) + \gamma_{Q}(LO302 + LO304) + \gamma_{Q0}(LO2)$
	364	CO364	Min	10.310			$\gamma_{G}(LC1 + LC579) + \gamma_{Q}(LC504 + \gamma_{Q_{0}}LC2)$
	365	CO365	Min	10.310			$\gamma_{G}(LC1 + LC581) + \gamma_{Q}(LC583 + LC5864) + \gamma_{Q0}LC2$
	366	CO366	Min	16.310			$\gamma_{G}(LO1 + LO301) + \gamma_{Q}(LO303 + LO303) + \gamma_{Q_{0}}LO2$
	367	CO367	Min	17.060			$\gamma_{G}(1C1 + 1C588) + \gamma_{G}(1C500 + 1C500)$
	369	CO368	Min	17.000			$\gamma_{G}(LC1 + LC580) + \gamma_{Q}(LC580 + LC592) + \gamma_{Q_0}LC2$
	360	CO360	Min	17.000			$\gamma_{G}(LOT + LO307) + \gamma_{Q}(LO392 + \gamma_{Q_{0}}LO2)$
	309	00309		000.11			γG (LOT + LO309) + γQ (LO391 + LO392) + γQ LO2

Trg dr. Milana Jeliæa br. 15, 74480 Modrièa

9/12

Page:

Date:

Project: Projects

Model: Kranska staza, staticki odredjen nosac

12.3.2020.

	CO		Location	of 1st Wheel of	Crane [m]	Load
No	No.	Girder	Crane 1	Crane 2	Crane 3	Description
370	CO370	Min	17.060			γ _G (LC1 + LC589) + γ _Q (LC591 + LC593) + γ _{Qo} LC2
371	CO371	Min	17.060			$\gamma_{\rm G}$ (LC1 + LC589) + $\gamma_{\rm Q}$ (LC591 + LC594)
372	CO372	Min	17.810			γ _G (LC1 + LC596) + γ _Q (LC598 + LC600) + γ _{Qo} LC2
373	CO373	Min	17.810			$\gamma_{\rm G}$ (LC1 + LC595) + $\gamma_{\rm Q}$ LC600 + $\gamma_{\rm Qo}$ LC2
374	CO374	Min	17.810			$\gamma_{\rm G}$ (LC1 + LC597) + $\gamma_{\rm Q}$ (LC599 + LC600) + $\gamma_{\rm Qo}$ LC2
375	CO375	Min	17.810			$\gamma_{G}(LC1 + LC597) + \gamma_{Q}(LC599 + LC601) + \gamma_{Q_{0}}LC2$
377	CØ377	Min	18.560			$y_{G}(LC1 + LC604) + y_{G}(LC606 + LC608) + y_{O2}LC2$
378	CO378	Min	18.560			γ_{G} (LC1 + LC603) + γ_{Q} LC608 + γ_{Qo} LC2
379	ÇO379	Min	18.560			γ _G (LC1 + LC605) + γ _Q (LC607 + LC608) + γ _{Qo} LC2
380	CO380	Min	18.560			γ _G (LC1 + LC605) + γ _Q (LC607 + LC609) + γ _{Qo} LC2
	CO381	Min	18.560			$\gamma_{\rm G}$ (LC1 + LC605) + $\gamma_{\rm Q}$ (LC607 + LC610)
382	CO382	Min	19.310			γ_{G} (LC1 + LC612) + γ_{Q} (LC614 + LC616) + $\gamma_{Q_{0}}$ LC2
384	C0384	Min	19.310			γ_{Q} (LC1 + LC613) + γ_{Q} (LC615 + LC616) + $\gamma_{Q_{0}}$ LC2
385	CO385	Min	19.310			γ_{G} (LC1 + LC613) + γ_{Q} (LC615 + LC617) + $\gamma_{Q_{0}}$ LC2
386	CO386	Min	19.310			$\gamma_{\rm G}$ (LC1 + LC613) + $\gamma_{\rm Q}$ (LC615 + LC618)
387	CO387	Min	20.060			γ _G (LC1 + LC620) + γ _Q (LC622 + LC624) + γ _{Qo} LC2
388	CQ388	Min	20.060			γ_{G} (LC1 + LC619) + γ_{Q} LC624 + $\gamma_{Q_{0}}$ LC2
389	CO389	Min	20.060			γ_{G} (LC1 + LC621) + γ_{Q} (LC623 + LC624) + $\gamma_{Q_{0}}$ LC2
390	CO390	Min	20.060			$\gamma_{\rm G}$ (LC1 + LC621) + $\gamma_{\rm Q}$ (LC623 + LC625) + $\gamma_{\rm Q_0}$ LC2
392	CO392	Min	20.810			$y_{G}(LC1 + LC628) + y_{G}(LC630 + LC632) + y_{O_{G}}LC2$
393	CO393	Min	20.810			$\gamma_{\rm G}$ (LC1 + LC627) + $\gamma_{\rm Q}$ LC632 + $\gamma_{\rm Qo}$ LC2
394	CO394	Min	20.810	\geq		γ_{G} (LC1 + LC629) + γ_{Q} (LC631 + LC632) + γ_{Qo} LC2
395	CO395	Min	20.810			γ_{G} (LC1 + LC629) + γ_{Q} (LC631 + LC633) + $\gamma_{Q_{0}}$ LC2
396	CO396	Min	20.810			$\gamma_{\rm G}$ (LC1 + LC629) + $\gamma_{\rm Q}$ (LC631 + LC634)
397	CO397	Min	21.560			$\gamma_{G}(LC1 + LC030) + \gamma_{Q}(LC030 + LC040) + \gamma_{Q_{0}}LC2$
399	CO399	Min	21.500			$\gamma_{G}(LC1 + LC637) + \gamma_{Q}(LC639 + LC640) + \gamma_{Q_{0}}LC2$
400	CO400	Min	21.560		7	γ_{G} (LC1 + LC637) + γ_{Q} (LC639 + LC641) + γ_{Q0} LC2
401	CO401	Min	21.560			γ_{G} (LC1 + LC637) + γ_{Q} (LC639 + LC642)
402	CO402	Min	22.310		\square	$\gamma_{\rm G}$ (LC1 + LC644) + $\gamma_{\rm Q}$ (LC646 + LC648) + $\gamma_{\rm Qo}$ LC2
403	CO403	Min	22.310		~	γ_{G} (LC1 + LC643) + γ_{Q} LC648 + $\gamma_{Q_{0}}$ LC2
404	CO404	Min	22.310			$\gamma_{G}(1C1 + 1C645) + \gamma_{Q}(1C647 + 1C649) + \gamma_{Q_{0}} 1C2$
406	CO406	Min	22.310	(C.		γ_{G} (LC1 + LC645) + γ_{Q} (LC647 + LC650)
407	CO407	Min	23.060			γ _G (LC1 + LC652) + γ _Q (LC654 + LC656) + γ _{Qo} LC2
408	CO408	Min	23.060			γ _G (LC1 + LC651) + γ _Q LC656 + γ _{Qo} LC2
409	CO409	Min	23.060			$\int_{V_{Q}} \gamma_{Q} (LC1 + LC653) + \gamma_{Q} (LC655 + LC656) + \gamma_{Q_{Q}} LC2$
410	CO410	Min	23.000			$\gamma_{\rm G}$ (LC1 + LC653) + $\gamma_{\rm Q}$ (LC655 + LC657) + $\gamma_{\rm Q_0}$ LC2
412	CO412	Min	23.810			$\gamma_{G}(LC1 + LC660) + \gamma_{Q}(LC662 + LC664) + \gamma_{Q0}LC2$
413	CO413	Min	23.810			γ _G (LC1 + LC659) + γ _Q LC664 + γ _{Qo} LC2
414	CO414	Min	23.810		V	γ_{G} (LC1 + LC661) + γ_{Q} (LC663 + LC664) + γ_{Qo} LC2
415	CO415	Min	23.810			γ_{G} (LC1 + LC661) + γ_{Q} (LC663 + LC665) + $\gamma_{Q_{0}}$ LC2
416	CO416	Min	23.810			$\gamma_{G}(LC1 + LC001) + \gamma_{Q}(LC003 + LC000)$
418	CO418	Min	24.560			$y_{G}(LC1 + LC667) + y_{O}LC672 + y_{O}LC2$
419	CO419	Min	24.560		(γ_{G} (LC1 + LC669) + γ_{Q} (LC671 + LC672) + γ_{Q0} LC2
420	CO420	Min	24.560			γ _G (LC1 + LC669) + χ _Q (LC671 + LC673) + γ _{Qo} LC2
421	CO421	Min	24.560			γ_{G} (LC1 + LC669) + γ_{Q} (LC671 + LC674)
422	CO422	Min	25.310			$\gamma_{\rm G}$ (LC1 + LC676) + $\gamma_{\rm Q}$ (LC678 + LC680) + $\gamma_{\rm Q_0}$ LC2
423	CO423	Min	25.310			γ_{G} (LC1 + LC677) # γ_{O} (LC679 + LC680) + γ_{O} LC2
425	CO425	Min	25.310			γ_{G} (LC1-+ LC677) + γ_{Q} (LC679 + LC681) + γ_{Qo} LC2
426	CO426	Min	25.310			γ_{G} (LC1 + LC677) + γ_{Q} (LC679 + LC682)
427	CO427	Min	26.060			γ_{G} (LC1 + LC684) + γ_{Q} (LC686 + LC688) + $\gamma_{Q_{0}}$ LC2
428	CO428	Min	26.060			$\gamma_{\rm G}$ (LC1 + LC683) + $\gamma_{\rm Q}$ LC688 + $\gamma_{\rm Q_0}$ LC2
429	CO429	Min	26.060			$\gamma_{\rm G}$ (LC1 + LC685) + $\gamma_{\rm Q}$ (LC687 + LC688) + $\gamma_{\rm Q0}$ LC2
431	CO431	Min	26.000			$\gamma_{\rm G}(\rm LC1 + \rm LC685) + \gamma_{\rm G}(\rm LC687 + \rm LC690)$
432	CO432	Min	26.810			γ_{G} (LC1 + LC692) + γ_{Q} (LC694 + LC696) + γ_{Q0} LC2
433	CO433	Min	26.810			γ_{G} (LC1 + LC691) + γ_{Q} LC696 + γ_{Qo} LC2
434	CO434	Min	26.810			γ _G (LC1 + LC693) + γ _Q (LC695 + LC696) + γ _{Qo} LC2
435	CO435	Min	26.810			γ_{G} (LC1 + LC693) + γ_{Q} (LC695 + LC697) + $\gamma_{Q_{0}}$ LC2
430	CO430	Min	20.810			γ_{G} (LC1 + LC093) + γ_{Q} (LC035 + LC098) γ_{G} (LC1 + LC700) + γ_{Q} (LC035 + LC098)
438	CO438	Min	27.560			γ_{G} (LC1 + LC699) + γ_{Q} LC704 + $\gamma_{Q_{0}}$ LC2
439	CO439	Min	27.560			γ _G (LC1 + LC701) + γ _Q (LC703 + LC704) + γ _{Qo} LC2
440	CO440	Min	27.560			γ _G (LC1 + LC701) + γ _Q (LC703 + LC705) +/γ _{Qo} LC2
441	CO441	Min	27.560			$\gamma_{\rm G}$ (LC1 + LC701) + $\gamma_{\rm Q}$ (LC703 + LC706)
442	CO442	Min	28.310			γ_{G} (LC1 + LC/08) + γ_{Q} (LC/10 + LC/12) + $\gamma_{Q_{0}}$ LC2
443	CO443	Min	28.310			γ_{G} (LC1 + LC709) + γ_{Q} (LC711 + LC712) + $\gamma_{Q_{0}}$ LC2
445	CO445	Min	28.310			γ _G (LC1 + LC709) + γ _Q (LC711 + LC713) + γ _{Qo} LC2
446	CO446	Min	28.310			γ _G (LC1 + LC709) + γ _Q (LC711 + LC714)

Trg dr. Milana Jeliæa br. 15, 74480 Modrièa

CRANEWAY

Page:

Date:

10/12

Project: Projects

Model: Kranska staza, staticki odredjen nosac

12.3.2020.

	CO		Location	of 1st Wheel of	Crane [m]	Load
No,	No.	Girder	Crane 1	Crane 2	Crane 3	Description
447	CO447	Min	29.060			γ _G (LC1 + LC716) + γ _Q (LC718 + LC720) + γ _{Qo} LC2
448	CO448	Min	29.060			γ_{G} (LC1 + LC715) + γ_{Q} LC720 + γ_{QQ} LC2
449	CO449	Min	29.060			γ _G (LC1 + LC717) + γ _Q (LC719 + LC720) + γ _{Qo} LC2
450	CO450	Min	29.060			γ _G (LC1 + LC717) + γ _Q (LC719 + LC721) + γ _{Qo} LC2
451	CO451	Min	29.060			$\gamma_{\rm G}$ (LC1 + LC717) + $\gamma_{\rm Q}$ (LC719 + LC722)
452	CO452	Min	29.810			γ_{G} (LC1 + LC724) + γ_{Q} (LC726 + LC728) + $\gamma_{Q_{0}}$ LC2
453	CO453	Min	29.810			$\gamma_{\rm G}$ (LC1 + LC723) + $\gamma_{\rm Q}$ LC728 + $\gamma_{\rm Q_0}$ LC2
455	CO455	Min	29.810			$\gamma_{G}(1C1 + 1C725) + \gamma_{Q}(1C727 + 1C729) + \gamma_{Q_{0}} + C2$
456	CO456	Min	29.810			v_{G} (LC1 + LC725) + v_{O} (LC727 + LC730)
457	CO457	Min	30.560			γ_{G} (LC1 + LC732) + γ_{Q} (LC734 + LC736) + γ_{Qo} LC2
458	CO458	Min	30.560			γ _G (LC1 + LC731) + γ _Q LC736 + γ _{Qo} LC2
459	CO459	Min	30.560			γ_{G} (LC1 + LC733) + γ_{Q} (LC735 + LC736) + γ_{Qo} LC2
460	CO460	Min	30.560			$\gamma_{\rm G}$ (LC1 + LC733) + $\gamma_{\rm Q}$ (LC735 + LC737) + $\gamma_{\rm Qo}$ LC2
461	CO461	Min	30.560			$\gamma_{\rm G}$ (LC1 + LC733) + $\gamma_{\rm Q}$ (LC735 + LC738)
462	CO463	Min	31,310			$\gamma_{G}(LC1 + LC740) + \gamma_{Q}(LC742 + LC744) + \gamma_{Q_{0}}LC2$
464	CO464	Min	31.310			$y_{G}(LC1 + LC741) + y_{O}(LC743 + LC744) + y_{O}LC2$
465	CQ465	Min	31.310			$\gamma_{\rm G}$ (LC1 + LC741) + $\gamma_{\rm Q}$ (LC743 + LC745) + $\gamma_{\rm Q0}$ LC2
466	CO466	Min	31.310			γ _G (LC1 + LC741) + γ _Q (LC743 + LC746)
467	CO467 ~ /	Min	32.060			γ _G (LC1 + LC748) + γ _Q (LC750 + LC752) + γ _{Qo} LC2
468	CO468	Min	32.060			γ _G (LC1 + LC747) + γ _Q LC752 + γ _{Qo} LC2
469	CO469	Min	32,060			$\gamma_{\rm G}$ (LC1 + LC749) + $\gamma_{\rm Q}$ (LC751 + LC752) + $\gamma_{\rm Qo}$ LC2
470	CO470	Min	32.060	5		$\gamma_{\rm G}$ (LC1 + LC749) + $\gamma_{\rm Q}$ (LC751 + LC753) + $\gamma_{\rm Qo}$ LC2
471	CO472	Min	32.000	Ĺ		γ_{G} (LC1 + LC756) + γ_{Q} (LC758 + LC760) + γ_{G} (LC1 + LC756)
473	CO473	Min	32.810			γ_{G} (LC1 + LC755) + γ_{O} LC760 + γ_{Oo} LC2
474	CO474	Min 🚫	32.810			γ _G (LC1 + LC757) + γ _Q (LC759 + LC760) + γ _{Qo} LC2
475	CO475	Min	32.810	\vee /		_{γG} (LC1 + LC757) + _{γQ} (LC759 + LC761) + _{γQo} LC2
476	CO476	Min	32.810			γ _G (LC1 + LC757) + γ _Q (LC759 + LC762)
477	CO477	Min	33.560			$\gamma_{\rm G}$ (LC1 + LC764) + $\gamma_{\rm Q}$ (LC766 + LC768) + $\gamma_{\rm Qo}$ LC2
4/8	CO478	Min	33.560		K	γ_{G} (LC1 + LC763) + γ_{Q} LC768 + $\gamma_{Q_{0}}$ LC2
479	CO479	Min	33.560		\triangleright	$\gamma_{\rm G}$ (LC1 + LC765) + $\gamma_{\rm Q}$ (LC767 + LC768) + $\gamma_{\rm Q_0}$ LC2
481	CO481	Min	33.560			$\gamma_{\rm G}$ (LC1 + LC765) + $\gamma_{\rm O}$ (LC767 + LC770)
482	CO482	Min	34.310			γ_{G} (LC1 + LC772) + γ_{Q} (LC774 + LC776) + γ_{Q0} LC2
483	CO483	Min	34.310			γ _G (LC1 + LC771) + γ _Q LC776 + γ _{Qo} LC2
484	CO484	Min	34.310	\sim		γ_{G} (LC1 + LC773) + γ_{Q} (LC775 + LC776) + γ_{Qo} LC2
485	CO485	Min	34.310			$\gamma_{\rm G}$ (LC1 + LC773) + $\gamma_{\rm Q}$ (LC775 + LC777) + $\gamma_{\rm Qo}$ LC2
486	CO486	Min	34.310			$\int \gamma_{G} (LC1 + LC773) + \gamma_{Q} (LC775 + LC778)$
487	CO488	Min	35.000			$\gamma_{G}(LC1 + LC780) + \gamma_{Q}(LC782 + LC784) + \gamma_{Q_{0}}LC2$
489	CO489	Min	35.060			$y_{G}(LC1 + LC781) + y_{O}(LC783 + LC784) + y_{O}(LC2$
490	CO490	Min	35.060			γ _G (LC1 + LC781) + γ _Q (LC783 + LC785) + γ _{Qo} LC2
491	CO491	Min	35.060			γ _G (LC1 + LC781) + γ _Q (LC783 + LC786)
492	CO492	Min	35.810			γ _G (LC1 + LC788) + γ _Q (LC790 + LC792) + γ _{Qo} LC2
493	CO493	Min	35.810			γ_{G} (LC1 + LC787) + γ_{Q} LC792 + $\gamma_{Q_{0}}$ LC2
494	CO494	Min	35.810		/	$\gamma_{\rm G}$ (LC1 + LC789) + $\gamma_{\rm Q}$ (LC791 + LC792) + $\gamma_{\rm Q_0}$ LC2
495	CO495	Min	35,810		($\gamma_{\rm G}(1C1 + 1C789) + \gamma_{\rm G}(1C791 + 1C793) + \gamma_{\rm G_0} 1C2$
497	CO497	Min	36.560			γ_{G} (LC1 + LC796) + γ_{Q} (LC798 + LC800) + $\gamma_{Q_{0}}$ LC2
498	CO498	Min	36.560			γ _G (LC1 + LC795) + γ _Q LC800 + γ _{Qo} LC2
499	CO499	Min	36.560			γ _G (LC1 + LC797) + γ _Q (LC799 + LC800) + γ _{Qo} LC2
500	CO500	Min	36.560			γ_{G} (LC1 + LC797) + γ_{Q} (LC799 + LC801) + $\gamma_{Q_{0}}$ LC2
501	CO501	Min	36.560			γ_{G} (LC1 + LG797) + γ_{Q} (LC799 + LC802)
502	CO502	Min	37.310			γ_{G} (LC1 + LC803) + γ_{G} (LC000 + LC000) + $\gamma_{Q_{0}}$ LC2
504	CO504	Min	37.310			γ_{G} (LC1 + LC805) + γ_{O} (LC807 / LC808) + γ_{OO} LC2
505	CO505	Min	37.310			γ_{G} (LC1 + LC805) + γ_{Q} (LC807 + LC809) + $\gamma_{Q_{0}}$ LC2
506	CO506	Min	37.310			γ _G (LC1 + LC805) + γ _Q (LC807 + LC810)
507	CO507	Min	38.060			$\gamma_{\rm G}$ (LC1 + LC812) + $\gamma_{\rm Q}$ (LC814 + LC816) + $\gamma_{\rm Qo}$ LC2
508	CO508	Min	38.060			γ_{G} (LC1 + LC811) + γ_{Q} LC816 + γ_{Qo} LC2
509	CO509	Min	38.060			γ_{G} (LC1 + LC813) + γ_{Q} (LC815 + LC817) + γ_{Q_0} LC2
511	CO511	Min	38.060			$\gamma_{\rm G}(\rm LC1 + \rm LC813) + \gamma_{\rm O}(\rm LC815 + \rm LC818)$
512	CO512	Min	38.810			γ _G (LC1 + LC820) + γ _Q (LC822 + LC824) + γ _{Qo} LC2
513	CO513	Min	38.810			γ _G (LC1 + LC819) + γ _Q LC824 + γ _Q LC2
514	CO514	Min	38.810			γ _G (LC1 + LC821) + γ _Q (LC823 + LC824) + γ _{Qo} LC2
515	CO515	Min	38.810			γ_{G} (LC1 + LC821) + γ_{Q} (LC823 + LC825) + $\gamma_{Q_{Q}}$ LC2
516	CO516	Min	38.810			$\gamma_{\rm G}$ (LC1 + LC821) + $\gamma_{\rm Q}$ (LC823 + LC826)
517	CO518	Min	39.190			γ_{G} (LC1 + LC020) + γ_{Q} (LC030 + LC032) + $\gamma_{Q_{0}}$ LC2
519	CO519	Min	39,190			γ_{G} (LC1 + LC829) + γ_{O} (LC831 + LC832) + γ_{O} LC2
520	CO520	Min	39.190			γ _G (LC1 + LC829) + γ _Q (LC831 + LC833) + γ _{On} LC2
521	CO521	Min	39.190			γ _G (LC1 + LC829) + γ _Q (LC831 + LC834)
522	CO522	Max	1.310			LC1 + LC835 + LC836 + LC837
523	CO523	Max	39.190	1	l	LC1 + LC838 + LC839 + LC840

 Page:
 11/12

 Sheet:
 1

 CRANEWAY

Project: Projects

Model: Kranska staza, staticki odredjen nosac

Date: 12.3.2020.

DESCRIPTION OF LOAD COMBINATIONS - FATIGUE

No. Order Crans 2 Crans 3 Description 2 CC22 Max 2.500 LC1 LC2 LC3 LC1 LC4 LC3 4 CC20 Max 3.500 LC1 LC4 LC3 LC3 4 CC20 Max 4.500 LC1 LC4 LC3 LC3 5 CC20 Max 4.500 LC1 LC4 LC3 LC3 6 CC20 Max 4.500 LC3 LC3 LC3 LC3 7 CC20 Max 4.500 LC3 LC3 LC3 LC3 16 CC10 Max 4.500 LC3 LC3 LC3 LC3 17 CC11 Max 4.500 LC3 LC3 LC3 LC3 LC3 LC3 18 CC16 Max 1.400 LC3 L	<	~ ~	CO		Location of	of 1st Wheel of	Crane [m]	Load
1 Col Max 1 30 2 CCC Max 2000 4 CCC Max 2000 5 CCC Max 2000 6 CCC Max 2000 7 CCC Max 2000 8 CCC Max 2000 9 CCC Max 2000 9 CCC Max 2000 9 CCC Max 2000 10 CCD Max 2000 11 CCD Max 2000 12 CCD Max 1000 13 CCD Max 1000 14 CCD Max 1000 15 CCD Max 1000 16 CCD Max 1000 17 CCD Max 1000 18 CCD Max 1000 19 CCD Max 1000	```	No,	No.	Girder	Crane 1	Crane 2	Crane 3	Description
2 CO2 Max 2.800 LC1 + LC4 + LC5 3 CC03 Max 2.800 LC1 + LC1 + LC1 6 CC04 Max 3.00 LC1 + LC1 + LC1 7 CC05 Max 3.00 LC1 + LC1 + LC1 6 CC04 Max 3.00 LC1 + LC1 + LC1 7 CC05 Max 3.00 LC1 + LC1 + LC1 7 CC06 Max 3.00 LC1 + LC2 + LC20 10 CC17 Max 3.00 LC1 + LC2 + LC20 11 CC16 Max 1.300 LC1 + LC2 + LC20 12 CC17 Max 1.330 LC1 + LC2 + LC20 13 CC19 Max 1.330 LC1 + LC2 + LC20 14 CC16 Max 1.330 LC1 + LC2 + LC20 15 CC19 Max 1.330 LC1 + LC2 + LC20 14 CC16 Max 1.330 LC1 + LC2 + LC20 15 CC19 Max 1.330 LC1 + LC2 +	/	1	CO1	Max	1.310			LC1 + LC2 + LC3
3 CC3 Max 2.810 4 CC05 Max 3.800 LC1 : LC2 : LC13 7 CC05 Max 5.800 LC1 : LC2 : LC13 7 CC05 Max 5.800 LC1 : LC2 : LC13 7 CC07 Max 5.800 LC1 : LC2 : LC23 10 CC018 Max 8.800 LC1 : LC2 : LC20 11 CC017 Max 8.800 LC1 : LC2 : LC20 12 CC018 Max 10.810 LC1 : LC2 : LC20 13 CC017 Max 13.810 LC1 : LC2 : LC20 14 CC018 Max 11.800 LC1 : LC2 : LC20 15 CC020 Max 11.800 LC1 : LC2 : LC20 16 CC018 Max 11.800 LC1 : LC2 : LC20 16 CC020 Max 11.800 LC1 : LC2 : LC20 17 CC077 Max 11.810 LC1 : LC2 : LC20 16 CC020 Max 11.8600 LC1 : LC2 :	· ,	2	CO2	Max	2.060			LC1 + LC4 + LC5
4 COM Max 3.500 5 COM Max 3.500 6 COM Max 3.500 7 COM Max 5.500 10 COI Max 5.500 10 COI Max 5.500 11 COI Max 5.500 12 COI Max 5.500 13 COI Max 5.500 14 COI Max 1.500 15 COI Max 1.500 16 COI Max 1.500 17 COI Max 1.500 18 COIS Max 1.530 19 COI Max 1.530 10 COI Max 1.530 10 COIS Max 1.530 10 COIS Max 1.530 10 COIS Max 1.530 10 COIS Max </td <td>/</td> <td>3</td> <td>CO3</td> <td>Max</td> <td>2.810</td> <td></td> <td></td> <td>LC1 + LC6 + LC7</td>	/	3	CO3	Max	2.810			LC1 + LC6 + LC7
3 Coord Max 4.00 7 CCC Max 6.60 ICC 1 = 101 = 1010 9 CCC0 Max 6.60 ICC 1 = 101 = 1010 10 CC00 Max 6.60 ICC 1 = 101 = 1010 11 CC01 Max 8.800 ICC 1 = 102 = 1020 12 CC01 Max 8.800 ICC 1 = 102 = 1020 13 CC01 Max 8.800 ICC 1 = 102 = 1020 14 CC014 Max 8.800 ICC 1 = 102 = 1020 15 CC016 Max 1.800 ICC 1 = 102 = 1020 16 CC16 Max 1.800 ICC 1 = 102 = 1020 17 CC016 Max 1.800 ICC 1 = 102 = 1020 18 ICC16 Max 1.800 ICC 1 = 102 = 1020 19 CC019 Max 1.810 ICC 1 = 102 = 1020 19 CC022 Max 1.810 ICC 1 = 102 = 1020 20 CC022 Max 1.8100 <t< td=""><td></td><td>4</td><td>CO4</td><td>Max</td><td>3.560</td><td></td><td></td><td>LC1 + LC8 + LC9</td></t<>		4	CO4	Max	3.560			LC1 + LC8 + LC9
• COP Make S B00 LC1 + LC2 +		5	CO5	Max	4.310			LC1 + LC10 + LC11
Image Cole Mark 7.300 ICCI + ICH +			007	Max	5.000			101 + 1012 + 1013
9 0 COD Mas 8.300 LC1 + LC2 + LC21 11 COD12 Mas 8.300 LC1 + LC2 + LC21 12 COD12 Mas 10.300 LC1 + LC2 + LC21 13 COD14 Mas 10.300 LC1 + LC2 + LC21 14 COD14 Mas 10.300 LC1 + LC2 + LC21 14 COD14 Mas 10.300 LC1 + LC2 + LC21 15 COD14 Mas 10.300 LC1 + LC2 + LC23 16 COD27 Mas 11.300 LC1 + LC3 + LC33 17 COT7 Mas 14.300 LC1 + LC3 + LC33 18 COC27 Mas 14.300 LC1 + LC3 + LC33 21 COC28 Mas 10.300 LC1 + LC3 + LC33 22 COC29 Mas 10.300 LC1 + LC3 + LC33 23 COC29 Mas 10.300 LC1 + LC3 + LC33 24 COC29 Mas 20.500 LC1 + LC3 + LC31 25 COC20	/	8	CO8	Max	6.560			LC1 + LC16 + LC17
10 CO10 Max 8.800 LC1 + LC2 + LC21 12 CO11 Max 8.800 LC1 + LC2 + LC21 14 CO14 Max 11.800 LC1 + LC2 + LC21 14 CO15 Max 11.800 LC1 + LC2 + LC21 14 CO16 Max 11.800 LC1 + LC2 + LC21 15 CO17 Max 11.800 LC1 + LC23 + LC21 16 CO16 Max 11.800 LC1 + LC23 + LC21 17 CO17 Max 11.800 LC1 + LC23 + LC21 18 CO18 Max 11.800 LC1 + LC23 + LC21 19 CO17 Max 11.800 LC1 + LC23 + LC21 20 CO22 Max 17.800 LC1 + LC23 + LC21 21 CO23 Max 20.800 LC1 + LC23 + LC21 22 CO26 Max 20.800 LC1 + LC3 + LC31 22 CO26 Max 25.800 LC1 + LC3 + LC31 23 CO23 Max	· /	9	Ç09 >	Max	7.310			LC1 + LC18 + LC19
11 CO11 Max 8 310 LC1 + LC2 + LC3 13 CO21 Max 9 560 LC1 + LC2 + LC3 14 CO24 Max 11 360 LC1 + LC2 + LC3 15 CO16 Max 11 360 LC1 + LC3 + LC3 16 CO16 Max 14 300 LC1 + LC3 + LC3 17 CO17 Max 14 300 LC1 + LC3 + LC3 18 CO18 Max 15 560 LC1 + LC3 + LC3 19 CO19 Max 17 300 LC1 + LC4 + LC4 10 CO22 Max 17 300 LC1 + LC4 + LC4 10 CO23 Max 17 300 LC1 + LC4 + LC4 11 CO24 Max 2 3000 LC1 + LC3 + LC3 22 CO23 Max 2 3500 LC1 + LC4 + LC4 23 CO23 Max 2 3500 LC1 + LC3 + LC3 24 CO24 Max 2 3500 LC1 + LC4 + LC4 + LC4 25 CO27 Max 2 3500 <td>(</td> <td>10</td> <td>CO10</td> <td>Max</td> <td>8.060</td> <td></td> <td></td> <td>LC1 + LC20 + LC21</td>	(10	CO10	Max	8.060			LC1 + LC20 + LC21
12 132 1330 1330 1330 14 20015 Max 11300 100 100 100 13 CO15 Max 11300 100 100 100 100 14 CO15 Max 11300 100<	Ċ,	11	C011	Max	8.810			LC1 + LC22 + LC23
14 CO13 Max 1100 LC1 + LC23 + LC33 LC3 + LC33 + LC33 16 CO16 Max 12.500 LC1 + LC3 + LC33 LC1 + LC3 + LC33 17 CO17 Max 13.510 LC1 + LC3 + LC33 LC1 + LC3 + LC33 18 CO17 Max 13.500 LC1 + LC3 + LC33 LC1 + LC3 + LC33 19 CO17 Max 13.500 LC1 + LC3 + LC3 + LC33 LC1 + LC4 +		12	CO12	Max	9.560			LC1 + LC24 + LC25
Tep CO16 Max 11250 LC1 + LC3 + LC33 TF CO17 Max 1330 LC1 + LC3 + LC33 TF CO17 Max 1340 LC1 + LC3 + LC33 TF CO17 Max 1550 LC1 + LC4 + LC3 + LC33 20 CC20 Max 1550 LC1 + LC4 + LC4 + LC43 21 CC21 Max 1550 LC1 + LC4 + LC43 22 CC23 Max 1760 LC1 + LC4 + LC43 22 CC24 Max 1850 LC1 + LC4 + LC43 23 CC25 Max 21500 LC1 + LC43 + LC43 24 CC26 Max 21501 LC1 + LC63 + LC53 25 CC25 Max 22501 LC1 + LC63 + LC33 26 CC39 Max 23601 LC1 + LC64 + LC63 27 CC39 Max 23601 LC1 + LC64 + LC63 27 CC39 Max 23601 LC1 + LC64 + LC63 28 CC39 Max 28			6014	Max	11.060			LC1 + LC20 + LC27
16 CO16 Max 12.560 LC1+LC2+LC3 17 CO17 Max 14.000 LC1+LC3+LC35 18 CO18 Max 14.000 LC1+LC3+LC35 19 CO20 Max 15.560 LC1+LC3+LC35 20 CO20 Max 17.660 LC1+LC4+LC45 21 CO24 Max 17.860 LC1+LC4+LC45 22 CO24 Max 17.810 LC1+LC3+LC35 22 CO26 Max 17.810 LC1+LC3+LC35 23 CO26 Max 20.801 LC1+LC3+LC35 24 CO28 Max 20.801 LC1+LC3+LC35 27 CO27 Max 20.801 LC1+LC3+LC35 28 CO28 Max 23.800 LC1+LC3+LC35 29 CO28 Max 23.800 LC1+LC3+LC35 20 CO38 Max 23.800 LC1+LC3+LC35 21 CO37 Max 23.810 LC1+LC3+LC35 <		15	CO15	Max	11.810			LC1 + LC30 + LC31
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		16 /	CØ16	Max	12.560			LC1 + LC32 + LC33
18 CO18 Max 14.460 LC1+LC28+LC39 19 CO21 Max 16.500 LC1+LC24+LC34 20 CO22 Max 17.600 LC1+LC4+LC44 21 CO23 Max 17.600 LC1+LC4+LC44 22 CO23 Max 17.600 LC1+LC4+LC44 24 CO23 Max 21.600 LC1+LC4+LC44 25 CO26 Max 21.600 LC1+LC54+LC55 26 CO27 Max 21.600 LC1+LC64+LC55 27 CO27 Max 23.600 LC1+LC64+LC55 28 CO23 Max 23.600 LC1+LC64+LC55 29 CO33 Max 23.600 LC1+LC64+LC55 20 CO33 Max 23.600 LC1+LC64+LC55 21 CO33 Max 23.600 LC1+LC64+LC63+LC55 21 CO33 Max 23.600 LC1+LC64+LC64+LC65 21 CO33 Max 23.600 LC1+LC64+LC7		17	CO17	Max	13.310			LC1 + LC34 + LC35
10 Code 21 Code Code 22 Max Code Code 23 10 Lick = Lock = Lock Code 23 21 Code 23 Max Code 24 17.860 Lick = Lock = Lock Code 25 Lick = Lock = Lock Code 26 22 Code 23 Max Code 24 18.800 Lick = Lock = Lock Code 26 Lick = Lock = Lock 27 23 Code 24 Max Code 27 20.810 Lick = Lock = Lock 23 Lick = Lock 24 24 Code 27 Max Code 27 23.810 Lick = Lock 23 Lick = Lock 24 25 Code 28 Max 23.800 23.800 Lick = Lock 24 Lick = Lock 24 26 Code 28 Max 24.560 Lick = Lock = Lock 24 Lick = Lock 24 Lick = Lock 26 31 Code 33 Code 34 Max 24.560 Lick = Lock = Lock 26 Lick = Lock 27 32 Code 34 Max 24.560 Lick = Lock = Lock 26 Lick = Lock 27 33 Code 34 Max 26.800 Lick = Lock = Lock 27 Lick = Lock 27 34 Code 34 Max 26.800 Lick = Lock 27 Lick = Lock 27 35		18	CO18	Max	14.060			LC1 + LC36 + LC37
21 CO21 Max 10.800 IC1 + IC2 + IC33 22 CO22 Max 17.810 IC1 + IC4 + IC45 23 CO23 Max 17.810 IC1 + IC44 + IC45 24 CO24 Max 19.800 IC1 + IC44 + IC45 24 CO26 Max 19.800 IC1 + IC44 + IC45 25 CO27 Max 29.800 IC1 + IC54 + IC49 27 CO28 Max 23.800 IC1 + IC54 + IC49 28 CO28 Max 23.800 IC1 + IC54 + IC49 31 CO31 Max 23.800 IC1 + IC54 + IC49 32 CO32 Max 23.800 IC1 + IC54 + IC76 33 CO33 Max 28.800 IC1 + IC64 + IC77 34 CO38 Max 28.800 IC1 + IC67 + IC77 35 CO38 Max 28.800 IC1 + IC67 + IC77 36 CO38 Max 28.800 IC1 + IC67 + IC77 37 CO38 Max		19	C019 C020	Max	14.810			LC1 + LC38 + LC39
22 CO22 Max 17.060 IC + IC 44 + IC 45 23 CO24 Max 13.560 IC + IC 44 + IC 47 24 CO24 Max 13.560 IC + IC 44 + IC 47 25 CO27 Max 20.310 IC + IC 43 + IC 49 27 CO28 Max 20.310 IC + IC 45 + IC 43 28 CO28 Max 22.310 IC + IC 45 + IC 43 29 CO29 Max 22.310 IC + IC 45 + IC 43 30 CO30 Max 22.310 IC + IC 45 + IC 43 31 CO30 Max 22.360 IC + IC 46 + IC 47 33 CO35 Max 22.800 IC + IC 46 + IC 47 34 CO36 Max 22.500 IC + IC 47 + IC 71 36 CO38 Max 22.800 IC + IC 47 + IC 71 37 CO38 Max 23.800 IC + IC 47 + IC 71 36 CO38 Max 23.800 IC + IC 48 + IC 43 41 CO41		20	CO21	Max	16,310			C1 + C42 + C43
23 CO23 Max 17.810 I.C.1+I.C48+I.C47 24 CO24 Max 19.310 I.C.1+I.C48+I.C49 25 CO26 Max 29.310 I.C.1+I.C48+I.C49 27 CO27 Max 29.310 I.C.1+I.C48+I.C49 28 CO28 Max 21.560 I.C.1+I.C58+I.C53 28 CO29 Max 22.316 I.C.1+I.C58+I.C59 30 CO30 Max 22.316 I.C.1+I.C68+I.C69 31 CO31 Max 22.816 I.C.1+I.C68+I.C69 32 CO33 Max 22.816 I.C.1+I.C68+I.C69 33 CO34 Max 22.816 I.C.1+I.C77+I.C71 34 CO38 Max 22.816 I.C.1+I.C77+I.C71 35 CO38 Max 22.816 I.C.1+I.C78+I.C77 36 CO38 Max 22.816 I.C.1+I.C78+I.C77 37 CO38 Max 23.810 I.C.1+I.C68+I.C69 37 CO38 Max <td></td> <td>22</td> <td>CO22</td> <td>Max</td> <td>17.060</td> <td></td> <td></td> <td>LC1 + LC44 + LC45</td>		22	CO22	Max	17.060			LC1 + LC44 + LC45
24 CO24 Max 19.310 LC1+LC3+LC48+LC49 25 CO25 Max 20.900 LC1+LC3+LC31 27 CO27 Max 20.900 LC1+LC3+LC31 28 CO28 Max 22.300 LC1+LC3+LC31 29 CO28 Max 22.300 LC1+LC3+LC31 31 CO30 Max 22.300 LC1+LC3+LC31 32 CO31 Max 22.300 LC1+LC3+LC31 33 CO31 Max 22.300 LC1+LC3+LC31 34 CO33 Max 22.300 LC1+LC3+LC31 35 CO34 Max 22.300 LC1+LC3+LC31 36 CO35 Max 22.300 LC1+LC3+LC31 37 CO37 Max 22.300 LC1+LC3+LC35 38 CO38 Max 22.300 LC1+LC3+LC35 41 CO40 Max 32.300 LC1+LC3+LC35 42 CO41 Max 32.600 LC1+LC3+LC35		23	CO23 💛 /	Max	17.810			LC1 + LC46 + LC47
25 CO25 Max 19.310 ICI + ICS9 + ICS1 27 CO27 Max 21.500 ICI + ICS9 + ICS3 29 CO28 Max 22.310 ICI + ICS9 + ICS3 30 CO30 Max 22.310 ICI + ICS9 + ICS3 31 CO31 Max 22.310 ICI + ICS9 + ICS3 32 CO32 Max 22.450 ICI + ICS9 + ICS3 32 CO32 Max 22.450 ICI + ICS9 + ICS3 33 CO34 Max 22.450 ICI + ICS9 + ICS3 33 CO34 Max 22.660 ICI + ICS9 + ICS3 34 CO38 Max 22.860 ICI + IC79 + IC73 35 CO38 Max 22.860 ICI + IC78 + ICS7 36 CO38 Max 22.860 ICI + IC38 + IC87 41 CO41 Max 23.860 ICI + IC38 + IC87 42 CO42 Max 33.860 ICI + IC38 + IC87 43 CO44 Max <td></td> <td>24</td> <td>CO24</td> <td>Max</td> <td>18.560</td> <td></td> <td></td> <td>LC1 + LC48 + LC49</td>		24	CO24	Max	18.560			LC1 + LC48 + LC49
Code Max 20/000 Lth + Loss + Loss 22 Code Max 22/360 Lth + Loss + Loss 30 Code Max 22/360 Lth + Loss + Loss 31 Code Max 22/360 Lth + Loss + Loss 31 Code Max 22/360 Lth + Loss + Loss 32 Code Max 22/360 Lth + Loss + Loss 33 Code Max 22/360 Lth + Loss + Loss 33 Code Max 22/360 Lth + Loss + Loss 34 Code Max 22/360 Lth + Loss + Loss 35 Code Max 22/360 Lth + Loss + Loss 36 Code Max 22/360 Lth + Loss + Loss 41 Code Max 22/360 Lth + Loss + Loss 42 Code Max 23/360 Lth + Loss + Loss 43 Code Max 33/360 Lth + Loss + Loss 44 Code Max 33/360		25	CO25	Max	19.310			LG1 + LG50 + LG51
28 CC28 Max 22:560 ICI + ICS8 + ICS7 29 CC280 Max 23:360 ICI + ICS8 + ICS9 31 CC31 Max 23:360 ICI + ICS8 + ICS9 32 CC32 Max 23:360 ICI + ICS8 + ICS9 33 CC32 Max 23:360 ICI + ICS8 + ICS9 33 CC34 Max 23:360 ICI + ICS8 + ICS7 34 CC34 Max 23:360 ICI + ICS8 + ICS7 35 CC36 Max 23:660 ICI + IC78 + IC77 36 CC38 Max 23:660 ICI + IC78 + IC77 37 CC37 Max 23:20:60 ICI + IC78 + IC77 38 CC38 Max 23:20:60 ICI + IC88 + IC87 41 CC41 Max 33:50 ICI + IC88 + IC87 42 CO42 Max 33:50 ICI + IC88 + IC87 43 CO44 Max 33:50 ICI + IC88 + IC87 44 CO45 Max </td <td></td> <td>20</td> <td>CO20</td> <td>Max</td> <td>20.060</td> <td></td> <td></td> <td>1 C1 + 1 C52 + 1 C55</td>		20	CO20	Max	20.060			1 C1 + 1 C52 + 1 C55
29 CC29 Max 22.366 LC1 + LC6 + LC61 31 CC31 Max 23.660 LC1 + LC6 + LC63 32 CC32 Max 23.660 LC1 + LC6 + LC63 33 CC33 Max 23.610 LC1 + LC6 + LC65 33 CC35 Max 23.610 LC1 + LC6 + LC71 34 CC35 Max 23.600 LC1 + LC7 + LC77 35 CC36 Max 23.600 LC1 + LC7 + LC77 36 CC37 Max 23.600 LC1 + LC7 + LC77 37 CC37 Max 23.600 LC1 + LC7 + LC77 38 CC38 Max 23.600 LC1 + LC7 + LC79 40 CC40 Max 33.600 LC1 + LC6 + LC87 41 CC414 Max 33.600 LC1 + LC6 + LC87 42 CC45 Max 33.600 LC1 + LC6 + LC87 43 CC44 Max 33.600 LC1 + LC6 + LC87 44 CC44 Max <td< td=""><td></td><td>28</td><td>CO28</td><td>Max</td><td>21.560</td><td>></td><td></td><td>LC1 + LC56 + LC57</td></td<>		28	CO28	Max	21.560	>		LC1 + LC56 + LC57
30 CO30 Max 23.060 LC1 + LC8 + LC61 31 CO31 Max 23.01 LC1 + LC8 + LC63 32 CO33 Max 23.01 LC1 + LC8 + LC63 33 CO33 Max 23.01 LC1 + LC8 + LC63 34 CO33 Max 23.00 LC1 + LC8 + LC63 35 CO38 Max 23.00 LC1 + LC7 + LC73 36 CO38 Max 23.00 LC1 + LC7 + LC73 37 CO38 Max 23.00 LC1 + LC7 + LC73 38 CO38 Max 23.00 LC1 + LC8 + LC81 41 CO40 Max 33.600 LC1 + LC8 + LC81 42 CO44 Max 33.600 LC1 + LC8 + LC81 44 CO44 Max 33.600 LC1 + LC8 + LC81 45 CO45 Max 35.60 LC1 + LC8 + LC81 46 CO46 Max 36.600 LC1 + LC8 + LC91 47 CO47 Max 36.600 <td></td> <td>29</td> <td>CO29</td> <td>Max</td> <td>22.310</td> <td></td> <td></td> <td>LC1 + LC58 + LC59</td>		29	CO29	Max	22.310			LC1 + LC58 + LC59
31 CO31 Max 23.810 I.C1 + I.C32 + I.C38 32 CO32 Max 23.800 I.C1 + I.C32 + I.C38 33 CO35 Max 23.800 I.C1 + I.C32 + I.C38 34 CO35 Max 23.800 I.C1 + I.C32 + I.C33 35 CO35 Max 23.800 I.C1 + I.C72 + I.C73 36 CO36 Max 23.800 I.C1 + I.C74 + I.C75 37 CO37 Max 23.800 I.C1 + I.C74 + I.C75 38 CO38 Max 23.800 I.C1 + I.C37 + I.C79 40 CO40 Max 33.800 I.C1 + I.C38 + I.C38 41 CO41 Max 33.800 I.C1 + I.C38 + I.C38 42 CO43 Max 33.800 I.C1 + I.C38 + I.C38 43 CO44 Max 35.800 I.C1 + I.C38 + I.C38 44 CO46 Max 35.800 I.C1 + I.C38 + I.C38 45 CO47 Max 35.800 I.C1 + I.C38 + I.C38 46 CO48 Max 35.800 I.C1 + I.C102 + I.C103 57<		30	CO30	Max	23.060			LC1 + LC60 + LC61
32 CL32 Max 24.300 LC1 + LC39 + LC35 33 CO33 Max 26.810 LC1 + LC39 + LC35 34 CO33 Max 22.610 LC1 + LC39 + LC35 35 CO36 Max 22.610 LC1 + LC74 + LC73 36 CO36 Max 22.610 LC1 + LC74 + LC74 37 CO37 Max 22.610 LC1 + LC74 + LC75 38 CO38 Max 22.610 LC1 + LC76 + LC77 40 CO40 Max 33.650 LC1 + LC76 + LC77 41 CO41 Max 33.560 LC1 + LC82 + LC83 42 CO43 Max 33.560 LC1 + LC84 + LC85 43 CO44 Max 35.600 LC1 + LC94 + LC95 44 CO44 Max 35.600 LC1 + LC94 + LC95 45 CO46 Max 35.600 LC1 + LC94 + LC95 46 CO46 Max 35.600 LC1 + LC94 + LC97 47 CO47 Max 35.800 LC1 + LC94 + LC97 48 CO48 Max		31	CO31	Max	23.810			LC1 + LC62 + LC63
34 CO34 Max 28.060 LC1 + LC39 + LC31 35 CO36 Max 28.60 LC1 + LC79 + LC71 37 CO37 Max 29.60 LC1 + LC72 + LC73 38 CO38 Max 29.60 LC1 + LC74 + LC75 39 CO39 Max 29.60 LC1 + LC74 + LC75 40 CO40 Max 30.560 LC1 + LC74 + LC77 41 CO41 Max 30.560 LC1 + LC84 + LC85 42 CO44 Max 30.800 LC1 + LC84 + LC85 44 CO44 Max 30.800 LC1 + LC94 + LC95 44 CO44 Max 30.800 LC1 + LC94 + LC95 45 CO46 Max 30.800 LC1 + LC94 + LC95 46 CO48 Max 30.800 LC1 + LC94 + LC95 50 CO50 Max 30.800 LC1 + LC104 + LC103 51 CO51 Max 30.800 LC1 + LC104 + LC103 52 CO52 Max <td></td> <td>32</td> <td>CO32 CO33</td> <td>Max</td> <td>24.560</td> <td>/ /</td> <td></td> <td>LC1 + LC64 + LC65</td>		32	CO32 CO33	Max	24.560	/ /		LC1 + LC64 + LC65
35 CO35 Max 22,810 LC1 + LC72 + LC73 36 CO36 Max 28,310 LC1 + LC72 + LC73 37 CO37 Max 28,310 LC1 + LC74 + LC75 38 CO38 Max 28,060 LC1 + LC74 + LC75 40 CO40 Max 33,350 LC1 + LC76 + LC77 41 CO41 Max 33,350 LC1 + LC84 + LC83 42 CO42 Max 32,350 LC1 + LC84 + LC85 43 CO44 Max 33,350 LC1 + LC84 + LC85 44 CO44 Max 33,350 LC1 + LC94 + LC85 45 CO46 Max 36,810 LC1 + LC94 + LC87 46 CO46 Max 36,810 LC1 + LC94 + LC93 47 CO48 Max 36,810 LC1 + LC94 + LC97 48 CO48 Max 38,810 LC1 + LC94 + LC103 LC1 + LC104 + LC104 + LC104 LC1010 LC1 + LC104 + LC101 51 CO55 Min 3		33	CO34	Max	26.060		->	C1 + C68 + C69
36 CO36 Max 27.500 LC1 + LC72 + LC73 37 CO38 Max 29.600 LC1 + LC74 + LC73 38 CO38 Max 29.600 LC1 + LC74 + LC73 40 CO40 Max 30.500 LC1 + LC74 + LC73 41 CO41 Max 30.500 LC1 + LC78 + LC73 42 CO42 Max 32.800 LC1 + LC82 + LC83 44 CO44 Max 33.560 LC1 + LC82 + LC83 45 CO44 Max 33.560 LC1 + LC82 + LC83 46 CO44 Max 35.600 LC1 + LC92 + LC93 47 CO47 Max 35.600 LC1 + LC92 + LC93 48 CO48 Max 37.310 LC1 + LC94 + LC95 50 CO50 Max 38.600 LC1 + LC104 + LC105 51 CO51 Max 38.600 LC1 + LC104 + LC105 52 CO52 Max 38.610 LC1 + LC104 + LC105 53 CO56 Min 3.560 LC1 + LC104 + LC114 54 CO56 Min<		35	CO35	Max	26.810	\rightarrow		LC1 + LC70 + LC71
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		36	CO36	Max	27.560		Λ	LC1 + LC72 + LC73
38 CO38 Max 29.800 LC1 + LC7 + LC7 39 CO39 Max 30.500 LC1 + LC7 + LC7 41 CO40 Max 30.500 LC1 + LC8 + LC8 42 CO41 Max 32.500 LC1 + LC8 + LC8 44 CO44 Max 33.500 LC1 + LC8 + LC8 44 CO44 Max 33.500 LC1 + LC8 + LC8 44 CO44 Max 33.500 LC1 + LC8 + LC8 44 CO46 Max 33.500 LC1 + LC8 + LC8 45 CO46 Max 35.800 LC1 + LC9 + LC9 46 CO46 Max 35.800 LC1 + LC9 + LC9 47 CO47 Max 38.000 LC1 + LC10 + LC104 50 CO50 Max 38.000 LC1 + LC104 + LC105 51 CO51 Max 38.000 LC1 + LC104 + LC105 52 CO52 Max 38.000 LC1 + LC104 + LC105 53 CO56 Min 2.000 LC1 + LC104 + LC105 54 CO56 Min 5.00		37	CO37	Max	28.310	/ /	\sim	LC1 + LC74 + LC75
39 CC03 Max 2000 LC LC <t< td=""><td></td><td>38</td><td>CO38</td><td>Max</td><td>29.060</td><td></td><td></td><td>LC1 + LC76 + LC77</td></t<>		38	CO38	Max	29.060			LC1 + LC76 + LC77
41 CO41 Max 31310 IC1 + IC28 + IC35 42 CO42 Max 32.060 IC1 + IC28 + IC35 43 CO43 Max 32.800 IC1 + IC28 + IC35 44 CO44 Max 33.560 IC1 + IC28 + IC39 44 CO45 Max 34.310 IC1 + IC38 + IC39 46 CO46 Max 35.060 IC1 + IC38 + IC39 47 CO47 Max 35.810 IC1 + IC39 + IC39 48 CO48 Max 37.310 IC1 + IC30 + IC37 50 CO50 Max 38.060 IC1 + IC102 + IC103 52 CO52 Max 38.10 IC1 + IC102 + IC101 52 CO53 Min 1.310 IC1 + IC104 + IC105 54 CO56 Min 2.060 IC1 + IC104 + IC105 55 CO55 Min 3.600 IC1 + IC104 + IC105 56 CO56 Min 5.000 IC1 + IC104 + IC105 58 CO58 M		39 40	CO39	Max	29.610	(LC1 + LC70 + LC79
42 CO42 Max 32.060 IC1 + IC8 + IC87 44 CO44 Max 33.560 IC1 + IC88 + IC87 44 CO44 Max 33.560 IC1 + IC88 + IC87 45 CO45 Max 35.800 IC1 + IC98 + IC93 46 CO46 Max 35.800 IC1 + IC98 + IC95 47 CO47 Max 36.560 IC1 + IC98 + IC95 48 CO48 Max 36.560 IC1 + IC98 + IC95 50 CO50 Max 38.060 IC1 + IC108 + IC99 51 CO51 Max 38.600 IC1 + IC104 + IC103 52 CO52 Max 39.190 IC1 + IC104 + IC103 53 CO55 Min 2.800 IC1 + IC104 + IC107 54 CO54 Min 2.800 IC1 + IC114 + IC113 56 CO56 Min 3.560 IC1 + IC114 + IC114 57 CO57 Min 6.800 IC1 + IC114 + IC115 58 CO58 <td< td=""><td></td><td>41</td><td>CO41</td><td>Max</td><td>31.310</td><td>\subseteq</td><td></td><td>LC1 + LC82 + LC83</td></td<>		41	CO41	Max	31.310	\subseteq		LC1 + LC82 + LC83
43 CO43 Max 33.560 LC1 + LC8 + LC87 44 CO44 Max 33.560 LC1 + LC8 + LC99 45 CO45 Max 33.500 LC1 + LC8 + LC99 46 CO46 Max 35.600 LC1 + LC9 + LC91 47 CO47 Max 36.600 LC1 + LC94 + LC95 48 CO48 Max 37.310 LC1 + LC94 + LC96 50 CO50 Max 38.060 LC1 + LC104 + LC101 51 CO51 Max 38.100 LC1 + LC104 + LC101 52 CO52 Max 39.190 LC1 + LC104 + LC101 54 CO56 Min 2.810 LC1 + LC104 + LC101 55 CO55 Min 2.810 LC1 + LC104 + LC101 58 CO58 Min 5.810 LC1 + LC104 + LC114 59 CO59 Min 5.810 LC1 + LC124 + LC131 58 CO66 Min 7.310 LC1 + LC124 + LC147 59 CO59 Min 8.810 LC1 + LC124 + LC147 50 CO65 Min<		42	CO42	Max	32.060		A A	LC1 + LC84 + LC85
44 CO44 Max 33.560 LC1+LC8+LC89 45 CO45 Max 35.800 LC1+LC8+LC91 46 CO46 Max 35.810 LC1+LC9+LC94 47 CO47 Max 35.810 LC1+LC9+LC94 48 CO48 Max 36.560 LC1+LC9+LC94 50 CO50 Max 38.810 LC1+LC9+LC94 51 CO51 Max 38.810 LC1+LC10+LC104 52 CO52 Max 39.190 LC1+LC10+LC104 54 CO54 Min 2.660 LC1+LC10+LC104 55 CO55 Min 3.560 LC1+LC10+LC104 56 CO56 Min 3.560 LC1+LC10+LC114 57 CO57 Min 5.810 LC1+LC12+LC13 58 CO58 Min 5.810 LC1+LC12+LC14 59 CO69 Min 5.810 LC1+LC12+LC12 50 CO66 Min 7.310 LC1+LC12+LC12 51 CO67 Min 8.810 LC1+LC12+LC12		43	CO43	Max	32.810			LC1 + LC86 + LC87
45 C046 Max 35.000 LC1 + LC99 + LC91 47 C047 Max 35.810 LC1 + LC94 + LC93 48 C048 Max 37.310 LC1 + LC94 + LC94 49 C049 Max 37.310 LC1 + LC94 + LC94 50 C050 Max 38.810 LC1 + LC10 + LC101 51 C051 Max 38.810 LC1 + LC104 + LC105 52 C052 Max 39.190 LC1 + LC104 + LC105 53 C053 Min 1.310 LC1 + LC104 + LC110 54 C056 Min 2.810 LC1 + LC114 + LC115 55 C055 Min 2.810 LC1 + LC114 + LC115 58 C058 Min 5.810 LC1 + LC124 + LC13 58 C059 Min 5.810 LC1 + LC124 + LC13 59 C059 Min 5.810 LC1 + LC124 + LC13 50 C066 Min 9.560 LC1 + LC124 + LC124 61 C061 Min 7.310 LC1 + LC124 + LC135 62 C066 Mi		44	CO44	Max	33.560			LC1 + LC88 + LC89
17 Corry Max 35.800 LC4 LC24 LC26 LC34 LC34 <thlc33< th=""> LC34 LC34 L</thlc33<>		45	CO45	Max	34.310			
48 CO48 Max 36.560 49 CO49 Max 37.310 50 CO50 Max 38.060 51 CC51 Max 38.810 52 CO52 Max 39.910 53 CO53 Min 1.310 54 CO54 Min 2.800 55 CO55 Min 2.810 56 CO56 Min 2.810 57 CO57 Min 4.310 58 CO58 Min 5.800 59 CO59 Min 5.810 50 CO59 Min 5.810 51 CO57 Min 5.810 50 CO59 Min 5.810 51 CO61 Min 7.310 52 CO59 Min 8.600 53 CO62 Min 8.101 54 CO62 Min 8.101 55 CO5		40	CO40 CO47	Max	35.810			LC1 + LC92 + LC95
49 CO49 Max 37.310 LC1 + LC109 + LC19 51 CO51 Max 38.810 LC1 + LC100 + LC101 52 CO52 Max 39.190 LC1 + LC102 + LC103 53 CO53 Min 1.310 LC1 + LC104 + LC105 54 CO54 Min 2.810 LC1 + LC106 + LC107 55 CO56 Min 2.810 LC1 + LC106 + LC111 56 CO56 Min 3.560 LC1 + LC14 + LC115 57 CO57 Min 5.810 LC1 + LC14 + LC114 + LC115 58 CO58 Min 5.810 LC1 + LC12 + LC124 60 CO60 Min 6.560 LC1 + LC124 + LC125 61 CO61 Min 7.310 LC1 + LC124 + LC124 62 CO62 Min 8.810 LC1 + LC124 + LC125 64 CO64 Min 9.560 LC1 + LC124 + LC124 66 CO66 Min 11.810 LC1 + LC124 + LC125 67 CO70 Min 12.660 LC1 + LC134 + LC135 68 CO88 <td></td> <td>48</td> <td>CO48</td> <td>Max</td> <td>36.560</td> <td></td> <td></td> <td>LC1 + LC96 + LC97</td>		48	CO48	Max	36.560			LC1 + LC96 + LC97
50 COS0 Max 38.060 LC1+LC100+LC101 51 COS1 Max 38.10 LC1+LC100+LC103 52 COS2 Max 39.190 LC1+LC102+LC103 53 COS3 Min 2.060 LC1+LC102+LC104 54 COS6 Min 2.810 LC1+LC102+LC103 55 COS5 Min 2.810 LC1+LC102+LC103 56 COS6 Min 3.560 LC1+LC102+LC113 57 COS7 Min 5.810 LC1+LC114+LC135 58 COS8 Min 5.810 LC1+LC122+LC121 60 CO60 Min 6.560 LC1+LC122+LC123 61 CO61 Min 7.310 LC1+LC124+LC125 62 CO62 Min 8.810 LC1+LC124+LC125 64 CO64 Min 9.560 LC1+LC124+LC13 65 CO65 Min 10.310 LC1+LC134+LC135 66 CO66 Min 13.310 LC1+LC134+LC135 70 CO70 Min 13.560 LC1+LC134+LC		49	CO49	Max	37.310		11	LC1 + LC98 + LC99
31 $COS1$ Max 38.10 $LC1 + LC102 + LC103$ 52 $COS3$ Min 1.310 $LC1 + LC104 + LC105$ 53 $COS5$ Min 2.800 $LC1 + LC104 + LC105$ 55 $COS5$ Min 2.800 $LC1 + LC104 + LC105$ 56 $COS6$ Min 3.800 $LC1 + LC114 + LC117$ 57 $COS7$ Min 4.310 $LC1 + LC114 + LC117$ 58 $COS8$ Min 5.810 $LC1 + LC114 + LC117$ 59 $COS9$ Min 6.560 $LC1 + LC122 + LC127$ 61 $CO60$ Min 7.310 $LC1 + LC122 + LC127$ 62 $CO62$ Min 8.800 $LC1 + LC132 + LC133$ 64 $CO64$ Min 9.560 $LC1 + LC132 + LC137$ 64 $CO66$ Min 11.060 $LC1 + LC132 + LC137$ 68 $CO68$ Min 13.310 $LC1 + LC132 + LC137$ 70 $CO70$ Min 13.310 $LC1 + LC134 + LC147$ 71 $CO74$ Min 15.560 LC1 + LC142 + LC143		50	CO50	Max	38.060			LC1 + LC100 + LC101
32 CO22 Min 1.310 LC1+LC107+LC107 54 C054 Min 2.060 LC1+LC107+LC107 56 C056 Min 3.560 LC1+LC107+LC107 57 C057 Min 4.310 LC1+LC107+LC107 58 C056 Min 5.60 LC1+LC112+LC113 57 C057 Min 5.810 LC1+LC114+LC115 60 C060 Min 6.560 LC1+LC122+LC121 61 C061 Min 7.310 LC1+LC124+LC125 62 C062 Min 8.810 LC1+LC124+LC125 63 C063 Min 9.560 LC1+LC132+LC124 64 C064 Min 11.060 LC1+LC132+LC133 66 C066 Min 11.300 LC1+LC132+LC133 70 C070 Min 14.810 LC1+LC132+LC133 72 C072 Min 15.560 LC1+LC142+LC143 74 C074 Min 17.800		51	CO51 CO52	Max	38.810			LC1 + LC102 + LC103
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		53	CO53	Min	1.310			LC1 + LC104 + LC107
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		54	CO54	Min	2.060			LC1 + LC108 + LC109
56 CO56 Min 3.560 LC1 + LC112 + LC113 57 CO57 Min 5.060 LC1 + LC114 + LC115 58 CO58 Min 5.060 LC1 + LC114 + LC117 59 CO59 Min 6.660 LC1 + LC124 + LC118 61 CO61 Min 7.310 LC1 + LC124 + LC125 62 CO62 Min 8.060 LC1 + LC124 + LC125 63 CO64 Min 9.500 LC1 + LC124 + LC125 64 CO66 Min 10.310 LC1 + LC132 + LC133 66 CO65 Min 11.810 LC1 + LC134 + LC135 67 CO67 Min 11.810 LC1 + LC134 + LC135 68 CO68 Min 12.560 LC1 + LC134 + LC145 69 CO70 Min 14.810 LC1 + LC144 + LC145 71 CO71 Min 16.310 LC1 + LC144 + LC145 72 CO72 Min 17.560 LC1 + LC144 + LC145 74 CO74 Min 17.810 LC1 + LC144 + LC145 76 CO76 <td></td> <td>55</td> <td>CO55</td> <td>Min</td> <td>2.810</td> <td></td> <td></td> <td>LC1 + LC110 + LC111</td>		55	CO55	Min	2.810			LC1 + LC110 + LC111
57 $COS7$ Min 4.310 $LC1 + LC114 + LC115$ 58 $COS8$ Min 5.060 $LC1 + LC116 + LC117$ 59 $COS6$ Min 6.810 $LC1 + LC120 + LC121$ 61 $COS6$ Min 8.810 $LC1 + LC122 + LC123$ 62 $COS62$ Min 8.810 $LC1 + LC122 + LC123$ 62 $COS64$ Min 9.560 $LC1 + LC124 + LC125$ 64 $CO64$ Min 9.560 $LC1 + LC130 + LC131$ 66 $COS65$ Min 10.310 $LC1 + LC130 + LC131$ 66 $COS66$ Min 11.810 $LC1 + LC134 + LC135$ 67 $CO67$ Min 11.810 $LC1 + LC134 + LC135$ 68 $CO68$ Min 12.560 $LC1 + LC134 + LC143$ 70 $CO70$ Min 14.810 $LC1 + LC134 + LC143$ 72 $CO72$ Min 15.560 $LC1 + LC144 + LC145$ 73 $CO73$ Min 16.310 $LC1 + LC144 + LC145$ 74 $CO74$ Min 17.8560 <td></td> <td>56</td> <td>CO56</td> <td>Min</td> <td>3.560</td> <td></td> <td></td> <td>LC1 + LC112 + LC113</td>		56	CO56	Min	3.560			LC1 + LC112 + LC113
50 CO36 Min 5.800 LC1+LC11+LC11 50 CO60 Min 6.560 LC1+LC12+LC12 61 CO61 Min 7.310 LC1+LC12+LC12 62 CO62 Min 8.060 LC1+LC12+LC125 63 CO63 Min 8.810 LC1+LC12+LC125 64 CO64 Min 9.560 LC1+LC130+LC131 65 CO65 Min 10.310 LC1+LC130+LC131 66 CO66 Min 11.810 LC1+LC130+LC131 67 CO67 Min 11.810 LC1+LC130+LC131 68 CO68 Min 12.560 LC1+LC138+LC149 69 CO69 Min 13.310 LC1+LC140+LC141+ 71 CO71 Min 14.810 LC1+LC142+LC145 72 CO72 Min 15.660 LC1+LC142+LC145 73 CO73 Min 17.810 LC1+LC142+LC145 74 CO74 Min 17.860 LC1+LC152+LC153 78 CO75 Min 19.310 LC1+LC154+LC1		5/	CO57	Min	4.310			LC1 + LC114 + LC115
60 COGO Min 6.560 LC1 + LC120 + LC121 61 COG1 Min 7.310 LC1 + LC120 + LC121 62 COG2 Min 8.000 LC1 + LC120 + LC121 63 COG3 Min 8.810 LC1 + LC120 + LC121 64 COG4 Min 9.560 LC1 + LC126 + LC127 65 COG6 Min 10.310 LC1 + LC130 + LC131 66 COG6 Min 11.060 LC1 + LC134 + LC135 67 COG7 Min 11.810 LC1 + LC134 + LC135 68 CO68 Min 12.560 LC1 + LC134 + LC135 69 CO69 Min 13.310 LC1 + LC142 + LC143 71 CO71 Min 14.860 LC1 + LC142 + LC143 72 CO72 Min 15.560 LC1 + LC142 + LC143 72 CO72 Min 17.060 LC1 + LC142 + LC143 74 CO74 Min 17.360 LC1 + LC155 + LC153 76 CO76<		59	CO59	Min	5 810			LC1 + LC118 + LC119
61 CO61 Min 7.310 LC1+LC12+LC123 62 CO62 Min 8.060 LC1+LC12+LC123 63 CO63 Min 8.810 LC1+LC12+LC125 64 CO64 Min 9.560 LC1+LC126+LC127 65 CO65 Min 10.310 LC1+LC132+LC129 66 CO66 Min 11.810 LC1+LC132+LC133 67 CO67 Min 11.810 LC1+LC132+LC133 68 CO68 Min 12.560 LC1+LC134+LC135 69 CO69 Min 13.310 LC1+LC134+LC145 71 CO70 Min 14.810 LC1+LC144+LC145 72 CO72 Min 16.310 LC1+LC144+LC145 73 CO73 Min 17.810 LC1+LC142+LC145 74 CO74 Min 17.860 LC1+LC150+LC151 76 CO76 Min 18.560 LC1+LC150+LC151 78 CO778 Min 20.810		60	CO60	Min	6.560			LC1 + LC120 + LC121
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		61	CO61	Min	7.310			LC1 + LC122 + LC123
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		62	CO62	Min	8.060			LC1 + EC124 + LC125
67 COGF Min 0.300 LC1 + LC130 + LC131 66 COG6 Min 11.060 LC1 + LC130 + LC131 67 COG7 Min 11.810 LC1 + LC130 + LC131 68 CO68 Min 12.560 LC1 + LC136 + LC137 69 CO69 Min 13.310 LC1 + LC138 + LC137 70 CO71 Min 14.800 LC1 + LC144 + LC145 71 CO71 Min 15.560 LC1 + LC144 + LC145 72 CO72 Min 15.560 LC1 + LC144 + LC145 73 CO73 Min 17.810 LC1 + LC152 + LC151 74 CO74 Min 17.810 LC1 + LC152 + LC153 76 CO76 Min 19.310 LC1 + LC154 + LC157 77 CO77 Min 19.310 LC1 + LC164 + LC161 78 CO78 Min 20.810 LC1 + LC164 + LC163 80 CO80 Min 23.900 LC1 + LC164 + LC165 81 CO81 Min 23.810 LC1 + LC164 + LC165 82 CO		64	C063	Min	8.810			LC1 + LC120 + LC127
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		65	CO65	Min	10.310			LC1 + LC130 + LC131
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		66	CO66	Min	11.060			LC1 + LC132 + LC133
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		67	CO67	Min	11.810			LC1 + LC134 + LC135
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		68	CO68	Min	12.560			LC1 + LC136 + LC137
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		69 70	CO59	Min	13.310			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		71	C071	Min	14.810			LC1 + LC142 + LC143
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		72	CO72	Min	15.560			LC1 + LC144 + LC145
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		73	CO73	Min	16.310			LC1 + LC146 + LC147
75 CO75 Min 17.810 LC1 + LC150 + LC151 76 CO76 Min 18.560 LC1 + LC152 + LC153 77 CO77 Min 19.310 LC1 + LC154 + LC155 78 CO78 Min 20.060 LC1 + LC156 + LC157 79 CO79 Min 20.810 LC1 + LC158 + LC159 80 CO80 Min 21.560 LC1 + LC164 + LC161 81 CO81 Min 23.060 LC1 + LC164 + LC165 82 CO82 Min 23.810 LC1 + LC164 + LC165 83 CO83 Min 24.560 LC1 + LC168 + LC167 84 CO84 Min 25.310 LC1 + LC170 + LC171		74	CO74	Min	17.060			LC1 + LC148 + LC149
10 10 10 10 10 10 10 10 10 77 C077 Min 19.310 LC1 + LC154 + LC155 10 10 78 C078 Min 20.800 LC1 + LC154 + LC155 10 10 79 C079 Min 20.810 LC1 + LC154 + LC155 10 80 C080 Min 21.560 LC1 + LC164 + LC161 81 C081 Min 23.060 LC1 + LC164 + LC165 82 C082 Min 23.810 LC1 + LC164 + LC165 83 C083 Min 24.560 LC1 + LC168 + LC167 84 C084 Min 25.310 LC1 + LC170 + LC171		75	CO76	Min	17.810			
78 CO78 Min 20.060 LC1 + LC156 + LC157 79 CO79 Min 20.810 LC1 + LC156 + LC157 80 CO80 Min 21.560 LC1 + LC164 + LC169 81 CO81 Min 23.060 LC1 + LC164 + LC163 82 CO82 Min 23.060 LC1 + LC164 + LC165 83 CO83 Min 23.810 LC1 + LC164 + LC165 84 CO84 Min 25.310 LC1 + LC170 + LC171		77	C077	Min	19,310			LC1 + LC154 + LC155
79 CO79 Min 20.810 LC1 + LC158 + LC159 80 CO80 Min 21.560 LC1 + LC160 + LC161 81 CO81 Min 23.060 LC1 + LC162 + LC163 82 CO82 Min 23.060 LC1 + LC164 + LC165 83 CO83 Min 23.810 LC1 + LC166 + LC167 84 CO84 Min 24.560 LC1 + LC168 + LC169 85 CO85 Min 25.310 LC1 + LC170 + LC171		78	CO78	Min	20.060			LC1 + LC156 + LC157
80 CO80 Min 21.560 LC1 + LC160 + LC161 81 CO81 Min 22.310 LC1 + LC162 + LC163 82 CO82 Min 23.060 LC1 + LC162 + LC165 83 CO83 Min 23.810 LC1 + LC164 + LC165 84 CO84 Min 24.560 LC1 + LC168 + LC169 85 CO85 Min 25.310 LC1 + LC170 + LC171		79	CO79	Min	20.810			LC1 + LC158 + LC159
81 CO81 Min 22.310 LC1 + LC162 + LC163 82 CO82 Min 23.060 LC1 + LC164 + LC165 83 CO83 Min 23.810 LC1 + LC164 + LC165 84 CO84 Min 24.560 LC1 + LC168 + LC169 85 CO85 Min 25.310 LC1 + LC170 + LC171		80	CO80	Min	21.560			LC1 + LC160 + LC161
02 0302 0302 0402 0		81	CO81	Min	22.310			
84 CO84 Min 24,560 LC1 + LC168 + LC169 85 CO85 Min 25,310 LC1 + LC170 + LC171		83	CO83	Min	23.000			LC1 + LC166 + LC167
85 CO85 Min 25.310 LC1 + LC170 + LC171		84	CO84	Min	24.560			LC1 + LC168 + LC169
		85	CO85	Min	25.310			LC1 + LC170 + LC171

IZVJEŠTAJ PRORAČUNA ZA STATIČKI NEODREĐEN NOSAČ KRANSKE STAZE

	Milan Trodr Milana Jeliæ	Page: 1/12 Sheet: 1							
THE STATE		CRANEWAY							
Design of crane runway girders	Project: Projects	Model: Kranska staza	Date: 12.3.2020.						
	Standard Used : CEN* - European Union Total girder length The total weight of the beam The cross-sectional weight per meter Total weight of the beam after 25% reduction in rail section due The cross-sectional weight per meter	to wear	40.000 m 7748.1 kg 193.7 kg/m 7748.1 kg 193.7 kg/m						
	DATA FOR NATIONAL ANNEX CEN* - European Union - Eurocode 3: Design of steel structures - Part 6: Crane supporting structures								
	rational salety reactions - Resistance of cross-section Member resistance to stability failure Weld resistance Fatigue stiffness - Permanént actions	γм0: 1.00 γм1: 1.00 γмм: 1.25 γмг: 1.15 γG : 1.35							

USED STANDARDS

- Variable Actions, Crane

- Combination factor Coefficient for shear resistance

- Variable Actions, Other

- Fatigue actions

		/	
[1]	EN 1993-6:2007/AC:2009-07		Eurocode 3: Design of steel structures - Part 6: Crane supporting structures
[2]	EN 1993-1-1:2005/AC:2009-04		Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings
[3]	EN 1993-1-5:2006/AC:2009-04		Eurocode 3: Design of steel structures - Part 1-5: Plated structural elements
[4]	EN 1993-1-8:2005/AC:2009-07		Eurocode 3: Design of steel structures - Part 1-8: Design of joints
[5]	EN 1993-1-9:2005/AC:2009-04	/	Eurocode 3: Design of steel structures - Part 1-9: Fatigue strength of steel structures
[6]	EN 1991-3:2006/AC:2012-12		Eurocode 1: Actions on structures - Part 3: Actions induced by cranes and machinery
[7]	EN 1990:2002/A1:2005/AC:2010-04		Eurocode 0: Basis of structural design
	\bigvee		
G	EOMETRY - SUPPOR	ŔΤ/	

γ_Q: 1.35

ψ: 1.00 η: 1.20

1.50 γ**Q**₀ : γ_{F,f}: 1.00

BEOMETRY - SUPPORT

Support	Location	<u> </u>	Di	Displacement			Rotation				Suppo	ort [mm]
No.	x [m]	Type of Support	in X	in Y	in Z	ab. X	ab. Y	ab. Z	Warping	Release	Stiffener	Length a
1	0.000	Hinged	(\boxtimes)	\times	\times	\times					Rigid	
2	8.000	Hinged movable	Q		\boxtimes						Rigid	
3	16.000	Hinged movable		\times	\boxtimes						Rigid	
4	24.000	Hinged movable		\boxtimes	\boxtimes						Rigid	
5	32.000	Hinged movable		\times	\boxtimes						Rigid	
6	40.000	Hinged	\boxtimes	\boxtimes		Í 🖄 🎽					Rigid	

GEOMETRY - STIFFENERS

Span	Length	Number of	Type of	
No.	L [m]	Int. Panels	Location	
1	8.000	2	Regularly	x[m]: {0.000; 4.000; 8.000}
2	8.000	2	Regularly	x[m]: {0.000; 4.000; 8.000}
3	8.000	2	Regularly	x[m]: {0.000; 4.000; 8.000}
4	8.000	2	Regularly	x[m]: {0.000; 4.000; 8.000}
5	8.000	2	Regularly	x[m]: {0.000; 4.000; 8.000}

Steel S 235

MATERIAL

Material Description

A) IU 600/350/28/8/300/28/0/0 ...

URU33-3EUTIUN3		
Girder	:	Welded Section IU 600/350/28/8/300/28/0/0
Rail profile	:	Rail SA 45 (worn-out)
Cross-section description	:	KB(IU+SA) IU 600/350/28/8/300/28/0/0 + SA 45 (worn-out)
25% reduction of the rail section due to wear	:	
Consider rail section for the cross-section properties	:	
Additional Design		
Perform fatigue design	:	
Perform weld seam design	:	
Thickness of welds rail/flange	a :	6.0 mm
Thickness of welds upper flange/web	a _o :	As a general rule, the resistance of butt welds welded with full penetration should be equal to that of the weaker of the components connected. This is the case when the weld is performed using filler metals having minimum values of yield strength and tensile strength according to weld metal tests, which are not less than that of the base material.
Thickness of welds lower flange/web	a _u :	As a general rule, the resistance of butt welds welded with full penetration should be equal to that of the weaker of the components connected. This is the case when the weld's.p

EN 10025-2:2004-11

A			Mila	n Krneta		Page: 3/12 Sheet: 1
The second se			Trg dr. Milana Jeli	æa br. 15, 74480 Modrièa		CRANEWAY
)					ONALEMAT
	Project:	Projects		Model: Kranska staza		Date: 12.3.2020.
\leq	DES	CRIPTION	OF LOAD CASES			
	No	LC No.		Description		
	2	LC1 LC2	Self-Weight + Additional Permane Additional Variable Loads	ent Load		
	3 4	LC3,11 LC4,12				
G	5 6 7	LC6,14	$Q_{C} \varphi_{4}$ $Q_{H} \max(\varphi_{2}, \varphi_{3})$			
	8	LC8,16	$H_T \phi_5 + H_L \phi_5$ $(H_L + S)$			
	10	LC10,18 LC835.838	H_{T3}			
,	$\left\langle \frac{2}{3}\right\rangle$	LC836,839 LC837,840				
	\rightarrow (۲ ۲			1	
	DES		OF LOAD CASES	- FATIGUE		
-	No.	No.	Solf Midight + Additional Darman	Description		
	2	LC1 LC2,4	Self-Weight + Additional Permane $Q_c (1 + \phi_1)/2$ $Q_u (1 + \phi_2)/2$	ent Load		
	0				I	
•	COE	FFICIENT	OF LOAD CASES			
-		Resistance Partial Safety F	Factors			1 250
		Variable Act	ions - Crane	\sim	γς γο	1.350
		Combination Crane No. 1	n Factor		ψ	1.000
		Dynamic Weight of c	Coefficient for crane		φ1	1.100
		Load lifting Sudden pu	II-off weight		φ2 φ3	1.120 1.000
		Crane trave Driving forc			φ4 φ5	1.000 1.500
-		Fatigue Partial Safety F	Factors			
		Permanent A Variable Act	Actions ions - Crane		γg γα	1.000 1.000
		Variable Act Combination	ions - Other n Factor		γοο Ψ	1.000 1.000
		Dynamic (Weight of c	Coefficient for crane		(01	1.100
		Load lifting Sudden pu	II-off weight		φ ₂ φ ₃	1.120 1.000
		Crane trave Driving force	el ce		φ4	1.000 1.500
-		Deformation	Factors		4	
		Permanent A Variable Act	Actions ions - Crane		γς γς	1.000 1.000
		Variable Act Combination	ions - Other n Factor		γ _{Q0} Ψ	1.000
		Crane No. 1 Dynamic (Coefficient for	<	$1 \mid b$	
		Load lifting			φ1 φ2	1.000
		Crane trave	el		φ ₄ φ ₅	1.000 1.000 1.000
·		Support Forces	5		T"	
		Partial Safety F	Actions		γ _G	1.000
		Variable Act Variable Act	ions - Clane ions - Other Distance		γα γαο	1.000
		Crane No. 1 Dvnamic 0	Coefficient for		Ψ	
		Weight of c Load lifting	crane		φ1 φ2	1.100 1.120
		Sudden pu	ll-off weight		φ3	1.000

www.dlubal.com

Trg dr. Milana Jeliæa br. 15, 74480 Modrièa

4/12

Project: Projects

Model: Kranska staza

Date: 12.3.2020.

Page:

1.000

1.500

φ4 φ5

COEFFICIENT OF LOAD CASES

Crane travel Driving force

- 0,200						
/ /	CO		Location of	of 1st Wheel of	Crane [m]	Load
No.	No.	Girder	Crane 1	Crane 2	Crane 3	Description
1	CO1					
2	C02	Max	1 310			$y_0 = 0$
3	C03	Max	1 310			$\gamma_{0}(101 + 103) + \gamma_{0}(100 + 100) + \gamma_{0}(100 + 100)$
\leq	CO4	Max	1 310			$y_{0}(101 + 105) + y_{0}(107 + 108) + y_{0}(102$
5	CO5	Max	1 310			$y_0 (1 C1 + 1 C5) + y_0 (1 C7 + 1 C9) + y_{01} 1 C2$
Š	CO6	Max	1.310			$y_0 (1 C1 + 1 C5) + y_0 (1 C7 + 1 C10)$
7	C07	Max	2 060			$y_0(1 C1 + 1 C12) + y_0(1 C14 + 1 C16) + y_0(1 C2)$
8	C08	Max	2.000			$y_0(1C1 + 1C11) + y_0(1C16 + y_0, 1C2)$
9	000	Max	2.000			y_{c} (LC1 + LC13) + y_{c} (LC15 + LC16) + y_{cs} LC2
10	CO10	Max	2.060			$y_{c}(LC1 + LC13) + y_{c}(LC15 + LC17) + y_{c}LC2$
11	CO11	Max	2.060			$y_{G}(LC1 + LC13) + y_{O}(LC15 + LC18)$
12	CO12	Max	2.810			$y_{c}(LC1 + LC20) + y_{0}(LC22 + LC24) + y_{0}LC2$
13	CO13	Max	2.810			$v_{\rm c}$ (LC1 + LC19) + $v_{\rm c}$ LC24 + $v_{\rm cs}$ LC2
14	CO14	Max	2.810			$y_{G}(LC1 + LC21) + y_{O}(LC23 + LC24) + y_{OD}LC2$
15	CO15	Max	2.810			$y_{G}(LC1 + LC21) + y_{O}(LC23 + LC25) + y_{OD}LC2$
16	CO16	Max	2.810			$y_{G}(LC1 + LC21) + y_{O}(LC23 + LC26)$
17	CO17	Max	3,560			$y_{G}(LC1 + LC28) + y_{O}(LC30 + LC32) + y_{O}LC2$
18	CO18	Max	3.560	\geq		γ_{G} (LC1 + LC27) + γ_{Q} LC32 + γ_{QQ} LC2
19	CO19	Max	3.560	_		γ_{G} (LC1 + LC29) + γ_{Q} (LC31 + LC32) + γ_{QQ} LC2
20	CO20	Max	3.560			γ_{G} (LC1 + LC29) + γ_{Q} (LC31 + LC33) + γ_{QQ} LC2
21	CO21	Max 🚫	3.560			γ_{G} (LC1 + LC29) + γ_{Q} (LC31 + LC34)
22	CO22	Max	4.310			γ_{G} (LC1 + LC36) + γ_{Q} (LC38 + LC40) + γ_{Q0} LC2
23	CO23	Max	4.310			γ_{G} (LC1 + LC35) + γ_{Q} LC40 + γ_{Q0} LC2
24	CO24	Max	4.310		7	γ _G (LC1 + LC37) + γ _Q (LC39 + LC40) + γ _{Q0} LC2
25	CO25	Max	4.310			γ _G (LC1 + LC37) + γ _Q (LC39 + LC41) + γ _{Qo} LC2
26	CO26	Max	4.310			γ _G (LC1 + LC37) + γ _Q (LC39 + LC42)
27	CO27	Max	5.060		\sim	_{γG} (LC1 + LC44) + _{γQ} (LC46 + LC48) + _{γQo} LC2
28	CO28	Max	5.060			γ_{G} (LC1 + LC43) + γ_{Q} LC48 + γ_{Qo} LC2
29	CO29	Max	5.060	(γ _G (LC1 + LC45) + γ _Q (LC47 + LC48) + γ _{Qo} LC2
30	CO30	Max	5.060	\subseteq		γ_{G} (LC1 + LC45) + γ_{Q} (LC47 + LC49) + γ_{Qo} LC2
31	CO31	Max	5.060	\bigcirc	\square	γ _G (LC1 + LC45) + γ _Q (LC47 + LC50)
32	CO32	Max	5.810			γ_{G} (LC1 + LC52) + γ_{Q} (LC54 + LC56) + γ_{Qo} LC2
33	CO33	Max	5.810			γ_{g} (LC1 + LC51) + γ_{Q} LC56 + γ_{Qo} LC2
34	CO34	Max	5.810			γ_{G} (LC1 + LC53) + γ_{Q} (LC55 + LC56) + γ_{Qo} LC2
35	CO35	Max	5.810			γ_{G} (LC1 + LC53) + γ_{Q} (LC55 + LC57) + $\gamma_{Q_{0}}$ LC2
36	CO36	Max	5.810			$\gamma_{\rm G}$ (LC1 + LC53) + $\gamma_{\rm Q}$ (LC55 + LC58)
37	CO37	Max	6.560			$\gamma_{G}(LC1 + LC60) + \gamma_{Q}(LC62 + LC64) + \gamma_{Q_{0}}LC2$
38	CO38	Max	6.560			γ_{G} (LC1 + LC59) + γ_{Q} LC64 + $\gamma_{Q_{0}}$ LC2
39	CO39	Max	6.560			$\gamma_{\rm G}$ (LC1 + LC61) + $\gamma_{\rm Q}$ (LC63 + LC64) + $\gamma_{\rm Qo}$ LC2
40	CO40	Max	0.500			$\gamma_{\rm G}(\rm LCI + \rm LCGI) + \gamma_{\rm Q}(\rm LCGS + \rm LCGS) + \gamma_{\rm Q_0} \rm LCZ$
41	CO41	Mox	7 210		/	$\gamma_{\rm G}$ (LC1 + LC01) + $\gamma_{\rm Q}$ (LC03 + LC00)
42	CO42	Max	7.310			$\gamma_{G}(LC1 + LC00) + \gamma_{Q}(LC10 + LC12) + \gamma_{Q_{0}}LC2$
43	CO43	Max	7.310			$\gamma_{G}(1C1 + 1C60) + \gamma_{G}(1C71 + 1C72) + \cdots + 1C2$
45	CO45	Max	7.310			$y_{0}(101 + 1060) + y_{0}(101 + 1072) + y_{0}(102)$
46	CO46	Мах	7.310			$y_{0}(101 + 1060) + y_{0}(1071 + 1073) + y_{0}(102$
40	CO47	Max	8.060			$y_{\rm G}(101 + 1076) + y_{\rm G}(10778 + 1080) + y_{\rm G}(1072)$
48	CO48	Max	8 060			$y_{c}(1C1 + 1C75) + y_{c}(1C80 + y_{c}) + C2$
49	CO49	Max	8.060			$y_{G}(LG1 + LC77) + y_{O}(LC79 + LC80) + y_{O}LC2$
50	CO50	Max	8.060			$v_{\rm c}$ (LC1 + LC77) + $v_{\rm c}$ (LC79 + LC81) + $v_{\rm co}$ LC2
51	CO51	Max	8.060			$\gamma_{G}(LC1 + LC77) + \gamma_{Q}(LC79 + LC82)$
52	CO52	Max	8.810			γ_{G} (LC1 + LC84) + γ_{Q} (LC86 + LC88) + γ_{QQ} LC2
53	CO53	Max	8.810			γ_{G} (LC1 + LC83) + γ_{G} LC88 + γ_{D0} LC2
54	CO54	Max	8.810			γ_{G} (LC1 + LC85) + γ_{Q} (LC87 + LC88) + γ_{Q0} LC2
55	CO55	Max	8.810			γ_{G} (LC1 + LC85) + γ_{Q} (LC87 + LC89) + γ_{Q0} (LC2
56	CO56	Max	8.810			γ _G (LC1 + LC85) + γ _Q (LC87 + LC90)
57	CO57	Max	9.560			γ _G (LC1 + LC92) + γ _Q (LC94 + LC96) + γ _{Q0} LC2
58	CO58	Max	9.560			$\gamma_{\rm G}$ (LC1 + LC91) + $\gamma_{\rm Q}$ LC96 + $\gamma_{\rm Qo}$ LC2
59	CO59	Max	9.560			γ _G (LC1 + LC93) + γ _Q (LC95 + LC96) + γ _{Qo} LC2
60	CO60	Max	9.560			γ _G (LC1 + LC93) + γ _Q (LC95 + LC97) + γ _{Qo} LC2
61	CO61	Max	9.560			γ _G (LC1 + LC93) + γ _Q (LC95 + LC98)
62	CO62	Max	10.310			γ _G (LC1 + LC100) + γ _Q (LC102 + LC104) + γ _{Qo} LC2
63	CO63	Max	10.310			γ_{G} (LC1 + LC99) + γ_{Q} LC104 + γ_{Qo} LC2
64	CO64	Max	10.310			$\gamma_{\rm G}$ (LC1 + LC101) + $\gamma_{\rm Q}$ (LC103 + LC104) + $\gamma_{\rm Qo}$ LC2
65	CO65	Max	10.310			$\gamma_{\rm G}$ (LC1 + LC101) + $\gamma_{\rm Q}$ (LC103 + LC105) + $\gamma_{\rm Qo}$ LC2
66	CO66	Max	10.310			γ _G (LC1 + LC101) + γ _Q (LC103 + LC106)
67	CO67	Max	11.060			$\gamma_{\rm G}$ (LC1 + LC108) + $\gamma_{\rm Q}$ (LC110 + LC112) + $\gamma_{\rm Qo}$ LC2
68	CO68	Max	11.060			γ_{G} (LC1 + LC107) + γ_{Q} LC112 + γ_{Qo} LC2
69	CO69	Max	11.060			γ _G (LC1 + LC109) + γ _Q (LC111 + LC112) + γ _{Qo} LC2
70	CO70	Max	11.060			γ_{G} (LC1 + LC109) + γ_{Q} (LC111 + LC113) + $\gamma_{Q_{Q}}$ LC2

A	1		
	R	Tr.	
	Z	T	\supset
		-(

Sheet: 1
CRANEWAY

5/12

1	
Drojoot	Drojooto
FULLEUL.	FIDJECIS
	,

Model: Kranska staza

Date: 12.3.2020.

Page:

\sim	CO		Location	of 1st Wheel of (Crane [m]	Load
No	No.	Girder	Crane 1	Crane 2	Crane 3	Description
71	CO71	Max	11.060			γ _G (LC1 + LC109) + γ _Q (LC111 + LC114)
72	CO72	Max	11.810			γ_{G} (LC1 + LC116) + γ_{Q} (LC118 + LC120) + γ_{Qo} LC2
73	CO73	Max	11.810			γ_{G} (LC1 + LC115) + γ_{Q} LC120 + γ_{Q0} LC2
74	CO74	Max	11.810			γ _G (LC1 + LC117) + γ _Q (LC119 + LC120) + γ _{Qo} LC2
75	CO75	Max	11.810			γ _G (LC1 + LC117) + γ _Q (LC119 + LC121) + γ _{Qo} LC2
76	CO76	Max	11.810			γ _G (LC1 + LC117) + γ _Q (LC119 + LC122)
717	COX	Max	12.560			γ _G (LC1 + LC124) + γ _Q (LC126 + LC128) + γ _{Qo} LC2
78	C078	Max	12.560			γ _G (LC1 + LC123) + γ _Q LC128 + γ _{Qo} LC2
79	CO79	Max	12.560			γ _G (LC1 + LC125) + γ _Q (LC127 + LC128) + γ _{Qo} LC2
80	CØ80	Max	12.560			γ _G (LC1 + LC125) + γ _Q (LC127 + LC129) + γ _{Qo} LC2
81	CO81	Max	12.560			$\gamma_{\rm G}$ (LC1 + LC125) + $\gamma_{\rm Q}$ (LC127 + LC130)
82	0082	Max	13.310			$\gamma_{\rm G}$ (LC1 + LC132) + $\gamma_{\rm Q}$ (LC134 + LC136) + $\gamma_{\rm Qo}$ LC2
83	C083	Max	13.310			$\gamma_{\rm G}$ (LC1 + LC131) + $\gamma_{\rm Q}$ LC136 + $\gamma_{\rm Q_0}$ LC2
04	C064	Max	13.310			$\gamma_{\rm G}$ (LC1 + LC133) + $\gamma_{\rm Q}$ (LC135 + LC136) + $\gamma_{\rm Q_0}$ LC2
86	0086	Max	13.310			$\gamma_{\rm G}$ (LC1 + LC133) + $\gamma_{\rm Q}$ (LC135 + LC137) + $\gamma_{\rm Q_0}$ LC2
87	0087	May	14.060			$\gamma_{\rm G}$ (LC1 + LC133) + $\gamma_{\rm Q}$ (LC133 + LC133)
88	CO88	Max	14.060			$y_{\rm G}$ (201 + 20140) + $y_{\rm G}$ (20142 + 20144) + $y_{\rm G}$ 202
89	CO89	Max	14.060			$y_{G}(LC1 + LC141) + y_{O}(LC143 + LC144) + y_{O}LC2$
90	CO90.	Max	14.060			γ_{G} (LC1 + LC141) + γ_{O} (LC143 + LC145) + γ_{OO} LC2
91	CO91 /	Max	14.060			γ_{G} (LC1 + LC141) + γ_{Q} (LC143 + LC146)
92	CO92	Max	14.810			γ_{G} (LC1 + LC148) + γ_{Q} (LC150 + LC152) + $\gamma_{Q_{Q}}$ LC2
93	CO93	Max	14.810			γ _G (LC1 + LC147) + γ _Q LC152 + γ _{Qo} LC2
94	CO94	Max	14.810			γ _G (LC1 + LC149) + γ _Q (LC151 + LC152) + γ _{Qo} LC2
95	CO95	Max	14.810	\triangleright		_{γG} (LC1 + LC149) + _{γQ} (LC151 + LC153) + _{γQo} LC2
96	CO96	Max	14.810			γ _G (LC1 + LC149) + γ _Q (LC151 + LC154)
97	CO97	Max	15.560			γ_{G} (LC1 + LC156) + γ_{Q} (LC158 + LC160) + γ_{Qo} LC2
98	CO98	Max 🚫	15.560			γ_{G} (LC1 + LC155) + γ_{Q} LC160 + γ_{Qo} LC2
99	CO99	Max	15.560			$\gamma_{\rm G}$ (LC1 + LC157) + $\gamma_{\rm Q}$ (LC159 + LC160) + $\gamma_{\rm Qo}$ LC2
100	CO100	Max	15.560			$\gamma_{\rm G}$ (LC1 + LC157) + $\gamma_{\rm Q}$ (LC159 + LC161) + $\gamma_{\rm Qo}$ LC2
101	CO101	Max	15.560			γ_{G} (LC1 + LC157) + γ_{Q} (LC159 + LC162)
102	CO102	Max	16.310		K	$\gamma_{\rm G}$ (LC1 + LC164) + $\gamma_{\rm Q}$ (LC100 + LC106) + $\gamma_{\rm Q_0}$ LC2
103	CO103	Max	16.310		\triangleright	$\gamma_{\rm G}$ (LC1 + LC105) + $\gamma_{\rm Q}$ LC106 + $\gamma_{\rm Q_0}$ LC2
104	CO104	Max	16 310		Ť	γ_{Q} (LC1 + LC165) + γ_{Q} (LC167 + LC169) + $\gamma_{Q_{0}}$ LC2
106	CO106	Max	16.310			$y_{\rm Q}$ (LC1 + LC165) + $y_{\rm Q}$ (LC167 + LC170)
107	CO107	Max	17.060	($y_{\rm G}$ (1 C1 + 1 C172) + $y_{\rm G}$ (1 C174 + 1 C176) + $y_{\rm G}$ (1 C2
108	CO108	Max	17.060	5	0	$y_{G}(LC1 + LC171) + y_{G}(LC176 + y_{G} LC2)$
109	CO109	Max	17.060			γ_{G} (LC1 + LC173) + γ_{O} (LC175 + LC176) + γ_{OO} LC2
110	CO110	Max	17.060			γ_{G} (LC1 + LC173) + γ_{Q} (LC175 + LC177) + $\gamma_{Q_{Q}}$ LC2
111	CO111	Max	17.060			γ _G (LC1 + LC173) + γ _Q (LC175 + LC178)
112	CO112	Max	17.810			γ _G (LC1 + LC180) + γ _Q (LC182 + LC184) + γ _{Qo} LC2
113	CO113	Max	17.810			γ _G (LC1 + LC179) + γ _Q LC184 + γ _{Qo} LC2
114	CO114	Max	17.810			γ _G (LC1 + LC181) + γ _Q (LC183 + LC184) + γ _{Qo} LC2
115	CO115	Max	17.810			γ _G (LC1 + LC181) + γ _Q (LC183 + LC185) + γ _{Qo} LC2
116	CO116	Max	17.810			γ _G (LC1 + LC181) + γ _Q (LC183 + LC186)
117	CO117	Max	18.560			γ _G (LC1 + LC188) + γ _Q (LC190 + LC192) + γ _{Qo} LC2
118	CO118	Max	18.560		/	$\gamma_{\rm G}$ (LC1 + LC187) + $\gamma_{\rm Q}$ LC192 + $\gamma_{\rm Qo}$ LC2
119	CO119	Max	18.560		/	$\gamma_{G}(LC1 + LC189) + \gamma_{Q}(LC191 + LC192) + \gamma_{Q_0}LC2$
120	CO120	Max	10.000			$\gamma_{G}(LC1 + LC189) + \gamma_{Q}(LC191 + LC193) + \gamma_{Q_{0}}LC2$
121	CO121	Max	10.300			$\gamma_{G}(1C1 + 1C196) + \gamma_{Q}(1C191 + 1C194)$
123	CO123	Max	19,310			$y_{G}(1C1 + 1C195) + y_{G}(1C0196) + 10200) + y_{G}(1C2$
124	CO124	Max	19.310			vc (LC1 + LC197) + vo (LC199 + LC200) + vo LC2
125	CO125	Max	19.310			γ_{G} (LC1 + LC197) + γ_{Q} (LC199 + LC201) + γ_{Q0} LC2
126	CO126	Max	19.310			γ _G (LC1 + LC197) + γ _Q (LC199 + LC202)
127	CO127	Max	20.060			γ _G (LC1 + LC204) + γ _Q (LC206 + LC208) + γ _{Qo} LC2
128	CO128	Max	20.060			γ_{G} (LC1 + LC203) + γ_{Q} LC208 + γ_{Qo} LC2
129	CO129	Max	20.060			γ _G (LC1 + LC205) + γ _Q (LC207 + LC208) + γ _{Qo} LC2
130	CO130	Max	20.060			$\gamma_{\rm G}$ (LC1 + LC205) + $\gamma_{\rm Q}$ (LC207 + LC209) + $\gamma_{\rm Qo}$ LC2
131	CO131	Max	20.060			$\gamma_{\rm G}$ (LC1 + LC205) + $\gamma_{\rm Q}$ (LC207 + LC210) ()
132	CO132	Max	20.810			$\gamma_{\rm G}$ (LC1 + LC212) + $\gamma_{\rm Q}$ (LC214 + LC216) + $\gamma_{\rm Q_0}$ LC2
133	CO133	Max	20.810			γ_{G} (LC1 + LC211) + γ_{Q} LC216 + $\gamma_{Q_{Q}}$ LC2
134	CO134 CO135	Мах	20.810			γ_{G} (LC1 + LC213) + γ_{Q} (LC215 + LC216) + $\gamma_{Q_{Q_{Q_{Q_{Q_{Q_{Q_{Q_{Q_{Q_{Q_{Q_{Q_$
135	CO136	Max	20.010			$\gamma_{G}(LOT + LO213) + \gamma_{Q}(LO213 + LO217) + \gamma_{Q_{0}}LO2$
130	CO137	Max	20.010			$\gamma_{G}(1C1 + 1C210) + \gamma_{G}(1C2210 + 1C2210)$
138	CO138	Max	21.500			$y_{C}(LC1 + LC219) + y_{0}(LC224 + y_{0} + C24) + y_{0}(LC24) + y_{0}($
139	CO139	Max	21.560			$y_{G}(LC1 + LC221) + y_{O}(LC223 + LC224) + y_{O} + LC2$
140	CO140	Max	21.560			γ _G (LC1 + LC221) + γ _O (LC223 + LC225) + γ _O LC2
141	CO141	Max	21.560			γ _G (LC1 + LC221) + γ _Q (LC223 + LC226)
142	CO142	Max	22.310			γ_{G} (LC1 + LC228) + γ_{Q} (LC230 + LC232) + γ_{Qo} LC2
143	CO143	Max	22.310			γ _G (LC1 + LC227) + γ _Q LC232 + γ _Q LC2
144	CO144	Max	22.310			γ _G (LC1 + LC229) + γ _Q (LC231 + LC232) + γ _{Qo} LC2
145	CO145	Max	22.310			γ _G (LC1 + LC229) + γ _Q (LC231 + LC233) + γ _{Qo} LC2
146	CO146	Max	22.310			γ _G (LC1 + LC229) + γ _Q (LC231 + LC234)
147	CO147	Max	23.060			γ _G (LC1 + LC236) + γ _Q (LC238 + LC240) + γ _{Qo} LC2

Trg dr. Milana Jeliæa br. 15, 74480 Modrièa

Sheet: 1
CRANEWAY

12.3.2020.

6/12

Project: Projects

Model: Kranska staza

Date:

Page:

<	~ ~	CO		Location	of 1st Wheel of (Crane [m]	Load
	No	No.	Girder	Crane 1	Crane 2	Crane 3	Description
/	_148	CO148	Max	23.060			γ_{G} (LC1 + LC235) + γ_{Q} LC240 + γ_{Qo} LC2
/	149	CO149	Max	23.060			γ_{G} (LC1 + LC237) + γ_{Q} (LC239 + LC240) + γ_{Qo} LC2
	150	CO150	Max	23.060			γ_{G} (LC1 + LC237) + γ_{Q} (LC239 + LC241) + γ_{Qo} LC2
	151	CO151	Max	23.060			$\gamma_{\rm G}$ (LC1 + LC237) + $\gamma_{\rm Q}$ (LC239 + LC242)
	152	CO152	Max	23.810			$\gamma_{\rm G}$ (LC1 + LC244) + $\gamma_{\rm Q}$ (LC246 + LC248) + $\gamma_{\rm Qo}$ LC2
/	153	CO153	Max	23.810			$\gamma_{\rm G}$ (LC1 + LC243) + $\gamma_{\rm Q}$ LC248 + $\gamma_{\rm Q_0}$ LC2
	155	CO155	Max	23.810			$\gamma_{\rm G}$ (LC1 + LC245) + $\gamma_{\rm Q}$ (LC247 + LC248) + $\gamma_{\rm Q0}$ LC2
(156	CO156	Max	23.810			$\gamma_{\rm G}$ (LC1 + LC245) + $\gamma_{\rm Q}$ (LC247 + LC250)
/	157	ÇØ157	Max	24.560			γ_{G} (LC1 + LC252) + γ_{Q} (LC254 + LC256) + γ_{Q0} LC2
_	158	CO158	Max	24.560			γ_{G} (LC1 + LC251) + γ_{Q} LC256 + γ_{Qo} LC2
	159	CO159	Max	24.560			γ_{G} (LC1 + LC253) + γ_{Q} (LC255 + LC256) + γ_{Qo} LC2
	160	CO160	Max	24.560			$\gamma_{\rm G}$ (LC1 + LC253) + $\gamma_{\rm Q}$ (LC255 + LC257) + $\gamma_{\rm Qo}$ LC2
	162	CO162	Max	24.300			$\gamma_{\rm G}$ (LC1 + LC253) + $\gamma_{\rm Q}$ (LC253 + LC258)
	163	CO163	Max	25.310			$\gamma_{\rm G}$ (LC1 + LC259) + $\gamma_{\rm O}$ LC264 + $\gamma_{\rm Op}$ LC2
	164	CO164	Max	25.310			γ _G (LC1 + LC261) + γ _Q (LC263 + LC264) + γ _{Qo} LC2
	165	CO165	Max	25.310			γ _G (LC1 + LC261) + γ _Q (LC263 + LC265) + γ _{Qo} LC2
	166	CQ166	Max	25.310			γ_{G} (LC1 + LC261) + γ_{Q} (LC263 + LC266)
	167	CO167	Max	26.060			$\gamma_{\rm G}$ (LC1 + LC268) + $\gamma_{\rm Q}$ (LC270 + LC272) + $\gamma_{\rm Qo}$ LC2
	160	CO160	Max	26.060			$\gamma_{\rm G}$ (LC1 + LC267) + $\gamma_{\rm Q}$ LC272 + $\gamma_{\rm Q_0}$ LC2
	170	CO170	Max	26.060			$y_{G}(LC1 + LC269) + y_{O}(LC271 + LC272) + y_{O2}LC2$
	171	CO171	Max	26.060			γ_{G} (LC1 + LC269) + γ_{Q} (LC271 + LC274)
	172	CO172	Max	26.810	\triangleright		γ _G (LC1 + LC276) + γ _Q (LC278 + LC280) + γ _{Qo} LC2
	173	CO173	Max	26.810			γ_{G} (LC1 + LC275) + γ_{Q} LC280 + γ_{Qo} LC2
	174	CO174	Max	26.810			$\gamma_{\rm G}$ (LC1 + LC277) + $\gamma_{\rm Q}$ (LC279 + LC280) + $\gamma_{\rm Qo}$ LC2
	1/5	CO175	Max	26.810			γ_{G} (LC1 + LC277) + γ_{Q} (LC279 + LC281) + $\gamma_{Q_{0}}$ LC2
	170	CO177	Max	20.810			$\gamma_{\rm G}$ (LC1 + LC284) + $\gamma_{\rm Q}$ (LC286 + LC288) + $\gamma_{\rm Qe}$ LC2
	178	CO178	Max	27.560			γ_{G} (LC1 + LC283) + γ_{Q} LC288 + γ_{QQ} LC2
	179	CO179	Max	27.560			γ_{G} (LC1 + LC285) + γ_{Q} (LC287 + LC288) + γ_{Q0} LC2
	180	CO180	Max	27.560			γ_{G} (LC1 + LC285) + γ_{Q} (LC287 + LC289) + γ_{Qo} LC2
	181	CO181	Max	27.560		\checkmark	$\gamma_{\rm G}$ (LC1 + LC285) + $\gamma_{\rm Q}$ (LC287 + LC290)
	183	CO182	Max	28.310			$\gamma_{\rm G}$ (LC1 + LC292) + $\gamma_{\rm Q}$ (LC294 + LC296) + $\gamma_{\rm Q_0}$ LC2
	184	CO184	Max	28.310	(γ_{G} (LC1 + LC293) + γ_{Q} (LC295 + LC296) + $\gamma_{Q_{0}}$ LC2
	185	CO185	Max	28.310	5	1	γ _G (LC1 + LC293) + γ _Q (LC295 + LC297) + γ _{Qo} LC2
	186	CO186	Max	28.310			γ _G (LC1 + LC293) + γ _Q (LC295 + LC298)
	187	CO187	Max	29.060			γ_{G} (LC1 + LC300) + γ_{Q} (LC302 + LC304) + $\gamma_{Q_{0}}$ LC2
	189	CO189	Max	29.060			$\gamma_{\rm G}$ (LC1 + LC299) + $\gamma_{\rm Q}$ LC304 + $\gamma_{\rm Q_0}$ LC2 $\gamma_{\rm G}$ (LC1 + LC301) + $\gamma_{\rm Q}$ (LC303 + LC304) + $\gamma_{\rm Q_0}$ LC2
	190	CO190	Max	29.060			γ_{G} (LC1 + LC301) + γ_{Q} (LC303 + LC305) + $\gamma_{Q_{0}}$ LC2
	191	CO191	Max	29.060			YG (LC1 + LC301) + γ _Q (LC303 + LC306)
	192	CO192	Max	29.810			γ_{G} (LC1 + LC308) + γ_{Q} (LC310 + LC312) + $\gamma_{Q_{0}}$ LC2
	193	CO193	Max	29.810			$\gamma_{\rm G}$ (LC1 + LC307) + $\gamma_{\rm Q}$ LC312 + $\gamma_{\rm Qo}$ LC2
	194	CO194	Max	29.810			$\gamma_{G}(LC1 + LC309) + \gamma_{Q}(LC311 + LC312) + \gamma_{Q_{0}}LC2$
	196	CO196	Max	29.810			γ_{G} (LC1 + LC309) + γ_{Q} (LC311 + LC314)
	197	CO197	Max	30.560			γ _G (LC1 + LC316) + γ _Q (LC318 + LC320) + γ _{Qo} LC2
	198	CO198	Max	30.560			γ_{G} (LC1 + LC315) + γ_{Q} LC320 + $\gamma_{Q_{0}}$ LC2
	199	CO199	Max	30.560			γ_{G} (LC1 + LC317) + γ_{Q} (LC319 + LC320) + $\gamma_{Q_{Q}}$ LC2
	200	CO200	Max	30.560			$\gamma_{G}(LC1 + LC317) + \gamma_{Q}(LC319 + LC322)$
	202	CO202	Max	31.310			γ_{G} (LC1 + LC324) + γ_{Q} (LC326 + LC328) + γ_{Q0} LC2
	203	CO203	Max	31.310			γ _G (LC1 + LC323) + γ _Q LC328 + γ _{Qo} LC2
	204	CO204	Max	31.310			γ_{G} (LC1 + LC325) + γ_{Q} (LC327 + LC328) + $\gamma_{Q_{0}}$ LC2
	205	CO205	Max	31.310			$\gamma_{\rm G}$ (LC1 + LC325) + $\gamma_{\rm Q}$ (LC327 + LC329) + $\gamma_{\rm Qo}$ LC2
	206	CO206	Max	31.310			$\gamma_{\rm G}$ (LC1 + LC322) + $\gamma_{\rm Q}$ (LC327 + LC330) $\gamma_{\rm G}$ (LC1 + LC332) + $\gamma_{\rm Q}$ (LC324 + LC336) + $\gamma_{\rm Q}$ LC2
	208	CO208	Max	32.060			γ_{G} (LC1 + LC331) + γ_{Q} LC336 + γ_{Q0} LC2
	209	CO209	Max	32.060			γ _G (LC1 + LC333) + γ _Q (LC335 + LC336) + _{ζγ_{Qo}} LC2
	210	CO210	Max	32.060			γ _G (LC1 + LC333) + γ _Q (LC335 + LC337) + γ _{Qo} LC2
	211	CO211	Max	32.060			$\gamma_{\rm G}$ (LC1 + LC333) + $\gamma_{\rm Q}$ (LC335' + LC338)
	212	CO212	Max	32.810			γ_{G} (LC1 + LC340) + γ_{Q} (LC342 + LC344) + $\gamma_{Q_{0}}$ LC2
	213	CO214	Max	32.810			γ_{G} (LC1 + LC341) + γ_{O} (LC343 + LC344) + γ_{O} LC2
	215	CO215	Max	32.810			γ_{G} (LC1 + LC341) + γ_{Q} (LC343 + LC345) + $\gamma_{Q_{0}}$ LC2
	216	CO216	Max	32.810			γ _G (LC1 + LC341) + γ _Q (LC343 + LC346)
	217	CO217	Max	33.560			γ_{G} (LC1 + LC348) + γ_{Q} (LC350 + LC352) + $\gamma_{Q_{0}}$ LC2
	218	CO218	Max	33.560			γ_{G} (LC1 + LC34/) + γ_{Q} LC352 + $\gamma_{Q_{0}}$ LC2
	220	CO220	Max	33.560			γ_{G} (LC1 + LC349) + γ_{O} (LC351 + LC353) + γ_{O} LC2
	221	CO221	Max	33.560			γ _G (LC1 + LC349) + γ _Q (LC351 + LC354)
	222	CO222	Max	34.310			γ_{G} (LC1 + LC356) + γ_{Q} (LC358 + LC360) + $\gamma_{Q_{0}}$ LC2
	223	CO223	Max	34.310			$\gamma_{\rm G}$ (LC1 + LC355) + $\gamma_{\rm Q}$ LC360 + $\gamma_{\rm Qo}$ LC2
	224	00224	wax	34.310			γ _G (LUT + LU357) + γ _Q (LU359 + LU360) + γ _{Q0} LU2

Trg dr. Milana Jeliæa br. 15, 74480 Modrièa

CRANEWAY

12.3.2020.

7/12

Project: Projects

Model: Kranska staza

Date:

Page:

	~ ~	CO		Location	of 1st Wheel of (Crane [m]	Load			
	No,	No.	Girder	Crane 1	Crane 2	Crane 3	Description			
1	225	CO225	Max	34.310			γ_{G} (LC1 + LC357) + γ_{O} (LC359 + LC361) + γ_{OO} LC2			
	226	CO226	Max	34,310			γ_{c} (LC1 + LC357) + γ_{c} (LC359 + LC362)			
	227	CO227	Max	35.060			γ_{G} (LC1 + LC364) + γ_{Q} (LC366 + LC368) + γ_{QQ} LC2			
	228	CO228	Max	35.060			γ_{G} (LC1 + LC363) + γ_{Q} LC368 + γ_{QQ} LC2			
	229 /	CO229	Max	35.060			γ _G (LC1 + LC365) + γ _Q (LC367 + LC368) + γ _{Qo} LC2			
	230	CO230	Max	35.060			γ_{G} (LC1 + LC365) + γ_{Q} (LC367 + LC369) + γ_{Qo} LC2			
	231	CO231	Max	35.060			γ _G (LC1 + LC365) + γ _Q (LC367 + LC370)			
	232	CØ232	Max	35.810			γ _G (LC1 + LC372) + γ _Q (LC374 + LC376) + γ _{Qo} LC2			
	233	CO233	Max	35.810			γ _G (LC1 + LC371) + γ _Q LC376 + γ _{Qo} LC2			
	234	CO234	Max	35.810			$\gamma_{\rm G}$ (LC1 + LC373) + $\gamma_{\rm Q}$ (LC375 + LC376) + $\gamma_{\rm Qo}$ LC2			
	235	CO235	Max	35.810			$\gamma_{\rm G}$ (LC1 + LC373) + $\gamma_{\rm Q}$ (LC375 + LC377) + $\gamma_{\rm Qo}$ LC2			
	236	CO236	Max	35.810			$\gamma_{\rm G}$ (LC1 + LC373) + $\gamma_{\rm Q}$ (LC375 + LC378)			
	234	C0237	Max	36.560			$\gamma_{\rm G}$ (LC1 + LC380) + $\gamma_{\rm Q}$ (LC382 + LC384) + $\gamma_{\rm Qo}$ LC2			
	230	CO230	Max	30.300			$\gamma_{\rm G}$ (LC1 + LC3/9) + $\gamma_{\rm Q}$ LC304 + $\gamma_{\rm Q0}$ LC2			
	239	00239	Max	36,560			$\gamma_{\rm G}$ (LC1 + LC381) + $\gamma_{\rm Q}$ (LC383 + LC384) + $\gamma_{\rm Q0}$ LC2			
	240	00240	Max	36,560			$\gamma_{\rm G}$ (LC1 + LC381) + $\gamma_{\rm Q}$ (LC383 + LC386) + $\gamma_{\rm Q_0}$ LC2			
	241	60241	Max	37 310			$y_{G}(1C1 + 1C388) + y_{G}(1C390 + 1C392) + y_{G}(1C2$			
	243	CO243	Max	37 310			$y_{G}(1C1 + 1C387) + y_{G}(20000 + 10002) + y_{G}(2020)$			
	244	CO244	Max	37.310			y_{G} (LC1 + LC389) + y_{G} (LC391 + LC392) + y_{G} LC2			
	245	CO245	Max	37.310			y_{G} (LC1 + LC389) + y_{O} (LC391 + LC393) + y_{O0} LC2			
	246	CO246	Max	37.310			γ_{G} (LC1 + LC389) + γ_{Q} (LC391 + LC394)			
	247	CO247	Max	38,060			γ_{G} (LC1 + LC396) + γ_{Q} (LC398 + LC400) + γ_{Q0} LC2			
	248	CO248	Max	38.060			$\gamma_{\rm G}$ (LC1 + LC395) + $\gamma_{\rm Q}$ LC400 + $\gamma_{\rm Qo}$ LC2			
	249	CO249	Max	38.060	\triangleright		_{γG} (LC1 + LC397) + _{γQ} (LC399 + LC400) + _{γQo} LC2			
	250	CO250	Max	38.060			γ _G (LC1 + LC397) + γ _Q (LC399 + LC401) + γ _{Qo} LC2			
	251	CO251	Max	38.060			γ _G (LC1 + LC397) + _{γQ} (LC399 + LC402)			
	252	CO252	Max 🖯	38.810			γ_{G} (LC1 + LC404) + γ_{Q} (LC406 + LC408) + γ_{Qo} LC2			
	253	CO253	Max	38.810	/ /		$\gamma_{\rm G}$ (LC1 + LC403) + $\gamma_{\rm Q}$ LC408 + $\gamma_{\rm Qo}$ LC2			
	254	CO254	Max	38.810			$\gamma_{\rm G}$ (LC1 + LC405) + $\gamma_{\rm Q}$ (LC407 + LC408) + $\gamma_{\rm Qo}$ LC2			
	255	CO255	Max	38.810			$\gamma_{\rm G}$ (LC1 + LC405) + $\gamma_{\rm Q}$ (LC407 + LC409) + $\gamma_{\rm Qo}$ LC2			
	250	CO256	Max	38.810		K	$\gamma_{\rm G}$ (LC1 + LC405) + $\gamma_{\rm Q}$ (LC407 + LC410)			
	257	CO257	Max	39.190		\triangleright	$\gamma_{\rm G}$ (LC1 + LC412) + $\gamma_{\rm Q}$ (LC414 + LC410) + $\gamma_{\rm Q_0}$ LC2			
	250	CO258	Max	39.190			γ_{G} (LC1 + LC411) + γ_{Q} LC415 + LC416) + $\gamma_{Q_{0}}$ LC2			
	260	CO260	Max	39 190			$y_{Q}(1C1 + 1C413) + y_{Q}(1C415 + 1C417) + y_{Q}(1C2$			
	261	CO261	Max	39,190	($y_{G}(LC1 + LC413) + y_{O}(LC415 + LC418)$			
	262	CO262	Min	1.310	5	Ω	y_{G} (LC1 + LC420) + y_{O} (LC422 + LC424) + y_{OO} LC2			
	263	CO263	Min	1.310			γ_{G} (LC1 + LC419) + γ_{Q} LC424 + γ_{QQ} LC2			
	264	CO264	Min	1.310			γ_{G} (LC1 + LC421) + γ_{Q} (LC423 + LC424) + γ_{Qo} LC2			
	265	CO265	Min	1.310			γ _G (LC1 + LC421) + γ _Q (LC423 + LC425) + γ _{Qo} LC2			
	266	CO266	Min	1.310			γ _G (LC1 + LC421) + γ _Q (LC423 + LC426)			
	267	CO267	Min	2.060			γ _G (LC1 + LC428) + γ _Q (LC430 + LC432) + γ _{Qo} LC2			
	268	CO268	Min	2.060			γ _G (LG) + LC427) + γ _Q LC432 + γ _{Qo} LC2			
	269	CO269	Min	2.060			γ_{G} (LC1 + LC429) + γ_{Q} (LC431 + LC432) + γ_{Qo} LC2			
	270	CO270	Min	2.060			γ_{G} (LC1 + LC429) + γ_{Q} (LC431 + LC433) + γ_{Qo} LC2			
	2/1	CO2/1	Min	2.060			γ_{G} (LC1 + LC429) + γ_{Q} (LC431 + LC434)			
	272	CO272	Min	2.810		/	$\gamma_{\rm G}$ (LC1 + LC436) + $\gamma_{\rm Q}$ (LC438 + LC440) + $\gamma_{\rm Q0}$ LC2			
	273	CO273	Min	2.010		/	γ_{G} (LC1 + LC435) + γ_{Q} LC440 + γ_{Q0} LC2			
	274	CO274	Min	2.810			$\gamma_{Q}(LC1 + LC437) + \gamma_{Q}(LC439 + LC440) + \gamma_{Q_0}LC2$			
	276	CO276	Min	2.010			$r_{Q0}(101 + 10437) + r_{Q0}(10433 + 10447) + r_{Q0}(102$			
	277	CO277	Min	3.560			$v_{\rm C}$ (LC1 + LC444) + $v_{\rm O}$ (LC446 + LC448) + $v_{\rm O}$ LC2			
	278	CO278	Min	3.560			γ _G (LC1 + LC443) + γ _Q LC448 + γ _{Q0} LC2			
	279	CO279	Min	3.560			$\gamma_{\rm G}$ (LC1 + LC445) + $\gamma_{\rm Q}$ (LC447 + LC448) + $\gamma_{\rm Qo}$ LC2			
	280	CO280	Min	3.560			γ _G (LC1-+ LC445) + γ _Q (LC447 + LC449) + γ _{Qo} LC2			
	281	CO281	Min	3.560			γ_{G} (LC1 + LC445) + γ_{Q} (LC447 + LC450)			
	282	CO282	Min	4.310			γ_{G} (LC1 + LC452) + γ_{Q} (LC454 + LC456) + $\gamma_{Q_{0}}$ LC2			
	283	CO283	Min	4.310			$\gamma_{\rm G}$ (LC1 + L'C451) + $\gamma_{\rm Q}$ LC456 + $\gamma_{\rm Qo}$ LC2			
	284	CO284	Min	4.310			$\gamma_{\rm G}$ (LC1 + LC453) * $\gamma_{\rm Q}$ (LC455 + LC456) * $\gamma_{\rm Qo}$ LC2			
	285	CO285	Min	4.310			γ_{G} (LC1 + LC453) + γ_{Q} (LC455 + LC457) + $\gamma_{Q_{0}}$ LC2			
	200	CO200	Min	4.310			$\gamma_{G}(LOT + LO400) + \gamma_{Q}(LO400 + LO400)$			
	207	CO288	Min	5.060			$\gamma_{G}(1C1 + 1C450) + \gamma_{G}(1C464 + \gamma_{G} + C2)$			
	289	CO289	Min	5 060			y_{c} (LC1 + LC461) + y_{c} (LC463 + LC464) + y_{c-1} C2			
	290	CO290	Min	5.060			y_{G} (LC1 + LC461) + y_{G} (LC463 + LC465) + y_{G} LC2			
	291	CO291	Min	5.060			γ _G (LC1 + LC461) + γ _Q (LC463 + LC466)			
	292	CO292	Min	5.810			γ _G (LC1 + LC468) + γ _Q (LC470 + LC472) + γ _{Op} LC2			
	293	CO293	Min	5.810			γ _G (LC1 + LC467) + γ _Q LC472 + γ _{Q0} LC2			
	294	CO294	Min	5.810			γ _G (LC1 + LC469) + γ _Q (LC471 + LC472) + γ _{Q0} LC2			
	295	CO295	Min	5.810			γ _G (LC1 + LC469) + γ _Q (LC471 + LC473) +/γ _{Qo} LC2			
	296	CO296	Min	5.810			γ _G (LC1 + LC469) + γ _Q (LC471 + LC474)			
	297	CO297	Min	6.560			γ _G (LC1 + LC476) + γ _Q (LC478 + LC480) + γ _{Qo} LC2			
	298	CO298	Min	6.560			γ _G (LC1 + LC475) + γ _Q LC480 + γ _{Qo} LC2			
	299	CO299	Min	6.560			γ _G (LC1 + LC477) + γ _Q (LC479 + LC480) + γ _{Qo} LC2			
	300	00300	Min	6.560			γ_{G} (LC1 + LC477) + γ_{Q} (LC479 + LC481) + $\gamma_{Q_{0}}$ LC2			
	301	00301	IVIIN	6.560	1		γ _G (LUI + LU4//) + γ _Q (LU4/9 + LU482)			

Trg dr. Milana Jeliæa br. 15, 74480 Modrièa

CRANEWAY

8/12

1	
Droiget	Dreisete
Project.	Projects
~	,

Model: Kranska staza

Date: 12.3.2020.

Page:

	СО		Location of 1st Wheel of Crane [m]			Load			
No.	No.	Girder	Crane 1	Crane 2	Crane 3	Description			
302	CO302	Min	7.310	-		ν _G (LC1 + LC484) + ν _O (LC486 + LC488) + ν _{OP} LC2			
303	CO303	Min	7 310			$v_{0}(C1 + C483) + v_{0} C488 + v_{0} C2$			
304	CO304	Min	7.310			γ_{G} (LC1 + LC485) + γ_{Q} (LC487 + LC488) + $\gamma_{Q_{0}}$ LC2			
305	CO305	Min	7.310			γ_{G} (LC1 + LC485) + γ_{Q} (LC487 + LC489) + γ_{QQ} LC2			
,306 /	CO306	Min	7.310			$\gamma_{\rm G}$ (LC1 + LC485) + $\gamma_{\rm Q}$ (LC487 + LC490)			
307	CQ307	Min	8.060			$\gamma_{\rm G}$ (LC1 + LC492) + $\gamma_{\rm Q}$ (LC494 + LC496) + $\gamma_{\rm Qo}$ LC2			
308	CO308	Min	8.060			γ _G (LC1 + LC491) + γ _Q LC496 + γ _{Qo} LC2			
309	CØ309	Min	8.060			γ _G (LC1 + LC493) + γ _Q (LC495 + LC496) + γ _{Qo} LC2			
310	CO310	Min	8.060			γ_{G} (LC1 + LC493) + γ_{Q} (LC495 + LC497) + γ_{Qo} LC2			
311	C0311	Min	8.060			$\gamma_{\rm G}$ (LC1 + LC493) + $\gamma_{\rm Q}$ (LC495 + LC498)			
312	00312	Min	8.810			$\gamma_{\rm G}$ (LC1 + LC500) + $\gamma_{\rm Q}$ (LC502 + LC504) + $\gamma_{\rm Qo}$ LC2			
313	00313	Min	8.810			$\gamma_{\rm G}$ (LC1 + LC499) + $\gamma_{\rm Q}$ LC504 + $\gamma_{\rm Q_0}$ LC2			
314	CO314	Min	0.010			$\gamma_{\rm G}$ (LC1 + LC501) + $\gamma_{\rm Q}$ (LC503 + LC504) + $\gamma_{\rm Q_0}$ LC2			
316	CO316	Min	8.810			$\gamma_{\rm G}$ (LC1 + LC501) + $\gamma_{\rm Q}$ (LC503 + LC503) + $\gamma_{\rm Q_0}$ LC2			
317	00317	Min	9.560			$y_{\rm G}$ (1 C1 + 1 C508) + $y_{\rm G}$ (1 C510 + 1 C512) + $y_{\rm G}$ 1 C2			
318	CO318	Min	9,560			$y_{\rm G}$ (LC1 + LC507) + $y_{\rm G}$ (LC512 + $y_{\rm Op}$ LC2			
319	CO319	Min	9.560			y_{G} (LC1 + LC509) + y_{O} (LC511 + LC512) + y_{OO} LC2			
320	CQ320	Min	9.560			γ_{G} (LC1 + LC509) + γ_{Q} (LC511 + LC513) + $\gamma_{Q_{Q}}$ LC2			
321	CO321	Min	9.560			γ _G (LC1 + LC509) + γ _Q (LC511 + LC514)			
322	CO322 ~ /	Min	10.310			γ _G (LC1 + LC516) + γ _Q (LC518 + LC520) + γ _{Qo} LC2			
323	CO323	Min	10.310			γ _G (LC1 + LC515) + γ _Q LC520 + γ _{Qo} LC2			
324	CO324	Min	/10,310			γ _G (LC1 + LC517) + γ _Q (LC519 + LC520) + γ _{Qo} LC2			
325	CO325	Min	V 10.310			γ_{G} (LC1 + LC517) + γ_{Q} (LC519 + LC521) + γ_{Qo} LC2			
326	CO326	Min	10.310	1		$\gamma_{\rm G}$ (LC1 + LC517) + $\gamma_{\rm Q}$ (LC519 + LC522)			
327	CO327	Min	11.060			$\gamma_{\rm G}$ (LC1 + LC524) + $\gamma_{\rm Q}$ (LC526 + LC528) + $\gamma_{\rm Qo}$ LC2			
328	CO328	Min	17.060			γ_{G} (LC1 + LC523) + γ_{Q} LC528 + $\gamma_{Q_{0}}$ LC2			
329	CO329	Min	11.060			$\gamma_{\rm G}$ (LC1 + LC525) + $\gamma_{\rm Q}$ (LC527 + LC526) + $\gamma_{\rm Q_0}$ LC2			
331	CO331	Min	11.000			$\gamma_{\rm G}$ (LC1 + LC525) + $\gamma_{\rm Q}$ (LC527 + LC529) + $\gamma_{\rm Q_0}$ LC2			
332	CO332	Min	11/810			$y_{0}(1C1 + 1C532) + y_{0}(1C534 + 1C536) + y_{0}(1C2$			
333	CO333	Min	11.810			$y_{\rm G}$ (LC1 + LC531) + $y_{\rm O}$ LC536 + $y_{\rm Op}$ LC2			
334	CO334	Min	11.810		\wedge	γ_{G} (LC1 + LC533) + γ_{O} (LC535 + LC536) + γ_{OO} LC2			
335	CO335	Min	11.810		\searrow	γ_{G} (LC1 + LC533) + γ_{Q} (LC535 + LC537) + $\gamma_{Q_{Q}}$ LC2			
336	CO336	Min	11.810			γ _G (LC1 + LC533) + γ _Q (LC535 + LC538)			
337	CO337	Min	12.560	(γ_{G} (LC1 + LC540) + γ_{Q} (LC542 + LC544) + γ_{Qo} LC2			
338	CO338	Min	12.560	\subseteq	~	γ _G (LC1 + LC539) + γ _Q LC544 + γ _{Qo} LC2			
339	CO339	Min	12.560			γ_{G} (LC1 + LC541) + γ_{Q} (LC543 + LC544) + γ_{Qo} LC2			
340	CO340	Min	12.560			γ _G (LC1 + LC541) + γ _Q (LC543 + LC545) + γ _{Qo} LC2			
341	CO341	Min	12.560			$\gamma_{\rm G}$ (LC1 + LC541) + $\gamma_{\rm Q}$ (LC543 + LC546)			
342	CO342	IVIIN Mim	13.310			$\gamma_{\rm G}$ (LC1 + LC548) + $\gamma_{\rm Q}$ (LC550 + LC552) + $\gamma_{\rm Q_0}$ LC2			
343	CO343	Min	13.310			$\gamma_{G}(LC1 + LC547) + \gamma_{Q}(LC552 + \gamma_{Q_{0}}LC2)$			
344	CO345	Min	13.310			$\gamma_{\rm G}$ (LC1 + LC349) + $\gamma_{\rm Q}$ (LC331 + LC332) + $\gamma_{\rm Q0}$ LC2			
346	CO346	Min	13 310			$y_{0}(1 \text{ C}(1 + 1 \text{ C}(549)) + y_{0}(1 \text{ C}(551 + 1 \text{ C}(554))) + y_{0}(1 \text{ C}(551 + 1 \text{ C}(554)))$			
347	CO347	Min	14.060			$y_{G}(LC1 + LC556) + y_{G}(LC558 + LC560) + y_{O_{G}}LC2$			
348	CO348	Min	14.060			$\gamma_{\rm G}$ (LC1 + LC555) + $\gamma_{\rm O}$ LC560 + $\gamma_{\rm O0}$ LC2			
349	CO349	Min	14.060		/	γ _G (LC1 + LC557) + γ _Q (LC559 + LC560) + γ _{Q0} LC2			
350	CO350	Min	14.060		/	γ _G (LC1 + LC557) + γ _Q (LC559 + LC561) + γ _{Qo} LC2			
351	CO351	Min	14.060		(γ _G (LC1 + LC557) + γ _Q (LC559 + LC562)			
352	CO352	Min	14.810			γ _G (LC1 + LC564) + χ _Q (LC566 + LC568) + γ _{Qo} LC2			
353	CO353	Min	14.810			γ_{G} (LC1 + LC563) + γ_{Q} LC568 + $\gamma_{Q_{0}}$ LC2			
354	CO354	Min	14.810			$\gamma_{\rm G}$ (LC1 + LC565) + $\gamma_{\rm Q}$ (LC567 + LC568) + $\gamma_{\rm Qo}$ LC2			
355	00355	Min	14.810			$\gamma_{G}(LC1 + LC505) + \gamma_{Q}(LC567) + LC509) + \gamma_{Q_{0}}LC2$			
350	CO357	Min	14.810			γ_{G} (LC) + LC303) + γ_{O} (LC)07 + LC370)			
358	CO358	Min	15.560			$\gamma_{\rm C}(\rm LC1 + \rm LC571) + \gamma_{\rm Q}(\rm LC576 + \gamma_{\rm Q0} + \rm C2)$			
359	CO359	Min	15 560			$y_{\rm C}$ (LC1 + LC573) + $y_{\rm C}$ (LC575 + LC576) + $y_{\rm C}$ LC2			
360	CO360	Min	15.560			γ_{G} (LC1 + LC573) + γ_{Q} (LC575 + LC577) + $\gamma_{Q_{Q_{1}}}$ LC2			
361	CO361	Min	15.560			γ _G (LC1 + LC573) + γ _O (LC575 + LC578)			
362	CO362	Min	16.310			$\gamma_{\rm G}$ (LC1 + LC580) + $\gamma_{\rm Q}$ (LC582 + LC584) + $\gamma_{\rm Qo}$ LC2 ()			
363	CO363	Min	16.310			$\gamma_{\rm G}$ (LC1 + LC579) + $\gamma_{\rm Q}$ LC584 + $\gamma_{\rm Qo}$ LC2			
364	CO364	Min	16.310			γ _G (LC1 + LC581) + γ _Q (LC583 + LC584) + γ _{Q0} LC2			
365	CO365	Min	16.310			γ_{G} (LC1 + LC581) + γ_{Q} (LC583 + LC585) + $\gamma_{Q_{Q_{0}}}$ LC2			
366	CO366	Min	16.310			$\gamma_{\rm G}$ (LC1 + LC581) + $\gamma_{\rm Q}$ (LC583 + LC586)			
367	CO367	Min	17.060			γ_{G} (LC1 + LC588) + γ_{Q} (LC590 + LC592) + $\gamma_{Q_{0}}$ LC2			
368	00368	Min	17.060			γ_{G} (LC1 + LC587) + γ_{Q} LC592 + $\gamma_{Q_{Q}}$ LC2			
369	CO369	Min	17.060			γ_{G} (LC1 + LC589) + γ_{Q} (LC591 + LC592) + $\gamma_{Q_{0}}$ LC2			
370	CO370	Min	17.060			γ_{G} (LC1 + LC509) + γ_{Q} (LC391 + γ_{Q} (LC391) + $\gamma_{Q_{Q}}$ (LC2			
372	CO372	Min	17.000			γ_{G} (1 C1 + 1 C596) + γ_{G} (1 C598 + 1 C600) + γ_{G-1} C2			
373	CO373	Min	17.810			yg (LC1 + LC595) + yg (LC335 + LC600) + yg LC2			
374	CO374	Min	17.810			γ _G (LC1 + LC597) + γ _O (LC599 + LC600) + γ _O LC2			
375	CO375	Min	17.810			γ _G (LC1 + LC597) + γ _Q (LC599 + LC601) + γ _O LC2			
376	CO376	Min	17.810			γ _G (LC1 + LC597) + γ _Q (LC599 + LC602)			
377	CO377	Min	18.560			γ _G (LC1 + LC604) + γ _Q (LC606 + LC608) + γ _{Qo} LC2			
378	CO378	Min	18.560			γ _G (LC1 + LC603) + γ _Q LC608 + γ _{Qo} LC2			

CRANEWAY

9/12

1	
Drojoot	Drojooto
FILLEUL.	FIDJECIS
	,

Model: Kranska staza

Date: 12.3.2020.

Page:

	CO		Location of 1st Wheel of Crane [m]		Crane [m]	Load			
No.	No.	Girder	Crane 1	Crane 2	Crane 3	Description			
.379	CO379	Min	18 560	-		y_{C} (LC1 + LC605) + y_{C} (LC607 + LC608) + y_{C2} LC2			
380	CO380	Min	18 560			y_{0} (1 C1 + 1 C605) + y_{0} (1 C607 + 1 C609) + y_{0} 1 C2			
381	CO381	Min	18 560			$y_{\rm G}$ (LC1 + LC605) + $y_{\rm G}$ (LC607 + LC610)			
382	CO382	Min	19,310			$y_{\rm C}$ (LC1 + LC612) + $y_{\rm C}$ (LC614 + LC616) + $y_{\rm C2}$ LC2			
383	CO383	Min	19.310			$y_{\rm G}$ (LC1 + LC611) + $y_{\rm G}$ LC616 + $y_{\rm G}$ LC2			
384	CO384	Min	19.310			γ_{G} (LC1 + LC613) + γ_{O} (LC615 + LC616) + γ_{OO} LC2			
385	CO385	Min	19.310			γ_{G} (LC1 + LC613) + γ_{Q} (LC615 + LC617) + γ_{QQ} LC2			
386	CØ386	Min	19.310			γ _G (LC1 + LC613) + γ _Q (LC615 + LC618)			
387	CO387	Min	20.060			γ _G (LC1 + LC620) + γ _Q (LC622 + LC624) + γ _{Qo} LC2			
388	CØ388	Min	20.060			γ _G (LC1 + LC619) + γ _Q LC624 + γ _{Qo} LC2			
389	CO389	Min	20.060			γ _G (LC1 + LC621) + γ _Q (LC623 + LC624) + γ _{Qo} LC2			
< 390	CO390	Min	20.060			γ _G (LC1 + LC621) + γ _Q (LC623 + LC625) + γ _{Qo} LC2			
391	CO391	Min	20.060			γ _G (LC1 + LC621) + γ _Q (LC623 + LC626)			
392	CO392	Min	20.810			γ _G (LC1 + LC628) + γ _Q (LC630 + LC632) + γ _{Qo} LC2			
393	CO393	Min	20.810			$\gamma_{\rm G}$ (LC1 + LC627) + $\gamma_{\rm Q}$ LC632 + $\gamma_{\rm Qo}$ LC2			
394	00394	Min	20.810			$\gamma_{\rm G}$ (LC1 + LC629) + $\gamma_{\rm Q}$ (LC631 + LC632) + $\gamma_{\rm Qo}$ LC2			
395	CO395	Min	20.810			$\gamma_{\rm G}$ (LC1 + LC629) + $\gamma_{\rm Q}$ (LC631 + LC633) + $\gamma_{\rm Q_0}$ LC2			
390	CO397	Min	20.810			$\gamma_{\rm G}$ (LC1 + LC629) + $\gamma_{\rm Q}$ (LC031 + LC034)			
308	CO398	Min	21.500			$\gamma_{\rm G}$ (LC1 + LC635) + $\gamma_{\rm Q}$ (LC036 + LC046) + $\gamma_{\rm Q_0}$ LC2			
399	CO399	Min	21.500			$y_{0}(1C1 + 1C637) + y_{0}(1C639 + 1C640) + y_{0}(1C2$			
400	CO400	Min	21.560			$y_{G}(LC1 + LC637) + y_{G}(LC639 + LC641) + y_{G}LC2$			
401	CO401	Min	21.560			$v_{\rm G}$ (LC1 + LC637) + $v_{\rm G}$ (LC639 + LC642)			
402	CO402	Min	22.310			γ_{G} (LC1 + LC644) + γ_{Q} (LC646 + LC648) + γ_{Q0} LC2			
403	CO403	Min	22.310	\triangleright		γ _G (LC1 + LC643) + γ _Q LC648 + γ _{Qo} LC2			
404	CO404	Min	22.310			γ _G (LC1 + LC645) + γ _Q (LC647 + LC648) + γ _{Qo} LC2			
405	CO405	Min	22.310			γ _G (LC1 + LC645) + _{γQ} (LC647 + LC649) + _{γQo} LC2			
406	CO406	Min 🚫	22.310			_{γG} (LC1 + LC645) + _{γQ} (LC647 + LC650)			
407	CO407	Min	23.060			γ _G (LC1 + LC652) + _{γQ} (LC654 + LC656) + _{γQo} LC2			
408	CO408	Min	23.060			γ _G (LC1 + LC651) + γ _Q LC656 + γ _{Qo} LC2			
409	CO409	Min	23.060			γ_{G} (LC1 + LC653) + γ_{Q} (LC655 + LC656) + γ_{Qo} LC2			
410	CO410	Min	23.060		K	$\gamma_{\rm G}$ (LC1 + LC653) + $\gamma_{\rm Q}$ (LC655 + LC657) + $\gamma_{\rm Qo}$ LC2			
411	CO411	Min	23.060		\otimes	$\gamma_{\rm G}$ (LC1 + LC653) + $\gamma_{\rm Q}$ (LC655 + LC658)			
412	CO412	Min	23.810		, v	$\gamma_{\rm G}$ (LC1 + LC660) + $\gamma_{\rm Q}$ (LC662 + LC664) + $\gamma_{\rm Qo}$ LC2			
413	CO413	Min	23.810			$\gamma_{\rm G}$ (LC1 + LC659) + $\gamma_{\rm Q}$ LC664 + $\gamma_{\rm Q_0}$ LC2			
414	CO414	Min	23.010	($\gamma_{\rm G}$ (LC1 + LC661) + $\gamma_{\rm Q}$ (LC663 + LC664) + $\gamma_{\rm Q_0}$ LC2			
415	CO416	Min	23.810	\leq	<u> </u>	$\gamma_{Q}(1C1 + 1C661) + \gamma_{Q}(1C663 + 1C666)$			
417	CO417	Min	24 560			$y_{G}(1C1 + 1C668) + y_{G}(1C670 + 1C672) + y_{G}(1C2$			
418	CO418	Min	24,560			$v_{G}(LC1 + LC667) + v_{G}LC672 + v_{G}LC2$			
419	CO419	Min	24.560			y_{G} (LC1 + LC669) + y_{O} (LC671 + LC672) + y_{OO} LC2			
420	CO420	Min	24.560			γ_{G} (LC1 + LC669) + γ_{Q} (LC671 + LC673) + γ_{Q0} LC2			
421	CO421	Min	24.560			γ_{G} (LC1 + LC669) + γ_{Q} (LC671 + LC674)			
422	CO422	Min	25.310		///	γ _G (LC1 + LC676) + γ _Q (LC678 + LC680) + γ _{Qo} LC2			
423	CO423	Min	25.310			γ _G (LC1 + LC675) + γ _Q LC680 + γ _{Qo} LC2			
424	CO424	Min	25.310			γ _G (LC1 + LC677) + γ _Q (LC679 + LC680) + γ _{Qo} LC2			
425	CO425	Min	25.310			χ _G (LC1 + LC677) + γ _Q (LC679 + LC681) + γ _{Qo} LC2			
426	CO426	Min	25.310		/	γ _G (LC1 + LC677) + γ _Q (LC679 + LC682)			
427	CO427	Min	26.060			γ_{G} (LC1 + LC684) + γ_{Q} (LC686 + LC688) + $\gamma_{Q_{0}}$ LC2			
428	CO428	Min	26.060			γ_{G} (LC1 + LC683) + γ_{Q} LC688 + $\gamma_{Q_{0}}$ LC2			
429	CO429	Min	26.060			γ_{G} (LC1 + LC685) + γ_{Q} (LC687 + LC688) + $\gamma_{Q_{0}}$ LC2			
430	CO430	Min	20.000			γ_{G} (LC1 + LC085) + γ_{Q} (LC087 + LC089) + $\gamma_{Q_{0}}$ LC2			
432	CO432	Min	26.810			$y_{\rm G}$ (1 C1 + 1 C692) + $y_{\rm G}$ (1 C694 + 1 C696) + $y_{\rm G}$ 1 C2			
433	CO433	Min	26.810			γ _G (LC1 + LC691) + γ _O LC696 + γ _O LC2			
434	CO434	Min	26.810			γ _G (LC1-+ LC693) + γ _O (LC695 + LC696) + γ _O LC2			
435	CO435	Min	26.810			γ _G (LC1 + LC693) + γ _Q (LC695 + LC697) + γ _{Op} LC2			
436	CO436	Min	26.810			γ _G (LC1 + LC693) + γ _Q (LC695 + LC698)			
437	CO437	Min	27.560			$\gamma_{\rm G}$ (LC1 + LC700) + $\gamma_{\rm Q}$ (LC702 + LC704) + $\gamma_{\rm Qo}$ LC2			
438	CO438	Min	27.560			$\gamma_{\rm G}$ (LC1 + LC699) + $\gamma_{\rm Q}$ LC704 + $\gamma_{\rm Qo}$ LC2			
439	CO439	Min	27.560			$\gamma_{\rm G}$ (LC1 + LC701) + $\gamma_{\rm Q}$ (LC703 + LC704) + $\gamma_{\rm Qo}$ LC2			
440	CO440	Min	27.560			γ _G (LC1 + LC701) + γ _Q (LC703 + LC705) + γ _{QQ} LC2			
441	CO441	Min	27.560			γ _G (LC1 + LC701) + γ _Q (LC703 + LC706)			
442	CO442	Min	28.310			$\gamma_{\rm G}$ (LC1 + LC708) + $\gamma_{\rm Q}$ (LC710 + LC712) + $\gamma_{\rm Q0}$ LC2			
443	CO443	Min	28.310			$\gamma_{G}(LC1 + LC700) + \gamma_{Q}(LC711 + V_{Q0}) LC2$			
444	CO444	Min	28.310			$\gamma_{G}(LC1 + LC709) + \gamma_{Q}(LC711 + LC712) + \gamma_{Q_{0}}LC2$			
445	CO445	Min	20.310			$\gamma_{G}(LC1 + LC709) + \gamma_{Q}(LC711 + LC713) + \gamma_{Q_{0}}LC2$			
440	CO447	Min	20.310			$y_{G}(1C1 + 1C716) + y_{G}(1C718 + 1C720) + y_{G}(1C2)$			
448	CO448	Min	29.000			$y_{c}(LC1 + LC715) + y_{0}(LC720 + y_{0}) C2$			
449	CO449	Min	29.060			$y_{G}(LC1 + LC717) + y_{O}(LC719 + LC720) + y_{O_{O}}LC2$			
450	CO450	Min	29.060			γ _G (LC1 + LC717) + γ _Q (LC719 + LC721) + γ _Q LC2			
451	CO451	Min	29.060			γ _G (LC1 + LC717) + γ _Q (LC719 + LC722)			
452	CO452	Min	29.810			γ _G (LC1 + LC724) + γ _Q (LC726 + LC728) + γ _{Q0} LC2			
453	CO453	Min	29.810			γ _G (LC1 + LC723) + γ _Q LC728 + γ _{Qo} LC2			
454	CO454	Min	29.810			γ _G (LC1 + LC725) + γ _Q (LC727 + LC728) + γ _{Qo} LC2			
455	CO455	Min	29.810			γ _G (LC1 + LC725) + γ _Q (LC727 + LC729) + γ _{Qo} LC2			

Trg dr. Milana Jeliæa br. 15, 74480 Modrièa

Sheet: 1
CRANEWAY

10/12

1	
Droiget	Drojecto
Project.	Projects

Model: Kranska staza

Date: 12.3.2020.

Page:

	CO		Location of 1st Wheel of Crane [m]		Crane [m]	Load			
No	No.	Girder	Crane 1	Crane 2	Crane 3	Description			
456	CO456	Min	29.810			$v_{\rm C}$ (LC1 + LC725) + $v_{\rm C}$ (LC727 + LC730)			
457	CO457	Min	30,560			$y_{\rm G}$ (1 C1 + 1 C732) + $y_{\rm G}$ (1 C734 + 1 C736) + $y_{\rm G}$ 1 C2			
458	CO458	Min	30,560			$y_{0}(101 + 10732) + y_{0}(10736 + y_{0} + 10736) + y_{0}(102$			
459	CO459	Min	30,560			$y_{\rm G}$ (LC1 + LC733) + $y_{\rm O}$ (LC735 + LC736) + $y_{\rm Op}$ LC2			
460	CO460	Min	30,560			γ_{G} (LC1 + LC733) + γ_{O} (LC735 + LC737) + γ_{OO} LC2			
461	CO461	Min	30.560			γ_{G} (LC1 + LC733) + γ_{O} (LC735 + LC738)			
462	CO462	Min	31.310			γ_{G} (LC1 + LC740) + γ_{Q} (LC742 + LC744) + γ_{QQ} LC2			
463	CØ463	Min	31.310			γ _G (LC1 + LC739) + γ _Q LC744 + γ _{Qo} LC2			
464	CO464	Min	31.310			γ _G (LC1 + LC741) + γ _Q (LC743 + LC744) + γ _{Qo} LC2			
465	CO465	Min	31.310			γ _G (LC1 + LC741) + γ _Q (LC743 + LC745) + γ _{Qo} LC2			
466	CO466	Min	31.310			γ _G (LC1 + LC741) + γ _Q (LC743 + LC746)			
467	CO467	Min	32.060			γ_{G} (LC1 + LC748) + γ_{Q} (LC750 + LC752) + γ_{Qo} LC2			
468	CO468	Min	32.060			$\gamma_{\rm G}$ (LC1 + LC747) + $\gamma_{\rm Q}$ LC752 + $\gamma_{\rm Qo}$ LC2			
469	CO469	Min	32.060			$\gamma_{\rm G}$ (LC1 + LC749) + $\gamma_{\rm Q}$ (LC751 + LC752) + $\gamma_{\rm Qo}$ LC2			
470	CO470	Min	32.060			γ_{G} (LC1 + LC749) + γ_{Q} (LC751 + LC753) + $\gamma_{Q_{0}}$ LC2			
471	00471	Min	32.060			$\gamma_{\rm G}$ (LC1 + LC749) + $\gamma_{\rm Q}$ (LC751 + LC754)			
472	CO472	Min	32.010			$\gamma_{\rm G}$ (LC1 + LC750) + $\gamma_{\rm Q}$ (LC756 + LC760) + $\gamma_{\rm Q_0}$ LC2			
473	CO474	Min	32.810			$\gamma_{G}(1C1 + 1C753) + \gamma_{Q}(1C759 + 1C760) + \gamma_{Q}(1C2$			
475	CO475	Min	32.810			$y_{0}(1C1 + 1C757) + y_{0}(1C759 + 1C761) + y_{0}(1C2$			
476	CO476	Min	32 810			$y_{\rm G}$ (1 C1 + 1 C757) + $y_{\rm G}$ (1 C759 + 1 C762)			
477	CO477	Min	33,560			$y_{G}(LC1 + LC764) + y_{G}(LC766 + LC768) + y_{O_{G}}LC2$			
478	CO478	Min	33.560			y_{G} (LC1 + LC763) + y_{O} LC768 + y_{O} LC2			
479	CO479	Min	33.560			γ_{G} (LC1 + LC765) + γ_{Q} (LC767 + LC768) + γ_{QQ} LC2			
480	CO480	Min	33.560	\triangleright		γ _G (LC1 + LC765) + γ _Q (LC767 + LC769) + γ _{Qo} LC2			
481	CO481	Min	33.560			_{γG} (LC1 + LC765) + _{γQ} (LC767 + LC770)			
482	CO482	Min	34.310			γ _G (LC1 + LC772) + γ _Q (LC774 + LC776) + γ _{Qo} LC2			
483	CO483	Min 🚫	34.310			_{γG} (LC1 + LC771) + _{γQ} LC776 + _{γQo} LC2			
484	CO484	Min	34.310			_{γG} (LC1 + LC773) + _{γQ} (LC775 + LC776) + _{γQo} LC2			
485	CO485	Min	34.310			γ _G (LC1 + LC773) + γ _Q (LC775 + LC777) + γ _{Qo} LC2			
486	CO486	Min	34.310	$\langle \rangle$		γ _G (LC1 + LC773) + γ _Q (LC775 + LC778)			
487	CO487	Min	35.060		K	$\gamma_{\rm G}$ (LC1 + LC780) + $\gamma_{\rm Q}$ (LC782 + LC784) + $\gamma_{\rm Qo}$ LC2			
488	CO488	Min	35.060		\square	$\gamma_{\rm G}$ (LC1 + LC7/9) + $\gamma_{\rm Q}$ LC784 + $\gamma_{\rm Qo}$ LC2			
489	CO489	Min	35.060		Ť	γ_{G} (LC1 + LC781) + γ_{Q} (LC783 + LC784) + γ_{Q0} LC2			
490	CO490	Min	35.060			$\gamma_{\rm G}$ (LC1 + LC781) + $\gamma_{\rm Q}$ (LC783 + LC785) + $\gamma_{\rm Qo}$ LC2			
491	CO491	Min	35.810	($\gamma_{G}(1C1 + 1C788) + \gamma_{Q}(1C790 + 1C792) + \gamma_{Q}(1C2$			
493	CO493	Min	35 810	5	Ω	$y_{\rm G}$ (1 C1 + 1 C787) + $y_{\rm G}$ (C792 + $y_{\rm G}$) C2			
494	CO494	Min	35.810			$y_{G}(LC1 + LC789) + y_{G}(LC791 + LC792) + y_{O_{G}}LC2$			
495	CO495	Min	35.810			γ_{G} (LC1 + LC789) + γ_{Q} (LC791 + LC793) + γ_{QQ} LC2			
496	CO496	Min	35.810			γ _G (LC1 + LC789) + γ _Q (LC791 + LC794)			
497	CO497	Min	36.560			γ _G (LC1 + LC796) + γ _Q (LC798 + LC800) + γ _{Q0} LC2			
498	CO498	Min	36.560			γ _G (LC1 + LC795) + γ _Q LC800 + γ _{Qo} LC2			
499	CO499	Min	36.560			γ _G (LC) + LC797) + γ _Q (LC799 + LC800) + γ _{Qo} LC2			
500	CO500	Min	36.560			γ _G (LC1 + LC797) + γ _Q (LC799 + LC801) + γ _{Qo} LC2			
501	CO501	Min	36.560			γ _G (LC1 + LC797) + γ _Q (LC799 + LC802)			
502	CO502	Min	37.310			γ_{G} (LC1 + LC804) + γ_{Q} (LC806 + LC808) + $\gamma_{Q_{0}}$ LC2			
503	CO503	Min	37.310		/	$\gamma_{\rm G}$ (EC1 + LC803) + $\gamma_{\rm Q}$ LC808 + $\gamma_{\rm Qo}$ LC2			
504	CO504	Min	37.310		/	$\gamma_{G}(LC1 + LC805) + \gamma_{Q}(LC807 + LC808) + \gamma_{Q_{0}}LC2$			
505	CO505	Min	37.310			$\gamma_{G}(LC1 + LC005) + \gamma_{Q}(LC007 + LC009) + \gamma_{Q_{0}}LC2$			
507	CO507	Min	38.060			$\gamma_{G}(1 C1 + 1 C812) + \gamma_{G}(1 C814 + 1 C816) + \gamma_{G}(1 C2)$			
508	CO508	Min	38.060			y_{0} (201 + 20012) + y_{0} (20014 + 20010) + y_{0} 202			
509	CO509	Min	38.060			v_{c} (LC1 + LC813) + v_{0} (LC815 + LC816) + v_{0} LC2			
510	CO510	Min	38.060			γ_{G} (LC1 + LC813) + γ_{O} (LC815 + LC817) + γ_{OO} LC2			
511	CO511	Min	38.060			γ _G (LC1-+ LC813) + γ _Q (LC815+ LC818)			
512	CO512	Min	38.810			γ_{G} (LC1 + LC820) + γ_{Q} (LC822 + LC824) + $\gamma_{Q_{Q}}$ LC2			
513	CO513	Min	38.810			γ_{G} (LC1 + (C819) + γ_{Q} LC824 + γ_{Qo} LC2			
514	CO514	Min	38.810			γ_{G} (LC1 + LC821) + γ_{Q} (LC823 + LC824) + γ_{Qo} LC2			
515	CO515	Min	38.810			γ _G (LC1 + LC821) + γ _Q (LC823 + LC825) + γ _{Qo} LC2			
516	CO516	Min	38.810			$\gamma_{\rm G}$ (LC1 + LC821) + $\gamma_{\rm Q}$ (LC823 + LC826)			
517	CO517	Min	39.190			γ _G (LC1 + LC828) + γ _Q (LC830 + LC832) + γ _{QQ} LC2			
518	CO518	Min	39.190			γ_{G} (LC1 + LC827) + γ_{Q} LC832 + $\gamma_{Q_{0}}$ LC2			
519	CO519	Min	39.190			$\gamma_{\rm G}$ (LC1 + LC829) + $\gamma_{\rm Q}$ (LC831 + LC832) + $\gamma_{\rm Q0}$ LC2			
520	00520	Min	39.190			$\gamma_{\rm G}$ (LC1 + LC829) + $\gamma_{\rm Q}$ (LC831 + LC833) + $\gamma_{\rm Qo}$ LC2			
521	00521	Max	39.190			γ_{G} (LC1 + LC829) + γ_{Q} (LC831 + LC834)			
522	CO522	Max	1.310			LC1 + LC030 + LC030 + LC031			
020	00020	Max	00.100						

\mathbf{A}	
	À-

 Page:
 11/12

 Sheet:
 1

 CRANEWAY

Project: Projects

Model: Kranska staza

Date: 12.3.2020.

DESCRIPTION OF LOAD COMBINATIONS - FATIGUE

<	~ ~	CO		Location of 1st Wheel of Crane [m]			Load		
	No,	No.	Girder	Crane 1	Crane 2	Crane 3	Description		
/	<u>_</u> {	CO1	Max	1.310			LC1 + LC2 + LC3		
	2	CO2	Max	2.060			LC1 + LC4 + LC5		
/	3	CO3	Max	2.810			LC1 + LC6 + LC7		
	4	CO4	Max	3.560			LC1 + LC8 + LC9		
	5	CO5	Max	4.310			LC1 + LC10 + LC11		
	6	CO6	Max	5.060			LC1 + LC12 + LC13		
/	8	00	Max	6.560					
. ,	9	CØ9	Max	7.310			LC1 + LC18 + LC19		
(10	CO10	Max	8.060			LC1 + LC20 + LC21		
()	11	ÇØ11	Max	8.810			LC1 + LC22 + LC23		
_	12	CO12	Max	9.560			LC1 + LC24 + LC25		
	13	CO13	Max	10.310			LC1 + LC26 + LC27		
	14	CO14	Max				LC1 + LC28 + LC29		
	15	CO15	Max	12 560			1 C1 + 1 C32 + 1 C33		
	17	CO17	Max	13.310			LC1 + LC34 + LC35		
	18	CO18	Max	14.060			LC1 + LC36 + LC37		
	19	CQ19	Max	14.810			LC1 + LC38 + LC39		
	20	CO20	Max	15.560			LC1 + LC40 + LC41		
	21	CO21	Max	16.310			LC1 + LC42 + LC43		
	22	CO22	Max	17.060			LC1 + LC44 + LC45		
	23	CO23	Max	18 560			1 C1 + 1 C48 + 1 C49		
	25	CO25	Max	19.310			1 C1 + 1 C50 + 1 C51		
	26	CO26	Max	20:060			LC1 + LC52 + LC53		
	27	CO27	Max	20.810	>		LC1 + LC54 + LC55		
	28	CO28	Max	21.560			LC1 + LC56 + LC57		
	29	CO29	Max	22.310			LC1 + LC58 + LC59		
	30	CO30	Max	23.060			LC1 + LC60 + LC61		
	32	CO32	Max	23.810			1 C1 + 1 C62 + 1 C65		
	33	CO33	Max	25.310			LC1 + LC66 + LC67		
	34	CO34	Max	26.060		7	LC1 + LC68 + LC69		
	35	CO35	Max	26.810		/	LC1 + LC70 + LC71		
	36	CO36	Max	27.560			LC1 + LC72 + LC73		
	37	CO37	Max	28.310		\bigtriangledown	LC1 + LC74 + LC75		
	38	CO38	Max	29.060					
	39 40	CO40	Max	30.560			1 C1 + 1 C80 + 1 C81		
	41	CO41	Max	31.310	\subseteq		LC1 + LC82 + LC83		
	42	CO42	Max	32.060	\smile	Ω	LC1 + LC84 + LC85		
	43	CO43	Max	32.810			LC1 + LC86 + LC87		
	44	CO44	Max	33.560			LC1 + LC88 + LC89		
	45	CO45	Max	34.310			LC1 + LC90 + LC91		
	46	CO46	Max	35.060			LC1 + LC92 + LC93		
	47	CO48	Max	36,560			LC1 + LC94 + LC95		
	49	CO49	Max	37.310			LC1 + LC98 + LC99		
	50	CO50	Max	38.060			LC1 + LC100 + LC101		
	51	CO51	Max	38.810			LC1 + L6102 + LC103		
	52	CO52	Max	39.190			LC1 + LC104 + LC105		
	53	CO53	Min	1.310			LC1 + LC106 + LC107		
	55 55	CO55	Min	2.000					
	56	CO56	Min	3.560			LC1 + LC112 + LC113		
	57	CO57	Min	4.310			LC1 + LC114 + LC115		
	58	CO58	Min	5.060			LC1 + LC116 + LC117		
	59	CO59	Min	5.810			LC1+LC118+LC119		
	60	CO60	Min	6.560			LC1 + LC120 + LC121		
	62	CO62	Min	7.310					
	63	CO63	Min	8 810			LC1 + LC126 + LC127		
	64	CO64	Min	9.560			LC1 + LC128 + LC129		
	65	CO65	Min	10.310			LC1 + LC130 + LC131		
	66	CO66	Min	11.060			LC1 + LC132 + LC133		
	67	CO67	Min	11.810			LC1 + LC134 + LC135		
	68	CO68	Min	12.560			LC1 + LC136 + LC137		
	09 70	CO70	Min	14.060					
	71	C071	Min	14.000			LC1 + LC142 + LC143		
	72	CO72	Min	15.560			LC1 + LC144 + LC145		
	73	CO73	Min	16.310			LC1 + LC146 + LC147		
	74	CO74	Min	17.060			LC1 + LC148 + LC149		
	75	CO75	Min	17.810			LC1 + LC150 + LC151		
	76	C076	Min	18.560					
	78	C078	Min	20.060					
	79	CO79	Min	20.810			LC1 + LC158 + LC159		
	80	CO80	Min	21.560			LC1 + LC160 + LC161		
	81	CO81	Min	22.310			LC1 + LC162 + LC163		
	82	CO82	Min	23.060			LC1 + LC164 + LC165		
	83	CO83	Min	23.810			LC1 + LC166 + LC167		
	84	C084	Min	24.560					
	65	0000	171111	25.510					

MONTAŽNI NASTAVAK POMOĆU POVEZICA

Project data

0.

Material

Steel

S 235

Project item CON1

Design

Name	CON1
Description	
Analysis	Stress, strain/ simplified loading

Beams and columns

Name	Cross-section	β – Direction [°]	γ - Pitch [°]	α - Rotation [°]	Offset ex [mm]	Offset ey [mm]	Offset ez [mm]	Forces in
B1	2 - lwn600x(350/300)	0,0	0,0	0,0	0	0	0	Node
B2	2 - Iwn600x(350/300)	180,0	0,0	0,0	0	0	0	Node

Cross-sections

Name	Material
2 - Iwn600x(350/300)	S 235

Bolts

Name	Bolt assembly	Diameter [mm]	fu [MPa]	Gross area [mm ²]
M16 10.9	M16 10.9	16	1000,0	201
M20 10.9	M20 10.9	20	1000,0	314

Load effects (equilibrium not required)

Name	Member	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
LE1	B1	11,5	-21,0	-287,5	-9,7	254,0	17,8

Check

Summary

Name	Value	Status
Analysis	100,0%	OK
Plates	0,7 < 5%	ОК
Bolts	99,6 < 100%	ОК
Buckling	Not calculated	

Plates

Name	Thickness [mm]	Loads	σ _{Ed} [MPa]	ε _{ΡΙ} [%]	Status
B1-tfl 1	28,0	LE1	235,1	0,1	ОК
B1-bfl 1	28,0	LE1	210,4	0,0	ОК
B1-w 1	8,0	LE1	211,0	0,0	ОК
B2-tfl 1	28,0	LE1	235,4	0,2	ОК
B2-bfl 1	28,0	LE1	220,0	0,0	ОК
B2-w 1	8,0	LE1	236,5	0,7	ОК
SPL1a	10,0	LE1	235,7	0,3	ОК
SPL1b	14,0	LE1	235,2	0,1	ОК
SPL1c	14,0	LE1	235,3	0,1	ОК
SPL2a	14,0	LE1	235,4	0,2	ОК
SPL2b	14,0	LE1	235,2	0,1	ОК
SPL2c	14,0	LE1	235,8	0,4	ОК
SPL3a	8,0	LE1	222,5	0,0	ОК
SPL3b	8,0	LE1	208,6	0,0	ОК

Design data

Material	f _y [MPa]	ε _{lim} [%]
S 235	235,0	5,0

Symbol explanation

٤ _{Pl}	Strain
σ_{Ed}	Eq. stress
f _y	Yield strength
ε _{lim}	Limit of plastic strain

Bolts

	Name	Grade	Loads	F _{t,Ed} [kN]	V [kN]	Ut _t [%]	F _{b,Rd} [kN]	Ut _s [%]	Ut _{ts} [%]	Status
	B1	M16 10.9 - 1	LE1	39,6	45,4	35,1	115,2	72,2	97,3	OK
	B2	M16 10.9 - 1	LE1	5,5	48,5	4,9	115,2	77,2	80,7	OK
2	B3	M16 10.9 - 1	LE1	30,3	50,3	26,8	115,2	80,0	99,2	OK
21 56	B4	M16 10.9 - 1	LE1	8,7	59,1	7,7	115,2	94,1	99,6	OK
- 	B5	M16 10.9 - 1	LE1	25,5	41,0	22,5	115,2	65,4	81,4	OK
	B6	M16 10.9 - 1	LE1	2,3	44,2	2,0	115,2	70,3	71,8	OK
	B7	M16 10.9 - 1	LE1	29,4	49,9	26,0	115,2	79,4	98,0	OK
	B8	M16 10.9 - 1	LE1	4,3	56,8	3,8	99,2	90,4	93,2	OK
	B17	M20 10.9 - 2	LE1	20,6	88,8	11,7	132,9	90,6	99,0	OK
	B18	M20 10.9 - 2	LE1	20,1	88,3	11,4	201,6	90,1	98,2	OK
	B11	M20 10.9 - 2	LE1	32,2	46,1	18,2	347,3	47,0	60,0	OK
187 134	B12	M20 10.9 - 2	LE1	9,8	40,3	5,6	201,6	41,2	45,1	OK
11111	B13	M20 10.9 - 2	LE1	15,6	91,0	8,8	315,3	92,9	99,2	OK
	B14	M20 10.9 - 2	LE1	21,7	88,4	12,3	201,6	90,2	99,0	OK
	B15	M20 10.9 - 2	LE1	23,8	42,6	13,5	353,3	43,4	53,1	OK
	B16	M20 10.9 - 2	LE1	14,8	44,1	8,4	201,6	45,0	51,0	ОК
	B35	M16 10.9 - 3	LE1	1,5	8,1	1,3	92,2	16,1	13,8	ОК
	B36	M16 10.9 - 3	LE1	0,6	9,7	0,5	92,2	18,5	15,9	OK
	B37	M16 10.9 - 3	LE1	4,1	8,7	3,6	92,2	17,2	16,4	OK
	B38	M16 10.9 - 3	LE1	2,2	10,6	1,9	92,2	20,0	18,2	OK
	B39	M16 10.9 - 3	LE1	1,3	7,7	1,2	92,2	15,4	13,0	OK
	B40	M16 10.9 - 3	LE1	0,6	9,3	0,5	92,2	17,6	15,1	OK
	B41	M16 10.9 - 3	LE1	2,0	7,5	1,8	92,2	15,1	13,3	OK
	B42	M16 10.9 - 3	LE1	0,6	9,2	0,5	92,2	17,3	14,9	OK
	B27	M16 10.9 - 3	LE1	2,5	18,0	2,2	92,2	37,9	30,3	OK
	B28	M16 10.9 - 3	LE1	1,0	13,3	0,9	80,7	29,1	21,8	OK
	B29	M16 10.9 - 3	LE1	4,8	27,6	4,3	92,2	57,8	47,0	OK
	B30	M16 10.9 - 3	LE1	2,6	26,0	2,3	80,7	59,8	43,1	OK
	B31	M16 10.9 - 3	LE1	1,1	12,9	1,0	62,3	40,9	21,3	OK
	B32	M16 10.9 - 3	LE1	0,5	2,6	0,4	92,2	4,1	4,4	ОК
	B33	M16 10.9 - 3	LE1	3,3	18,2	2,9	92,2	39,3	31,0	OK
	B34	M16 10.9 - 3	LE1	2,5	14,9	2,2	69,5	39,0	25,2	OK

Design data

Name	F _{t,Rd} [kN]	B _{p,Rd} [kN]	F _{v,Rd} [kN]
M16 10.9 - 1	113,0	153,5	62,8
M20 10.9 - 2	176,4	254,7	98,0
M16 10.9 - 3	113,0	122,8	62,8

Symbol explanation

F _{t,Rd}	Bolt tension resistance EN 1993-1-8 tab. 3.4
F _{t,Ed}	Tension force
B _{p,Rd}	Punching shear resistance
V	Resultant of shear forces Vy, Vz in bolt
F _{v,Rd}	Bolt shear resistance EN_1993-1-8 table 3.4
F _{b,Rd}	Plate bearing resistance EN 1993-1-8 tab. 3.4
Ut _t	Utilization in tension
Ut _s	Utilization in shear
Ut _{ts}	Utilization in tension and shear EN 1993-1-8 table 3.4
Buckling Buckling anal	ysis was not calculated.
coue se	uiiyə

Buckling

Code settings

Item	Value	Unit	Reference
Умо	1,00	- 5	EN 1993-1-1: 6.1
Ym1	1,00	2	EN 1993-1-1: 6.1
Ym2	1,25		EN 1993-1-1: 6.1
Үмз	1,25	-	EN 1993-1-8: 2.2
Yc	1,50	-	EN 1992-1-1: 2.4.2.4
YInst	1,20	-	ETAG 001-C: 3.2.1
Joint coefficient βj	0,67	-	EN 1993-1-8: 6.2.5
Effective area - influence of mesh size	0,10	-	
Friction coefficient - concrete	0,25	-	EN 1993-1-8
Friction coefficient in slip-resistance	0,30	-	EN 1993-1-8 tab 3.7
Limit plastic strain	0,05	-	EN 1993-1-5
Weld stress evaluation	Plastic redistribution		
Detailing	No		
Distance between bolts [d]	2,20	-	EN 1993-1-8: tab 3.3
Distance between bolts and edge [d]	1,20	-	EN 1993-1-8: tab 3.3
Concrete breakout resistance	Yes		ETAG 001-C
Use calculated αb in bearing check.	Yes		EN 1993-1-8: tab 3.4
Cracked concrete	Yes		
Local deformation check	No		
Local deformation limit	0,03	-	CIDECT DG 1, 3 - 1.1

MONTAŽNI NASTAVAK POMOĆU ČEONIH PLOČA

Project data

6.3.2020.
EN

S 235

Material

Steel

Project item CON1

Design

Name	CON1
Description	
Analysis	Stress, strain/ simplified loading

Beams and columns

Name	Cross-section	β – Direction [°]	γ - Pitch [°]	α - Rotation [°]	Offset ex [mm]	Offset ey [mm]	Offset ez [mm]	Forces in
B1	2 - lwn600x(350/300)	0,0	0,0	0,0	0	0	0	Node
B2	2 - Iwn600x(350/300)	180,0	0,0	0,0	0	0	0	Node

Cross-sections

Name	Material	
2 - Iwn600x(350/300)	S 235	

Bolts

Name	Bolt assembly	Diameter [mm]	fu [MPa]	Gross area [mm ²]
M24 10.9	M24 10.9	24	1000,0	452

Load effects (equilibrium not required)

Name	Member	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
LE1	B1	-11,6	17,6	280,7	8,6	273,7	14,2

Check

Summary

Name	Value	Status
Analysis	100,0%	ОК
Plates	2,2 < 5%	ОК
Bolts	97,8 < 100%	OK
Welds	98,4 < 100%	OK
Buckling	Not calculated	

Plates

Name	Thickness [mm]	Loads	σ _{Ed} [MPa]	ε _{ΡΙ} [%]	Status
B1-tfl 1	28,0	LE1	235,3	0,2	ОК
B1-bfl 1	28,0	LE1	143,1	0,0	ОК
B1-w 1	8,0	LE1	231,3	0,0	ОК
B2-tfl 1	28,0	LE1	235,3	0,2	ОК
B2-bfl 1	28,0	LE1	166,9	0,0	ОК
B2-w 1	8,0	LE1	207,1	0,0	ОК
PP1a	19,0	LE1	239,5	2,2	ОК
PP1b	19,0	LE1	238,5	1,7	OK

Design data

Material	f _y [MPa]	ε _{lim} [%]
S 235	235,0	5,0

Symbol explanation

ε _{Pl}	Strain
σ_{Ed}	Eq. stress
fy	Yield strength
٤ _{lim}	Limit of plastic strain

Equivalent stress, LE1

Bolts

	Name	Loads	F _{t,Ed} [kN]	V [kN]	Ut _t [%]	F _{b,Rd} [kN]	Ut _s [%]	Ut _{ts} [%]	Status
$ \begin{array}{c} 19 \\ 12 \\ 11 \\ 17 \\ 16 \\ 14 \\ 14 \\ 13 \\ 14 \\ 15 \\ 14 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$	B9	LE1	246,5	15,6	97,0	141,9	11,1	80,3	ОК
	B10	LE1	248,7	11,8	97,8	141,3	8,3	78,2	ОК
	B11	LE1	146,7	33,2	57,7	141,3	23,5	64,7	ОК
	B12	LE1	148,5	26,3	58,4	141,2	18,6	60,4	OK
	B13	LE1	36,8	36,3	14,5	143,7	25,7	36,1	ОК
	B14	LE1	42,0	29,4	16,5	284,0	20,8	32,6	OK
	B15	LE1	81,3	36,2	32,0	141,9	25,6	48,5	ОК
	B16	LE1	81,4	29,1	32,0	144,8	20,6	43,5	ОК
	B17	LE1	154,0	28,7	60,6	273,1	20,3	63,6	ОК
	B18	LE1	153,2	35,8	60,3	271,7	25,4	68,4	OK

Design data

Name	F _{t,Rd}	B _{p,Rd}	F _{v,Rd}
	[kN]	[kN]	[kN]
M24 10.9 - 1	254,2	444,6	141,2

Project: Project no: Author:

Symbol explanation

F _{t,Rd}	Bolt tension resistance EN 1993-1-8 tab. 3.4
F _{t,Ed}	Tension force
B _{p,Rd}	Punching shear resistance
V	Resultant of shear forces Vy, Vz in bolt
F _{v,Rd}	Bolt shear resistance EN_1993-1-8 table 3.4
F _{b,Rd}	Plate bearing resistance EN 1993-1-8 tab. 3.4
Ut _t	Utilization in tension
Ut _s	Utilization in shear
Ut _{ts}	Utilization in tension and shear EN 1993-1-8 table 3.4

Welds (Plastic redistribution)

Item	Edge	Throat th. [mm]	Length [mm]	Loads	σ_{w,Ed [MPa]}	ε _{ΡΙ} [%]	σ_{\perp} [MPa]	⊺ ∥ [MPa]	т ⊥ [MPa]	Ut [%]	Ut _c [%]	Status
PP1a	B1-tfl 1	⊿10,0⊾	350	LE1	340,3	0,0	-146,7	94,0	150,3	94,5	63,9	OK
		⊿ 10,0 ⊾	350	LE1	354,4	0,9	253,2	83,3	-116,4	98,4	79,9	OK
PP1a	B1-bfl 1	⊿ 10,0 ⊾	300	LE1	114,7	0,0	-60,9	3,9	-56,0	31,9	24,7	OK
		⊿ 10,0 ⊾	300	LE1	352,8	0,0	-198,1	58,0	-158,3	98,0	69,3	ок
PP1a	B1-w 1	⊿ 10,0 ⊾	544	LE1	175,8	0,0	53,3	-81,2	52,6	48,8	24,4	ОК
		⊿ 10,0 ⊾	544	LE1	180,9	0,0	54,6	82,8	-55,3	50,3	23,2	ОК
PP1b	B2-tfl 1	⊿ 10,0 ⊾	350	LE1	333,8	0,0	-134,4	-107,5	139,9	92,7	63,7	ОК
		⊿ 10,0 ⊾	350	LE1	354,1	0,9	250,9	-89,4	-113,2	98,4	80,5	OK
PP1b	B2-bfl 1	⊿ 10,0 ⊾	300	LE1	117,8	0,0	103,1	30,7	12,0	39,8	22,8	OK
		⊿ 10,0 ⊾	300	LE1	352,9	0,1	-203,4	-49,2	-159,0	98,0	73,5	OK
PP1b	B2-w 1	⊿ 10,0 ⊾	544	LE1	205,1	0,0	28,7	111,6	35,9	57,0	27,3	OK
		⊿ 10,0 ⊾	544	LE1	168,9	0,0	38,9	-89,5	-31,7	46,9	25,2	OK

Design data

	β _w	σ _{w,Rd}	0.9 σ
	[-]	[MPa]	[MPa]
S 235	0,80	360,0	259,2

Symbol explanation

٤ _{Pl}	Strain			
$\sigma_{w,Ed}$	Equivalent stress			
$\sigma_{w,Rd}$	Equivalent stress resistance			
σ_{\perp}	Perpendicular stress			
т	Shear stress parallel to weld axis			
T⊥	Shear stress perpendicular to weld axis			
0.9 σ	Perpendicular stress resistance - 0.9*fu/γM2			
β _w	Corelation factor EN 1993-1-8 tab. 4.1			
Ut	Utilization			
Utc	Weld capacity utilization			

Project: Project no:

Author:

Buckling

Buckling analysis was not calculated.

Code settings

Item	Value	Unit	Reference
Умо	1,00	-	EN 1993-1-1: 6.1
Yм1	1,00	-	EN 1993-1-1: 6.1
Ym2	1,25	-	EN 1993-1-1: 6.1
Үмз	1,25	-	EN 1993-1-8: 2.2
Yc	1,50	-	EN 1992-1-1: 2.4.2.4
VInst	1,20	-	ETAG 001-C: 3.2.1
Joint coefficient βj	0,67	-	EN 1993-1-8: 6.2.5
Effective area - influence of mesh size	0,10	-	
Friction coefficient - concrete	0,25	-	EN 1993-1-8
Friction coefficient in slip-resistance	0,30	-	EN 1993-1-8 tab 3.7
Limit plastic strain	0,05	- 🧹	EN 1993-1-5
Weld stress evaluation	Plastic redistribution		
Detailing	No		
Distance between bolts [d]	2,20	-	EN 1993-1-8: tab 3.3
Distance between bolts and edge [d]	1,20	-	EN 1993-1-8: tab 3.3
Concrete breakout resistance	Yes		ETAG 001-C
Use calculated αb in bearing check.	Yes		EN 1993-1-8: tab 3.4
Cracked concrete	Yes		
Local deformation check	No		
Local deformation limit	0,03	-	CIDECT DG 1, 3 - 1.1