

Fassung November 2011

Programm

RF-BETON Flächen

Stahlbetonbemessung nach SIA 262

Programm-Beschreibung

Alle Rechte, auch das der Übersetzung, vorbehalten.

Ohne ausdrückliche Genehmigung der INGENIEUR-SOFTWARE DLUBAL GMBH ist es nicht gestattet, diese Programmbeschreibung oder Teile daraus auf jedwede Art zu vervielfältigen.

© Ingenieur-Software Dlubal GmbH Am Zellweg 2 D-93464 Tiefenbach

Tel.:	+49 (0) 9673 9203-0
Fax:	+49 (0) 9673 9203-51
E-Mail:	info@dlubal.com
Web:	www.dlubal.de

Inhalt

	Inhalt S	eite		Inhalt	Seite
1.	Finleitung	4	3.4.4	Bemessungsmethode	44
1.1	Bemessung mit RF-BETON Flächen	4	3.4.5	Norm	45
1.2	Das RF-BETON Team	5	4.	Berechnung	46
1.3	Zum Gebrauch des Handbuchs	6	4.1	Kontrolle	46
1.4	Aufruf des RF-BETON-Moduls	6	4.2	Start der Berechnung	46
2.	Theoretische Grundlagen	8	5.	Ergebnisse	48
2.1	Tragfähigkeitsnachweis	8	5.1	Erforderliche Bewehrung Gesamt	48
2.1.1	Biegung und Normalkraft	8	5.2	Erforderliche Bewehrung	
2.1.2	Querkraft	9		Flächenweise	50
2.2	Gebrauchstauglichkeitsnachweis	12	5.3	Erforderliche Bewehrung Punktweise	51
2.2.1	Vorhandene Bewehrung	12	5.4	Gebrauchstauglichkeitsnachweise	52
2.2.2	Mindestbewehrung	12	5 5	Gebrauchetauglichkeitenachweice	52
2.2.3	Begrenzung der Rissbreiten	13	5.5	Flächenweise	55
2.2.4	Begrenzung der Betonstahlspannungen	14	5.6	Gebrauchstauglichkeitsnachweise	50
2.2.5	Nachweis des Stababstands	14	F 7		50
2.2.6	Begrenzung der Verformungen	14	5.7	Nichtlineare Berechnung Gesamt	57
2.2.7	Kriechen und Schwinden	16	5.8	Flächenweise	59
2.2.7.1	Ermittlung der Eingangsgrössen	16	5.9	Nichtlineare Berechnung Punktweise	60
2.2.7.2	Rechnerische Berücksichtigung von Kriechen/Schwinden	21	6.	Ergebnisauswertung	61
з	Fingabedaten	23	6.1	Bemessungsdetails	61
J. 2 1	Pasisangahan	23	6.2	Ergebnisse am RFEM-Modell	63
3.1	Tradžhickoit	23	6.3	Filter für Ergebnisse	65
212	Gebrauchstauglichkeit	25	7.	Ausdruck	68
5.1.2 5.1.5.1		25	7.1	Ausdruckprotokoll	68
3122	Nichtlineare Nachweismethode	20	7.2	RF-BETON Flächen-Grafiken drucken	69
3.7	Materialien	30	8.	Allgemeine Funktionen	70
33	Flächen	32	8.1	RF-BETON Flächen-Bemessungsfälle	70
331	Analytische Methode für GZG	32	8.2	Einheiten und Dezimalstellen	72
332	Nichtlineare Methode für GZG	34	8.3	Export der Ergebnisse	72
3.4	Bewehrung	37	Α	Literatur	75
3.4.1	Bewehrungsgrade	38	В	Index	76
3.4.2	Bewehrungsanordnung	39			
3.4.3	Längsbewehrung	41			

1. Einleitung

1.1 Bemessung mit RF-BETON Flächen

Obwohl der Verbundwerkstoff Stahlbeton zur Konstruktion von Flächentragwerken mindestens ebenso häufig eingesetzt wird wie für Stabtragwerke, finden sich in Norm und Literatur vergleichsweise wenige Ansätze zur Bemessung zweidimensionaler Bauteile. Dies gilt insbesondere für die Bemessung von Schalentragwerken, die durch eine gleichzeitige Beanspruchung durch Moment und Normalkraft gekennzeichnet sind. Da mit der Methode der finiten Elemente eine wirklichkeitsnahe Modellbildung von Flächentragwerken möglich ist, müssen Bemessungsannahmen und Algorithmen gefunden werden, die diese "Vorschriftenlücke" zwischen einem staborientierten Regelwerk und den computergenerierten Schnittgrößen von Flächentragwerken schließen.

Die ING.-SOFTWARE DLUBAL GMBH stellt sich mit dem Modul RF-BETON Flächen dieser Herausforderung. Auf Grundlage der von THEODOR BAUMANN im Jahre 1972 definierten Verträglichkeitsbedingungen wurde ein konsistenter Bemessungsalgorithmus zur Dimensionierung zweiund dreibahniger Bewehrungsscharen entwickelt. Damit dieses Modul nicht nur ein Werkzeug zur Ermittlung der statisch erforderlichen Bewehrung ist, sind die Vorschriften zu zulässigen Höchst- und Mindestbewehrungsgraden für die verschiedenen Bauteiltypen (2D-Platten, 3D-Schalen, Wände, wandartige Träger), wie sie sich in den Normen als Konstruktionsvorgaben finden, auch in RF-BETON Flächen abgebildet.

Neben der Dimensionierung des Bewehrungsstahls wird im Modul stets kontrolliert, dass der Beton, der das Bewehrungsnetz aussteift, durch eine ausreichende Plattendicke sämtlichen Anforderungen aus Biege- und Querkraftbeanspruchung gerecht wird.

Neben der Bemessung im Zustand der Tragfähigkeit besteht die Möglichkeit, das Tragwerk im Zustand der Gebrauchstauglichkeit nachzuweisen. Diese Nachweise umfassen die Begrenzung der Betondruck- und der Betonstahlspannungen, die Mindestbewehrung für die Begrenzung der Rissbreite sowie die Begrenzung der Rissbreite durch Begrenzung von Stabdurchmesser und Stababstand. Hierzu stehen analytische und nichtlineare Nachweismethoden zur Auswahl.

Für die nichtlineare Bemessung (als Zusatzmodul verfügbar) kann der Einfluss von Kriechen und Schwinden zur Analyse der Rissbildung im Verformungszustand berücksichtigt werden.

Die Bemessung erfolgt für folgende Normen:

- DIN 1045-1:2008-08
- DIN 1045-1:2001-07
- DIN 1045:1988-07
- DIN V ENV 1992-1-1:1992-06
- ÖNORM B 4700:2001-06-01
- EN 1992-1-1
- ACI 318-08
- SIA 262

Die links dargestellte Liste der für EN 1992-1-1:2004 verfügbaren Nationalen Anhänge wird ständig erweitert.

Die lückenlose Darstellung der Zwischenergebnisse schafft – der Philosophie des Hauses DLUBAL entsprechend – eine besondere Transparenz und Nachvollziehbarkeit der Ergebnisse.

Ihr Team der ING.-SOFTWARE DLUBAL GMBH

CEN	EU
BS	Vereinigtes Königreich
CSN	Tschechien
🔳 DIN	Deutschland
DK	Dänemark
- NEN	Niederlande
NF	Frankreich
NP	Portugal
PN	Polen
-SFS	Finnland
SIST 🔤	Slowenien
SS	Schweden
SS 🔁	Singapur
STN 🔤	Slowakei
UNE	Spanien
UNI	Italien
ÖNORI	MÖsterreich

Nationale Anhänge für EC 2

Das RF-BETON Team 1.2

An der Entwicklung von RF-BETON Flächen waren beteiligt:

Programmkoordinierung

Dipl.-Ing. Georg Dlubal Dipl.-Ing. (FH) Peter Konrad, B.I.S.M Ing. Jan Fráňa

Ing. Ph.D. Pavel Marek Dipl.-Ing. (FH) Alexander Meierhofer Dipl.-Ing. (FH) Younes El Frem

Programmierung

Ing. Michal Balvon Jaroslav Bartoš Ing. Ladislav Ivančo Dip.-Ing. (FH) Peter Konrad, B.I.S.M Ing. Alexandr Průcha Ing. Lukáš Weis

Dipl.-Ing. (FH) Alexander Meierhofer

Programmdesign, Dialogbilder und Icons

Dipl.-Ing. Georg Dlubal MgA. Robert Kolouch

Zdeněk Ballák Ing. Jan Miléř

Ing. Bohdan Šmid

Programmkontrolle

Ing. Jan Fráňa M.Sc. Dipl.-Ing. Frank Lobisch

Handbuch, Hilfesystem und Übersetzungen

Dipl.-Ing. (FH) Robert Vogl Dipl.-Ing. (FH) Peter Konrad, B.I.S.M Ing. Dmitry Bystrov Jan Jeřábek

Ing. Ladislav Kábrt Ing. Petr Míchal Dipl.-Ü. Gundel Pietzcker Mgr. Petra Pokorná

Technische Unterstützung und Endkontrolle

Dipl.-Ing. (BA) Markus Baumgärtel Dipl.-Ing. (BA) Sandy Baumgärtel Dipl.-Ing. (FH) Steffen Clauß Dipl.-Ing. (FH) Matthias Entenmann Dipl.-Ing. Frank Faulstich Dipl.-Ing. (FH) René Flori Dipl.-Ing. (FH) Stefan Frenzel Dipl.-Ing. (FH) Walter Fröhlich Dipl.-Ing. (FH) Andreas Hörold

Dipl.-Ing. (FH) Bastian Kuhn M.Sc. Dipl.-Ing. Frank Lobisch Dipl.-Ing. (FH) Alexander Meierhofer M. Eng. Dipl.-Ing. (BA) Andreas Niemeier M.Eng. Dipl.-Ing. (FH) Walter Rustler Dipl.-Ing. (FH) Frank Sonntag Dipl.-Ing. (FH) Christian Stautner Dipl.-Ing. (FH) Robert Vogl Dipl.-Ing. (FH) Andreas Wopperer

1.3 Zum Gebrauch des Handbuchs

Die Themenbereiche Installation, Benutzeroberfläche, Ergebnisauswertung und Ausdruck werden im RFEM-Handbuch ausführlich erläutert, sodass auf eine Beschreibung verzichtet werden kann. Der Schwerpunkt dieses Handbuchs liegt auf den Besonderheiten, die sich im Rahmen der Arbeit mit dem Zusatzmodul ergeben.

Die Beschreibung des Moduls RF-BETON Flächen orientiert sich an der Reihenfolge und am Aufbau der Eingabe- und Ergebnismasken. In einem vorangestellten theoretischen Kapitel werden kurz die Grundlagen der verwendeten Bemessungsverfahren vorgestellt. Der letzte Handbuchabschnitt beschreibt die diversen Programmfunktionen zur Auswertung und Dokumentation der Bemessungsergebnisse.

Grafik

Im Text werden die beschriebenen **Schaltflächen** (Buttons) in eckige Klammern gesetzt, z. B. [Grafik]. Gleichzeitig sind sie am linken Rand abgebildet. Zudem werden die **Begriffe** der Dialoge, Tabellen und Menüs durch *Kursivschrift* hervorgehoben, um so das Nachvollziehen der Erläuterungen zu erleichtern.

Das Handbuch ist nach schweizerischer Rechtschreibregel geschrieben. Es enthält auch ein Stichwortverzeichnis. Sollten Sie trotzdem nicht fündig werden, steht auf unserer Website **www.dlubal.de** eine Suchfunktion zur Verfügung, mit der Sie in der Liste aller *Fragen und Antworten* nach bestimmten Kriterien filtern können.

1.4 Aufruf des RF-BETON-Moduls

In RFEM bestehen folgende Möglichkeiten, das Zusatzmodul RF-BETON Flächen zu starten.

Menü

Der Programmaufruf kann erfolgen über das RFEM-Menü

$\textbf{Zusatzmodule} \rightarrow \textbf{Stahlbetonbau} \rightarrow \textbf{RF-BETON Flächen}.$

Bild 1.1: Menü Zusatzmodule \rightarrow Stahlbetonbau \rightarrow RF-BETON Flächen

Navigator

Das Bemessungsmodul kann auch im Daten-Navigator aufgerufen werden über

```
Projekt-Navigator
4 RFEM
                                                                                     ^
    谢 Gebrauchstauglichkeit (Demo)
    🗄 🚞 Strukturdater
    🗄 📄 Belastung
    🗄 📄 Ergebnisse
       🛅 Schnitte
       🛅 Ausdruckprotokolle
    🗄 🫅 Hilfsobiekte
    🚊 🦳 Zusatzmodule
          📧 DUENQ 7 - Querschnittswerte dünnwandiger Profile
           DICKQ 6 - Querschnittswerte dickwandiger Querschnitte
          🥃 RF-STAHL Flächen - Allgemeine Spannungsanalyse von Flächen
          😰 RF-STAHL Stäbe - Allgemeine Spannungsanalyse von Stahlstäben
           🕫 RF-STAHL EC3 - Stahlbemessung nach Eurocode 3
           😰 RF-KAPPA - Biegeknicknachweis
           🗊 RF-BGDK - Biegedrillknicknachweis
           🔍 RF-FE-BGDK - Biegedrillknicknachweis nach Theorie II Ordnung (FEM)
           RF-EL-PL - Tragsicherheitsnachweis nach Verfahren EL-PL
           🕼 RF-C-ZU-T - Nachweis von grenz (c/t)
           FE-BEUL - Beulsicherheitsnachweis
          VERBAND - Dachverbände mit Stabilisierungslasten
          📅 RF-ASD - Stahlbaunachweise nach US-Norm AISC ASD
             RF-BETON Flächen - Stahlbeton-Bemessung der Flächen
           🛃 RF-BETON Stäbe - Stahlbeton-Bemessung der Stäbe
                                                                  13
           🗻 RF-BETON Stützen - Stahlbeton-Bemessung der Stützen
           😨 RF-STANZ - Nachweis der Flächen gegen Durchstanzen
🚰 Daten 📮 Zeigen 🛹 Ergebnisse
                                                                                  ⊲ ⊳
```

Bild 1.2: Daten-Navigator Zusatzmodule \rightarrow RF-BETON Flächen

Zusatzmodule \rightarrow RF-BETON Flächen.

Panel

Falls in der RFEM-Position bereits Bemessungsergebnisse vorliegen, kann der gewünschte RF-BETON Flächen-Fall in der Liste der Lastfälle eingestellt werden. Über die Schaltfläche [Ergebnisse ein/aus] werden die Bewehrungen oder Schnittgrößen in der Grafik angezeigt.

Im Panel steht nun die Schaltfläche [RF-BETON Flächen] zur Verfügung, die zum Aufrufen des Bemessungsmoduls benutzt werden kann.

Bild 1.3: Panel: Schaltfläche [RF-BETON Flächen]

RF-BETON Flächen FA1 - Dec 🍸 🤇	>
LF1 - Eigengewicht und Aufbau しよ LF2 - Verkehrslast	対
LK1 - Bemessungswerte Stahlbeton	
RF-BETON Flächen FAT - Decken RF-BETON Flächen FA2 - Wände	

2. Theoretische Grundlagen

Nachfolgend werden nur die für die Norm SIA262 spezifischen theoretischen Grundlagen beschrieben. Allgemeine Grundlagen, wie zum Beispiel die Ermittlung der Bemessungsschnittgrößen, sind dem Handbuch zum Modul RF-BETON Flächen zu entnehmen. Dieses steht auf unserer Homepage zum Download bereit.

2.1 Tragfähigkeitsnachweis

Auf eine ausführliche Beschreibung der linearen Bemessungsverfahren wird verzichtet, da dieses Handbuch kein Lehrbuch ersetzen soll.

2.1.1 Biegung und Normalkraft

In SIA 262 werden die Bemessungsgrundlagen für den Nachweis in den Grenzzuständen der Tragfähigkeit dargestellt. Diese Regelungen gelten für Biegung mit oder ohne Normalkraft und für Normalkraft allein.

Der rechnerische Versagenszustand tritt ein, wenn die Grenzdehnungen erreicht werden. Je nachdem, wo diese Grenzdehnungen auftreten, kann das Versagen durch den Beton oder den Betonstahl ausgelöst werden.

Das folgende Bild verdeutlicht die zulässigen Dehnungsverteilungen bei Biegung mit und ohne Längskraft nach SIA 262.

Bild 2.1: Rechnerisch mögliche Dehnungsverteilungen im Grenzzustand der Tragfähigkeit

Die im Bild gezeigten Bereiche der Dehnungsverteilungen bedeuten nach [9]:

Bereich 1

Dieser Bereich stellt sich bei einer mittigen Zugkraft oder bei einer Zugkraft mit geringer Ausmitte ein. Über dem gesamten Querschnitt treten nur Dehnungen auf. Der statisch wirksame Querschnitt besteht nur aus den beiden Bewehrungslagen As1 und As2. Die Bewehrung versagt, weil die Grenzdehnung ϵ_{ud} erreicht wird.

Bereich 2

Bereich 2 tritt bei reiner Biegung und bei Biegung mit Längskraft (Druck- und Zugkraft) auf. Die Nulllinie liegt innerhalb des Querschnitts. Die Biegezugbewehrung wird voll ausgenutzt, d. h. der Stahl versagt durch das Erreichen der Grenzdehnung. Der Betonquerschnitt wird in der Regel nicht voll ausgenutzt: Die Stauchungen erreichen nicht die Grenzdehnung ϵ_{c2d} .

Bereich 3

Dieser Bereich stellt sich nur bei reiner Biegung und bei Biegung mit Längskraft (Druck) ein. Die Tragkraft des Stahls ist grösser als die Tragkraft des Betons. Der Beton versagt, weil seine Grenzdehnung ε_{c2d} erreicht wird.

Das Versagen des Betons kündigt sich wie in den Bereichen 1 und 2 durch Risse an, da der Stahl die Fliessgrenze überschreitet (Bruch mit Vorankündigung).

Bereich 4

Bereich 4 tritt bei Biegung mit einer Längsdruckkraft auf. Er stellt den Übergang eines vorwiegend auf Biegung beanspruchten Querschnitts zu einem auf Druck beanspruchten Querschnitt dar. Der Beton versagt, bevor im Stahl die Fliessgrenze erreicht wird, da die möglichen Dehnungen sehr klein sind. Dieser Bereich hat einen stark bewehrten Querschnitt zur Folge. Er wird daher durch Einlegen einer Druckbewehrung vermieden.

Kleine Stahldehnungen in der Zugzone führen zum Bruch ohne Vorankündigung (die Biegezugbewehrung gerät nicht ins Fliessen).

Bereich 5

Dieser Bereich liegt bei einer Druckkraft mit geringer Ausmitte (z. B. Stütze) oder bei einer zentrischen Druckkraft vor. Über dem gesamten Querschnitt treten nur Stauchungen auf. Die Stauchung am weniger gedrückten Rand liegt zwischen $0 > \varepsilon_{c1} > \varepsilon_{c2}$. Alle Stauchungsverteilungen schneiden sich im Punkt C.

2.1.2 Querkraft

Der Nachweis der Querkrafttragfähigkeit ist nur im Grenzzustand der Tragfähigkeit zu führen. Die Einwirkungen und die Widerstände gehen mit ihren Bemessungswerten ein. Das allgemeine Nachweisformat nach SIA 262 lautet:

 $V_{\text{Ed}} \leq V_{\text{Rd}}$

mit V_{Ed} Bemessungswert der einwirkenden Querkraft

V_{Rd} Bemessungswert des Querkraftwiderstandes

Je nach Versagensmechanismus wird der Bemessungswert der Querkrafttragfähigkeit durch einen der folgenden drei Werte bestimmt.

- V_{Rd,s} Bemessungswert des Widerstands der Bügelbewehrung
- V_{Rd,c} Bemessungswert des Widerstands des Betondruckfelds

Bleibt die einwirkende Querkraft V_{Ed} unter dem Wert von V_{Rd,c}, dann ist rechnerisch keine Querkraftbewehrung erforderlich und der Nachweis ist erfüllt.

Liegt die einwirkende Querkraft V_{Ed} über dem Wert von $V_{Rd,c}$, ist eine Querkraftbewehrung vorzusehen. Die Querkraftbewehrung muss die gesamte Querkraft aufnehmen

 $V_{\text{Ed}} \leq V_{\text{Rd,s}}$

Die verschiedenen Querkrafttragfähigkeiten bestimmen sich nach SIA 262 wie folgt.

Querkrafttragfähigkeit ohne Querkraftbewehrung

Der Bemessungswert für den Querkraftwiderstand ohne Querkraftbewehrung $V_{\mbox{\tiny Rd}}$ darf ermittelt werden mit:

$$\begin{split} & \mathsf{V}_{\mathsf{Rd}} = \mathsf{k}_{\mathsf{d}} \cdot \tau_{\mathsf{cd}} \cdot \mathsf{d} \cdot \mathsf{b}_{\mathsf{w}} & \mathsf{SlA 262 4.3.3.2.1 (32)} \\ & \mathsf{k}_{\mathsf{d}} = \frac{1}{1 + \mathsf{k}_{\mathsf{v}} \cdot \mathsf{d}} \\ & \mathsf{T}_{\mathsf{cs}} & \mathsf{Schubfestigkeit in N/mm^2} \\ & \mathsf{d} & \mathsf{Statische Nutzhöhe der Biegebewehrung in m} \\ & \mathsf{b}_{\mathsf{w}} & \mathsf{die kleinste Querschnittsbreite innerhalb der Zugzone des Querschnitts in m} \\ & \mathsf{k}_{\mathsf{v}} = 2.2 \cdot \frac{\mathsf{m}_{\mathsf{d}}}{\mathsf{m}_{\mathsf{Rd}}} & \mathsf{SlA 262 4.3.3.2.2 (33)} \\ & \mathsf{Bei der Berechnung ist } \frac{\mathsf{m}_{\mathsf{d}}}{\mathsf{m}_{\mathsf{Rd}}} = 1,00 \\ & \mathsf{k}_{\mathsf{v}} = 2.2 \cdot \frac{\mathsf{m}_{\mathsf{d}} - \mathsf{m}_{\mathsf{Dd}}}{\mathsf{m}_{\mathsf{Rd}} - \mathsf{m}_{\mathsf{Dd}}} & \mathsf{mit Berücksichtigung der Normalkraft} & \mathsf{SlA 262 4.3.3.2.7} \\ & \mathsf{Nach [21] 4.5 Einfluss der Normalkraft wird m_{\mathsf{Dd}} wie folgt gerechnet: \\ & \mathsf{für } \mathsf{n}_{\mathsf{s}} < 0 & \mathsf{m}_{\mathsf{Dd}} = -\mathsf{n}_{\mathsf{d}} \cdot \left(\frac{\mathsf{h}}{2} - \frac{\mathsf{d}}{3}\right) \\ & \mathsf{für } \mathsf{n}_{\mathsf{s}} > 0 & \mathsf{m}_{\mathsf{Dd}} = -\mathsf{n}_{\mathsf{d}} \cdot \left(\frac{\mathsf{h}}{2} - \mathsf{d}'\right) \\ & \mathsf{Bei der Berechnung ist } \frac{\mathsf{m}_{\mathsf{d}} - \mathsf{m}_{\mathsf{Dd}}}{\mathsf{m}_{\mathsf{Rd}} - \mathsf{m}_{\mathsf{Dd}}} = 1,00 \\ & \mathsf{k}_{\mathsf{v}} = 3,00 & \mathsf{wenn plastische Verformungen der Biegebewehrung (z.B. plast. Biegegelenke im Bernessungszustand) nicht ausgeschlossen werden können SlA 262 4.3.3.2.2 \\ & \mathsf{Für Betonstahl mit } \mathsf{f}_{\mathsf{d}} > 435 \, \mathsf{N/mm2}$$
 ist k. mit dem Beiwert $\mathsf{f}_{\mathsf{d}} / 435 \, \mathsf{nach SlA 262 4.3.3.2.4 \, \mathsf{zu} vergrössern. \\ & \mathsf{Für Betons til dem Grösstkorm D_{\mathsf{rms}} < 32mm ist k. mit dem Beiwert $\mathsf{f}_{\mathsf{d}} / \mathsf{a}51 \, \mathsf{ach SlA 262 4.3.3.2.4 \, \mathsf{zu} vergrössern. \\ & \mathsf{Für Betons til dem Grösstkorm D_{\mathsf{rms}} < 32mm ist k. mit dem Beiwert $\mathsf{f}_{\mathsf{d}} / \mathsf{abgestuft}$, ist der Beiwert k. un 50% zu vergrössern. \\ & \mathsf{su ergrössern.} \\ & \mathsf{su ergrössern.} \\ & \mathsf{su ergrössern.} \\ & \mathsf{su de Längsbewehrung im Bereich < d vom Nachweisschnitt abgestuft, ist der Beiwert k. } \\ & \mathsf{su de Längsbewehrung im Bereich < d vom Nachweisschnitt abgestuft, ist der Beiwert k. \\ & \mathsf{au 50\% zu vergrössern.} \\ \end{array}$$

Querkrafttragfähigkeit mit Querkraftbewehrung

Für Bauteile mit Querkraftbewehrung rechtwinklig zur Bauteilachse gilt:

$$V_{Rd,s} = \left(\frac{A_{sw}}{s}\right) \cdot z \cdot f_{sd} \cdot \cot\alpha$$
 SIA 262 4.3.3.4.3 (37)
mit

A_{sw} Querschnittsfläche der Querkraftbewehrung

s Bügelabstand

z Hebelarm der inneren Kräfte angenommen zu 0,9·d

f_{sd} Bemessungswert der Streckgrenze der Querkraftbewehrung

α Neigung der Betondruckstrebe

Die Neigung der Betondruckstrebe α darf in Abhängigkeit von der Beanspruchung innerhalb bestimmter Grenzen gewählt werden. Damit soll der Tatsache Rechnung getragen werden, dass ein Teil der Querkraft über die Rissreibung abgetragen wird und somit das Fachwerk nicht belastet. Folgende Grenzen sind in Gleichung (34) der SIA 262 empfohlen.

 $25^\circ \le \alpha \le 45^\circ$

SIA 262 4.3.3.3.2 (34)

Die Druckstrebenneigung α kann damit zwischen folgenden Werten variieren.

	Mindestneigung	Höchstneigung
α	25,0°	45,0°
cot α	2,14	1,0

Empfohlene Grenzen der Druckstrebenneigung

2.2 Gebrauchstauglichkeitsnachweis

Die Nachweise in den Grenzzuständen der Gebrauchstauglichkeit bestehen aus verschiedenen Einzelnachweisen.

2.2.1 Vorhandene Bewehrung

Ehe die Gebrauchstauglichkeitsnachweise geführt werden, prüft RF-BETON Flächen die vorhandene Bewehrung. Dabei wird zunächst mit den Schnittgrössen der Gebrauchstauglichkeit eine Bemessung wie im Grenzzustand der Tragfähigkeit durchgeführt. Die sich damit ergebende statisch erforderliche Bewehrung wird mit der benutzerdefinierten vorhandenen Bewehrung verglichen.

Ist die vorhandene Bewehrung kleiner als die statisch erforderliche Bewehrung oder ergibt sich im Zuge dieser Untersuchung eine Unbemessbarkeit, so unterbleiben die Gebrauchstauglichkeitsnachweise.

2.2.2 Mindestbewehrung

Der Mindestbewehrungsquerschnitt zur Begrenzung der Rissbreite ermittelt sich gemäss SIA 262 4.4.2 vereinfacht wie folgt.

$$A_{s,min} = \frac{k_c \cdot k_t \cdot f_{ctm} \cdot A_{ct}}{\sigma_{s,adm}}$$

$$A_{s,min}$$
Mindestquerschnittsfläche der Betonstahlbewehrung in der Zugzone $\sigma_{s,adm}$ Zulässige Spannung der Betonstahlbewehrung k_c Beiwert zur Berücksichtigung der Spannungsverteilung in der Zugzone
 $k_c = 1,0$ bei reinem Zug
 $k_c = 0,4$ bei Biegung oder Biegung mit Normalkraft k_t Beiwert zur Berücksichtigung des Einflusses der Abmessung t
nach SIA 262 4.4.1.3 (84) t generell die kleinste Bauteilabmessung, ausser für Platten- und Recht-
eckquerschnitte unter Biegebeanspruchung, dann gilt:
 $t = h/3$ t in m f_{ctm} Mittelwert der BetonzugfestigkeitDas Programm rechnet wahlweise mit einem variablen Abminderungsbeiwert k_{zt} für
die Betonzugfestigkeit fcm. $k_{zt} = 1,0$ bei der Rissbildung ausserhalb der ersten 28 Tage
 $k_{zt} = 0,5$ bei der Rissbildung zwischen dem 3. und 5. Tag A_{ct} Fläche der Betonzugzone

2.2.3 Begrenzung der Rissbreiten

Der Nachweis der Rissbreite wird gemäss SIA 262 4.4.2 geführt.

Nach SIA 262 4.4.2.2.3 werden die normale, erhöhte und hohe Anforderungen unterschieden.

Normale Anforderungen nach SIA 262 4.4.2.2.4 genügen, wenn Risse toleriert und keine besonderen Ansprüche an die Dichtigkeit und das Aussehen gestellt werden. *Erhöhte Anforderungen* nach SIA 262 4.4.2.2.5 werden gestellt, wenn besondere Ansprüche an die Funktionstüchtigkeit und das Aussehen bestehen und eine gute Rissverteilung angestrebt wird. *Hohe Anforderungen* nach SIA 262 4.4.2.2.6 werden gestellt, wenn eine Begrenzung der Rissbreiten für quasi-ständige und häufige Lastfälle erwünscht ist.

Nach dieser Unterscheidung wird nach SIA 262 4.4.2.3.9 Tabelle 16 die Anforderungsklasse für die Spannungsbegrenzung gewählt.

Ziel	Anforderungen		
	normal	erhöht	hoch
Verhindern spröden Versagens beim Erreichen von f_{ctd}	Α	Α	Α
Begrenzen der Rissbreiten unter aufgezwungenen oder behinderten Verformungen (beim Erreichen von f_{ctd})	Α	В	С
Begrenzen der Rissbreiten für quasi-ständige Lastfälle gemäss Norm SIA 260	-	-	С
Begrenzen der Rissbreiten für häufige Lastfälle gemäss Norm SIA 260	_	f _{sd} - 80	f _{sd} - 80

Die Spannungsbegrenzung in Funktion des Stababstandes ϕ wird nach SIA 262 4.4.2.3.10 Figur 31 dargestellt.

Nach [21] Seite 113 werden die Rissöffnungen für Anforderungsklasse B mit 0,5 mm und für C mit 0,2 mm definiert. Für die Anforderungsklasse A und f_{sd} -80 sind die Rissöffnungen variabel und werden nach [21] 10.15 berechnet:

$$w = \frac{s \cdot (\sigma_{s,adm})^{3/2}}{4 \cdot E_s \cdot \sqrt{\pi \cdot f_{ct}}}$$
s Stababstand
$$E_s \qquad \text{Mittelwert des Elastizitätsmoduls von Betonstahl}$$

$$f_{ct} \qquad \text{Bemessungswert der Streckgrenze der Querkraftbewehrung}$$

$$f_{ct} = k_t \cdot k_{zt} \cdot f_{ctm}$$

2.2.4 Begrenzung der Betonstahlspannungen

Zur Vermeidung nichtelastischer Dehnungen, unzulässiger Rissbildungen und Verformungen sind gemäss SIA 262 4.4.2 die Zugspannungen in der Bewehrung zu begrenzen.

Nach SIA 262 4.4.2.3.9 Tabelle 16 werden die Anforderungsklasse für die Spannungsbegrenzung gewählt.

Für die Anforderungklasse A gilt $\sigma_{s,adm} = f_{sd}$.

Für die Anforderungsklasse B und C werden die Werte $\sigma_{\text{s,adm}}$ nach [21] 10.15 berechnet .

$$\sigma_{s,adm} = \left(\frac{4 \cdot w \cdot E_s \sqrt{\pi \cdot f_{ct}}}{s}\right)^{2/3} \le f_{sd}$$

Für die Anforderungklasse f_{sd} -80 gilt $\sigma_{s,adm} = f_{sd}$ -80 .

2.2.5 Nachweis des Stababstands

Der maximale Stababstand max sı wird nach [21] 10.15 berechnet .

$$s = \frac{4 \cdot E_s \cdot w \cdot \sqrt{\pi \cdot f_{ct}}}{(\sigma_s)^{3/2}} \le 300 \text{mm}$$

2.2.6 Begrenzung der Verformungen

Die Richtwerte für zulässige Verformungen sind der Norm SIA 260 zu entnehmen:

Anhang A Gebäude

Tabelle 3: Richtwerte für Durchbiegungen von Decken und Balken

Grenzzustand	Folgen der Auswirkungen			
	irreversibel	reversibel	reversibel	
		Lastfall		
	selten (20)	häufig (21)	quasi-ständig (22)	
Funktionstüchtigkeit – Einbauten mit sprödem Verhalten – Einbauten mit duktilem Verhalten – Nutzung und Betrieb	$w \leq l/500^{-1} 2^{-3}$	$w \le l/350^{-1/2}$ $w \le l/350^{-4/2}$		
Komfort		$w \le l/350^{-4}$		
Aussehen			$w \le l/300^{-1}$	

¹⁾ Durchbiegung nach Abzug einer allfälligen Überhöhung. Allfällige Langzeitwirkungen aus Schwinden, Relaxation oder Kriechen sind zu berücksichtigen.

²⁾ Durchbiegung infolge der Einwirkungen und Langzeitwirkungen nach dem Einbau der relevanten nicht tragenden Bauteile bzw. technischen Ausrüstung.

 ³⁾ Wenn Einbauten besonders empfindlich auf Verformungen des Tragwerks reagieren, sind neben oder anstelle von bemessungstechnischen vor allem auch konstruktive Massnahmen gegen Beschädigungen vorzusehen.
 ⁴⁾ Durchbiegung infolge der veränderlichen Einwirkungen.

Die Durchbiegungen sind gemäss den Normen SIA 262 bis 266 zu bestimmen.

Abweichende Grenzwerte für Durchbiegungen können in Abstimmung auf die Nutzungsanforderungen vereinbart und müssen in der Projektbasis festgelegt werden. Insbesondere für so genannt sekundäre Bauteile können reduzierte Anforderungen gelten.

Tabelle 4: Richtwerte für horizontale Auslenkungen von Wänden, Rahmen und Stützen

Grenzzustand	Folgen der Auswirkungen				
	irreversibel	reversibel	reversibel		
		Lastfall			
	selten (20)	häufig (21)	quasi-ständig (22)		
Funktionstüchtigkeit – Einbauten mit sprödem Verhalten – Einbauten mit duktilem Verhalten – Nutzung und Betrieb	$u \leq h/500^{1/2}$	$u \le h/200^{-1}$ $u \le H/300^{-1}$			
Aussehen			$u \le h/250^{-1}$		
1) Horizontale Auslenkung infolge der verände	erlichen Einwirkungen.				

²⁾ Wenn Einbauten besonders empfindlich auf Verformungen des Tragwerks reagieren, sind neben oder anstelle von bemessungstechnischen vor allem auch konstruktive Massnahmen gegen Beschädigungen vorzusehen.

Die horizontalen Auslenkungen sind gemäss den Normen SIA 262 bis 266 zu bestimmen.

Abweichende Grenzwerte für horizontale Auslenkungen können in Abstimmung auf die Nutzungsanforderungen vereinbart und müssen in der Projektbasis festgelegt werden. Insbesondere für Kranbahnen können erhöhte Anforderungen gelten.

Für weitere Konstruktionstypen sind folgende Anhänge zu berücksichtigen.

Anhang B Strassenbrücken

Anhang C Fuss- und Radwegbrücken

Anhang D Normalspurbahnbrücken

Anhang E Schmalspurbahnbrücken

Im Programm wird die Verformung nach dem Verfahren EN 1992-1-1, 7.4.3 berechnet.

Diese Berechnungsmethode ermöglicht, die Begrenzung der Verformungen mit einer direkten Berechnung nachzuweisen. Die Durchbiegungen sind dabei wirklichkeitsnah zu ermitteln. Das Berechnungsverfahren muss das tatsächliche Bauwerksverhalten mit einer Genauigkeit wiedergeben, die auf den Nachweiszweck abgestimmt ist.

Die Durchbiegung wird durch zweimalige Integration aus der Differentialgleichung der Biegelinie ermittelt. Da sich bei einem Stahlbetonquerschnitt die Steifigkeit jedoch abschnittsweise infolge Rissbildung ändert, ist das Momenten-Krümmungs-Diagramm nichtlinear. Es bestehen grosse Unterschiede in der Krümmung und damit auch in der Durchbiegung für Zustand I und Zustand II.

Die Durchbiegung wird daher mit dem Prinzip der virtuellen Arbeiten für die Stelle der maximalen Verformung bestimmt. Für die Krümmung wird eine Näherungslinie verwendet, die die Extremwerte der Krümmung mit einer zum Momentenverlauf affinen Linie verbindet.

In der Handrechnung werden nach [9] drei Werte der Durchbiegung erfasst:

Unterer Rechenwert der Durchbiegung

Die geringste Durchbiegung erhält man, wenn die Berechnung für einen vollständig ungerissenen Querschnitt durchgeführt wird (Zustand I). Diese Durchbiegung wird als *f*. bezeichnet.

Oberer Rechenwert der Durchbiegung

Die grösste Durchbiegung erhält man, wenn die Berechnung für einen vollständig gerissenen Querschnitt durchgeführt wird (Zustand II). Diese Durchbiegung wird als f_{II} bezeichnet.

Wahrscheinlicher Wert der Durchbiegung

Es ist anzunehmen, dass Teilbereiche des Querschnitts ungerissen und andere, höher beanspruchte Bereiche gerissen sind. Dabei verläuft die Momenten-Krümmungs-Beziehung bis zum

ersten Riss nach Zustand I und dann teilweise gerissen. Diese Annahme liefert den wahrscheinlichen Wert der Durchbiegung *f*, der zwischen dem unteren und oberen Rechenwert liegt. Nach EN 1992-1-1, 7.4.3 (3), Gl. (7.18) kann dieser aus folgender Beziehung gewonnen werden:

 $\alpha = \zeta \cdot \alpha_{||} + (1 - \zeta) \cdot \alpha_{||}$

Die Werte α_{I} und α_{II} kennzeichnen allgemeine Durchbiegungsparameter (z. B. fi oder fil). Dies kann eine Dehnung, Krümmung, Durchbiegung oder Verdrehung sein. ζ ist der Verteilungsbeiwert zwischen Zustand I und Zustand II und liegt wie in EN 1992-1-1, Gl. (7.19) dargestellt zwischen $0 \le \zeta < 1$. Um eine wahrscheinliche Durchbiegung zu ermitteln, wird die quasi-ständige Einwirkungskombination zur Berechnung der Schnittgrößen verwendet.

2.2.7 Kriechen und Schwinden

2.2.7.1 Ermittlung der Eingangsgrössen

Dieses Kapitel gibt einen Überblick über die zeitabhängigen Spannungen und Verformungen aus Kriechen und Schwinden.

Kriechen bezeichnet die zeitabhängige Verformung des Betons unter Belastung über einen bestimmten Zeitraum. Die wesentlichen Einflussgrössen sind ähnlich denen des Schwindens, wobei zusätzlich die sogenannte kriecherzeugende Spannung einen wichtigen Einfluss auf die Kriechverformungen hat. Besondere Beachtung bedarf dabei die Dauer der Belastung, der Zeitpunkt der Lastaufbringung sowie die Höhe der Beanspruchung. Die Grösse, durch die das Kriechen erfasst wird, ist die Kriechzahl $\omega(t,t_0)$ zum betrachteten Zeitpunkt *t*.

Schwinden beschreibt eine zeitabhängige Änderung des Volumens ohne Einwirkung von äusseren Lasten oder Temperatur. Auf die weitere Verzweigung des Schwindproblems in einzelne Erscheinungsformen (Trocknungsschwinden, autogenes Schwinden, plastisches Schwinden und Karbonatisierungsschwinden) wird hier nicht näher eingegangen. Wesentliche Einflussgrössen des Schwindens sind die relative Luftfeuchte, die wirksame Bauteildicke, die Gesteinskörnung, die Betonfestigkeit, der Wasserzementwert, die Temperatur sowie die Art und Dauer der Nachbehandlung. Die Grösse, durch die das Schwinden erfasst wird, ist das Schwindmass $\varepsilon_{c,s}(t,ts)$ zum betrachteten Zeitpunkt *t*.

Im Folgenden wird die Ermittlung der Kriechzahl $\omega(t,t_0)$ und des Schwindmasses es $\epsilon_{c,s}(t,t_s)$ gemäss SIA 262 und Bemessungsbeispiele zur Norm SIA 262 Anhang 8.2 - Kriechen und Schwinden von Beton vorgestellt.

Kriechzahl ω(t,t₀)

Voraussetzung zur Anwendung der nachfolgenden Formeln ist, dass die kriecherzeugende Spannung σ_c der einwirkenden Dauerlast folgenden Wert nicht überschreitet:

Zylinderdruckfestigkeit des Betons zum Zeitpunkt des Aufbringens der

$$\sigma_{c} \leq 0,45 \cdot f_{cki}$$

 \mathbf{f}_{cki}

mit

kriecherzeugenden Spannung

Bild 2.2: Kriecherzeugende Spannung

Unter der Annahme eines linearen Kriechverhaltens ($\sigma_c \leq 0,45 f_{ckj}$) kann das Kriechen des Betons durch eine Abminderung des Elastizitätsmodul für den Beton erfasst werden.

 $\mathsf{E}_{\mathsf{c},\mathsf{eff}} = \frac{1,1 \cdot \mathsf{E}_{\mathsf{cm}}}{1,1 + \varphi(\mathsf{t},\mathsf{t}_0)}$ mittlerer Elastizitätsmodul nach SIA 262 3.1.2.3.3 mit E_{cm} ω(t,t₀) Kriechzahl Betonalter zum betrachteten Zeitpunkt in Tagen t Betonalter zu Belastungsbeginn in Tagen t_0

Die Kriechzahl $\omega(t,t_0)$ zum untersuchten Zeitpunkt *t* darf wie folgt berechnet werden.

$$\phi(t, t_{0}) = \phi_{RH} \cdot \beta(f_{cm}) \cdot \beta(t_{0}) \cdot \beta_{c}(t, t_{0})$$
mit $\phi_{RH} = \left[1 + \frac{1 - \frac{RH}{100}}{0, 1 \cdot \sqrt[3]{h_{0}}} \cdot \alpha_{1}\right] \cdot \alpha_{2}$
RH Relative Luftfeuct
h_{0} Wirksame Bautei

:hte in [%] Wirksame Bauteildicke [mm]

$$h_0 = \frac{2 \cdot A_c}{u}$$

$$A_c \qquad Querschnittsfläche u \qquad Querschnittsumfang$$

Anpassungsfaktoren α_1, α_2

$$\alpha_1 = \left(\frac{35}{f_{cm}}\right)^{0,7}$$
$$\alpha_2 = \left(\frac{35}{f_{cm}}\right)^{0,2}$$
$$f_{cm}$$

Mittelwert der Zylinderdruckfestigkeit

$$\beta(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}}$$

ſ

f_{cm} Mittelwert der Zylinderdruckfestigkeit des Betons in [N/mm²]

$$B(t_0) = \frac{1}{0.1 + t_0^{0.20}}$$

t₀

Betonalter zu Belastungsbeginn in Tagen

$$\beta_{c}(t,t_{0}) = \left[\frac{t-t_{0}}{\beta_{H}+t-t_{0}}\right]^{0,3}$$

Betonalter zum betrachteten Zeitpunkt in Tagen t

Betonalter zu Belastungsbeginn in Tagen t_0

$$\beta_{\text{H}} = 1.5 \cdot \left[1 + (0.012 \cdot \text{RH})^{18} \right] \cdot h_0 + 250 \cdot \alpha_3 \le 1500 \cdot \alpha_3$$

RH Relative Luftfeuchte [%]

- Wirksame Bauteildicke [mm] h₀
- Anpassungsfaktor α3

$$\begin{aligned} \alpha_3 &= 1 & \text{für } f_{cm} \leq 35 \text{ N/mm}^2 \\ \alpha_3 &= \left(\frac{35}{f_{cm}}\right)^{0,5} & \text{für } f_{cm} \geq 35 \text{ N/mm}^2 \end{aligned}$$

Folgende Eingaben sind zur Berechnung der Kriechzahl erforderlich:

- RH Relative Luftfeuchte [%]
- Betonalter zu Belastungsbeginn in Tagen t₀ •
- Betonalter zum betrachteten Zeitpunkt in Tagen (wahlweise :) t

Der Einfluss hoher oder niedriger Temperatur in einem Bereich von 0 °C bis 80 °C auf den Aushärtungsgrad des Betons kann durch eine Korrektur des Betonalters durch folgende Gleichung berücksichtigt werden:

$$t_{T} = \sum_{i=1}^{n} e^{-\left[\frac{4000}{273 + T(\Delta t_{i})} - 13,65\right]} \cdot \Delta t_{i}$$

n

 Δt_i

mit

•

Anzahl der Perioden mit gleicher Temperatur Temperatur in °C während des Zeitraums Δt_i T(∆t_i) Anzahl der Tage mit dieser Temperatur T

Der Einfluss der Zementart auf die Kriechzahl des Betons kann dadurch berücksichtigt werden, dass das Belastungsalter to mit Hilfe folgender Formel verändert wird.

$$t_0 = t_{0,T} \cdot \left(1 + \frac{9}{2 + (t_{0,T})^{1/2}}\right)^{\alpha} \ge 0.5$$

α

mit

 $\mathbf{t}_{0,T} = \mathbf{t}_T$ Wirksames Betonalter bei Belastungsbeginn unter Berücksichtigung des Einflusses der Temperatur

Exponent, abhängig von der Zementart

α	Zementart	
-1	langsam erhärtende Zemente der Klasse S	
0	normal oder schnell erhärtende Zemente der Klasse N	
1	schnell erhärtende hochfeste Zemente der Klasse R	

Beispiel

Bild 2.3: Querschnitt

Beton C25/30 Zement CEM 42,5 N RH: 50% Zwei Temperaturwechsel: --

Dauer	Temperatur
6 Tage	15 °C
8 Tage	7 °C

Betrachtetes Betonalter tk: 365 Tage

Betonalter bei Kriechbeginn:

$$t_{T} = \sum_{i=1}^{n} e^{-\left[\frac{4000}{273 + T(\Delta t_{i})} - 13,65\right]} \cdot \Delta t_{i} = e^{-\left[\frac{4000}{273 + T(\Delta t_{i})} - 13,65\right]} \cdot 6 + e^{-\left[\frac{4000}{273 + T(\Delta t_{i})} - 13,65\right]} \cdot 8 = 8,96$$
 Tage

Betonalter unter Einfluss der Zementart:

$$t_0 = t_{0,T} \cdot \left(1 + \frac{9}{2 + (t_{0,T})^{1/2}} \right)^{\alpha} = 8,96 \cdot \left(1 + \frac{9}{2 + (8,96)^{1/2}} \right)^0 = 8,96 \text{ Tage}$$

2 Theoretische Grundlagen

Wirksame Bauteildicken:

$$h_0 = \frac{2 \cdot A_c}{u} = \frac{2 \cdot 0.3 \cdot 0.5}{2 \cdot (0.3 + 0.5)} = 0.1875 \text{ cm}$$

Kriechzahl:

 $\phi(t,t_0) = \phi_{RH} \cdot \beta(f_{cm}) \cdot \beta(t_0) \cdot \beta_c(t,t_0) = 1,933 \cdot 2,923 \cdot 0,606 \cdot 0,758 = 2,595$

mit

$$\begin{split} \varphi_{\mathsf{RH}} &= \left[1 + \frac{1 - \frac{\mathsf{RH}}{100}}{0, 1 \cdot \sqrt[3]{\mathsf{h}_0}} \cdot \alpha_1 \right] \cdot \alpha_2 = \left[1 + \frac{1 - \frac{50}{100}}{0, 1 \cdot \sqrt[3]{187, 5}} \cdot 1,042 \right] \cdot 1,012 = 1,933 \\ &\qquad \alpha_1 = \left(\frac{35}{\mathsf{f}_{cm}} \right)^{0,7} = \left(\frac{35}{33} \right)^{0,7} = 1,042 \quad \alpha_2 = \left(\frac{35}{\mathsf{f}_{cm}} \right)^{0,2} = \left(\frac{35}{33} \right)^{0,2} = 1,012 \\ \beta(\mathsf{f}_{cm}) &= \frac{16,8}{\sqrt{\mathsf{f}_{cm}}} = \frac{16,8}{\sqrt{33}} = 2,923 \\ \beta(\mathsf{t}_0) &= \frac{1}{0,1 + \mathsf{t}_0^{0,2}} = \frac{1}{0,1 + 8,96^{0,2}} = 0,606 \\ \beta_c(\mathsf{t},\mathsf{t}_0) &= \left[\frac{\mathsf{t} - \mathsf{t}_0}{\beta_\mathsf{H} + \mathsf{t} - \mathsf{t}_0} \right]^{0,3} = \left[\frac{365 - 8,96}{538,779 + 365 - 8,96} \right]^{0,3} = 0,758 \\ \beta_\mathsf{H} &= 1,5 \cdot \left[1 + (0,012 \cdot \mathsf{RH})^{18} \right] \cdot \mathsf{h}_0 + 250 \cdot \alpha_3 = 1,5 \cdot \left[1 + (0,012 \cdot 50)^{18} \right] \cdot 187,5 + 250 \cdot 1,030 = 538,779 \\ \beta_\mathsf{H} &\leq 1500 \cdot \alpha_3 = 1500 \cdot 1,030 = 1545 \\ \alpha_3 &= \left(\frac{35}{33} \right)^{0,5} = 1,030 \end{split}$$

Schwindmass $\epsilon_{c,s}(t,ts)$

Das Schwinden kann durch die Angabe der Schwindverformung $\epsilon_{c,s}(t,ts)$ definiert werden.

 $\boldsymbol{\epsilon}_{\text{CS}}(t,ts) = \boldsymbol{\epsilon}_{\text{S}}(f_{\text{CM}}) \cdot \boldsymbol{\beta}_{\text{RH}} \cdot \boldsymbol{\beta}_{\text{S}}(t,t_{s})$

mit $\varepsilon_{s}(f_{cm}) = [160 + \beta_{sc} \cdot (90 - f_{cm})] \cdot 10^{-6}$

Zementfestigkeitsklasse	βsc
32,5	4
32,5 R; 42,5	5
42,5 R; 52,5	8

Bei Luftlagerung (40 % \leq RH < 99 %):

$$\beta_{RH} = -1.55 \cdot \beta_{sRH} \qquad \text{mit } \beta_{sRH} = 1 - \left(\frac{RH}{100}\right)$$

Bei Wasserlagerung (RH \ge 99%):

$$\beta_{RH} = 0,25$$

$$\beta_{S}(t, t_{s}) = \sqrt{\frac{t - t_{s}}{0.035 \cdot h_{0}^{2} + t - t_{s}}}$$

t Betonalter zum betrachteten Zeitpunkt in Tagen t_s Betonalter zu Beginn des Schwindens in Tagen

3

Beispiel

Beton C25/30 Zement CEM 42,5 R RH: 50 % Betonalter t₅ bei Schwindbeginn: 28 Tage Betrachtes Betonalter t: 365 Tage

$$\varepsilon_{cs}(t, ts) = \varepsilon_{s}(f_{cm}) \cdot \beta_{RH} \cdot \beta_{s}(t, t_{s}) = 0,000445 \cdot 1,365 \cdot 0,464 = 0,282 \ \%$$

mit

$$\varepsilon_{s}(f_{cm}) = [160 + \beta_{sc} \cdot (90 - f_{cm})] \cdot 10^{-6} = [160 + 5 \cdot (90 - 33)] \cdot 10^{-6} = 0,000445$$

$$\beta_{\text{RH}} = -1,55 \cdot 0,875 = -1,365 \qquad \text{mit } \beta_{\text{SRH}} = 1 - \left(\frac{50}{100}\right)^3 = 0,875$$
$$\beta_{\text{S}}(t,t_{\text{S}}) = \sqrt{\frac{t-t_{\text{S}}}{0,035 \cdot h_0^2 + t - t_{\text{S}}}} = \sqrt{\frac{365-28}{0,035 \cdot 187,5^2 + 365 - 28}} = 0,464$$

2.2.7.2 Rechnerische Berücksichtigung von Kriechen/Schwinden

Rechnerisch werden Kriechen und Schwinden im Modell wie folgt berücksichtigt.

Kriechen

Wird von der Kenntnis der Dehnungen zum Zeitpunkt t=0 sowie zu einem beliebigen späteren Zeitpunkt t ausgegangen, so lässt sich der Kriechbeiwert ω_t folgendermassen angeben.

$$\phi_t = \frac{\varepsilon_t}{\varepsilon_{t=0}} - 1$$

Die Gleichung wird umgestellt auf die Dehnung zum Zeitpunkt *t*. Damit ergibt sich folgender Zusammenhang, der bei konstanten Spannungen (kleiner als circa 0,4 f_{ck}) gültig ist.

 $\varepsilon_t = \varepsilon_{t=0} \cdot (\varphi_t + 1)$

Bei grösseren Spannungen als etwa 0,4 f_{ck} steigen die Dehnungen überproportional an, wodurch der linear angenommene Bezug verloren geht.

Für die Berechnung in RF-BETON Flächen wird auf eine gängige, für baupraktische Zwecke sinnvolle Lösung zurückgegriffen: Die Spannungs-Dehnungs-Linie des Betons wird um den Faktor $(1+\phi)$ verzerrt.

Verzerrung der Spannungs-Dehnungs-Linie zur Berücksichtigung des Kriechens

Bild 2.4: Verzerrung der Spannungs-Dehnungs-Linie zur Erfassung des Kriecheinflusses

Wie im Bild 2.4 gezeigt handelt es sich bei der Berücksichtigung des Kriechens um die Annahme konstanter kriecherzeugender Spannungen über die Belastungszeit. Dieser Ansatz führt infolge nicht berücksichtigter Spannungsumlagerungen zu einer geringfügigen Überschätzung der Verformung. Zudem wird mit diesem Modell der Spannungsabbau ohne eine Dehnungsänderung (Relaxation) nur bedingt erfasst: Geht man von einem linear elastischen Verhalten aus, so könnte eine Proportionalität unterstellt werden und die horizontale Verzerrung würde die Relaxation im Verhältnis $(1+\phi)$ ebenfalls widerspiegeln. Bei der nichtlinearen Spannungs-Dehnungs-Beziehung geht dieser Zusammenhang allerdings verloren.

Diese Vorgehensweise stellt somit eine Näherung dar. Eine Verminderung der Spannungen infolge Relaxation sowie nichtlineares Kriechen kann nicht oder nur näherungsweise abgebildet werden.

Schwinden

Es stellt sich die Frage, wie die für die Berechnung relevanten Verkrümmungen des Bauteils entstehen. Der Grund hierfür ist die behinderte Verkürzung des Betons infolge der Bewehrung. Geht man von den Randbedingungen für übliche "schlanke" Bauteile von einer gleichmässigen Schwinddehnung aus, so entstehen Bauteilkrümmungen nur bei unsymmetrischer Bewehrungsverteilung.

Das Schwinden kann deshalb über eine Vordehnung des Betons bzw. Stahls abgebildet werden. Im Detail bedeutet dies, dass durch eine positive Vordehnung des Betons die "freie Dehnung" des Stahls behindert wird. In gleicher Weise liesse sich die Modellierung über eine negative Vordehnung des Stahls realisieren, sodass der Beton die freie Dehnung des vorgedehnten Stahls behindert. Während sich bei beiden Varianten die Spannungsverteilungen unter Berücksichtigung der jeweiligen Vordehnung identisch einstellen, unterscheidet sich die Dehnungsebene deutlich: Bei einer Vordehnung des Stahls ist aus dem Dehnungszustand sofort ersichtlich, wo Zug- und Druckbereiche infolge des Schwindens auftreten. Bei einer Vordehnung des Betons sind andererseits aus dem Dehnungszustand Aussagen über die tatsächliche Verkürzung des Betons möglich.

Da bei der Berechnung die Ermittlung der Verformungen im Vordergrund steht, ist es nicht von Interesse, ob die Modellierung bei der Steifigkeitsermittlung über eine positive Vordehnung des Betons oder eine negative Vordehnung der Bewehrung erfolgt.

Im Modul RF-BETON Flächen wird die Schwinddehnung als negative Vordehnung des Betonstahls berücksichtigt.

3. Eingabedaten

Alle Eingaben zur Definition der Bemessungsfälle erfolgen in Masken. Eine [Pick]-Funktion ermöglicht es, die zu bemessenden Flächen grafisch auszuwählen.

Nach dem Aufruf des Zusatzmoduls wird in einem neuen Fenster links ein Navigator angezeigt, der alle aktuell anwählbaren Masken verwaltet. Darüber befindet sich eine Pulldownliste mit den eventuell bereits vorhandenen Bemessungsfällen (siehe Kapitel 8.1, Seite 70).

Wird RF-BETON Flächen zum ersten Mal in einer RFEM-Position aufgerufen, so liest das Zusatzmodul folgende bemessungsrelevante Daten automatisch ein:

- Lastfälle, Lastfallgruppen und -kombinationen
- Materialien
- Flächen
- Schnittgrößen (im Hintergrund sofern berechnet)

8

Die Ansteuerung der Masken erfolgt entweder durch Anklicken eines bestimmten Eintrages im RF-BETON-Navigator oder durch Blättern mit den beiden links gezeigten Schaltflächen. Die Funktionstasten [F2] und [F3] blättern ebenfalls eine Maske vorwärts bzw. zurück.

Mit [OK] werden die getroffenen Eingaben gesichert und das Modul RF-BETON Flächen verlassen, während [Abbruch] ein Beenden des Zusatzmoduls ohne Sicherung zur Folge hat.

3.1 Basisangaben

Die Maske 1.1 *Basisangaben* verfügt über zwei Register. In diesen werden die Einwirkungen für die Nachweise im Grenzzustand der *Tragfähigkeit* und *Gebrauchstauglichkeit* festgelegt.

3.1.1 Tragfähigkeit

🔪 - Stahlbeton-Bemessung	1.1 Basisangaben	
ingabedaten Basisangaben Materialien - Flächen ∋ Bewehrung └ 1	Bernessung nach Norm: DIN 1045-1: 2008-08 Tragfähigkeit Gebrauchstauglichkeit Lastfälle Zu berne LF1 Eigen- und Ausbaulasten Wide LF2 Erdruhedruck, Erdaullast, Ault LF3 aktiver Erddruck, Aulisat, aus Verkehr, LF5 Erddruck/Aulisat aus Verkehr, LF5 Erddruck/Aulisat aus Verkehr, LF6 Eigenhast Überbau. LF20 Uslast, Loks Wil. LF21 Volkat, Loks Wil. LF22 Verkehrslasten, Loks Midelag LF23 Verkehrslasten, Loks Stlicke LK3 Seitenstoß Flücke LK3 Bernessung WL. LK41 Bernessung WL. LK11 Bernessung WL. LK13 Standsicherheit EZ LK14 Standsicherheit EZ LK14 Standsicherheit EZ LK14 Standsicherheit EZ	Assessed DIN 1045-1
	Kommentar Auswahl über Schaltflächen oder per Doppelklick	

Bild 3.1: Maske 1.1 Basisangaben, Register Tragfähigkeit

Bemessung nach Norm

Die Norm wird einheitlich für die Nachweise im Grenzzustand der Tragfähigkeit und der Gebrauchstauglichkeit festgelegt.

Der Klick auf die Schaltfläche [▼] rechts im Listenfeld öffnet eine Liste mit verschiedenen Stahlbetonnormen. Es stehen folgende Normen zur Auswahl:

- DIN 1045 (2008-08)
- DIN 1045-1 (2001-07)
- DIN 1045-1 (1988-07)
- DIN V ENV 1992-1-1 (1992-06)
- ÖNORM B 4700 (2001-06)
- EN 1992-1-1
- ACI 318-08
- SIA 262

Falls eine auf EN 1992-1-1 basierende Norm ausgewählt wird, so wird die Schaltfläche [Norm-Einstellungen bearbeiten] rechts neben dem Listenfeld zugänglich. Diese ruft einen Dialog auf, in dem diverse Parameter benutzerdefiniert angepasst werden können.

lame					
Norm:	EN 1992-1-1 💌 🎦 🐷 🗙				
Euroco	de-Einstellungen				
🖃 2. Gi	undlagen für die Tragwerksplanung				1
Ξ2.	4.2.4 Teilsicherheitsbeiwerte für Eigenschaften von Baustoffen				1
	Teilsicherheitsbeiwert für Beton im Grenzzuständ der Tragfähigkeit	γo	1.5000		1
	Teilsicherheitsbeiwert für Stahl im Grenzzuständ der Tragfähigkeit	γs	1,1500		1
∃ 3. Ba	austoffe				
⊡ 3.	1 Beton				1
	Maximal zulässige Betondruckfestigkeitsklasse	Cmax	C90/105		1
	Beiwert zur Berücksichtigung Langzeiteinwirkung auf Druckfestigkeit	acc	1.0000		1
⊡ 3.	2 Stahl				1
	Maximallwert für die Fließspannung	fyk	600.00	N/mm ²	1
	Faktor zur Ermittlung des Designwertes der Grenzdehnung Betonstahl	kudt	0.9000		1
∃ 6. N	achweise im Grenzustand der Tragfähigkeit (GZT)				1
-⊡6.	2.2 Bauteile ohne rechnerisch erforderliche Querkraftbewehrung				1
	Beiwert zur Berechnung des Bemessungswertes des Querkraftwiderstandes	ko	0.1800		1
	Beiwert zur Berechnung des Bemessungswertes des Querkraftwiderstandes	k1	0.1500		1
	Beiwert zur Berechnung des Bemessungswertes des Querkraftwiderstandes	k2	0.0350		1
□ 6.	2.3 Bauteile mit rechnerisch erforderliche Querkraftbewehrung				1
	Winkel der Druckstrebe	0 _{min}	21.801	٠	1
	Winkel der Druckstrebe	Omax	45.000	*	1
Ξ	Festigkeitsabminderungsbeiwert für unter Querkraft gerissenen Beton				
	 Festigkeitsabminderungsbeiwert f ür unter Querkraft gerissenen Beton 	k1	0.6000		1
	 Festigkeitsabminderungsbeiwert f ür unter Querkraft gerissenen Beton 	k2	250.0000		
	Beiwert zur Berücksichtigung des Spannungszustandes im Druckgurt	αcw	1.0000		
🗏 7. N	achweise im Grenzustand Gebrauchstauglichkeit (GZG)				
- 🖂 7.	2 Begrenzung der Spannungen				
	Beiwert für die Betondruckspannung	k1	0.6000		
Inmer- Tung:					

Bild 3.2: Dialog Eurocode-Einstellungen

Es lassen sich Teilsicherheits- und Abminderungsbeiwerte, Druckstrebenwinkel etc. modifizieren, wodurch spezifische nationale Anwendungsvorgaben berücksichtigt werden können.

2

Über die Schaltfläche [Neu] wird eine Kopie der Ausgangsnorm erzeugt, die nach den entsprechenden Änderungen als neue Eurocode-Einstellung abgespeichert werden kann.

DIN 1045-1:2008-08	ŀ
DIN 1045-1:2008-08	
DIN 1045-1:2001-07	
MIN 1045: 1988-07	
ENV 1992-1-1:1992-06	
ONORM B 4700:2001-06-01	
EN 1992-1-1:2004	
ACI 318-08	
SIA 262	

15

Vorhandene Lastfälle / LF-Gruppen und LF-Kombinationen

In diesen beiden Abschnitten werden alle in RFEM definierten Lastfälle, Lastfallgruppen und Lastfallkombinationen gelistet, die für die Bemessung infrage kommen. Mit der Schaltfläche [▶] werden selektierte Lastfälle bzw. LF-Gruppen oder LF-Kombinationen nach rechts in die Liste *Zu Bemessen* übertragen. Die Auswahl kann auch per Doppelklick erfolgen. Die Schaltfläche [▶] übergibt die komplette Liste nach rechts.

Lastfälle, die mit einem Sternchen (*) gekennzeichnet sind, können nicht bemessen werden. Dies ist der Fall, wenn keine Lasten definiert sind oder wenn es sich um reine Imperfektionslastfälle handelt.

5

Bei der Bemessung von Lastfallkombinationen ist zu beachten, dass hier im Gegensatz zu Lastfällen oder Lastfallgruppen nicht nur ein Satz von Schnittgrößen je Bemessungsstelle vorliegt, sondern je nach Positionstyp bis zu 16 Sätze von Schnittgrößen existieren. Die Untersuchung aller Maxima und Minima mit den zugehörigen Schnittgrößen wirkt sich entsprechend auf die Berechnungsdauer aus.

Zu bemessen

In der rechten Spalte werden die zur Bemessung ausgewählten Einwirkungen aufgelistet. Mit der Schaltfläche [◄] lassen sich selektierte Lastfälle, LF-Gruppen oder LF-Kombinationen wieder aus der Liste entfernen. Auch hier kann die Auswahl per Doppelklick erfolgen. Die Schaltfläche [◀◀] leert die ganze Liste.

Kommentar

Dieses Eingabefeld steht für eine benutzerdefinierte Anmerkung zur Verfügung, die z. B. den aktuellen RF-BETON Flächen-Bemessungsfall erläuternd beschreibt.

3.1.2 Gebrauchstauglichkeit

Das Register *Gebrauchstauglichkeit* ist nur dann zugänglich, wenn im Register *Tragfähigkeit* mindestens eine Einwirkung ausgewählt wurde. Die dort gewählte Norm ist für beide Register gültig.

Bild 3.3: Maske 1.1 Basisangaben, Register Gebrauchstauglichkeit

Vorhandene Lastfälle / LF-Gruppen und LF-Kombinationen

Die Auswahl der zu bemessenden Lastfälle, Lastfallgruppen und -kombinationen (nur für analytische Nachweismethode!) erfolgt wie im vorherigen Kapitel 3.1.1 beschrieben.

In der Regel sind für die Nachweise im Grenzzustand der Gebrauchstauglichkeit (GZG) andere Einwirkungen relevant als für die Tragfähigkeitsbemessung. Die entsprechenden Konstellationen sind bereits in RFEM bei der Überlagerung der Lastfälle festzulegen.

Zu bemessen

In der rechten Spalte werden die zur Bemessung ausgewählten Einwirkungen aufgelistet. Wie im Register *Tragfähigkeit* lassen sich mit den Schaltflächen [4] und [44] selektierte bzw. alle Lastfälle, LF-Gruppen oder LF-Kombinationen aus der Liste entfernen.

Nachweismethode

Die beiden Auswahlfelder im unteren Abschnitt der Maske steuern, ob die Nachweise im Grenzzustand der Gebrauchstauglichkeit nach analytischer oder nichtlinearer Methode geführt werden.

3.1.2.1 Analytische Nachweismethode

Die Nachweise für den Grenzzustand der Gebrauchstauglichkeit erfolgen standardgemäß mit der Nachweismethode *Analytisch*. Nach diesem Verfahren werden die Gleichungen benutzt, die für die einzelnen Normen Gültigkeit haben (z. B. DIN 1045-1, Abschnitt 11).

Über die Schaltfläche [Einstellungen] ist ein Dialog zugänglich, in dem spezifische Vorgaben zur Berechnung der Rissbreiten getroffen werden können.

Methode	Einordnungskriterium
Durch Annahme eines identischen Deh- nungsverhältnisses der Längsbewehrung Durch Klassifizierung der Fläche als Platte oder Wand und Verwendung des Ablaufdiagramms aus dem Anhang A 2.8 bzw. A 2.9 zum ENV 1932-1-1:1991 Durch Berücksichtigung des Verfor- mungsverhältnisses der Längsbewehrung Bemessung von P Bissen Erforderliche Längsbewehrung Erforderliche Längsbewehrung für den Gebrauchstauglichkeitnachweis automatisch erhöhen	$ \boxed{ Ngrmalkräfte zu Null setzen und Nachweisen einer Fläche ausschließlich als Platte, wenn für alle Bemessungspunkte dieser Fläche gilt: \boxed{ nx \\ b \cdot h } und \frac{ny}{b \cdot h} und \frac{nxy}{b \cdot h} \le \boxed{ 2.90 } \underset{\bigcirc}{\longrightarrow} [N/mm^2] \boxed{ Momente zu Null setzen und Nachweisen einer Fläche ausschließlich als Wand, wenn für alle Bemessungspunkte dieser Fläche gilt: \frac{6 \cdot mx}{b \cdot h^2} und \frac{6 \cdot my}{b \cdot h^2} und \frac{6 \cdot mxy}{b \cdot h^2} \le \boxed{ 2.90 } \underset{\bigcirc}{\longrightarrow} [N/mm^2] $

Bild 3.4: Dialog Einstellungen für analytischen Methode der Gebrauchstauglichkeitsnachweise

Im Abschnitt **Methode** wird festgelegt, welches Dehnungsverhältnis der Bewehrungsscharen für den Gebrauchstauglichkeitsnachweis anzusetzen ist. Die *Annahme eines identischen Dehnungsverhältnisses der Längsbewehrung* setzt ein Dehnungsverhältnis der eingelegten Bewehrung von 1 voraus. Dies bedeutet, dass die Bewehrungsstäbe in die einzelnen Bewehrungsrichtungen die gleiche Dehnung erfahren. Dieser Ansatz stellt als geschlossene Lösung ein schnelles und genaues Verfahren dar, wobei die Wahl der geeigneten Druckstrebenneigung eine entscheidende Rolle spielt. Bei dieser Methode handelt es sich um eine rein geometrische Aufteilung. Sie ist gültig, wenn die vorhandene Bewehrung in etwa der erforderlichen Bewehrung entspricht.

Programm RF-BETON Flächen © 2011 Ingenieur-Software Dlubal GmbH

Nichtlinear...

Die Option *Klassifizierung der Fläche als Platte oder Wand* bietet eine vereinfachte Lösung, die bei einem nicht gedrehten, orthogonalen Bewehrungsnetz angewandt werden kann. Für jeden Bemessungspunkt wird untersucht, ob die Zugspannungen infolge Normalkräfte bzw. Biegemomente eine bestimmte Spannung nicht überschreiten. Dieser Grenzwert ist im Abschnitt *Einordnungskriterium* festgelegt. Damit wird gesteuert, ob die jeweilige Fläche als Platte (Normalkräfte werden zu null gesetzt) oder Wand (Momente werden zu null gesetzt) eingestuft wird. Durch die Vernachlässigung kleiner Schnittgrößenanteile ist es möglich, das Ablaufdiagramm des ENV 1992-1-1, Anhang A 2.8 bzw. 2.9 zu benutzen. Die Bemessungsschnittgrößen entsprechen dabei den in der RFEM-Tabelle 3.12 ausgewiesenen Werten (vgl. RFEM-Handbuch, Kapitel 9.12, Seite 288).

Sollte das Klassifizierungskriterium für einen Bemessungspunkt der Fläche nicht erfüllt sein, erscheint bei der Berechnung eine Fehlermeldung.

Die Berücksichtigung des Verformungsverhältnisses der Längsbewehrung ist nur bei den 2D-Positionstypen "Platte" oder "Wand" zugänglich. Diese Methode erfasst die tatsächlichen Dehnungsverhältnisse, die sich mit der gewählten Bewehrung einstellen und berücksichtigt sie für den Nachweis im Grenzzustand der Gebrauchstauglichkeit.

Der Abschnitt **Einordnungskriterium** steht nur bei 3D-Positionstypen zur Verfügung. Hier wird festgelegt, ob kleine *Normalkräfte* und/oder *Momente* vernachlässigt werden dürfen, um Flächen idealisiert als reine Platten bzw. Wände nachzuweisen. Als Grenzwert ist für die beiden Kontrollfelder der Mittelwert der zentrischen Zugfestigkeit f_{ctm} von 2,9 N/mm² eines Beton C30/37 voreingestellt. Es liegt die Annahme zugrunde, dass die Betonzugfestigkeit eine Rissbildung infolge der kleinen Zugspannungen kompensiert, wodurch diese vernachlässigt werden können.

Wurde im Abschnitt *Methode* die vereinfachte Klassifizierung als Platte oder Wand gewählt, so muss mindestens eines der beiden Einordnungskriterien aktiviert werden.

Im Abschnitt **Bemessung von** kann festgelegt werden, ob Risse und/oder Verformungen im Nachweis untersucht werden sollen. Es ist mindestens eines der Kontrollfelder zu aktivieren.

Im Zuge der Analyse von *Rissen* ist es möglich, die Mindestbewehrungen a_{s,min} sowie die Rissbreiten w_k nachzuweisen. Die Einstellungen zu den einzelnen Nachweisen erfolgen in Maske 1.3 *Flächen* (siehe Kapitel 3.3, Seite 32).

Der Abschnitt **Ermittlung der Längsbewehrung** steuert, ob zur Erfüllung der Gebrauchstauglichkeitsnachweise die Längsbewehrung ausgelegt werden soll. Ist das Kontrollfeld inaktiv, so werden die in Maske 1.4, Register *Längsbewehrung* (siehe Kapitel 3.4.3, Seite 41) getroffenen Vorgaben verwendet: Ansatz der Grundbewehrung, der erforderlichen Bewehrung aus Tragfähigkeitsnachweis oder der Grundbewehrung mit Zusatzbewehrung.

Die Auslegung der Bewehrung für den Nachweis der Gebrauchstauglichkeit erfolgt durch eine iterative Bewehrungserhöhung. Als Startwert der Iteration wird die erforderliche Tragbewehrung zur Aufnahme der vorgegebenen Gebrauchslast angesetzt. Die Bewehrungsauslegung endet ohne Ergebnis, wenn der Stababstand si der angesetzten Bewehrung den Stabdurchmesser d_{si} erreicht hat. In diesem Fall wird in den Ergebnismasken für diesen Punkt eine Unbemessbarkeit ausgegeben.

Nachweismethode:

🔘 Analytisch...

Nichtlinear...

3.1.2.2 Nichtlineare Nachweismethode

Für die Nachweismethode *Nichtlinear* ist eine Lizenz des Zusatzmoduls **RF-BETON NL** erforderlich.

Bei der nichtlinearen Nachweismethode sind Lastfallkombinationen von der Bemessung ausgeschlossen. Es besteht eine Interaktion zwischen Struktur und Belastung, die eine eindeutige Schnittgrößenverteilung erfordert. Bei einer Lastfallkombination liegen jedoch Maximal- und Minimalwerte für jeden FE-Knoten vor.

Über die Schaltfläche [Einstellungen] im Register *Gebrauchstauglichkeit* der Maske 1.1 (siehe Bild 3.3, Seite 25) ist ein Dialog zugänglich, in dem die Randparameter für den nichtlinearen Nachweis im Grenzzustand der Gebrauchstauglichkeit festgelegt werden.

Material-Kennwerte der Bewehrung	Material-Kennwerte des Betons
Die in der Berechnung verwendeten mittleren Betonstahlfestigkeiten basieren auf dem vom Ausschuss JCSS veröffentlichten "Probabilistic Model Code". Stahlfestigkeit bis zur Bruchzugfestigkeit ansetzen (Ansteigender Ast im plast. Bereich)	Spannungs-Dehnungsdiagramm im Druckbereich: Parabelförmig Parabel-Rechteckförmig Spannungs-Dehnungsdiagramm im Zugbereich: Parabel SED EID Medelleum (versningen Patro)
Optionen	 Onach LEB-FIB Modelinorm (ungerissener Beton) Tension-Stiffening mit Beton(rest)zugfestigkeit
Berücksichtigen: 👿 Kriechen	(Verfahren Quast)
Bemessung von: 👽 Verformung	Gc (>0) A fctm 0,9 fctm
Einstellungen für Iterationsprozess	arctan E _c
Maximale Anzahl der Iterationen pro Laststeigerung: 200 🚔 🔍	ϵ_{ct1} $\epsilon_{ctu} = 1.5.10^{-4}$ ϵ_{c} (>0)
Anzahl der Schichten im FE-Element: 10	
Dämpfung der Steifigkeitsände- rung in einem Iterationszyklus: 0. 🗲 %	
Anzahl Laststeigerungen: 1 🚍	

Bild 3.5: Dialog Einstellungen für nichtlineare Berechnung

Im Abschnitt **Material-Kennwerte der Bewehrung** wird festgelegt, ob im plastischen Bereich der Spannungs-Dehnungslinie des Betonstahls mit ansteigendem oder mit horizontalem Ast gerechnet wird.

Der Abschnitt **Optionen** steuert, ob der Einfluss von *Kriechen* und *Schwinden* (in Vorbereitung) bei der Berechnung berücksichtigt wird. Zusätzlich kann hier festgelegt werden, welche Nachweise im Grenzzustand der Gebrauchstauglichkeit (Verformung, Rissbreiten, Spannungen) zu führen sind. Es ist mindestens eines dieser drei Kontrollfelder zu aktivieren.

Die Einstellungen zu Kriechen und Schwinden sowie zu den einzelnen Nachweisen erfolgen in Maske 1.3 *Flächen* (siehe Kapitel 3.3.2, Seite 34).

Im Abschnitt **Einstellungen für Iterationsprozess** sind alle Einstellungen vorzunehmen, die den Ablauf des nichtlinearen Bemessungsverfahrens betreffen. Bei der Veränderung der Iterationsgenauigkeit ist darauf zu achten, dass die maximale Anzahl der *Iterationen* größer ist als die Stelle im Berechnungsablauf, ab der zusätzlich das Verformungskriterium berücksichtigt wird. Über die Schaltfläche [Details] ist der RFEM-Dialog *Berechnungsparameter* zugänglich. Dort kann die Genauigkeit der Konvergenzschranke für die nichtlineare Berechnung angepasst werden.

Bei der nichtlinearen Berechnung wird die Fläche in so genannte Schichten (Layer) aufgeteilt. Die empfohlene Anzahl der Schichten liegt bei 10.

Der Abschnitt **Material-Kennwerte des Betons** des Dialogs *Einstellungen für nichtlineare Berechnung* (vgl. Bild 3.5) steuert, ob für die Spannungs-Dehnungslinie des Betons im *Druckbereich* ein parabelförmiger oder ein parabel-rechteckförmiger Verlauf angesetzt wird. Ferner wird hier der Verlauf der Spannungs-Dehnungslinie im *Zugbereich* des Betons festgelegt. Die Voreinstellung geht gemäß CEB-FIB Model Code von einem ungerissenen Beton aus.

Wird für das Spannungs-Dehnungsdiagramm die versteifende Mitwirkung des Betons in der Zugzone (*Tension Stiffening*) gewählt, können die Einstellungen für den Ansatz der Betonzugfestigkeit zwischen den Rissen in einem separaten Dialog definiert werden. Dieser wird über die links dargestellte Schaltfläche aufgerufen.

Bild 3.6: Dialog Tension Stiffening

Die beiden Grafiken dieses Dialogs zeigen die Änderungen der Parameter dynamisch an.

3.2 Materialien

Diese Maske ist zweigeteilt. Im oberen Abschnitt sind die bei der Bemessung verwendeten Beton- und Stahlgüten aufgelistet. Im Abschnitt *Materialkennwerte* unterhalb werden die Eigenschaften des aktuellen Materials angezeigt, d. h. des Materials, dessen Zeile im oberen Abschnitt selektiert ist.

Die zur Schnittgrößenermittlung in RFEM benötigten Materialkennwerte sind im Kapitel 5.3 des RFEM-Handbuchs ausführlich beschrieben. Die bemessungsrelevanten Materialeigenschaften werden in der globalen Materialbibliothek mit gespeichert und sind automatisch voreingestellt.

Die Einheiten und Nachkommastellen der Materialkennwerte und Spannungen können über Menü **Einstellungen** → **Einheiten und Dezimalstellen** angepasst werden (siehe Bild 8.5, Seite 72).

RF-BETON Flächen - [P_1_1]							X
<u>D</u> atei <u>E</u> instellungen <u>H</u> ilfe							
FA1 - Stahlbeton-Bernessung 💌	1.2 Mate	erialien					
Fingabedaten		A		В			С
Basisangaben	Material	Material-E	lezeichnung				
Materialien	Nr.	Beton-Festigkeitsklasse	Be	tonstahl			Kommentar
Flächen	1	Beton C20/25	B500A				
Bewehrung							
L 1							
							Solution
	Material	-Kennwerte	Rechnerische Spannungs-Dehnungs-				
	Betor	-Festiakeitsklasse · Reton (20/25				Beziehung des Betons
	Cha	rakteristische Zvlinderdnuckfestig	keit	fek	20.00	N/mm ²	
	5%4	Quantil der zentrischen Zuofestiol	keit	fetk 0.05	1.55	N/mm ²	- σ _c (<0)
	E Cha	rakteristische Dehnungen für Par	-f _{cd}				
	G	arenzdehnung bei zentrischem Dr	uck	Sc1d	2.00	%	
	0	berstand		€c2d	3.00	%	
	U	Imrechnungsfaktor		ηfo	1.000		
	G	irenzschubfestigkeit		τck	1.34	N/mm ²	ε _{cld} ε _{c2d} ε _c (<0)
	Spe	zifisches Gewicht		Y	25.00	kN/m ³	
	Betor	nstahl: B500A					Rechnerische Spannungs-Dehnungs-
	Elas	stizitätsmodul		Es	205000.00	N/mm ²	Beziehung des Betonstahls
	Stre	ckgrenze		fsk	500.00	N/mm ²	σ
	Cha	rakteristischer Wert der Zugfestig	keit	ftk	525.00	N/mm ²	ftk
	Stał	hldehnung unter Höchstlast		δuk	25.00	700	fsk
	Deh	nnung bei Höchstlast (Gleichmaß	lehnung)	Sud	20.00	700	
							ε _{uk} ε _s
	Berechn	nung Kontrolle			<u>G</u> rafik]	OK Abbrechen
Material Nr. 1 - Beton C20/25 - B50	DA an Fläc	he: 1					

Bild 3.7: Maske 1.2 Materialien

Materialbezeichnung

Beton-Festigkeitsklasse

Die in RFEM definierten Beton-Materialien sind voreingestellt; andersartige Materialien werden ausgeblendet. Wenn die *Materialbezeichnung* mit einem Eintrag der Materialbibliothek übereinstimmt, liest RF-BETON Flächen die Materialkennwerte ein.

Die Auswahl eines Materials ist über die Liste möglich: Platzieren Sie den Cursor in Spalte A und klicken dann die Schaltfläche [▼] an oder betätigen die Funktionstaste [F7]. Es öffnet sich die links dargestellte Liste. Nach der Übernahme werden die Kennwerte aktualisiert.

In der Liste werden nur Materialien der Kategorie *Beton* angeführt, die dem jeweiligen Bemessungskonzept der gewählten Norm entsprechen. Die Übernahme von Materialien aus der Bibliothek ist nachfolgend beschrieben.

•

Betonstahl

In dieser Spalte ist eine gängige Stahlgüte voreingestellt, die dem Bemessungskonzept der gewählten Norm entspricht.

Wie bei der Beton-Festigkeitsklasse ist die Auswahl eines anderen Betonstahls über die Liste möglich: Platzieren Sie den Cursor in Spalte B und klicken dann die Schaltfläche [▼] an oder betätigen die Funktionstaste [F7]. Es öffnet sich die links dargestellte Liste. Nach der Übernahme werden die Kennwerte aktualisiert.

Die Übernahme von Materialien aus der Bibliothek ist nachfolgend beschrieben.

Materialbibliothek

Eine Vielzahl von Beton- und Betonstahlmaterialien ist in einer Bibliothek hinterlegt. Diese wird aufgerufen über die links dargestellte Schaltfläche, die jeweils für die Beton-Festigkeitsklassen und Betonstähle unterhalb der Spalte A bzw. B zur Verfügung steht.

Filter	Material zum Überne	hmen		
Material-Kategorie:	B500A		SIA 262:2003	_
Potonatalal	B500B		SIA 262:2003	
Deturistarii		SIA 262:2003	I	
Norm- <u>G</u> ruppe:				
SIA	~			
Norm:				
SIA 262:2003	-			
Anzeigen:				
Materialien von 'alten' Norr	nen			
Nur <u>F</u> avoriten	/= P P 2			7
Materialkennwerte			В	500A SIA 262:20
RFEM-Relevante				
— Elastizitätsmodul		E	20500.00	kN/cm ²
 Schubmodul 		G	7700.00	kN/cm ²
 Poissonsche Zahl (Quero 	lehnzahl)	μ	0.300	
 Spezifisches Gewicht 		γ	78.50	kN/m ³
- Temperaturdehnzahl (Wa	imedehnzahl)	α	1.0000E-05	1/℃
 Teilsicherheitsbeiwert 		γM	1.00	
Bemessungs-Relevante	;			
 Elastizitätsmodul 		Es	20500.00	kN/cm ²
 Charakteristische Zugfes 	tigkeit	ftk	52.50	kN/cm ²
Grenzdehnung		ε _{uk}	25.000	%
Dehnung bei Höchstlast	(Gleichmaßdehnung)	εud	20.000	‰
Streckgrenze		fsk	50.00	kN/cm ²

Bild 3.8: Dialog Material aus Bibliothek übernehmen

Die normrelevanten Materialien sind bereits als Vorauswahl eingestellt, sodass im Abschnitt *Filter* keine anderen Kategorien oder Normen zugänglich sind. Das Material können Sie in der Liste *Material zum Übernehmen* auswählen und dessen Kennwerte im unteren Bereich des Dialogs kontrollieren. Die Materialeigenschaften sind hier grundsätzlich nicht editierbar.

Mit [OK] oder [] wird das gewählte Material in die RF-BETON Flächen-Maske 1.2 übernommen.

Im Kapitel 5.3 des RFEM-Handbuches ist ausführlich beschrieben, wie Materialien ergänzt oder neu sortiert werden können. Auf diese Weise lässt sich über die Schaltfläche [Neu] ein neuer Beton oder Betonstahl mit benutzerdefinierten Materialkennwerten anlegen und für spätere Anwendungszwecke speichern.

B500A	•
B500A	
B500B	
B450C	

<u>-</u>

3.3 Flächen

In dieser Maske werden die zu bemessenden Flächen verwaltet. Zudem lassen sich hier die Einstellungen für den Nachweis der Gebrauchstauglichkeit vornehmen, sofern im Register *Gebrauchstauglichkeit* der Maske 1.1 *Basisangaben* Einwirkungen ausgewählt wurden (vgl. Bild 3.3, Seite 25).

Das Erscheinungsbild dieser Maske hängt von der Nachweismethode ab, die in Maske 1.1 für die Nachweise im Grenzzustand der Gebrauchstauglichkeit (GZG) vorgegeben wurde. Wird nur der Tragfähigkeitsnachweis geführt, so werden lediglich die Dicken der jeweiligen Flächen aufgelistet.

A1 · Stanibeton-beniessung	↓ .5 Flace	ien			,		,				
ingabedaten Basisangaben	Fläche	A Material	B Dicke	C	D fct,eff	E Wk,max	F Zwangsbear	G	H Anmer-		
Materialien <mark>Elächen</mark>	INF.	Nr. 1	Typ Konstant	d [cm] 12.00	[N/mm ²] 2.21	[mm] B	Vorh.	k _c [-] var.	kung 6) 8)	Kommentar	
Bewehrung											
	Einstellu	ingen für i	den Nachweis d	ler Gebrauc	hstauglic	hkeit - Fl	äche Nr. 1				
	Begrena	ung der His	ssbreiten	10.0			Mindaa	thousabru	na zur Aufr	ahma yan Zujangainuirkungan	
	Grenzy	vert der zu	lässigen Rissbrei	iten Wk,max			V As	min zur Al	ufnahme vo	n Zwangeinwirkungen	
	Anf	orderungsk	lasse nach 4.4.2.3	3.3	В	-)	Rissbildun	g innerhalb	der ersten 28 Tage	
	© Ber	iutzerdefinie	ert	Wk,m	ax : 0.5)0 🔶 (m	m]	(Effektive	Zugfestigk	eit des Betons fot,eff = kzt * fotm)	
	V Nac	chweis ohn Berechnun	e direkte Hissbreit a der Grenzspanr	tenberechnu nung os adm	ing			Abn	ninderungsl	oeiwert k _{zt} : 1.000	
	0	Berechnun	g des max. Staba	ibstandes gr	enz sj	Abmino	lerungsbe	iwert k-t fü	r Betonzugfestigkeit		
	🔽 Nad	chweis mit o	lirekter Rissbreite	nberechnun	g		🗖 Na	chweis mit	kt nach 4.4	4.1.3	
	🔽 Dat	enejngabe	für Fläche Nr.:	1			<u>∛</u> <u>∢</u>	e			

3.3.1 Analytische Methode für GZG

Bild 3.9: Maske 1.3 Flächen mit Einstellungen für analytische Nachweismethode der Gebrauchstauglichkeit

Material Nr.

Es werden für jede Fläche die in Maske 1.2 *Materialien* verwalteten Materialnummern angezeigt. Die Materialzuweisung ist in der vorliegenden Maske nicht veränderbar.

Dicke

Тур

Zur Information werden die in RFEM zugewiesenen Dicke-Typen angezeigt. Die Bemessung ist für konstante und linear veränderliche Dicken sowie für orthotrope Flächen (ohne nichtlineare Methode für GZG) möglich.

d

In dieser Spalte werden die von RFEM übernommenen Dicken angezeigt. Die Werte können für die Bemessung jederzeit abgeändert werden.

Beachten Sie bitte, dass die Bemessung mit den in RFEM ermittelten Schnittgrößen erfolgt, denen die dort definierten Flächendicken-Steifigkeiten zugrunde liegen. Bei einem statisch unbestimmten System müssen die in RF-BETON Flächen geänderten Flächendicken auch in RFEM angepasst werden, damit die genaue Bemessung gewährleistet ist.

Die Anzahl der folgenden Spalten hängt von den Registern im unteren Maskenbereich ab. Diese wiederum werden von den Einstellungen des *Details*-Dialogs gesteuert, der in Maske 1.1 *Basis-angaben*, Register *Gebrauchstauglichkeit* zugänglich ist (siehe Bild 3.4, Seite 26). Dort wird festgelegt, ob Spannungen und/oder Risse bemessen werden sollen.

5

Tà.

10

Die Werte können nicht direkt in die Spalten eingetragen werden, sondern sie werden über die Register im unteren Maskenbereich geregelt. Dabei ist zu beachten, dass die getroffenen Vorgaben standardmäßig nur für die in der Tabelle oben markierte Fläche gelten. Es besteht jedoch die Möglichkeit, die aktuellen Vorgaben einer anderen Fläche bzw. mehreren oder allen Flächen zuzuordnen. Hierfür ist das Kontrollfeld *Dateneingabe für Fläche Nr.* ggf. zu aktivieren und anschließend das Kontrollfeld *Alle* inaktiv zu setzen (vgl. Bild 3.9). Die Nummern der relevanten Flächen können dann manuell eingetragen oder grafisch im RFEM-Arbeitsfenster ausgewählt werden. Sollen die Einstellungen für alle Flächen gelten, so ist das Kontrollfeld *Alle* zu aktivieren. Abschließend werden die getroffenen Vorgaben mit der Schaltfläche [☑] den ausgewählten Flächen zugewiesen. Diese Zuordnung gilt nur für das aktuelle Register (z. B. *Spannungsnachweis*).

f_{ct,eff}

In dieser Spalte wird jeweils der Wert der wirksamen Zugfestigkeit des Betons angegeben. Dieser wird für die Kontrolle des Stabdurchmessers benötigt.

Die Parameter sind im Register *Begrenzung der Rissbreiten* zu definieren (siehe Bild 3.9). Dort lassen sich über die Schaltfläche [Bearbeiten] auch Detailvorgaben für die Mindestbewehrung zur Aufnahme von Zwangeinwirkungen.

Wk,max

Dieser Wert stellt die maximal zulässige Rissbreite.

Die Parameter sind im Register Begrenzung der Rissbreiten zu definieren (siehe Bild 3.9).

Anmerkung

Es werden programmseitige Hinweise angezeigt, die in der Statusleiste näher erläutert sind.

Kommentar

Diese Eingabefelder stehen für benutzerdefinierte Anmerkungen zur Verfügung.

3.3.2 Nichtlineare Methode für GZG

Für die nichtlineare Methode wird eine Lizenz des Zusatzmoduls RF-BETON NL benötigt.

	e								
A1 - Stahlbeton-Bemessung	▼ 1.3 Fläch	nen							
ingabedaten		A	B	С	D	E	F	G	Н
- Basisangaben	Fläche	Material	Dicke		Kriechzahl	Uz,max	Wk,max	Anmer-	16 million and an
Materialien	1	INF.	Typ	a (cm)	Ψ[*] 2 10716	[mm] 4 000	0 300	Kung	Kommentar
Flachen			NOTISLATIL	12.00	3.10710	4.000	0.500		
Bewenrung									
									•
	Einstellu	ungen für o	den Nachweis d	ler Gebrauc	hstauglichke	it - Fläche N	√r. 1		
	Krieche	n Verform	ungsnachweis						
			5 1						
	Kriechp	parameter							
	Berech	inungsdaue	r: 💿 <u>U</u> nendlich	1	Zem	enttyp:			
			© <u>t</u> : 2	25500 (T	age] 🛛 🔘 🛓	angsamerhär	tender Zeme	nt (S) : CEM	32,5 N
	<u>B</u> etona	lter am Anfa	ang		🔘 N	ormalerhärte	nder Zemenl	(N): CEM 3	2,5 R, CEM 42,5 N
	der Bel	astung	to :	28 [T	age] <u>S</u>	chnellhärten	der Zement (R): CEM 42,	,5 R, CEM 52,5 N, CEM 52,5 R
	Belativ	e Luftfeuch	te BE	50 [%	1				
	The second s	o Eardoadh		00 10	· _				
									(m)
	- Ber	utzerdefinie	arte Kriechzahl	o: 31	1716 [4				
	E Ber	nutzerdefinie	erte Kriechzahl	q : 3.1)716 [·]				0
	E Ber	nutzerdefinie	erte Kriechzahl	φ: <u>3.1</u>	D716 [·]		-		U
	Ber	nutzerdefinie enejngabe	erte Kriechzahl für Fläche Nr.:	φ: 3.1	<u>)716</u> [•]		<u> </u>		D

Bild 3.10: Maske 1.3 Flächen mit Einstellungen für nichtlineare Nachweismethode der Gebrauchstauglichkeit

Die Spalten *Material* und *Dicke* sind identisch wie bei der analytischen Nachweismethode. Sie sind im vorherigen Kapitel 3.3.1 auf Seite 32 beschrieben.

 \sim

73	
_	
\checkmark	

Die Werte der folgenden Spalten können nicht direkt eingetragen werden, sondern werden über die Register im unteren Maskenbereich geregelt. Dabei ist zu beachten, dass die getroffenen Vorgaben standardmäßig nur für die in der Tabelle oben markierte Fläche gelten. Es besteht die Möglichkeit, die aktuellen Vorgaben einer anderen Fläche bzw. mehreren oder allen Flächen zuzuordnen. Hierfür ist das Kontrollfeld *Dateneingabe für Fläche Nr.* zu aktivieren und anschließend das Kontrollfeld *Alle* inaktiv zu setzen. Die Nummern der relevanten Flächen können nun manuell eingetragen oder grafisch im RFEM-Arbeitsfenster ausgewählt werden. Sollen die Einstellungen für alle Flächen gelten, so ist das Kontrollfeld *Alle* zu aktivieren. Abschließend werden die getroffenen Vorgaben mit der Schaltfläche [☑] den ausgewählten Flächen zugewiesen. Diese Zuordnung gilt nur für das aktuelle Register.

Kriechzahl φ

Die Parameter für das Kriechen sind im Register *Kriechen* anzugeben. Aus diesen Randbedingungen ermittelt RF-BETON NL die Kriechzahl. Als wirksame Bauteildicke h₀ wird bei der Berechnung die Flächendicke d angesetzt.

Schwinden ε_{cs}

In dieser Spalte wird jeweils das Schwindmaß angegeben. Die für das Schwinden relevanten Parameter sind im Register *Schwinden* anzugeben. Aus diesen Randbedingungen wird automatisch das entsprechende Schwindmaß ermittelt. Als wirksame Bauteildicke h₀ wird bei der Berechnung die Flächendicke d angesetzt.

U_{z,max}

Dieser Wert stellt die maximal zulässige Verformung dar, die für den Nachweis im Grenzzustand der Gebrauchstauglichkeit eingehalten werden muss. Die anzusetzenden Nachweiskriterien sind im Register *Verformungsnachweis* festzulegen.

Einstellungen f	für den Nachweis der Gebrauchstauglic	hkeit - Fläche Nr. 1	
Kriechen Ver	formungsnachweis		
Nachweiskrite	rien		
Grenzwert:	● <u>M</u> inimale Grenzlinie u _{z,max} : Lmin / 250	◎ Benutzerdefiniert relativ u _{z,max} : Ldef / ▲ Ldef: ▲ [m]	8
	⊙ Ma <u>x</u> imale Grenzlinie u _{z,max} : L _{max} /	<u>B</u> enutzredefiniert absolut u₂,max : 4.000 ← [mm] [mm]	•
Beziehen auf:	 Unverformtes System Verschobene Parallelfläche an der Ste 	 Verschobene benutzerdefinierte Referenzebene Ile des minimal verformten Knotens 	6
📝 Datenejnga	abe für Fläche Nr.: 1		

Bild 3.11: Maske 1.3 Flächen, Register Verformungsnachweis

Die Auswahlfeld der *Minimale Grenzlinie, Maximale Grenzlinie* und *Benutzerdefiniert relativ* steuern, welche Länge für I_{eff} verwendet werden soll. Bei den beiden Auswahlmöglichkeiten der Grenzlinie wird die kleinste bzw. größte Randlinie der jeweiligen Fläche angesetzt (siehe Bild 3.12). Bei der benutzerdefinierten relativen Vorgabe kann die Länge direkt eingetragen oder grafisch zwischen zwei beliebigen Punkten in der RFEM-Struktur gewählt werden. Bei allen drei Möglichkeiten ist zudem der Divisor festzulegen, durch den die definierten Längen dividiert werden.

Bei der Auswahl *Benutzerdefiniert absolut* kann die zulässige Maximalverformung u_{z,max} direkt angegeben werden.

Bild 3.12: Grenzlinien für Ermittlung von u_{z,max}

Das Nachweiskriterium der Verformung betrachtet den Durchhang einer Fläche, d. h. die "vertikale Verformung bezogen auf die geradlinige Verbindung der Unterstützungspunkte". Deshalb stehen unten im Register *Verformungsnachweis* (Bild 3.11) drei Möglichkeiten zur Auswahl, auf welche Weise die für den Verformungsnachweis angesetzte lokale Verformung u_{z,lokal} berechnet werden soll.

- Unverformtes System: Die Verformung wird auf das Ausgangssystem bezogen.
- Verschobene Parallelfläche: Bei einer nachgiebigen Lagerung der Fläche ist die vorhandene Verformung unter diesem Aspekt zu betrachten. Die Verformung uz,lokal bezieht sich auf eine parallel zum unverformten System verschobene, virtuelle Referenzfläche. Der Verschiebungsvektor dieser Referenzfläche ist so lang wie die kleinste Knotenverformung in der Fläche. Unverformte Fläche Verschobene Parallelfläche an der Stelle des minimal verformten Knotens uz.min uz, mir 4 Uz,max,Rand Uz lokal max Uz.max.Feld Verformte Fläche

Bild 3.13: Verschobene Parallelfläche an Stelle des minimal verformten Knotens

Verschobene Referenzebene: Falls sich die Lager einer Fläche sehr stark unterschiedlich verformen, kann eine schiefe Referenzebene definiert werden, auf die die im Verformungsnachweis angesetzte Verformung u_{zlokal} dann bezogen wird. Diese Ebene wird durch drei Punkte des unverformten Systems festgelegt. RF-BETON NL berechnet anschließend die Verformung der drei Definitionspunkte und legt die Referenzebene durch diese drei verschobenen Punkte, um dadurch die lokale Verformung u_{zlokal} zu berechnen.

Bild 3.14: Verschobene benutzerdefinierte Referenzebene

W_{k,max}

Dieser Wert stellt die maximal zulässige Rissbreite dar.

Die Parameter sind im Register Rissbreitennachweis zu definieren (vgl. Bild 3.9).

3.4 Bewehrung

Diese Maske besteht aus fünf Registern, in denen sämtliche Angaben zur Bewehrung erfasst werden. Da diese Vorgaben meist für die einzelnen Flächen unterschiedlich sind, können für jeden RF-BETON Flächen-Fall mehrere Bewehrungssätze angelegt werden. Die Bewehrungsdefinitionen lassen sich flächenweise vornehmen.

Bewehrungssätze

Ein neuer Bewehrungssatz wird über die Schaltfläche [Neu] im Abschnitt *Bewehrungssatz* angelegt. Die Nummer wird automatisch vergeben. Eine benutzerdefinierte *Bezeichnung* erleichtert den Überblick über alle im Bemessungsfall angelegten Bewehrungssätze.

FA1 - Stahlbeton-Bemessung	I.4 Bewehrung	
Eingabedaten Basisangaben Materialien Flächen Bewehrung 1 - Bodenplatte 2 - Würde	Bewehrungssatz Angewendet auf Rächen Nr. Bezeichnung: 3 Decke 1 State Bewehrungsgrade Bewehrungsanordnung Längsbewehrung SIA 262	
L 3 - Decke	Mindest- Querbewehrung: 20.00 (*) [%] Maximaler Bewehrungsgrad: 4.00 (*) [%] Mindest- generelt: 0.00 (*) [%] Minimaler Schubbewehrungsgrad: 0.00 (*) [%]	F-BETO
	Mindest- Druckbewehrung: 0.00 [*] [%]	Stahlbetonbemessu von Flächen (Platte Scheiben, Faltwerke Schalen)

<u>-</u>

Bild 3.15: Maske 1.4 Bewehrung mit drei Bewehrungssätzen

Die Auswahl von Bewehrungssätzen erfolgt über die Nr.-Liste oder die Navigatoreinträge.

Mit der Schaltfläche [Löschen] wird der aktuelle Bewehrungssatz ohne weitere Warnung aus dem RF-BETON Flächen-Fall entfernt. Für Flächen, die in diesem Bewehrungssatz enthalten waren, findet damit keine Bemessung statt. Um sie zu bemessen, müssen sie einem neuen oder bestehenden Bewehrungssatz zugewiesen werden.

Im Abschnitt Angewendet auf Flächen wird entschieden, für welche Flächen der aktuelle Bewehrungssatz gültig ist. Es sind Alle Flächen voreingestellt. Mit dieser Vorgabe kann kein weiterer Bewehrungssatz erstellt werden, denn Flächen lassen sich nicht unterschiedlichen Bewehrungsvorgaben zuweisen. Daher muss das Kontrollfeld Alle deaktiviert werden, um Bewehrungssätze nutzen zu können.

Im Eingabefeld werden die Nummern der relevanten Flächen eingetragen oder über [Pick] grafisch im RFEM-Arbeitsfenster ausgewählt, für die die nachfolgend zu treffenden Bewehrungsvorgaben gültig sind. Damit wird auch die Schaltfläche [Neuer Bewehrungssatz] zugänglich. Das Eingabefeld darf nur Flächennummern aufweisen, die noch keinem anderen Bewehrungssatz zugewiesen sind.

3.4.1 Bewehrungsgrade

<u>D</u> atei <u>E</u> instellungen <u>H</u> ilfe		
FA1 - Stahlbeton-Bernessung	1.4 Bewehrung	
Eingabedaten → Materialien → Riächen → Bewehrung → I - Bodenplatte → 2 · Wände <u>3 · Decke</u>	Bewehrungssatz Angewendet auf Rächen Nr. Bezeichnung: 3 Decke 1 Image: Status and	Reference in the second
		571 575
0 5 3	Berechnung Kontrolle Grafik	OK Abbrechen

Bild 3.16: Maske 1.4 Bewehrung, Register Bewehrungsgrade

In diesem Register werden die Mindest- und Höchstbewehrungen in Prozentangaben festgelegt. Die *Mindest-Querbewehrung* ist auf die größte einzulegende Längsbewehrung bezogen. Alle weiteren Vorgaben erfolgen mit Bezug auf die Querschnittsfläche eines einen Meter breiten Flächenstreifens. Nur für DIN 1045-88 wird die *Mindest-Druckbewehrung* auf den statisch erforderlichen Querschnitt bezogen.

3.4.2 Bewehrungsanordnung

A1 - Stahlbeton-Bemessung	 1.4 Bewehrung 				
Eingabedaten Materialien Flächen 2 - Wände 3 - Decke	Bewehrungssatz Nr. Bezeichnung. 3 ▼ Decke Bewehrungsgrade Bewehrung Anzahl der Lagen Obere Bewehrung: 2 ▼	Angewendet au Alle 1 sanordnung Längsbewehrung SIA 262 Betondeckung beziehen auf @ Achsmaß der Bewehrung	Angewendet auf Rächen Alle Alle Alle Angewendet auf Rächen Alle Angewendet auf Rächen Angewendet An		
	Untere Bewehrung: 2 Betondeckungen Obere Bewehrung: 3. Untere Bewehrung: 3.	0 Rand Stabdurchmes 00 € 4.00 € 00 € 4.00 € [cm] 00 € 4.00 € [cm]	ser <u>D</u> : 1.00 ÷ [cm]	RF-BET Flächen	
	Bewehrungsrichtungen bezoge or Obere Bewehrung: 0.0 Untere Bewehrung: 0.0	n auf lokale Achse x des FE-Elementes fü Q2 (4) 30(\$\overline\$ 90.000(\$\overline\$ [1] 30(\$\overline\$ 90.000(\$\overline\$ [1] 10(\$\overline\$ 90.000(\$\overline\$ [1] 10(\$\overline\$ 90.000(\$\overline\$ [1] 10(\$\overline\$ 90.000(\$\overline\$ [1] 10(\$\overline\$ 90.000(\$\overline\$ [1] 10(\$\overline\$ 90.000(\$\overline\$ [1] 10(\$\overline\$ [1] 10(ir Ergebnisse	Stahlbetonbemessu von Flächen (Platter Scheiben, Faltwerke Schalen)	

Bild 3.17: Maske 1.4 Bewehrung, Register Bewehrungsanordnung

Dieses Register steuert die geometrischen Bewehrungsvorgaben für den Bewehrungssatz.

Anzahl der Bahnen

Das Bewehrungsnetz kann in Form von zwei oder drei Bewehrungsbahnen für jede Flächenseite ausgeführt werden. Für die Nachweise im Grenzzustand der Gebrauchstauglichkeit ist nur ein zweibahniges Bewehrungsnetz zulässig.

Die Definition von "oberer" und "unterer" Flächenseite findet sich bei der Beschreibung des Abschnitts *Betondeckungen* auf der folgenden Seite.

Betondeckung beziehen auf

Die im folgenden Abschnitt definierten Betondeckungen können auf das Achsmaß oder den Rand-Abstand der Bewehrung bezogen werden.

Bild 3.18: Bezug der Betondeckung

Wird das zweite Auswahlfeld *Rand* gewählt, ist für den reinen Tragfähigkeitsnachweis der *Stabdurchmesser D* anzugeben. Im Abschnitt unterhalb lässt sich dann der Randabstand c (d. h. das Nennmaß der Betondeckung c_{nom}) festlegen.

Betondeckungen

In diesen Eingabefeldern sind die Betondeckungen für beide Flächenseiten anzugeben. Die Maße stellen entweder die Achsmaße der einzelnen Lagen oder die Randabstände cnom der Bewehrungen in Richtung ϕ_1 dar. Die Bewehrungsrichtungen werden im Abschnitt unterhalb festgelegt.

5

Obere und *Untere* Lage Die "obere" und "untere" Flächenseite ist wie folgt definiert: Die Unterseite ist in Richtung der positiven lokalen z-Flächenachse zu finden, die Oberseite dementsprechend in Richtung der negativen lokalen z-Achse. Die Flächenachsen können im Zeigen-Navigator von RFEM über den Eintrag Struktur \rightarrow Flächen \rightarrow Flächen-Achsensysteme x,y,z oder das Kontextmenü der Flächen eingeblendet werden.

Um die lokale z-Achse einer Fläche umzukehren, ist diese im RFEM-Arbeitsfenster mit der rechten Maustaste anzuklicken. Im Flächen-Kontextmenü steht dann die Option *Lokales Achsensystem umkehren* zur Auswahl. Auf diese Weise lassen sich z. B. die Ausrichtungen von Wänden vereinheitlichen und die oberen und unteren Bewehrungsseiten für Flächen in vertikaler Lage korrekt zuweisen.

Wurde die RFEM-Struktur als Positionstyp *Wand* angelegt, so können keine unterschiedlichen Bewehrungsnetze für beide Flächenseiten erzeugt werden. Die Eingabemöglichkeiten sind in diesem Fall auf einheitliche Betondeckungen beschränkt, sodass diese für beide Flächenseiten synchron angewandt werden können.

Bewehrungsrichtungen

Die Bewehrungsrichtungen φ beziehen sich jeweils auf die lokale x-Achse der FE-Elemente im Ergebnis-Achsensystem der Flächen. Der Winkel φ ist positiv einzugeben. Er beschreibt die Drehung der Bewehrungsrichtung im Uhrzeigersinn zur jeweiligen x-Achse.

Das Ergebnis-Achsensystem als Eigenschaft einer jeden Fläche ist über den RFEM-Dialog *Fläche bearbeiten* zugänglich und kann dort ggf. angepasst werden.

Bild 3.19: RFEM-Dialog Fläche bearbeiten, Register Achsen

Die Achsen der FE-Elemente lassen sich im RFEM-Arbeitsfenster grafisch überprüfen, indem man im Zeigen-Navigator die Einträge FE-Netz \rightarrow An Flächen \rightarrow FE-Achsensysteme x,y,z und Nummerierung \rightarrow FE-Netz \rightarrow FE-Achsensysteme x,y,z aktiviert (vgl. Bild 9.30 auf Seite 288 im RFEM-Handbuch).

Wurde die RFEM-Struktur als Positionstyp *Wand* angelegt, so können keine unterschiedlichen Bewehrungsnetze für beide Flächenseiten erzeugt werden. Die Eingabemöglichkeiten sind in diesem Fall auf einheitliche Richtungen der Bewehrungsscharen beschränkt, sodass diese für beide Flächenseiten synchron angewandt werden können.

3.4.3 Längsbewehrung

Bild 3.20: Maske 1.4 Bewehrung, Register Längsbewehrung für Tragfähigkeits- und Gebrauchstauglichkeitsnachweise

Das Erscheinungsbild dieses Registers hängt von den zu führenden Nachweisen ab: Für die Nachweise im Grenzzustand der Gebrauchstauglichkeit (GZG) müssen Bewehrungsquerschnitte vorgegeben werden. Der reine Tragfähigkeitsnachweis erfordert keine spezifischen Bewehrungsangaben. Es ist lediglich zu regeln, welche Längsbewehrung für den Querkraftnachweis herangezogen werden soll.

Vorhandene Grundbewehrung

Für jede Flächenseite und für jede Bewehrungsrichtung kann eine Grundbewehrung festgelegt werden, die jeweils für sämtliche Flächen des Bewehrungssatzes eingelegt wird. Hierzu wird in den Eingabefeldern der *Bewehrungsquerschnitt* und der für den Gebrauchstauglichkeitsnachweis relevante *Stabdurchmesser* eingetragen.

Wird die Grundbewehrung so gewählt, dass sie größer ist als die maximale erforderliche Bewehrung, bedarf es keiner zusätzlichen Bewehrung. Es ist allerdings nicht wirtschaftlich, Flächen mit großen konstanten Grundbewehrungen auszustatten.

Die Eingabe der Bewehrungsquerschnitte wird durch Bibliotheken erleichtert, die sowohl für Bewehrungsstäbe als auch für Bewehrungsmatten zur Verfügung stehen. Diese Bibliotheken sind über die beiden links dargestellten Schaltflächen zugänglich.

In den Bibliotheken (vgl. Bild 3.21 und Bild 3.22) können Bewehrungsstäbe bzw. Betonstahlmatten ausgewählt werden. Die dort ermittelten bzw. hinterlegten Bewehrungsquerschnitte lassen sich dann in die Eingabefelder dieses Abschnitts übernehmen.

Bibliotheken

Bewehrungsfläche aus Bewe Bewehrungsstab-Parameter	hrungsstäben überneh 🔀
Ermittlung von: Stabdurchmesser D: 10.00 (mm) Stababstand a: 150.00 (mm)	Lage: V Oben Unten Bewehrung V as,1 zuordnen: as,2
as: 5.24 (cm ² /m)	OK Abbrechen

Bild 3.21: Dialog Bewehrungsfläche aus Bewehrungsstäben übernehmen

Die drei Auswahlfelder des Abschnitts *Bewehrungsstab-Parameter* wirken interaktiv. In der Regel wird aus dem Stabdurchmesser und Stababstand die Bewehrungsfläche berechnet.

Der Abschnitt *Export* steuert, in welche Eingabefelder des Ausgangsdialogs die ermittelten Bewehrungsflächen übernommen werden. Lage und Bewehrungsrichtung lassen sich gezielt (oder pauschal durch Anhaken aller Kontrollfelder) vorgeben.

Bewehrungsfläche aus Bewehrungsmatten-	Bibliothek ü	bernehmen	×
Lieferprogramm Nummer Deutschland - 2008-01-01 R188A R257A R355A R424A R424A R424A R524A	Ex La Là zu	portieren Ut ge: Dt V Ur ingsbewehrung weisen zu:	ven iten ○ as,1 ⊙ as,2
Bewehrungskennwerte			R257A
Gesamtguerschnitt der Längsstäbe pro m	ac länge	2.57	cm ² /m
Gesamtguerschnitt der Querstähe pro m	ds, rangs	1 13	cm ² /m
Längsstabdurchmesser Innenbereich	da 11	7.00	mm
Längsstabdurchmesser, Randbereich	de La	7.00	000
Querstabdurchmesser	d- 0	00.3	mm
Abstand de Längsstäbe	a:	150.00	000
Abstand der Querstäbe	80	250.00	mm
Mattenlänge		£ 000	m
Mattenbreite	M	2 300	m
Gewicht ie Matte	Ghterro	41.20	ka
Gewicht ie m ²	G	2.99	ka/m ²
Oberstände am Mattenrand Jängs	Üc länge	125.00	mm
Oberstände am Mattenrand, runge	Üs quer	25.00	mm
		ОК	Abbrechen

Bild 3.22: Dialog Bewehrungsfläche aus Bewehrungsmatten-Bibliothek übernehmen

Zunächst ist das *Lieferprogramm* in der links dargestellten Liste zu wählen. Ist dann der *Typ* der Matte festgelegt, kann die relevante *Nummer* im Abschnitt rechts ausgewählt werden. Im Abschnitt unterhalb lassen sich die *Bewehrungskennwerte* kontrollieren.

Der Abschnitt *Exportieren* steuert, in welche Eingabefelder des Ausgangsdialogs die ermittelten Bewehrungsflächen übernommen werden. Lage und Bewehrungsrichtung lassen sich gezielt (oder pauschal durch Anhaken aller Kontrollfelder) vorgeben.

Erforderliche Bewehrung für Gebrauchstauglichkeitsnachweis verwenden

Die ideale Vorgehensweise zur Führung der Gebrauchstauglichkeitsnachweise wäre:

- 1. Bestimmen der erforderlichen Bewehrung ausschließlich mit der Belastung des Registers *Tragfähigkeit*
- 2. Erstellen eines Bewehrungsplans durch Betrachten des farbigen Ergebnisverlaufs mit Bewehrungsmatten und Bewehrungsstäben
- 3. Ggf. Teilen der Flächen in RFEM in kleinere Flächen aufgrund des Bewehrungsplans, die in jede Bewehrungsrichtung den gleichen vorhandenen Bewehrungsquerschnitt haben
- 4. Definieren dieses vorhandenen Bewehrungsquerschnitts, Stababstands und Stabdurchmessers für jede dieser Flächen im Modul RF-BETON Flächen
- 5. Erneutes Starten der Berechnung mit der Belastung des Registers Gebrauchstauglichkeit

Dieser Ablauf erscheint aufwändig und widerspricht in gewisser Weise der Programmkonvention, dass mit dem Drücken der Schaltfläche [Berechnung] sowohl die Ermittlung der Bewehrung als auch die Nachweise der Gebrauchstauglichkeit geführt werden.

Das Kontrollfeld *Erforderliche Bewehrung verwenden* eröffnet deshalb die Möglichkeit, schnell eine vorhandene Bewehrung für die einzelnen Flächen zu erhalten: Als anzusetzende Bewehrung wird die erforderliche Bewehrung aus der Bemessung im Grenzzustand der Tragfähigkeit verwendet. Es ist dann lediglich der Stabdurchmesser vorzugeben.

Zusatzbewehrung für Gebrauchstauglichkeitsnachweis

Die Bereiche, in denen die statisch erforderliche Bewehrung größer ist als die definierte Grundbewehrung, erfordern eine Zusatzbewehrung. Welche Zusatzbewehrung nun für den Gebrauchstauglichkeitsnachweis angesetzt werden soll, kann über die Auswahlliste dieses Abschnitts festgelegt werden.

Bei Wahl von *Erforderlicher Zusatzbewehrung* wird der tatsächliche A_{s,erf}-Verlauf als anzusetzende Zusatzbewehrung für den Gebrauchstauglichkeitsnachweis angenommen.

Mit Ausgelegter Zusatzbewehrung ermittelt RF-BETON Flächen die Zusatzbewehrung als Differenz von größter statisch erforderlicher Bewehrung und definierter Grundbewehrung:

 $a_{s,Zusatz} = max a_{s,erf} - a_{s,Grund}$

Gleichung 3.1

In grafischer Form stellt sich der Ansatz von ausgelegter Zusatzbewehrung wie folgt dar.

Bild 3.23: Ansatz von ausgelegter Zusatzbewehrung

Für die Auslegung der Zusatzbewehrung ist lediglich der Stabdurchmesser festzulegen.

Die [Info]-Schaltfläche ruft einen Dialog zur Veranschaulichung der drei beschriebenen Optionen auf.

Längsbewehrung für Querkraftnachweis

Es stehen drei Möglichkeiten zur Auswahl, die die angesetzte Längsbewehrung für den Querkraftnachweis ohne Querkraftbewehrung steuern.

- Ansatz der erforderlichen Längsbewehrung Der Nachweis der Querkrafttragfähigkeit wird mit der transformierten vorhandenen Zugbewehrung in Hauptquerkraftrichtung geführt.
- Erforderliche Längsbewehrung zur Vermeidung von Querkraftbewehrung erhöhen Ist die erforderliche Längsbewehrung nicht ausreichend für die Querkrafttragfähigkeit, wird die Längsbewehrung in Hauptquerkraftrichtung vergrößert, bis der Querkraftnachweis ohne Querkraftbewehrung erfüllt ist.
- Ansatz der größeren Bewehrung aus erforderlicher oder vorhandener Bewehrung Für den Nachweis der Querkrafttragfähigkeit wird entweder die statisch erforderliche oder die benutzerdefinierte Längsbewehrung benutzt.

3.4.4 Bemessungsmethode

RF-BETON Flächen - [Struktur] Datei Einstellungen Hilfe			X
FA1 - Stahlbeton-Bemessung -	1.4 Bewehrung		
Eingabedaten → Basisangaben → Materialien → Flächen ⊕ Bewehrung ↓ 1.8 Bodenplatte ↓ 2. Wände ⊕ Deckre	Bewehrungssatz Angeweit Nr. Bezeichnung: Image: Decke Image:	vendet auf Flächen	
	Berechnung Kontrolle	<u>G</u> rafik	OK Abbrechen

Bild 3.24: Maske 1.4 Bewehrung, Register Bemessungsmethode

Bei der Ermittlung der erforderlichen Bewehrung werden die Hauptschnittgrößen in Bemessungskräfte in Bewehrungsrichtung und in eine sich ausbildende Betondruckstrebenkraft transformiert. Die Größen dieser Bemessungskräfte sind abhängig vom angenommenen Winkel der Betondruckstrebe, die das Bewehrungsnetz aussteift.

Bei den Belastungssituationen "Zug-Zug" und "Zug-Druck" kann bei einem bestimmten Druckstrebenwinkel der Fall eintreten, dass die Bemessungskraft in eine Bewehrungsrichtung negativ wird, d. h. es würden Druckkräfte für die Zugbewehrung vorliegen. Durch die Optimierung der Bemessungskräfte wird die Richtung der Betondruckstrebe so verändert, bis die negative Bemessungskraft zu null wird.

Bei der Optimierung der Schnittgrößen wird somit untersucht, welcher Neigungswinkel der Betondruckstrebe zum günstigsten Bemessungsergebnis führt. Die Bemessungsmomente werden iterativ mit angepassten Neigungswinkeln ermittelt, um die energetisch kleinste Lösung mit dem geringsten Bewehrungsbedarf zu finden. Die Optimierung kann bei druckbeanspruchten

Betonbauteilen wie Wänden zu Unbemessbarkeiten durch das Versagen der Betondruckstrebe führen. Für die Belastungssituationen Druck-Druck ist die Optimierung daher u. U. ungeeignet.

3.4.5 Norm

Das Register wird von der Norm gesteuert, die in Maske 1.1 *Basisangaben* ausgewählt wurde. Es sind die normspezifischen Bewehrungsvorgaben zu treffen, die hier für SIA 262 vorgestellt sind.

Im unteren Bereich des Registers stehen zwei Schaltflächen zur Verfügung. [Standard] stellt die Ausgangswerte der aktuellen Norm wieder her; [Als Standard setzen] speichert die Eingaben als neue Voreinstellungen ab.

A1 - Stahlbeton-Bernessung	L.4 Bewehrung		
Eingabedaten - Batisangaben - Materialen - Flächen - Flächen - Bodenplatte - 2 - Wände - 3 - Decke	Bewehrungssatz Nr. Bezeichnung: Image: Ima	Angewendet auf Flächen Alle Längsbewehrung SIA 262 Bernessungsmethode Beiwerte Teilsicherheitsbeiwert nach 2.3.2.6: Beton Yo: 1.50+	LENOL
	Querkraftbewehrung Bemessungsmethode nach 4.3.3.2 Veränderliche Druckstrebenneigung • <u>Minimat</u> 25.000 • [·] • Magimat 45.000 • [·] Durchnesser des Zuschlagstoffgrößtkoms nach 4.3.3.2.5 • D _{max} : 32.0 • [mm]	- Bewehrung ys: 1.15	Stahlbetonbemess von Flächen (Platte Scheiben, Faltwerk Schalen)

Bild 3.25: Maske 1.4 Bewehrung, Register SIA 262

Diverses

Über dieses Kontrollfeld kann die Höhe der Druckzone gemäß SIA 262, Abschnitt 4.1.4.2.5 begrenzt werden. In diesem Fall beträgt das maximale Verhältnis $x_d/d = 0,35$ für Beton bis zur Festigkeitsklasse C50/60 und Betonstahlklassen B oder C.

Beiwerte

Die beiden oberen Eingabefelder legen jeweils den *Teilsicherheitsbeiwert* für Beton γ_c und für Betonstahl γ_s fest, der für den Nachweis der Tragfähigkeit Verwendung findet. Es sind die Werte nach SIA 262 2.3.2.6 voreingestellt.

Die beide Teilsicherheitsbeiwerte für den Nachweis der Gebrauchstauglichkeit wurden nach SIA 262 4.4.1.2 definiert. Für das Spannungs-Dehnungsdiagramm wird mit γ_c =1,0 und mit γ_s =1,0 gerechnet. Für die Rissbreitenbegrenzung nach SIA 262 4.4.2.3.9 Tabelle 16 wird die Spannung $\sigma_{s.adm}$ durch f_{sk}/γ_s mit γ_s =1,15 auf f_{sd} begrenzt.

Die voreingestellten Teilsicherheitsbeiwerte entsprechen denen der Tragsicherheit, um die Spannungen auf die Bemessungswerte zu begrenzen.

Querkraftbewehrung

In diesen beiden Eingabefeldern wird der zulässige Bereich der Druckstrebenneigung festgelegt. Falls die eingegebenen Winkel außerhalb der in den Normen genannten Gültigkeitsgrenzen liegen, erscheint eine entsprechende Fehlermeldung.

4. Berechnung

Berechnung

Die [Berechnung] wird über die gleichnamige Schaltfläche gestartet.

Die Stahlbetonbemessung erfolgt mit den in RFEM ermittelten Schnittgrößen. Sollten noch keine RFEM-Ergebnisse vorliegen, wird die Berechnung der Schnittgrößen automatisch vorgeschaltet.

4.1 Kontrolle

Kontrolle

Vor der Berechnung empfiehlt es sich, die Eingabedaten des Moduls RF-BETON Flächen auf ihre Richtigkeit überprüfen zu lassen. Diese [Kontrolle] kann in jeder Eingabemaske von RF-BETON Flächen aufgerufen werden.

Es wird kontrolliert, ob die zur Bemessung erforderlichen Angaben vollständig vorliegen und die Bezüge der Datensätze untereinander sinnvoll definiert sind. Falls Eingabefehler aufgedeckt werden, kann die betreffende Maske direkt angesteuert werden. Dort lassen sich dann die Korrekturen vorzunehmen.

Nach einer erfolgreichen Plausibilitätskontrolle erscheint folgender Hinweis.

	RF-BETON Flächen Hinweis Nr. 493							
Plausibilitätskontrolle in Ordnung!								

Bild 4.1: Plausibilitätskontrolle der Eingabedaten

4.2 Start der Berechnung

Berechnung

In jeder der vier Eingabemasken des RF-BETON Flächen-Moduls kann die [Berechnung] über die gleichnamige Schaltfläche gestartet werden.

RF-BETON Flächen sucht nach den Ergebnissen der zu bemessenden Lastfälle, Lastfallgruppen und Lastfallkombinationen. Werden diese nicht gefunden, startet zunächst die RFEM-Berechnung zur Ermittlung der bemessungsrelevanten Schnittgrößen. Dabei wird auf die vorgegebenen Berechnungsparameter von RFEM zurückgegriffen.

Die Bemessung kann auch aus der RFEM-Oberfläche gestartet werden, denn die Zusatzmodule werden im Dialog *Zu berechnen* wie ein Lastfall oder eine Lastfallgruppe aufgelistet. Der Dialog zum Starten der Bemessung wird in RFEM aufgerufen über das Menü

Berechnung \rightarrow Zu berechnen.

Zu berechnen								×
Nicht berechnete					Zur Berechnung ausg	jewählte		
Programm / Modul	Nr.	Bezeichnung	^		Programm / Modul	Nr.	Bezeichnung	^
RFEM RFEM RFEM RFEM RFEM RF-BETON Flächen	LF1 LF2 LF3 LF4 LG1 LG1 LK1 FA2	Eigengewicht und Aufbau Verkehrslast Imperfektion nach +Y Schwinden Bemessungswerte Stahl Bemessungswerte Stahl Bemessung EC 2		∧ §	RF-BETON Flächen	FA1	Bemessung DIN 1045-1	
Zusatzmodule anz	reigen							
							Berechnen Abbr	echen

Bild 4.2: Dialog Zu berechnen

Falls die RF-BETON Flächen-Bemessungsfälle in der Liste Nicht berechnete fehlen, muss das Kontrollfeld Zusatzmodule anzeigen aktiviert werden.

Berechnen

۲

Mit der Schaltfläche [▶] werden die selektierten RF-BETON Flächen-Fälle in die rechte Liste übergeben. Die Berechnung wird dann mit der entsprechenden Schaltfläche gestartet.

Auch über die Liste der Symbolleiste können RF-BETON Flächen-Fälle direkt berechnet werden: Stellen Sie den gewünschten Bemessungsfall ein und klicken dann auf die Schaltfläche [Ergebnisse ein/aus].

	RFEN	4.02 -	[Struktur]						
Er <u>g</u> ebnisse	E <u>x</u> tras	<u>T</u> abelle	<u>O</u> ptionen	<u>Z</u> usat:	zmodule	<u>F</u> enster	<u>H</u> ilfe		
🔲 💁 RF-	BETON FI	ächen FA	2 - Ben 🍸	۵ ک	<u>↓</u> 🕺 🛃	🍋 💴 🚳	র 📴 🛤	i 🐖 🐳	🖗 🥵
- 🕎 - 🕞	9 🙇	<u>热</u> 過	🍓 🗐 🤔	- 3	æ %	Ergebnisse	e ein/aus	<u>-</u> 1	5 17

Bild 4.3: Direkte Berechnung eines RF-BETON Flächen-Bemessungsfalls in RFEM

Der Ablauf der Bemessung kann anschließend in einem Dialog verfolgt werden.

	Gesamtablauf			
	RFEM - Berechnung nach FEM			
	RF-BETON Flächen	FA1		
200 1	Einzelschritte			
	Bemessung nach DIN 1045-1: 2008-08		Anzahl der Flächen	5 🖍
	Einlesen Rasterpunkte		Anzahl der Bewehrungssi Anzahl Lastfälle	2
	– Einlesen Netzpunkte		Anzahl der LF-Gruppen	0
	- FE-Knoten lösen		Anzahl der LF-Kombinatio Anzahl Modul-Fälle	i
290	– Rasterpunkte lösen			
1.1				=
	-			
× 1.	-			
	- Fläche Nr. 5 (5/5)			
	Punkt-Nr. 124 (124/676)			
				~
/				
	Abbr	nahan	ו	
0001	Abbr	echen	J	

Bild 4.4: RF-BETON Flächen-Berechnung

5. Ergebnisse

Unmittelbar nach der Berechnung erscheint die Maske 2.1 *Erforderliche Bewehrung Gesamt*. In den Ergebnismasken 2.1 bis 2.3 werden die Ergebnisse des Tragfähigkeitsnachweises mitsamt Erläuterungen aufgelistet. Die Masken 3.1 bis 3.3 sind für die Ergebnisse der Nachweise im Grenzzustand der Gebrauchstauglichkeit reserviert. Jede Ergebnismaske kann über den RF-BETON Flächen-Navigator angesteuert werden. Alternativ benutzt man die beiden links dargestellten Schaltflächen oder die Funktionstasten [F2] und [F3], um eine Maske vor- oder zurückzublättern.

Mit [OK] werden die Ergebnisse gesichert und das RF-BETON Flächen-Modul verlassen.

In diesem Handbuchkapitel werden die einzelnen Masken der Reihe nach vorgestellt. Die Auswertung und Kontrolle der Resultate ist im folgenden Kapitel 6 Ergebnisauswertung ab Seite 61 ausführlich beschrieben.

Die links dargestellten Kontrollfelder steuern, ob die Ergebnisdaten in den einzelnen Masken *In FE-Punkten* oder *In Rasterpunkten* angezeigt werden. Diese Kontrollfelder befinden sich im unteren Bereich der Maske. Die Ergebnisse der FE-Punkte werden direkt vom Rechenkern ermittelt, die Rasterpunkt-Ergebnisse durch Interpolation der FE-Punktergebnisse bestimmt.

Die Ergebnismasken 3.1 bis 3.3 sind zweigeteilt (vgl. Bild 5.5). Im oberen Abschnitt erfolgt eine tabellarische Übersicht der Nachweise, im unteren Abschnitt werden die Zwischenergebnisse des aktuellen (d. h. des oben aktiven) FE- oder Rasterpunkts mit allen bemessungsrelevanten Parametern ausgewiesen. Die einzelnen Kapitel in der Baumstruktur des unteren Abschnitts können mit [+] aufgeklappt und mit [-] geschlossen werden.

5.1 Erforderliche Bewehrung Gesamt

RF-BETON Flächen - [Struktur]											
Datei Einstellungen Hilfe	-										
FA1 - Bemessung DIN 1045-1 🗸	2.1 Erf	orderlich	e Bewel	hrung G	esamt						
Eingabedaten Rasisangaben	Fläche	A Raster-	B Punkt	C -Koordinat	D en [m]	E	F Erford	G erliche	H Bewehrur	 ig [cm ² /m]	J Fehlermeldung
Materialien	Nr.	punkt	X	Y	Z	Symbol	Bewehrung	Einheit	Vorh. Grund	Vorh. Zusatz	bzw. Hinweis
Flächen	5	R90	9.787	5.855	2.500	∂s,1 oben	2.44	cm ² /m	0.00	5.69	17)
Bewehrung	1	R260	9.500	6.000	0.000	as,2 oben	3.19	cm ² /m	1.88	1.57	18)
- 1 - Decken	5	R15	9.787	5.855	0.000	as,1 unten	4.10	cm ² /m	0.00	5.52	20)
2 - Wände	1	R175	7.000	4.000	0.000	∂s,2 unten	5.46	cm ² /m	1.88	3.62	21)
Ergebnisse	1	R175	7.000	4.000	0.000	asw	8.76	cm ² /m ²	•	-	15)
Gesant Flächenweise Purktweise Gebrauchstauglichkeitsnachweise Gesant Flächenweise Punktweise											
	O In FE	Punkten	۲	In Rasterp	unkten					00 7	M & @
	BemDel	ails Me	eldungen				Gr	afik		OK	Abbrechen
17) Zur Abdeckung des Zwischenbere	eichs wird	vorh. Zusa	tzbew. fü	r As-1,obe	en angese	tzt.					

Bild 5.1: Maske 2.1 Erforderliche Bewehrung Gesamt

Es werden die maximalen Bewehrungsergebnisse aller zur Bemessung vorgesehenen Flächen ausgegeben, die sich aus den Schnittgrößen der gewählten Lastfälle, Lastfallgruppen und Lastfallkombinationen für den Nachweis der Tragfähigkeit ergeben.

🔘 In FE-Punkten 🛛 💿 In Rasterpunkten

Punkt Nr.

In dieser Spalte werden die Nummern der FE- bzw. Rasterpunkte angegeben, in denen die größte erforderliche Bewehrung für jede Lage und Richtung ermittelt wurde. Die Art der Bewehrung wird in Spalte E *Symbol* angegeben.

Die FE-Netzpunkte werden automatisch generiert. Die Rasterpunkte hingegen stellen eine Flächeneigenschaft dar, die in RFEM beeinflussbar ist. Für jede Fläche lassen sich benutzerdefinierte Ergebnisraster erzeugen. Hintergrundinformationen zu den Rasterpunkten finden Sie im Kapitel 9.9 des RFEM-Handbuchs auf Seite 285.

Punkt-Koordinaten

Die drei Spalten geben die Koordinaten der jeweils maßgebenden FE- oder Rasterpunkte an.

Symbol

Obere und

Untere Lage

Meldungen..

Spalte E weist die Art der Bewehrung aus. Für die vier (bzw. sechs) Längsbewehrungen werden jeweils Richtung (1, 2 und ggf. 3) und Flächenseite (*oben* und *unten*) angegeben.

Die Bewehrungsrichtungen werden im Register *Bewehrungsanordnung* der Maske 1.4 *Bewehrung* gesteuert (vgl. Kapitel 3.4.2, Seite 39).

Die Schubbewehrung ist als asw gekennzeichnet.

Erforderliche Bewehrung

In dieser Spalte werden die Bewehrungsquerschnitte ausgewiesen, die für den Nachweis im Grenzzustand der Tragfähigkeit erforderlich sind.

Vorhandene Grundbewehrung

Hier findet sich die benutzerdefinierte Grundbewehrung wieder, die im Register *Längsbewehrung* der Maske 1.4 *Bewehrung* vorgegeben wurde (vgl. Kapitel 3.4.3, Seite 41).

Vorhandene Zusatzbewehrung

Beim reinen Tragsicherheitsnachweis wird in dieser Spalte die Differenz zwischen erforderlicher Bewehrung (Spalte F) und vorhandener Grundbewehrung (Spalte H) angegeben.

Werden zusätzlich die Nachweise im Grenzzustand der Gebrauchstauglichkeit geführt, so lassen sich hier die Bewehrungsquerschnitte ablesen, die mit den Vorgaben des Registers *Längsbewehrung* der Maske 1.4 *Bewehrung* (vgl. Kapitel 3.4.3, Seite 41) zur Erfüllung der Gebrauchstauglichkeitsnachweise benötigt werden.

Fehlermeldung bzw. Hinweis

Die letzte Spalte verweist auf Unbemessbarkeiten oder Bemerkungen, die sich im Zuge der Bemessung ergeben haben. Die Nummern sind in der Statusleiste näher erläutert.

Alle [Meldungen] des aktuellen Bemessungsfalls lassen sich zusammengefasst über die links dargestellte Schaltfläche einsehen. Es erscheint ein informativer Dialog mit einer Übersicht.

Fehler	rmeldungen bzw. Hinweise	\sim
Verwe 15) 17) 18) 20) 21)	ndete Fehlermeldungen bzw. Hinweise Querkraftbewehrung nicht vermeidbar! Zur Abdeckung des Zwischenbereichs wird vorh. Zusatzbew. für As-1, oben angesetzt. Zur Abdeckung des Zwischenbereichs wird vorh. Zusatzbew. für As-1, unten angesetzt. Zur Abdeckung des Zwischenbereichs wird vorh. Zusatzbew. für As-2, unten angesetzt. Zur Abdeckung des Zwischenbereichs wird vorh. Zusatzbew. für As-2, unten angesetzt.	
٦	Alle	ОК

Bild 5.2: Dialog Fehlermeldungen bzw. Hinweise

Die Schaltflächen im unteren Bereich der Maske sind mit folgenden Funktionen belegt:

Schaltfläche	Bezeichnung	Funktion
જ	Punkte filtern	FE- bzw. Rasterpunkte können flächenweise und nach bestimmten Kriterien gefiltert werden. → Kapitel 6.3, Seite 65
7	Nur bemessbare Ergebnisse zeigen	Zeilen mit Unbemessbarkeiten werden ausgeblendet.
*	Punkt finden	Zeilen mit Ergebnissen einzelner FE- bzw. Rasterpunkte können flächen- und nummernweise gesucht werden. → Kapitel 6.3, Seite 67
₹₹	Fläche wählen	Eine Fläche kann im RFEM-Fenster angeklickt werden, deren Ergebnisse dann in der Tabelle erscheinen.
۲	Sichtmodus	Es erfolgt ein Sprung in das RFEM-Arbeitsfenster, sodass dort eine andere Ansicht eingestellt werden kann.

Tabelle 5.1: Schaltflächen der Ergebnismasken 2.1 bis 2.3

Bem.-Details...

Bei der Ausgabe der Bemessungsergebnisse *In Rasterpunkten* (siehe Bild 5.1) steht die Schaltfläche [Bem.-Details] zur Verfügung. Damit können die Bemessungsdetails für jeden Rasterpunkt eingesehen werden. Die Anzeige ist für den aktuellen Rasterpunkt aktiv, d. h. desjenigen Punkts, in dessen Tabellenzeile sich der Cursor befindet.

5

Die Bemessungsdetails werden nur für die Ergebnisse von Lastfällen und Lastfallgruppen angezeigt. Der Dialog *Bemessungsdetails* ist im Kapitel 6.1 auf Seite 61 beschrieben.

5.2 Erforderliche Bewehrung Flächenweise

RF-BETON Flächen - [Struktur	1										
Datei Einstellungen Hilfe											
FA1 - Bemessung DIN 1045-1 🛛 🔽	2.2 Erf	orderlici	he Bewel	nrung Fl	ächenw	reise					
Eingabedaten		A	В	C	D	E	F	G	Н		J
Basisangaben	Fläche	Punkt	Punkt	Koordinate	en (m)		Erford	erliche	Bewehrun	ig [cm² /m]	Fehlermeldung
- Materialien	Nr.	Nr.	X	Y	Z	Symbol	Bewehrung	Einheit	Vorh. Grund	Vorh. Zusatz	bzw. Hinweis
- Flächen	1	N20	6.000	6.000	0.000	∂s,1 oben	5.90	cm ² /m	0.00	6.21	
		N3	9.500	6.000	0.000	as,2 oben	7.27	cm ² /m	0.00	7.27	
1 · Decken		N6	5.000	4.000	0.000	as,1 unten	11.27	cm ² /m	0.00	11.27	
2 · Wände		N6	5.000	4.000	0.000	∂s,2 unten	19.46	cm ² /m	0.00	19.46	
raebnisse		N187	6.890	4.000	0.000	asw	57.51	cm ² /m ²	-		15)
Erforderliche Bewehrung	2	N678	9.926	5.785	0.000	as,1 oben	6.21	cm ² /m	0.00	6.21	
Gesamt		N678	9.926	5.785	0.000	∂s,2 oben	7.06	cm ² /m	0.00	7.27	
Flächenweise		N3	9.500	6.000	0.000	as,1 unten	1.24	cm ² /m	0.00	11.27	
Punktweise		N76	9.500	4.000	0.000	as,2 unten	2.55	cm ² /m	0.00	19.46	
- Gebrauchstauglichkeitsnachweise		N3	9.500	6.000	0.000	asw	8.76	cm ² /m ²	-	-	15)
- Gesant	3	N22	0.000	5.000	0.000	as,1 oben	1.77	cm ² /m	0.00	7.68	
Flächenweise		N789	0.000	3.000	0.000	as,2 oben	4.08	cm ² /m	0.00	5.84	
Punktweise		N718	0.000	0.000	0.500	as,1 unten	2.87	cm ² /m	0.00	15.16	
T di Interiolo		N718	0.000	0.000	0.500	as 2 unten	0.97	cm ² /m	0.00	4.45	
		N1	0.000	0.000	0.000	ðsw.	0.00	cm ² /m ²	-		
	4	N824	8,983	0.000	0.504	ðs.1 oben	2.52	cm ² /m	0.00	7.68	
		N4	9,500	0.000	0.000	ds.2 oben	5.84	cm ² /m	0.00	5.84	
		N825	9,500	0.000	0.500	ās 1 unten	3.60	cm ² /m	0.00	15.16	
		N893	9,500	0.000	1 000	ds 2 unten	2.07	cm ² /m	0.00	4 45	
		N1	0.000	0.000	0.000	ðsu	0.00	cm ² /m ²	-	-	
	5	N1048	9,500	6,000	2 500	ds 1 ohen	7.68	cm ² /m	0.00	7.68	
		N825	9,500	0.000	0.500	ds 2 ohen	3.51	cm ² /m	0.00	5.84	
		N3	9,500	000.3	0.000	ds.1 unter	15.16	cm ² /m	0.00	15.16	
		N3	9,500	000.3	0.000	ds 2 unter	4 45	cm ² /m	0.00	4 45	
		N3	9,500	6,000	0.000	ðsu	13.06	cm ² /m ²			15)
<	📀 In FE-	Punkten	0	In Rasterp	unkten		10.00		11	b) 🐘 🔇 🤇
0 5 5	BemDel	ails M	eldungen				Gra	afik		OK	Abbrechen

Bild 5.3: Maske 2.2 Erforderliche Bewehrung Flächenweise

Es werden die maximalen Bewehrungsquerschnitte ausgewiesen, die für jede der bemessenen Flächen erforderlich sind. Die einzelnen Spalten sind im vorherigen Kapitel 5.1 erläutert.

5.3 Erforderliche Bewehrung Punktweise

FA1 - Bemessung DIN 1045-1 🛛 💌	2.3 Erf	orderlich	e Bewel	nrung Pu	Inktwei	se					
ingabedaten		A	В	C	D	E	F	G	Н	1	J
Basisangaben	Fläche	Raster-	Punkt	Koordinate	en (m)		Erford	erliche	Bewehrun	ig [cm² /m]	Fehlermeldung
- Materialien	Nr.	punkt	X	Y	Z	Symbol	Bewehrung	Einheit	Vorh. Grund	Vorh. Zusatz	bzw. Hinweis
– Flächen	1	B171	5.000	4.000	0.000	∂s,1 oben	1.31	cm ² /m	0.00	6.21	17)
Bewehrung						∂s,2 oben	0.26	cm ² /m	0.00	7.27	18)
1 - Decken						as,1 unten	11.27	cm ² /m	0.00	11.27	
2 - Wände						as,2 unten	19.46	cm ² /m	0.00	19.46	
raebnisse						asw	36.92	cm ² /m ²	-		15)
Erforderliche Bewehrung						N1 oben	59.877	kN/m			
Gesamt						N2 oben	-149.689	kN/m			
Flächenweise						n1 unten	503.039	kN/m			
Punktweise						n2 unten	853.306	kN/m			
- Gebrauchstauglichkeitsnachweise						VEd	283.155	kN/m			
Gesamt						V _{Rd,ct}	119.966	kN/m			
Flächenweise						V _{Rd,max}	784.574	kN/m			
Punktweise						V _{Rd,sy}	283.155	kN/m	-		
						Theta	30.765	*			
	1	R172	5.500	4.000	0.000	as,1 oben	0.08	cm ² /m	0.00	6.21	17)
						as,2 oben	0.39	cm ² /m	0.00	7.27	18)
						as,1 unten	3.06	cm ² /m	0.00	11.27	
						as,2 unten	0.73	cm ² /m	0.00	19.46	
						asw	11.94	cm ² /m ²	-	-	15)
						N1 oben	-195.212	kN/m	-		
						N2 oben	17.653	kN/m	-		
						n1 unten	139.894	kN/m	-		
						n2 unten	33.484	kN/m			
						VEd	143.115	kN/m			
						VRd.et	101.148	kN/m			
	🔿 In FE-	Punkten	۲	in Rasterp	unkten					ছ হি	M

Bild 5.4: Maske 2.3 Erforderliche Bewehrung Punktweise

Diese Maske listet die maximalen Bewehrungsquerschnitte für alle FE- bzw. Rasterpunkte einer jeden Fläche auf. Die einzelnen Spalten sind im Kapitel 5.1 auf Seite 49 erläutert.

Neben den Zeilen mit den diversen Bewehrungsarten werden wesentliche Größen ausgegeben, die zur Ermittlung der Bewehrung bedeutsam sind. Für SIA 262 sind dies:

Symbol	Bedeutung
n _{1 oben}	Normal- bzw. Membrankraft zur Bemessung der Bewehrung in die erste Bewehrungsrichtung an der Flächenoberseite
N _{2 oben}	Normal- bzw. Membrankraft zur Bemessung der Bewehrung in die zweite Bewehrungsrichtung an der Flächenoberseite
N _{1 unten}	Wie n _{1 oben} , jedoch für Flächenunterseite
N _{2 unten}	Wie n _{2 oben} , jedoch für Flächenunterseite
m _{1 oben} / m _{2 oben}	Nur für Positionstyp <i>Platte XY</i> : Moment zur Bemessung der Bewehrung in die erste bzw. zweite Bewehrungsrichtung an der Flächenoberseite
m _{1 unten} / m _{2 unten}	Wie m _{1 oben} / m _{2 oben} , jedoch für Flächenunterseite
V _{Ed}	Bemessungswert der einwirkenden Querkraft
V _{Rd}	Querkrafttragfähigkeit ohne Querkraftbewehrung
V _{Rd,c}	Querkrafttragfähigkeit der Betondruckstrebe
V _{Rd,sy}	Querkrafttragfähigkeit der Querkraftbewehrung
alpha	Neigungswinkel der Betondruckstrebe α

Tabelle 5.2: Ausgabegrößen in Maske 2.3 für SIA 262

Die Suchfunktion, die über die links dargestellte Schaltfläche aufgerufen wird, erleichtert das schnelle Auffinden eines bestimmten FE- oder Rasterpunkts (vgl. Bild 6.8, Seite 67).

5.4 Gebrauchstauglichkeitsnachweise Gesamt

- oranibotorr bornossang	B.1 Gesa	mt										
ingabedaten	1	A	B	C	D	Е	F	G	Н		J	K
Basisangaben	Fläche	Raster-	Punkt	tkoordinater	n (m)	Last-			Nachweis			
- Materialien	Nr.	punkt	X	Y	Z	fall	Тур	Vorh. Wert	Grenzwert	Einheit	Ausnutzu	ng Hinwei
Flächen	1	R4	1.500	0.000	0.000	LF1	σs	245.59	309.61	N/mm ²	0).8
- Bewehrung	1	R1	0.000	0.000	0.000	LF1	as,min	3.00	2.67	cm ² /m	0	1.9
L-1 -	1	R4	1.500	0.000	0.000	LF1	Wk	0.170	0.200	mm	0	1.9
gebnisse												
Erforderliche Bewehrung												
Gesamt												
Flächenweise												
Punktweise	ln FF-	Punkten () In Basterr	unkten	М		0.9	<1 🙂 🗍	AI 60	7 74		
- Gebrauchstauglichkeitsnachw	We United with the grandward max control of the con											
Gesamt												
Flächenweise												
Punktweise		ttenunters	eite	ordinopui	inding							
	B	eton reißt au	f und die Be	wehning wi	rd aktiviert							
	9	tahlsnannun	a in 1 Rewe	hn ingsricht			Gene		245 59 N/r	nm 2		
	9	tahlsnannun	g in 2 Bewe	shrungsricht	una		05,0,0 0 c u 0	2	15 71 N/r	nm 2		
	E Pla	ttenoherse	ite	andigeneric	ung		vs.u.@	2	13.71 10/1			
	B	eton reißt an	dieser Seite	nicht auf								
	Mar	rimale Stal	hlenannun	n			max o	-	245 59 N/r	nm 2		
	Nach	weis	- aparatan	9			max o	5	243.33 14/1			
	May	imale Stabls	nannung				max or		245 59 N/r	nm 2		
	Zula	issine Stahls	nannung				zul Ge		245.55 N/r	nm 2		
	Nac	hweiskriteriu	m				Kriteriu	m	0.793			
	INCO	a myolarchionu					Talconu		0.735			

Bild 5.5: Maske 3.1 Gebrauchstauglichkeitsnachweise Gesamt

Es werden die maßgebenden Ergebnisse der diversen Gebrauchstauglichkeitsnachweise aller zur Bemessung vorgesehenen Flächen ausgegeben. Diese Maske ist zweigeteilt: Im oberen Abschnitt erfolgt eine tabellarische Übersicht der Nachweise, im unteren Abschnitt werden die Zwischenergebnisse des oben aktiven FE- oder Rasterpunkts ausgewiesen.

Bild 5.5 zeigt die Ergebnismaske einer analytischen Gebrauchstauglichkeitsuntersuchung. Die Nachweismethode wird im Register *Gebrauchstauglichkeit* der Maske 1.1 *Basisangaben* vorgegeben (vgl. Bild 3.3, Seite 25). Im Kapitel 5.7 auf Seite 57 sind die Ergebnismasken beschrieben, die nach Abschluss einer nichtlinearen GZG-Untersuchung erscheinen.

Punkt Nr.

In dieser Spalte werden die Nummern der FE- bzw. Rasterpunkte angegeben, in denen die größten Ausnutzungen für jeden geforderten Nachweis ermittelt wurden. Die Art des Nachweises wird in Spalte F *Typ* angegeben.

Die FE-Netzpunkte werden automatisch generiert. Die Rasterpunkte hingegen stellen eine Flächeneigenschaft dar, die in RFEM beeinflussbar ist. Für jede Fläche lassen sich benutzerdefinierte Ergebnisraster erzeugen. Hintergrundinformationen zu den Rasterpunkten finden Sie im Kapitel 9.9 des RFEM-Handbuchs auf Seite 285.

Punkt-Koordinaten

In diesen drei Spalten werden die Koordinaten der jeweils maßgebenden FE- oder Rasterpunkte angegeben.

Lastfall

In Spalte E wird der Lastfall bzw. die Lastfallgruppe oder Lastfallkombination ausgewiesen, dessen bzw. deren Schnittgrößen zur maximalen Ausnutzung für den jeweiligen Gebrauchstauglichkeitsnachweis führen.

Тур

Spalte F gibt die Art des Gebrauchstauglichkeitsnachweises an. Bei der analytischen Methode werden bis zu drei Nachweistypen aufgelistet.

Die einzelnen Nachweistypen haben folgende Bedeutungen:

Тур	Nachweis GZG
σs	Begrenzung der Betonstahlspannung gemäß Vorgaben in Maske 1.3 <i>Flächen</i> (siehe Bild 3.10, Seite 34)
a s,min	Mindestbewehrung zur Begrenzung der Rissbreite gemäß Vorgaben in Maske 1.3 <i>Flächen</i>
Wk	Begrenzung der Rissbreite gemäß Vorgaben in Maske 1.3 <i>Flächen</i> (siehe Bild 3.9, Seite 32)

Tabelle 5.3: Gebrauchstauglichkeitsnachweise nach analytischer Methode

Vorhandener Wert

In dieser Spalte werden die Gesamt-Extremwerte aller Flächen angegeben, die für die jeweiligen Nachweise im Grenzzustand der Gebrauchstauglichkeit maßgebend sind.

Grenzwert

Die Grenzwerte resultieren aus den Normvorgaben und der aktuellen Belastungssituation.

Ausnutzung

Diese Spalte gibt Auskunft über die Nachweisquotienten aus vorhandenem Wert (Spalte G) und Grenzwert (Spalte H). Damit ist sofort ersichtlich, ob das Nachweiskriterium von 1 eingehalten oder überschritten ist.

Die Werte dieser Spalte sind mit farbigen Balken hinterlegt, deren Längen die jeweiligen Ausnutzungen widerspiegeln. Ein grüner Balken bedeutet zudem, dass der Nachweis erfüllt ist, ein roter Balken weist auf eine Überschreitung hin. Die Darstellung dieser Balken kann über die links dargestellte Schaltfläche ein- und ausgeblendet werden.

Hinweis

Die letzte Spalte verweist auf Unbemessbarkeiten oder Bemerkungen, die sich im Zuge der Nachweisführung ergeben haben. Die Nummern sind in der Statusleiste näher erläutert.

Meldungen...

Alle [Meldungen] des aktuellen Bemessungsfalls lassen sich zusammengefasst über die links dargestellte Schaltfläche einsehen. Es erscheint ein informativer Dialog mit einer Übersicht (vgl. Bild 5.2, Seite 49).

0.92

Max:

≤1

Die Schaltflächen im oberen Abschnitt dieser Maske sind mit folgenden Funktionen belegt:

Schaltfläche	Bezeichnung	Funktion
2↓	Werte sortieren	Die Ergebnisse lassen sich nach den maximalen Ausnut- zungen (Spalte J) oder Werten (Spalte G) ordnen. → Kapitel 6.3, Seite 66
જિ	Punkte filtern	FE- bzw. Rasterpunkte können flächenweise und nach bestimmten Kriterien gefiltert werden. → Kapitel 6.3, Seite 65
Y	Nur bemessbare Ergebnisse zeigen	Zeilen mit Unbemessbarkeiten werden ausgeblendet.
% 1	Nur unbemessbare Ergebnisse zeigen	Es werden nur Zeilen mit Ausnutzungen > 1,00 an- gezeigt.
%	Punkt finden	Zeilen mit Ergebnissen einzelner FE- bzw. Rasterpunkte können flächen- und nummernweise gesucht werden. → Kapitel 6.3, Seite 67
\$	Fläche wählen	Eine Fläche kann im RFEM-Fenster angeklickt werden, deren Ergebnisse dann in der Tabelle erscheinen.
B	Ergebnisse drucken	Die Zwischenergebnisse des aktuellen FE- oder Raster- punkts werden in das Ausdruckprotokoll gedruckt.
F	Relationsbalken	Die farbigen Bezugsskalen werden ein- oder aus- geblendet.
۲	Sichtmodus	Es erfolgt ein Sprung in das RFEM-Arbeitsfenster, sodass dort eine andere Ansicht eingestellt werden kann.

Tabelle 5.4: Schaltflächen in den Ergebnismasken 3.1 bis 3.3

Bem.-Details...

Bei der Ausgabe der Bemessungsergebnisse *In Rasterpunkten* (siehe Bild 5.1) steht die Schaltfläche [Bem.-Details] zur Verfügung. Damit können die Bemessungsdetails für jeden Rasterpunkt eingesehen werden. Die Anzeige ist für den aktuellen Rasterpunkt aktiv, d. h. desjenigen Punkts, in dessen Tabellenzeile sich der Cursor befindet.

5.5 Gebrauchstauglichkeitsnachweise Flächenweise

A1 - Stahlbeton-Bemessung 🚽 🔻	B.2 Fläck	enweise										
Eingabedaten	1	A	B	C	D	Е	F	G	Н		J	K
Basisangaben	Fläche	Raster-	Punk	tkoordinater	n [m]	Last-			Nachweis			
- Materialien	Nr.	punkt	X	Y	Z	fall	Тур	Vorh. Wert	Grenzwert	Einheit	Ausnutzung	Hinweis
Flächen	1	R4	1.500	0.000	0.000	LF1	σs	245.59	309.61	N/mm ²	0.8	
- Bewehrung		R1	0.000	0.000	0.000	LF1	as,min	3.00	2.67	7 cm2/m	0.9	
L. 1		R4	1.500	0.000	0.000	LF1	Wk	0.170	0.200) mm	0.9	
rgebnisse												
🚊 Erforderliche Bewehrung												
Gesamt												
Flächenweise												
Punktweise	O In FE	Punkten 🤇) In Raster	ounkten	Ma	ax:	0.9	≤1 🙂	<u>\$1</u> bg	7 7.1	👧 💫	B 🗐
🖻 Gebrauchstauglichkeitsnachw												
Gesamt	Zwischenergebnisse - Fläche Nr. 1 - Rasterpunkt Nr. 4											
<mark>Flächenweise</mark>	🖃 Besti	mmen der r	naximalen	Stahlspar	nnung							
Punktweise	🗆 Pla	ttenunters	eite									
	E	leton reißt au	f und die Be	wehrung w	ird aktiviert.							
	S	tahlspannun	g in 1. Bewe	ehrungsricht	ung		σ _{s,u,Φ}	1	245.59 N/r	nm ²		
	S	tahlspannun	g in 2. Bewe	ehrungsricht	ung		σ _{s,u,} Φ	2	15.71 N/r	nm ²		
	🗆 Pla	ttenoberse	ite									
	E	leton reißt an	dieser Seite	e nicht auf.								
	Ma	ximale Stal	hIspannun	g			max o	s	245.59 N/n	nm ²		
	Nach	weis										
	Max	timale Stahls	pannung				max σ_s	1	245.59 N/r	nm ²		
	Zula	issige Stahls	pannung				zul σ _s		309.61 N/r	nm ²		
	Nac	hweiskriteriu	m				Kriteriur	m	0.793			

Bild 5.6: Maske 3.2 Gebrauchstauglichkeitsnachweise Flächenweise

In dieser Ergebnismaske werden die maximalen Ausnutzungen für die diversen Gebrauchstauglichkeitsnachweise ausgewiesen, die für jede der bemessenen Flächen maßgebend sind.

Die einzelnen Spalten sind im vorherigen Kapitel 5.4 erläutert.

5.6 Gebrauchstauglichkeitsnachweise Punktweise

<u>D</u> atei <u>E</u> instellungen <u>H</u> ilfe													
FA1 - Stahlbeton-Bernessung 🛛 🔻	B.3 Punk	dweise											
Eingabedaten		A	В	C	D	E	F	G	H		J	K	
Basisangaben	Fläche	Raster-	Punk	tkoordinaten	[m]	Last-	-		Nachweis				
Materialien	191.	punkt	X	Y	2	tall	Тур	Vom. Wert	Grenzwert	Einheit	Ausnutzung	Hinweis	_
Flächen	- 1	R1	0.000	0.000	0.000	LF1	σs	0.00	309.61	N/mm ²	0.0	226)	_
Bewehrung						LET	as,min	3.00	2.67	cm~/m	0.9	220	_
1	1		0.500	0.000	0.000	LET	Wk	150.01	0.200) mm N/mm2	0.0	226)	_
Ergebnisse	-	nz	0.000	0.000	0.000	LET	US	3.00	303.0	1 om 2 /m	0.5		-
Erforderliche Bewehrung						LE1	as,min	0.00	0.20	0m=/m	0.0		-
- Gesamt	1	R3	1 000	0.000	0.000	LE1	Ge.	226.28	309.61	N/mm ²	0.4		
Prachenweise	· ·	115	1.000	0.000	0.000	LE1	ð s min	3.00	2.67	7 cm ² /m	0.0		-
Funktiweise						LF1	Wk	0.144	0.200) mm	0.8		
- Gesant	1	R4	1.500	0.000	0.000	LF1	σs	245.59	309.61	N/mm ²	0.8		
Flächenweise	⊚ <u>I</u> n FE	-Punkten (In Raster	ounkten	Ma	эх:	0.9	≤1 🥹	হিব	Ÿ 7,1	M	B	
- CHIKWEISE	Zwische	energebniss	e - Fläche	Nr. 1 - Ras	terpunkt l	Nr. 2							_
	🖃 Besti	mmen des	Rechenwe	ert der Rise	sbreite								
	E Pla	ttenunters	eite										
	F	Rechenwert	der Rissbreite	e in 1. Bewe	hrungsricht	tung	Wk,ug1		0.064 mm				
	F	Rechenwert	der Rissbreite	e in 2. Bewe	hrungsricht	tung	Wk,ug2		0.014 mm				
	F	Rechenwert	der Rissbreite	e in Richtung	g der result	ierenden	Wk,u,re	5	0.064 mm				
	🖃 Pla	ttenobers	eite										
	E	Beton reißt a	n dieser Seite	e nicht auf.									
	Nach	weis											
	Rise	sbreite an de	er Unterseite i	in 1. Beweh	ungsrichtu	ng	Wk,u@	1	0.064 mm				
	Max	kimal zulassi	ge Rissbreite	laut Benutz	ervorgabe		W k,gren	z	0.200 mm				
	Nac	chweiskriteri	um				Knteriur	n	0.318				_

Bild 5.7: Maske 3.3 Gebrauchstauglichkeitsnachweise Punktweise

Diese Maske listet die maximalen Ausnutzungen für alle FE- bzw. Rasterpunkte einer jeden Fläche auf. Die einzelnen Spalten sind im Kapitel 5.4 auf Seite 53 erläutert.

Neben den Zeilen mit den diversen Gebrauchstauglichkeitsnachweisen werden wesentliche Größen als *Zwischenergebnisse* ausgegeben, die in den Nachweisen berücksichtigt sind.

Die Suchfunktion, die über die links dargestellte Schaltfläche aufgerufen wird, erleichtert das schnelle Auffinden eines bestimmten FE- oder Rasterpunkts (vgl. Bild 6.8, Seite 67). Die übrigen Schaltflächen sind in Tabelle 5.4 auf Seite 54 erläutert.

5.7 Nichtlineare Berechnung Gesamt

A1 - Stahlbeton-Bemessung	 B.1 Nicht 	tlineare Be	rechnung	g Gesamt									
ingabedaten	=	A	B	C	D	E	F	G	H		J	K	
- Basisangaben	Fläche	Punkt	Punkt	koordinate	n [m]	Last-			Nachweis				
- Materialien	Nr.	Nr.	X	Y	Z	fall	Тур	Vorh. Wert	Grenzwert	Einheit	Ausnutzung	Hinweis	
- Flächen	1	N10	1.500	0.000	0.000	LF1	Uz,lokal	18.577	20.000	mm	1.0		
- Bewehrung											0.3		
L. 1													
rgebnisse													
Erforderliche Bewehrung	In FE-	Punkten	🔘 In Rast	erpunkten		Max:		1.0 ≤1 🥴) 🔒 b	3 7 5	51 🖗 🚺	3 🚱 🖪	
Gesamt	_												
 Flächenweise 	Zwische	nergebnis	se - Fläc	he Nr. 1 -	FE-Netzp	ounkt N	r. 10						
Punktweise	⊡ Verformungen												
Nichtlineare Berechnung	🖃 Glob	ale Verform	nungen										
Liesamt	G	iesamte De	formation			u		18.5	77 mm				
Flachenweise	In X-Richtung							0.0	48 mm				
Punktweise	In Y-Richtung							-0.0	17 mm				
	In	Z-Richtun	9			UΖ		18.5	77 mm				
	E Loka	ale Verform	ungen										
	Grund	Ischnittgr	oßen										
	Momenten												
	Querkrafte American and a second se												
	± Men	nbrankratte	- C										
		annung ue	а эраппи	ing									
	E Bew	ehn ing											
	E Dew	rennung											

Bild 5.8: Maske 3.1 Nichtlineare Berechnung Gesamt

Es werden die maßgebenden Ergebnisse der diversen Gebrauchstauglichkeitsnachweise aller zur Bemessung vorgesehenen Flächen ausgegeben. Diese Maske ist zweigeteilt: Im oberen Abschnitt erfolgt eine tabellarische Übersicht der Nachweise, im unteren Abschnitt werden die Zwischenergebnisse des oben aktiven FE- oder Rasterpunkts ausgewiesen.

Bild 5.8 zeigt die Ergebnismaske einer nichtlinearen Gebrauchstauglichkeitsuntersuchung. Die Nachweismethode wird im Register *Gebrauchstauglichkeit* der Maske 1.1 *Basisangaben* vorgegeben (vgl. Bild 3.3, Seite 25). Im Kapitel 5.4 auf Seite 52 sind die Ergebnismasken beschrieben, die nach Abschluss einer analytischen GZG-Untersuchung erscheinen.

Punkt Nr.

In dieser Spalte werden die Nummern der FE- bzw. Rasterpunkte angegeben, in denen die größten Ausnutzungen für jeden geforderten Nachweis ermittelt wurden. Die Art des Nachweises wird in Spalte F *Typ* angegeben.

Die FE-Netzpunkte werden automatisch generiert. Die Rasterpunkte hingegen stellen eine Flächeneigenschaft dar, die in RFEM beeinflussbar ist. Für jede Fläche lassen sich benutzerdefinierte Ergebnisraster erzeugen. Hintergrundinformationen zu den Rasterpunkten finden Sie im Kapitel 9.9 des RFEM-Handbuchs auf Seite 285.

Punkt-Koordinaten

In diesen drei Spalten werden die Koordinaten der jeweils maßgebenden FE- oder Rasterpunkte angegeben.

Lastfall

In Spalte E wird die Nummer des Lastfalls bzw. der Lastfallgruppe ausgewiesen, dessen bzw. deren Schnittgrößen zur maximalen Ausnutzung für den jeweiligen Gebrauchstauglichkeitsnachweis führen.

Тур

Spalte F gibt die Art des Gebrauchstauglichkeitsnachweis an.

Dieser Nachweistyp hat folgende Bedeutungen:

Тур	Nachweis GZG
U _{z,lokal}	Verformung im Zustand II gemäß Vorgaben in Maske 1.3 <i>Flächen</i> (siehe Bild 3.11, Seite 35)

Tabelle 5.5: Gebrauchstauglichkeitsnachweise nach nichtlinearer Methode

Vorhandener Wert

In dieser Spalte werden die Gesamt-Extremwerte aller Flächen angegeben, die für die jeweiligen Nachweise im Grenzzustand der Gebrauchstauglichkeit maßgebend sind. Die Werte der Verformungen, Rissbreiten und Spannungen stellen die Ergebnisse im Zustand II dar.

Die bei den Zwischenergebnissen im unteren Abschnitt angegebenen Rissbreiten w_k sind auf die Bewehrungsrichtungen 1 und 2 bezogen. Somit repräsentiert beispielsweise der Wert für w_{k1,oben} die Rissbreite der ersten Bewehrungsrichtung an der Flächenoberseite (d. h. der Riss verläuft senkrecht zur ersten Bewehrungsrichtung).

Grenzwert

Die Grenzwerte resultieren aus den Normvorgaben und der aktuellen Belastungssituation.

Ausnutzung

Diese Spalte gibt Auskunft über die Nachweisquotienten aus vorhandenem Wert (Spalte G) und Grenzwert (Spalte H). Damit ist sofort ersichtlich, ob das Nachweiskriterium von 1 eingehalten oder überschritten ist.

Die Werte dieser Spalte sind mit farbigen Balken hinterlegt, deren Länge die Ausnutzung des Querschnitts widerspiegeln. Ein grüner Balken bedeutet zudem, dass der Nachweis erfüllt ist, ein roter Balken weist auf eine Überschreitung hin. Die Darstellung dieser Balken kann über die links dargestellte Schaltfläche ein- und ausgeblendet werden.

Hinweis

Die letzte Spalte verweist auf Unbemessbarkeiten oder Bemerkungen, die sich im Zuge der Nachweisführung ergeben haben. Die Nummern sind in der Statusleiste näher erläutert.

Alle [Meldungen] des aktuellen Bemessungsfalls lassen sich zusammengefasst über die links dargestellte Schaltfläche einsehen. Es erscheint ein informativer Dialog mit einer Übersicht (vgl. Bild 5.2, Seite 49).

Die Schaltflächen im oberen Abschnitt der Maske sind in Tabelle 5.4 auf Seite 54 erläutert.

5

5.8 Nichtlineare Berechnung Flächenweise

EA1 - Stableaton-Barnassung	- B 2 Nicht	tlineare Be	rechnung	Flächen	weise							
FAT - Stanibeton-Bemessung	+ p.z Nich									K		
Lingabedaten	Fläche	Punkt	Punkt	coordinate	en [m]	Last-		<u> </u>	Nachweis			IX.
- Basisangaben	Nr.	Nr.	X	Y	Z	fall	Tvp	Vorh. Wert	Grenzwert	Einheit	Ausnutzuna	Hinweis
Materialien	1	N10	1 500	0.000	0.000	LE1	Uz lokal	18 577	20 000	mm	10	
- Rewebrung			1.000	0.000	0.000		- 2,101101	10.077	20.000			
1												
Ergebnisse												
Erforderliche Bewehrung												
Gesamt												
- Flächenweise												
Punktweise	In FE-	Punkten	🔿 In Rast	erpunkten		Max		1.0 ≤1 🥴	AL 6	2 7	51 💽	🔪 🔛 🖪 🖉
Nichtlineare Berechnung	0 2 2		0.0			in an.						
Gesamt	Zwische	Zwischenergebnisse - Fläche Nr. 1 - FE-Netzpunkt Nr. 10										
	🗆 Verfo	E Verformungen										
· Punktweise	Glob	Globale Verformungen										
	⊞ Lok	Lokale Verformungen										
	🖂 Grundschnittgrößen											
	Mon	Momenten										
	⊞ Men											
	Berechnung der Spannung											
	H Beto	Beton										
	E Dew	E Bewehrung										

Bild 5.9: Maske 3.2 Nichtlineare Berechnung Flächenweise

In dieser Ergebnismaske werden die maximalen Ausnutzungen für die diversen Gebrauchstauglichkeitsnachweise ausgewiesen, die für jede der bemessenen Flächen maßgebend sind. Die einzelnen Spalten sind im vorherigen Kapitel 5.7 erläutert.

5.9 Nichtlineare Berechnung Punktweise

AT • Stanibetor Peniessung	 B.3 Nich 	tlineare Be	erechnung	g Punktwe	eise							
ingabedaten	=	A	B	C	D	Е	F	G	Н		J	K
Basisangaben	Fläche	Punkt	Punkt	koordinate	n (m)	Last-			Nachweis			
Materialien	INr.	Nr.	X	Y	Z	fall	Тур	Vorh. Wert	Grenzwert	Einheit	Ausnutzun	g Hinweis
Flächen	1	N8	1.000	0.500	0.000	LF1	Uz,lokal	15.714	20.000	mm	0.8	B
]- Bewehrung	1	N9	1.000	1.000	0.000	LF1	Uz,lokal	15.929	20.000	mm	0.8	8
L-1	1	N10	1.500	0.000	0.000	LF1	Uz,lokal	18.577	20.000	mm	1.0	0
gebnisse	1	N11	1.500	0.500	0.000	LF1	Uz,lokal	18.342	20.000	mm	1.0	0
 Erforderliche Bewehrung 	1	N12	1.500	1.000	0.000	LF1	Uz,lokal	18.806	20.000	mm	1.0	0
Gesamt	1	N13	2.000	0.000	0.000	LF1	Uz,lokal	16.179	20.000	mm	0.9	9
- Flächenweise	1	N14	2.000	0.500	0.000	LF1	Uz,lokal	15.976	20.000	mm	0.8	B
- Punktweise	⊚ <u>I</u> n FE∙	Punkten	🔘 I <u>n</u> Rast	terpunkten		Max:		1.0 ≤1 🥹	ზ	3 7 5	751 🐘	🔊 🔊 🖺
Gesamt	Zwischenergebnisse - Fläche Nr. 1 - FE-Netzpunkt Nr. 8											
Flächenweise	Verfo	munden										
Punktweise												
L	Elok	ale Verform	ungen									
		dschnitta	ningen									
		menten	ULC:									
	- Constant	n X-Richtur	0			mv		16.9	7 kNm/m			
	in the second se	Y-Richtur	ia			mv		0.4	3 kNm/m			
	T	orsionsmor	nent			mwy		0.4	kNm/m	_		
	E Que	erkräfte						0.0				
	E Mer	nbrankräfte										
	E Bet	on .										
	E Dev											
	EDev											

Bild 5.10: Maske 3.3 Nichtlineare Berechnung Punktweise

Es werden die maximalen Ausnutzungen für jeden einzelnen FE- bzw. Rasterpunkt jeder Fläche aufgelistet. Die einzelnen Spalten sind im Kapitel 5.7 auf Seite 58 erläutert.

Die Suchfunktion, die über die links dargestellte Schaltfläche aufgerufen wird, erleichtert das schnelle Auffinden eines bestimmten FE- oder Rasterpunkts (vgl. Bild 6.8, Seite 67).

6. Ergebnisauswertung

Nach der Bemessung bestehen verschiedene Möglichkeiten, die Ergebnisse auszuwerten. Hierfür erweisen sich die Bemessungsdetails als sehr nützlich, die sich in einem separaten Fenster anzeigen lassen. Die grafische Auswertung kann im RFEM-Arbeitsfenster erfolgen.

6.1 Bemessungsdetails

Bem.-Details...

In den Ergebnismasken 2.1 bis 2.3 der Tragfähigkeitsnachweise steht bei der Anzeigeart *In Rasterpunkten* (siehe Bild 5.1) die Schaltfläche [Bem.-Details] zur Verfügung. Über diese lassen sich die Bemessungsdetails des aktuellen Rasterpunkts einsehen, d. h. desjenigen Punkts, in dessen Tabellenzeile sich der Cursor befindet.

Die Details des Tragfähigkeitsnachweises können nur angezeigt werden, wenn die maßgebenden Schnittgrößen aus einem einzigen Lastfall bzw. einer einzigen Lastfallgruppe resultieren. Die Bemessung mehrerer Lastfälle, Lastfallgruppen oder einer Lastfallkombination erlaubt keine eindeutige Zuordnung.

Bemessungsdetails				×
Fläche Nr. 1 Schnittgrößen der linearen Statik B Auptschnittgrößen B Unterseite B Bemessungsnormalkräfte B Bemessungsschnittgrößen B Bemessungsschnittgrößen B transstnittgrößen B Bemessungsschnittgrößen B in 1. Bewehrungsrichtung	Rasterpunkt Nr. 171)	<: 5.000, Y: 4.00	0, Z: 0.000 m	
Bernessungsmoment Benessungsmoment Benessungsmomarkaft Hebelarm der inneren Kräfte	M _φ 2,u,bem N _φ 2,u,bem Zsel,u	36.81 17.46 13.25	kNm/m kN/m cm	
 B Membrankraft B Hauptmembrankräfte B Bemessungsmembrankräfte D Oberseite 				
Betondruckstrebe Erforderliche Längsbewehrung Querkraftbemessung Statisch erforderliche Längsbewehrung				
Mindestlängsbewehrung Einzulegende Bewehrung				
Carrysbewennung Plattenunterseite				
	ās,1,u	3.73	cm ² /m	
in 2. Bewehrungsrichtung	as,2,u	6.34	cm ² /m	
- → Statisch erforderliche Längsbewehrung	ās,2,s,u	6.34	cm ² /m	
Mindestlängsbewehrung	ās,2,min,u	0.00	cm ² /m	
→ Plattenoberseite				
- ⊕ Vorhandene Querkraftbewehrung	as,ws	8.76	cm ² /m ²	
Fehlerfreie Bemessungl				
				ОК

Bild 6.1: Dialog Bemessungsdetails für Tragfähigkeitsnachweis

Links werden alle relevanten Daten in einer Baumstruktur aufgelistet. Die einzelnen Kapitel in der Baumstruktur können mit [+] aufgeklappt und mit [-] geschlossen werden. Rechts im Dialog wird die Lage des Rasterpunkts im Gesamtmodell grafisch angezeigt.

Folgende Bemessungsdetails werden ausgegeben :

- Schnittgrößen der linearen Statik
- Hauptschnittgrößen
- Bemessungsschnittgrößen
- Betondruckstrebe
- Erforderliche Längsbewehrung
- Querkraftbemessung
- Statisch erforderliche Längsbewehrung
- Mindestlängsbewehrung
- Einzulegende Bewehrung

Programm RF-BETON Flächen © 2011 Ingenieur-Software Dlubal GmbH

6 Ergebnisauswertung

Bem.-Details...

Bei den Nachweisen der Gebrauchstauglichkeit werden wesentliche Zwischenergebnisse direkt in den zweigeteilten Masken 3.1 bis 3.3 ausgewiesen (vgl. Bild 5.5, Seite 52). Für die analytischen Nachweise lassen sich mit der Schaltfläche [Bem.-Details] wieder sämtliche Bemessungsdetails eines jeden Raster- und FE-Punkts überprüfen. Im Gegensatz zu den Tragfähigkeitsnachweisen sind auch die Detailangaben mehrerer zur Bemessung vorgegebener Lastfälle sowie von Lastfallkombinationen zugänglich.

Fläche Nr. 1 Ra	sterpunkt Nr. 4 X:	1.500, Y: 0.00	0, Z: 0.000
Schnittgrößen der linearen Statik			
- 🖃 Momente			
der x-Achse	mx	19.79	kNm/m
der y-Achse	my	0.38	kNm/m
Differenzmoment	m _{xy}	0.00	kNm/m
Normalkraft mit Normalkraftvektor in Richtung			
∃ Hauptschnittgrößen			
Dberprüfen, ob die einwirkenden Schnittgrößen den	Beton aufreißen	lassen	
⊞ Bemessungsschnittgrößen			
🗄 Erforderliche Längsbewehrung infolge Bemessungsr	nembrankräfte		
🗄 Überprüfen der vorhandenen Längsbewehrung			
🗄 Bemessungsschnittgrößen im Grenzzustand der Geb	rauchstauglichke	eit	
Bestimmen der maximalen Stahlspannung			
Plattenunterseite			
 Beton reißt auf und die Bewehrung wird aktiviert. 			
Stahlspannung in 1. Bewehrungsrichtung	σ _{s,u,} ⊕1	168.14	N/mm ²
 Modifizierte BemessungsMembrankraft in 1. Richtung 	INS vorh,u, ⊕1	252.216	kN/m
 Bewehrung in 1. Bewehrungsrichtung 	as,exist,u, φ1	15.00	cm ² /m
Stahlspannung in 2. Bewehrungsrichtung	σs,u, Φ2	16.13	N/mm ²
 Modifizierte BemessungsMembrankraft in 2. Richtung 	ns vorh,u, ⊕2	4.839	kN/m
Bewehrung in 2. Bewehrungsrichtung	as,exist,u,φ2	3.00	cm ² /m
Plattenoberseite			
 Beton reißt an dieser Seite nicht auf. 			
Maximale Stahlspannung	max σ _s	168.14	N/mm ²
🗄 Bestimmen des maximalen Rissabstands			
🗄 Bestimmen der Differenz der mittleren Dehnung			
Bestimmen des Rechenwert der Rissbreite			
Nachweis			
Rissbreite an der Unterseite in 1. Bewehrungsrichtung	Wk,u@1	0.080	mm
Maximal zulässige Rissbreite laut Benutzervorgabe	W k,grenz	0.500	mm
Nachweiskriterium	Kriterium	0.159	

Bild 6.2: Dialog Bemessungsdetails für Gebrauchstauglichkeitsnachweis

In einer Baumstruktur werden die für jeden Nachweistyp relevanten Ergebniszeilen dargestellt. Die Steuerung der angezeigten Bemessungsdetails erfolgt über die Liste *Nachweisart* unten im Dialog.

Nachweismethode	Nachweisart		
Analytisch	a _{s,min} W _k	}	siehe Tabelle 5.3, Seite 53

Tabelle 6.1: Nachweisart für Gebrauchstauglichkeitsnachweise

Mit der Schaltfläche [4] kann zum vorherigen FE- oder Rasterpunkt zurückgeblättert, mit der Schaltfläche [▶] zum nächsten Punkt weitergeblättert werden.

6.2 Ergebnisse am RFEM-Modell

Zur grafischen Auswertung der Bemessungsergebnisse kann das RFEM-Arbeitsfenster genutzt werden.

RFEM-Hintergrundgrafik

Über die RFEM-Grafik im Hintergrund lässt sich schnell die Lage eines bestimmten FE- oder Rasterpunkts im Modell überprüfen. Der in der Ergebnismaske selektierte Punkt wird in der Hintergrundgrafik von RFEM mit einem Pfeil gekennzeichnet.

Bild 6.3: Lokalisierung des aktuellen FE-Punkts im RFEM-Modell

۲

Sollte sich eine ungünstige Ansicht auch durch das Verschieben des RF-BETON Flächen-Fensters nicht beheben lassen, kann über die Schaltfläche [Ansicht ändern] der so genannte *Sichtmodus* aktiviert werden: Das RF-BETON Flächen-Fenster wird ausgeblendet, sodass nun im RFEM-Arbeitsfenster die Anzeige geändert werden kann. In diesem Modus stehen nur die Funktionen des Menüs *Ansicht* zur Verfügung, z. B. Zoomen, Verschieben oder Drehen der Ansicht.

RFEM-Arbeitsfenster

Grafik

Bewehrungsrichtung

Die Bemessungsergebnisse und Ausnutzungsgrade lassen sich auch direkt am Strukturmodell visualisieren. Mit der Schaltfläche [Grafik] wird das Modul RF-BETON Flächen verlassen und das RFEM-Arbeitsfenster aufgebaut. Dort werden sämtliche Bemessungsergebnisse und Nachweis-kriterien in grafischer Form präsentiert.

Der *Ergebnisse*-Navigator ist an die Ergebnisse von RF-BETON Flächen angepasst. Es stehen die Ergebnisse der Längsbewehrungen für jede Bewehrungsrichtung und -lage, der Schubbewehrung, die Bemessungsschnittgrößen sowie die diversen Ausnutzungen und Detailergebnisse der Gebrauchstauglichkeitsnachweise zur Verfügung.

Bild 6.4: Ergebnisse-Navigator von RF-BETON Flächen

Wie bei den RFEM-Schnittgrößen blendet die Schaltfläche [Ergebnisse ein/aus] die Darstellung der Bemessungsergebnisse ein oder aus, die rechts davon angeordnete Schaltfläche [Ergebnisse mit Werten anzeigen] steuert die Anzeige der Ergebniswerte in der Grafik.

Da die RFEM-Tabellen für die Auswertung der RF-BETON Flächen-Ergebnisse keine Funktion haben, können sie ggf. deaktiviert werden.

Die Auswahl der Bemessungsfälle erfolgt wie üblich über die Liste in der RFEM-Menüleiste.

Die Auswertung der Bemessungsergebnisse wird durch das Panel mit den üblichen Steuerungsmöglichkeiten unterstützt. Dessen Funktionen sind im RFEM-Handbuch, Kapitel 4.4.6 ab Seite 77 ausführlich erläutert. Im Register *Darstellungsfaktoren* lassen sich die Flächenverläufe der Bewehrungen, Schnittgrößen oder Ausnutzungen skalieren, im Register *Filter* die Ergebnisse bestimmter Flächen gezielt auswählen.

Für die Anzeige und Auswertung der numerischen Bemessungsergebnisse stehen alle in RFEM verfügbaren Möglichkeiten zur Auswahl. Diese Funktionen finden Sie im Kapitel 10.4 des RFEM-Handbuchs ab Seite 307 detailliert erläutert. Das folgende Bild zeigt beispielsweise die untere Bewehrung, die zusätzlich zur vorgegebenen Grundbewehrung einzulegen ist, als *Gruppe*. Die Werte werden dabei in Bewehrungsrichtung angetragen.

Bild 6.5: Gruppe Untere Bewehrung, Darstellung der Zusatzbewehrung

Diese Grafiken lassen sich auch wie RFEM-Grafiken in das Ausdruckprotokoll übertragen (siehe Kapitel 7.2, Seite 69).

RF-BETON Flächen

Über die Panel-Schaltfläche [RF-BETON Flächen] ist die Rückkehr in das Bemessungsmodul möglich.

6.3 Filter für Ergebnisse

Die RF-BETON Flächen-Ergebnismasken bieten durch ihre Organisation bereits eine Auswahl der Gesamt- und Flächenmaxima an. In den Masken 2.3 und 3.3 mit allen punktweisen Ergebnissen bestehen zudem Filteroptionen, die eine gezielte Auswertung ermöglichen.

Punkte filtern

In den Ergebnismasken 2.2 und 2.3 sowie 3.2 und 3.3 steht die links dargestellte Schaltfläche zur Verfügung. Diese ruft den Dialog *Punkte filtern* auf.

Bild 6.6: Dialog Punkte filtern

60

In der Spalte *Fläche Nr.* wird die gewünschte Flächennummer eingetragen oder grafisch im RFEM-Arbeitsfenster ausgewählt. Diese Funktion ist nach einem Klick in das Feld zugänglich.

6 Ergebnisauswertung

₽↓

3

Die Spalte *Punkte* bietet verschiedene Kriterien an, um die Ergebnisse zu filtern. Neben allen *bemessbaren* und *unbemessbaren* Punkten lassen sich die *maßgebenden* Punkte selektieren. In diesen Punkten liegen die größten Bewehrungsquerschnitte oder Ausnutzungen für die jeweiligen Trag- bzw. Gebrauchstauglichkeitsnachweise vor.

Über die Option *Benutzerdefiniert* können Punktnummern direkt eingetragen werden. *Alle* stellt die Gesamtanzeige wieder her.

Nur bemessbare bzw. unbemessbare Ergebnisse anzeigen

Mit den beiden links dargestellten Schaltflächen lassen sich alle bemessbaren Resultate bzw. alle Unbemessbarkeiten exklusiv darstellen. Dadurch können beispielsweise Unbemessbarkeiten infolge von Singularitäten unterdrückt oder die Ursachen von Bemessungsproblemen näher untersucht werden.

Ergebnisse sortieren

Die Masken 3.1 und 3.2 zeigen die Ergebnisse standardmäßig nach den maximalen Ausnutzungen geordnet an. Maßgebend ist hierbei die Tabellenspalte J. Um die maximalen Werte der Spalte G zu kontrollieren, lassen sich die Ergebnisse nach den vorhandenen Werten sortieren. Die maximale Ausnutzung der Verformung beispielsweise muss nicht zwangsläufig die Maximalverformung darstellen, da die Grenzwerte flächenweise unterschiedlich definiert werden können. Mit der Schaltfläche [Sortieren] wird zwischen diesen beiden Anordnungsarten gewechselt.

Ausschnitt

Neben den Funktionen in den Ergebnismasken bestehen alle im RFEM-Handbuch beschriebenen Filtermöglichkeiten, um die Bemessungsergebnisse grafisch auszuwerten. Es kann auf bereits existierende Ausschnitte zurückgegriffen werden (vgl. RFEM-Handbuch, Kapitel 10.9 ab Seite 322), die es gestatten, Objekte in geeigneter Weise zu gruppieren. Gegebenenfalls kann ein neuer Ausschnitt für die RF-BETON Flächen-Ergebnisse angelegt werden.

Schnitt

In gleicher Weise lassen sich Schnitte im RFEM-Modell nutzen oder neu definieren, um die Ergebnisse benutzergerecht auszuwerten (vgl. RFEM-Handbuch, Kapitel 10.6 ab Seite 314).

Ergebnisse-Panel

Die Bewehrungsquerschnitte und Ausnutzungen können auch als Filterkriterium im RFEM-Arbeitsfenster benutzt werden. Hierzu muss das Panel angezeigt werden. Sollte es nicht aktiv sein, kann es einblendet werden über das RFEM-Menü

Ansicht → Steuerpanel

oder die entsprechende Schaltfläche in der Ergebnisse-Symbolleiste von RFEM.

Das Panel ist im Kapitel 4.4.6 des RFEM-Handbuchs ab Seite 77 beschrieben. Die Filtervorgaben für die Ergebnisse können im ersten Register *Farbskala* vorgenommen werden, die Flächenauswahl erfolgt im letzten Register *Filter*.

Über das Panel kann beispielsweise festgelegt werden, dass Bewehrungsquerschnitte erst ab einem bestimmten Wert angezeigt werden. Im folgenden Bild 6.7 ist dieser untere Grenzwert mit 2,00 cm²/m vorgegeben. Die reduzierte Farbskala ist zudem so bearbeitet, dass mit einem Farbbereich genau 1,00 cm²/m abgedeckt sind. Der obere Grenzwert ist in diesem Beispiel auf 9,00 cm²/m beschränkt, um Singularitätseffekte zu begrenzen.

9.

Max a-s,1 unten: 10.35, Min a-s,1 unten: 0.00 cm^2/m

Bild 6.7: Filtern der erforderlichen Bewehrung mit angepasster Farbskala

FE-Knoten- und Rasterwerte

In den Ergebnismasken 2.2 und 2.3 (Bewehrung) sowie 3.2 und 3.3 (Gebrauchstauglichkeit) steht eine Suchfunktion für FE-Knoten und Rasterpunkten zur Verfügung. Diese ist über die links dargestellte Schaltfläche zugänglich. Es öffnet sich folgender Dialog.

Rasterpunkt	finden		×)
Objekt Nr.				
Fläche		1	🕶 🛐	
Rasterpunkt		1	~	
Ø	ОК		Abbrechen	

Bild 6.8: Dialog Rasterpunkt finden

٦

124

Zunächst ist die Nummer der Fläche manuell anzugeben oder mit [Pick] grafisch auszuwählen. Anschließend kann die Nummer des gewünschten Rasterpunkts oder FE-Knotens eingetragen oder aus der Liste ausgewählt werden.

Für die Anzeige der Rasterpunkt- oder FE-Knotenwerte in der Grafik bestehen die gleichen Steuerungsfunktionen wie RFEM. Diese Möglichkeiten finden Sie im Kapitel 10.4 des RFEM-Handbuchs ab Seite 309 beschrieben.

7. Ausdruck

7.1 Ausdruckprotokoll

Wie für RFEM wird zunächst ein Ausdruckprotokoll mit den RF-BETON Flächen-Daten generiert, das mit Grafiken und Erläuterungen ergänzt werden kann. Zusätzlich kann in dieser Druckvorschau festgelegt werden, welche Ergebnisse der Bemessung schließlich im Ausdruck erscheinen.

5

Bei sehr großen Strukturen ist es ratsam, anstelle eines einzigen, umfangreichen Protokolls die Daten auf mehrere kleine Protokolle aufzuteilen. Legt man beispielsweise ein separates Protokoll nur für die RF-BETON Flächen-Daten an, so kann dieses Ausdruckprotokoll relativ schnell aufgebaut werden.

Das Ausdruckprotokoll ist im RFEM-Handbuch ausführlich beschrieben. Insbesondere das Kapitel 11.1.3.4 *Selektion der Zusatzmodul-Daten* auf Seite 339 behandelt die Auswahl der Ein- und Ausgabedaten in den Zusatzmodulen.

Eine besondere Selektionsmöglichkeit besteht für die Auswahl der Zwischenergebnisse der Gebrauchstauglichkeitsnachweise. Die Spalte *Punkte* bietet verschiedene Kriterien an, um die Ergebnisse zu filtern. Neben allen *bemessbaren* und *unbemessbaren* Punkten lassen sich die *maßgebenden* Punkte selektieren. In diesen Punkten liegen die größten Ausnutzungen für die jeweiligen Gebrauchstauglichkeitsnachweise vor.

Ausdruckprotokoll-Selek	tion D2		
Programm / Modul	Globale Selektion Eingabedaten Bewehrung Gebrauchs	staugl Analytisch	ne Methode
RFEM	Anzeigen von		
	☑ 3.1 Rissbreitenbegrenzung gesamt	Mr. Solektion (7 B	9 11 5 201
	✓ 3.2 Rissbreitenbegrenzung flächenweise Flächen;	Alles	× (\$
	3.3 Rissbreitenbegrenzung punktweise Flächen:	Alles	
	✓ 3.4 Rissbreitenbegrenzung punktweise - Zwischenergebr	nisse	
		NrSelektion (z.E	3. 'N1-N5,N8,R3-R7,R9')
		Fläche Nr.	Punkte
		1	Maßgebend Naßgebend
			Benutzerdefiniert
			Alle bemessabaren Punkte
			Alle unbemessbaren Punkt
	Fehlermeldungen bzw. Hinweise		
Annairan			
✓ Info-Bilder			
2			OK Abbrechen

Bild 7.1: Dialog Ausdruckprotokoll-Selektion, Register Gebrauchstauglichkeit

7.2 RF-BETON Flächen-Grafiken drucken

Die Nachweisgrafiken können entweder in das Ausdruckprotokoll eingebunden oder direkt auf den Drucker geleitet werden. Im Kapitel 11.2 des RFEM-Handbuchs ab Seite 355 wird das Drucken von Grafiken ausführlich erläutert.

Jedes Bild, das im RFEM-Arbeitsfenster angezeigt wird, kann wie in RFEM üblich in das Ausdruckprotokoll übernommen werden. In gleicher Weise lassen sich die Ergebnisverläufe von Schnitten mit der [Drucken]-Schaltfläche in das Druckprotokoll integrieren.

Die aktuelle RF-BETON Flächen-Grafik des RFEM-Fensters kann gedruckt werden über Menü

$Datei \rightarrow Drucken$

oder die entsprechende Schaltfläche in der Symbolleiste.

4⊳	<u>D</u> atei	Bearbeite <u>n</u>	<u>A</u> nsicht	<u>E</u> infügen	Berechnung	Er <u>g</u> ebnisse	E <u>x</u> tras	<u>T</u> abelle	<u>O</u> ptionen
:	23	🍖 🔒 🗐		n a 🛛	📚 🗗 🔲	🔲 🖳 RF-	BETON F	lächen FA	1 - Stał 🔻
9	2 %	- 🦈 - 💡	Drucken	, - <u>2××</u> 121	🗌 🛍 - 🛅 -	- 🏷 - 🕞	۹ 🏂	🏡 🔀 ¹	🍓 - 🍄

Bild 7.2: Schaltfläche Drucken in der Symbolleiste des Hauptfensters

Es wird folgender Dialog angezeigt.

Basis Optionen Farbskala					
Grafikbild	Welche Fenster	Grafikgröße			
🔿 Sofort ausdrucken 🔤	💿 Nur das aktive	🔘 Wie Bildschirm-Ansicht			
💿 In Ausdruckprotokoll: D2 💌	🔿 Alle 🔕	 Fensterfüllend 			
autnehmen		🔿 Im Maßstab 1: 🛛 🚺 💌			
Grafikbild-Größe	Optionen				
☑ Über gesamte Seitenbreite ☐ Über gesamte Seitenhöhe	 Ausdruckprotokoll nach [OK] anzeigen 				
☐ Höhe: 59 🚔 [% der Seite]	Im Ergebnisverlauf Werte an gewünschter x-Stelle ausgeben				
Drehung: 0 牵 (*)	🔲 Grafikbild sperre	n (ohne Aktualisierung)			
Grafik-Überschrift					
RF-BETON Flächen - Flächen a-s,1	unten, FA1				

Bild 7.3: Dialog Grafikausdruck, Register Basis

Dieser Dialog ist im Kapitel 11.2 des RFEM-Handbuchs ab Seite 356 ausführlich beschrieben. Dort werden auch die übrigen Register *Optionen* und *Farbskala* erläutert.

Jede RF-BETON Flächen-Grafik kann im Ausdruckprotokoll wie gewohnt per Drag & Drop an eine andere Stelle verschoben werden.

Ferner besteht die Möglichkeit, eine eingefügte Grafik nachträglich anzupassen: Klicken Sie den entsprechenden Eintrag im Ausdruckprotokoll-Navigator mit der rechten Maustaste an und wählen im Kontextmenü die Option *Eigenschaften*. Es erscheint wiederum der Dialog *Grafikaus-druck*, in dem die Anpassungen vorgenommen werden können.

8. Allgemeine Funktionen

Das letzte Kapitel stellt einige Menüfunktionen sowie Exportmöglichkeiten der Bemessungsergebnisse vor.

8.1 RF-BETON Flächen-Bemessungsfälle

Es besteht die Möglichkeit, Flächen in separaten Bemessungsfällen zu gruppieren. Damit können beispielsweise Flächengruppen zusammengefasst oder spezifische Bemessungsvarianten (Norm, Bewehrung, nichtlineare Analyse etc.) vorgegeben werden.

In den Bewehrungssätzen eines Bemessungsfalls müssen Flächen eindeutig zugewiesen sein (vgl. Kapitel 3.4, Seite 37). Im Gegensatz dazu ist es kein Problem, ein und dieselbe Fläche in unterschiedlichen Bemessungsfällen zu untersuchen.

Die RF-BETON Flächen-Fälle stehen in der RFEM-Arbeitsfläche wie ein Lastfall oder eine Lastfallgruppe in der Liste der Symbolleiste zur Verfügung.

Neuen RF-BETON Flächen-Fall anlegen

Ein neuer Bemessungsfall wird angelegt über RF-BETON Flächen-Menü

```
Datei \rightarrow Neuer Fall.
```

Es erscheint der folgende Dialog.

Neuer R	F-BETON Flächen-Fall 🛛 🛛 🔀
Nr. 3	Bezeichnung DIN 1045-1: 2008
٢	OK Abbrechen

Bild 8.1: Dialog Neuer RF-BETON Flächen-Fall

In diesem Dialog sind eine (noch nicht belegte) *Nummer* sowie eine *Bezeichnung* für den neuen Bemessungsfall anzugeben. Nach [OK] erscheint die RF-BETON Flächen-Maske 1.1 *Basisangaben* zur Eingabe der neuen Bemessungsdaten.

RF-BETON Flächen-Fall umbenennen

Die Bezeichnung eines Bemessungsfalls wird geändert über RF-BETON Flächen-Menü

Datei \rightarrow Fall umbenennen.

Es erscheint der Dialog RF-BETON Flächen-Fall umbenennen.

	_
Bezeichnung	
Neue Bezeichnung	~
	Bezeichnung Neue Bezeichnung

Bild 8.2: Dialog RF-BETON Flächen-Fall umbenennen

RF-BETON Flächen-Fall kopieren

Die Eingabedaten des aktuellen Bemessungsfalls werden kopiert über RF-BETON Flächen-Menü

Datei \rightarrow Fall kopieren.

Es erscheint der Dialog *RF-BETON Flächen-Fall kopieren*, in dem die Nummer und Bezeichnung des neuen Falls festzulegen sind.

RF-BET	ON Flächen-Fall kopieren 🛛 🛛 🔀
Kopiere	n von Fall
FA3 - N	leue Bezeichnung 💉
Neuer F	all
Nr.:	Bezeichnung:
4	
٢	OK Abbrechen

Bild 8.3: Dialog RF-BETON Flächen-Fall kopieren

RF-BETON Flächen-Fall löschen

Es besteht die Möglichkeit, Bemessungsfälle zu löschen über RF-BETON Flächen-Menü

Datei \rightarrow Fall löschen.

Im Dialog *Fall löschen* kann in der Liste *Vorhandene Fälle* ein RF-BETON Flächen-Fall ausgewählt und dann mit [OK] gelöscht werden.

Vorhan	idene Fälle	
Nr.	Bezeichnung	^
1 2	Decken Wände	
3	Neue Bezeichnung	
4	Kopie von Bemessungsfall 3	
2	OK Abbred	chen

Bild 8.4: Dialog Fall löschen

8.2 Einheiten und Dezimalstellen

Die Einheiten und Nachkommastellen werden für RFEM sowie für sämtliche Zusatzmodule zentral verwaltet. In RF-BETON Flächen ist der Dialog zum Einstellen der Einheiten zugänglich über das Menü

```
Einstellungen \rightarrow Einheiten und Dezimalstellen.
```

Es wird der aus RFEM bekannte Dialog aufgerufen, das Modul RF-BETON Flächen ist voreingestellt.

Einheiten und Dezimalstellen - Metrisch *												
Programm / Modul		RF-BETON Flächen										
BE STALL FURTHER	<u>^</u>	Eingabedaten und Ergebnis	999			Fin-/Ausgabedaten						
BE-STAHL Flachen		Einheit Dez-Stellen			Einheit Dez-Stellen							
- RF-STAHL EC3		Längen:	m		3	Verformungen:	mm		3			
- RF-KAPPA		Conner mann	NU AND		~ <u>*</u>	Pisebreiten:		Ť.	•¥ ⊃▲			
- RF-BGDK		spannungen.	N/mm Z	Ň	2 v	hisspieiten.	mm	×	3 ¥			
RF-FE-BGDK		Netzbewehrungsflachen:	cm [~] 2/m	×	2.							
BECZUT		Schubbewehrungsflächen:	cm^2/m^2	*	2 🜩							
FE-BEIII		Kräfte:	kN	~	3 😴	Ergebnisse						
RF-ASD		Kräfte längenbezogen:	kN/m	~	3 😴	Verdrehungen:	mrad	~	1 😴			
KRANBAHN	≡	Momente längenbezogen:	kNm/m	~	2 🚭	Ausnutzung:		V	1.			
RF-BETON Flächen		Querschnittswerte:	cm	~	2 🌧	Einheitenlose:		\sim	3 🌧			
- RF-BETON Stabe			om			Winkel	*		2			
DE STANZ						WINCO.			- <u>v</u>			
BE-HOLZ Pro												
RF-HOLZ												
- RF-DYNAM												
- RF-STIRNPL												
- RF-VERBIND												
DE DETV												
BE-STABD()BEI												
RF-HOHLPROF												
- RF-STABIL												
RF-DEFORM	¥											
0 🛛 🍽 😭	œ						OK		Abbrechen			

Bild 8.5: Dialog Einheiten und Dezimalstellen

Die Einstellungen können als Benutzerprofil gespeichert und in anderen Positionen wieder verwendet werden. Die Beschreibung dieser Funktionen finden Sie im Kapitel 12.6.2 des RFEM-Handbuchs auf Seite 462.

8.3 Export der Ergebnisse

Die Bemessungsergebnisse können auf verschiedene Weise für andere Programme zur Verfügung gestellt werden.

Zwischenablage

Markierte Zellen der RF-BETON Flächen-Ergebnismasken können über [Strg]+[C] in die Zwischenablage kopiert und mit [Strg]+[V] z. B. in ein Textverarbeitungsprogramm eingefügt werden. Die Überschriften der Tabellenspalten bleiben dabei unberücksichtigt.

Ausdruckprotokoll

Die RF-BETON Flächen-Daten lassen sich in das Ausdruckprotokoll drucken (vgl. Kapitel 7.1, Seite 68) und können dort dann exportiert werden über Menü

$Datei \rightarrow Export in RTF-Datei bzw. BauText.$

Diese Funktion ist im Kapitel 11.1.11 des RFEM-Handbuchs auf Seite 358 beschrieben.

Excel / OpenOffice

RF-BETON Flächen ermöglicht den direkten Datenexport zu MS Excel und OpenOffice.org Calc. Diese Funktion wird aufgerufen über Menü

 $\textbf{Datei} \rightarrow \textbf{Tabellen exportieren}.$

Es öffnet sich folgender Exportdialog.

Microsoft Excel OpenOffice.org Calc			
OpenOffice.org Calc			
smanne exportieren			
smanne exportieren			
aughte autoriana			
✓ Tabelle in die aktive Tabelle exportieren			
Existierende Tabelle überschreiben			
Export-Tabellen mit			
Details			

Bild 8.6: Dialog Export - MS Excel

Sind die gewünschten Parameter ausgewählt, kann der Export mit [OK] gestartet werden. Excel und OpenOffice werden automatisch aufgerufen. Die Programme brauchen nicht im Hintergrund geöffnet sein.

C	Mappe1 [Kompatibilitätsmodus] - Microsoft Excel											
C	Star	t Einfü	igen S	eitenlayou	it Forr	neln Date	en Überpri	ifen Ans	icht Entwick	lertools Acro	obat 🕜 – 🗖	x
E	infügen schenabla	∦ Ci 1 ≪ ge ©	alibri F K U - Schrift	• 11 • A A • A • art		≡ <mark>=</mark> कि ≡ ≡ कि इ. ⊗r richtung	▼ Text	Ta Form	atvorlagen	Einfügen v Löschen v Format v Zellen B	Σ - 27- J - AA- 2 - earbeiten	
	A1		- ()	f_s	Fläch	e						≈
	А	В	С	D	E	F	G	Н	1	J	К	
1	Fläche	Punkt	Punkt-K	oordina	ten [m]		Erforde	rliche	Bewehru	ng [cm²/m]	Fehlermeldun	g
2	Nr.	Nr.	Х	Y	Z	Symbol	Bewehrung	Einheit	Vorh. Grund	Vorh. Zusatz	bzw. Hinweis	4
3	1	N20	6,000	6,000	0,000	a _{s,1 oben}	5,90	cm²/m	0,00	7,68		-11
4		N3	9,500	6,000	0,000	a _{s, 2 oben}	7,27	cm²/m	0,00	7,27		
5		N 6	5,000	4,000	0,000	a _{s,1 unten}	11,27	cm²/m	0,00	15,16		
6		N 6	5,000	4,000	0,000	a _{s, 2 unte n}	19,46	cm²/m	0,00	19,46		
7		N187	6,890	4,000	0,000	a _{sw}	57,51	cm²/m²	-	-	15)	
8	2	N 678	9,926	5,785	0,000	a _{s,1 oben}	6,21	cm²/m	0,00	7,68		
9		N 678	9,926	5,785	0,000	a _{s, 2 oben}	7,06	cm²/m	0,00	7,27		
10		N3	9,500	6,000	0,000	a _{s,1 unten}	1,24	cm²/m	0,00	15,16		
11		N76	9,500	4,000	0,000	a _{s, 2 unten}	2,55	cm²/m	0,00	19,46		
12		N3	9,500	6,000	0,000	a _{sw}	8,76	cm²/m²	-	-	15)	
13	3	N22	0,000	5,000	0,000	a _{s,1 oben}	1,77	cm²/m	0,00	7,68		
14		N789	0,000	3,000	0,000	a _{s, 2 oben}	4,08	cm²/m	0,00	7,27		
15		N718	0,000	0,000	0,500	a _{s,1 unten}	2,87	cm²/m	0,00	15,16		
16		N718	0,000	0,000	0,500	a _{s, 2 unten}	0,97	cm²/m	0,00	19,46		
17		N1	0,000	0,000	0,000	a _{sw}	0,00	cm²/m²	-	-		-
- 14 - 4		/ 2.1 Erfi	orderliche	Bewehru	ng Ges	2.2 Erfor	derliche Bew	/ehru 🖣 👘				
Ber	eit 🛛 🎦									100 % (-)-		E)

Bild 8.7: Ergebnis in Excel

CAD-Anwendungen

Die in RF-BETON Flächen ermittelten Bewehrungsquerschnitte lassen sich auch in CAD-Anwendungen nutzen. In RFEM sind Schnittstellen zu folgenden Programmen enthalten:

- Nemetschek (FEM-Format für Allplan *.asf)
- Glaser (Format *.fem)
- Strakon (Format *.cfe)

Die Exportfunktion wird aufgerufen über das RFEM-Menü

$Datei \rightarrow Exportieren.$

Es öffnet sich der Dialog *Exportieren*, in dem die gewünschte Schnittstelle ausgewählt werden kann. Dieser Dialog ist im Kapitel 13.5 des RFEM-Handbuchs beschrieben.

Exportieren		×
Exportant DSTV-Format - Produktschnittstelle Stahlbau (*.stp) für Stäbe ProSteel 3D (*.stp)	ASCII-Format - Strukturdaten Grafik der Struktur zu ASCII-Datei DXF (*.dxf)	Direkter Export
Tekla Structures (*.stp) Intergraph Frameworks (*.stp) Advance Steel (*.stp) Cadwanck (*.stp)	Daten in Spreadsheet-Format in MS Excel DenoUffice.org Calc (*.ods) Daten in Spreadsheet-Format in 00o Calc ASCII-Format - Ergebnisse Isolinien der aktuellen Ergebnisse in ASCII-Datei-Format DXF (*.dxf)	
Nemetschek-Format FEM-Format für Nemetschek Allplan (*.asf) Glaser-Format (*.fem) Strakon (*.cfe) Diese sind nur anwendbar, wenn das Zusatzmodul RF-BETON Flächen zur Verfügung steht.	ESF-Format (*.esf) SDNF-Format Steel Detailing Neutral File (*.dat) Industry Foundation Classes - IFC (*.ifc) (Analytisches Modell IFC 2x3)	
		OK Abbrechen

Bild 8.8: RFEM-Dialog Exportieren

٩

Für den Export der Bewehrungen stehen je nach Schnittstelle spezifische Möglichkeiten zur Auswahl. Diese werden über die Schaltfläche [Details] im Dialog *Exportieren* aufgerufen. In einem weiteren Dialog lassen sich gezielte Vorgaben für die jeweilige Schnittstelle treffen.

Detail-Einstellungen fü	r Export	$\overline{\mathbf{X}}$
Alle Formate Ergebnisse -	Glaser (.fem)	
Ergebnisse exportieren in:	 Rasterpunkten FE-Knoten 	
Bewehrunsgtyp:	 Biegebewehrung Nur Zulagebewehrung Schubbewehrung 	
٦		OK Abbrechen

Bild 8.9: Dialog Detail-Einstellungen für Export, Ergebnisse für Glaser

A Literatur

- [1] Deutscher Ausschuss für Stahlbeton, Heft 217: Tragwirkung orthogonaler Bewehrungsnetze beliebiger Richtung in Flächentragwerken aus Stahlbeton (von Th. BAUMANN), Verlag Ernst & Sohn, Berlin 1972.
- [2] DIN 1045: Beton- und Stahlbetonbau. Juli 1988.
- [3] DIN 1045-1: Tragwerke aus Beton, Stahlbeton und Spannbeton Teil 1: Bemessung und Konstruktion. Juni 2001.
- [4] DIN V ENV 1992-1-1 (Eurocode 2): Planung von Stahlbeton- und Spannbetontragwerken - Teil 1: Grundlagen und Anwendungsregeln für den Hochbau. Juni 1992.
- [5] REYMENDT JÖrg: DIN 1045 neu, Anwendung und Beispiele. Papenberg Verlag, Frankfurt 2001.
- [6] Deutscher Beton-Verein e.V.: Beispiele zur Bemessung von Betontragwerken nach EC2. Bauverlag, Wiesbaden/Berlin 1994.
- [7] AVAK, Ralf.: Stahlbetonbau in Beispielen, DIN 1045 und Europäische Normung, Teil 2:
 Konstruktion-Platten-Treppen-Fundamente. Werner Verlag, Düsseldorf 1992.
- [8] AVAK, Ralf: Stahlbetonbau in Beispielen, DIN 1045 und Europäische Normung,
 Teil 2: Bemessung von Flächentragwerken, Konstruktionspläne für Stahlbetonbauteile,
 2. Auflage. Werner Verlag, Düsseldorf 2002.
- [9] Avak, R.: Stahlbetonbau in Beispielen, DIN 1045, Teil 1, Grundlagen der Stahlbeton-Bemessung - Bemessung von Stabtragwerken", Werner Verlag, 5. Auflage 2007
- [10] SCHNEIDER, Klaus-Jürgen: Bautabellen für Ingenieure mit Berechnungshinweisen und Beispielen, 15. Auflage. Werner Verlag, Düsseldorf 2002.
- [11] PFEIFFER, Uwe: Die nichtlineare Berechnung ebener Rahmen aus Stahl- oder Spannbeton mit Berücksichtigung der durch das Aufreißen bedingten Achsendehnung. Cuviller Verlag, Göttingen 2004.
- [12] LANG, Christian, MEISWINKEL, Rüdiger, WITTEK, Udo: Bemessung von Stahlbetonplatten mit dem nichtlinearen Verfahren nach DIN 1045-1. Beton- und Stahlbetonbau 95, 2000, Heft 5, S. 270-278.
- [13] SCHLAICH/SCHÄFER: Konstruieren im Stahlbetonbau. Betonkalender 1993 Teil II. Verlag Ernst & Sohn, Berlin 1993.
- [14] MEISWINKEL, Rüdiger: Nichtlineare Nachweisverfahren von Stahlbeton-Flächentragwerken. Beton- und Stahlbetonbau 96, 2000, Heft 1, S. 27-34.
- [15] RAHM, Heiko: Modellierung und Berechnung von Alterungsprozessen bei Stahlbeton-Flächentragwerken. Universität Kaiserslautern 2002.
- [16] KUPFER, Herbert, HILSDORF, Hubert K., RÜSCH, Hubert: Behavior of concrete under biaxial stresses, ACI Journal, 1969.
- [17] QUAST, Ulrich: Zur Mitwirkung des Betons in der Zugzone. Beton- und Stahlbetonbau, 1981, Heft 10, S. 247-250.
- [18] QUAST, Ulrich: Zum nichtlinearen Berechnen im Stahlbeton- und Spannbetonbau. Beton- und Stahlbetonbau, 1994, Heft 9, S. 250-253, Heft 10, S. 280-284.
- [19] SCHNEIDER, Klaus-Jürgen: Bautabellen für Ingenieure mit Berechnungshinweisen und Beispielen, 13. Auflage. Werner Verlag, Düsseldorf 1998.
- [20] SIA 262:003 Bauwesen Betonbau (Schweizer Norm SN 505 262)
- [21] Einführung in die Norm SIA 262 Betonbau (SIA Dokumentation D 0182)

B Index

A	
Achsensystem	40
Achsmaß	39
Analytische Methode	2, 52
Ausdruckprotokoll	68
Ausnutzung5	3, 58
Ausschnitt	66
В	
Bahnen	39
Basisangaben	23
Beenden von RF-BETON Flächen	23
Bemessungsdetails	1, 62
Bemessungsfall	0, 71
Bemessungsmethode	44
Benutzerprofil	72
Berechnung	46
Berechnung starten	46
Betonalter1	8, 20
Betondeckung3	9, 40
Betondruckstrebe 1	1, 44
Beton-Festigkeitsklasse	30
Betonstahl2	8, 31
Betonstahlspannung	53
Betonzugspannung	29
Bewehrung	8, 49
Bewehrungsanordnung	39
Bewehrungsbahn	39
Bewehrungsgrad	38
Bewehrungsmatten	42
Bewehrungsquerschnitt	41
Bewehrungsrichtung	40
Bewehrungssatz	37
Bibliothek	41
Biegung	8
Blättern in Masken	23
c	
CAD-Export	74
D	
Dehnungsverhältnis	26
Dezimalstellen	0, 72
Dicke	32
Druckbewehrung	9, 38

Drucken
Druckkraft9
Druckstrebenneigung $ heta$ 45
Druckzone 45
Druckzonenhöhe 45
Durchbiegung15
E
Einordnungskriterium
Erforderliche Bewehrung
Ergebnisauswertung61
Ergebnismasken
Ergebnisse-Navigator
Ergebnisverläufe 69
Ergebniswerte64
Ergebniswerte grafisch64
Eurocode
Excel 73
Export Ergebnisse
F
-arb-Relationsbalken
-arbskala
-ehlermeldung
-E-Punkt
-ilter
-läche
-lächenverläufe64
G
Gebrauchstauglichkeit 12, 25, 32, 43, 49, 52, 53, 57, 58
Glaser
Grafik
Grafikausdruck
Grenzlinie
Grenzzustand Gebrauchstauglichkeit12, 25, 32, 52, 53, 57, 58
Grenzzustand Tragfähigkeit8, 9, 24, 48, 49
Grundbewehrung 41, 49
H
Hintergrundgrafik63
Hinweis49, 53, 58
Höchstbewehrung 38

I
Installation
Iterationen
к
Kommentar 25, 33
Kontrolle
Koordinaten
Kriechen 16, 21, 28
Kriechzahl 16, 17
Kriechzahl φ34
Krümmung15
L
Längsbewehrung
Längskraft 8
Lastfall
Lastfallkombination25, 26, 28, 52, 61, 62
Layer
М
Masken23
Maßgebende Punkte 66, 68
Materialbezeichnung
Materialbibliothek
Materialkennwerte
Methode26
Mindestbewehrung 12, 38, 53
Ν
Nachweisart62
Nachweismethode26
Navigator23
Nemetschek74
Nichtlineare Methode
Norm4, 24, 25, 45
0
Obere Bewehrung 40, 49
OpenOffice73
Optimierung44
Р
Panel7, 64, 66
Parallelfläche36
Platte27
Plausibilitätskontrolle46
Programmaufruf

Q

Querkraftbewehrung	45
Querkraftnachweis	44
Querkrafttragfähigkeit	9
R	
Randabstand	39
Rasterpunkt	67
Referenzebene	36
Relative Luftfeuchte	17
Relaxation	21
RF-BETON Flächen beenden	48
RF-BETON Flächen-Fall	70
RF-BETON NL	34
RFEM-Arbeitsfenster	63
Riss	27
Rissbreite	36
S	
Schaltflächen	50
Schichten	29
Schnitt	66
Schnittgrößen	46
Schubbewehrung	49
Schwinden16, 21,	28
Schwindmaß16, 20,	34
Selektion Ausdruck	68
Sichtmodus50, 54,	63
Singularität	66
Skalierung	64
Sortieren	66
Spannungen	28
Spannungs-Dehnungslinie	29
Stababstand	14
Stabdurchmesser	43
Starten von RF-BETON Flächen	6
Steuerpanel	66
Strakon	74
Suchfunktion	67
Symbol 49,	51
т	
Teilsicherheitsbeiwert Beton	45
Teilsicherheitsbeiwert Betonstahl	45
Tension Stiffening	29
Tragfähigkeit	49
Тур53, 58,	62

Punkt-Koordinaten 49, 52, 57

U

Unbemessbarkeit	50, 54
Untere Bewehrung	40, 49
Unverformtes System	
V	
Verformung15, 2	8, 35, 58
Verformung15, 2 Verformungsnachweis	8, 35, 58 36
Verformung	8, 35, 58 36 36
Verformung	8, 35, 58 36 36 64

W

Wand	27, 41, 45
Winkel φ	
Z	
Zementart	
Zugfestigkeit Beton	
Zugkraft	8
Zusatzbewehrung	43, 49
Zustand II	15, 58
Zwischenergebnisse	