

Fassung November 2011

Zusatzmodul

Lineare und nichtlineare Stahlbetonbemessung nach SIA 262

Programm-Beschreibung

Alle Rechte, auch das der Übersetzung, vorbehalten.

Ohne ausdrückliche Genehmigung der INGENIEUR-SOFTWARE DLUBAL GMBH ist es nicht gestattet, diese Programmbeschreibung oder Teile daraus auf jedwede Art zu vervielfältigen.

© Ingenieur-Software Dlubal GmbH Am Zellweg 2 D-93464 Tiefenbach

Tel.:	+49 (0) 9673 9203-0
Fax:	+49 (0) 9673 9203-51
E-Mail:	info@dlubal.com
Web:	www.dlubal.de

Inhalt

	Inhalt	Seite		Inhalt S	eite
1.	Einleitung	5	3.1.2	Gebrauchstauglichkeit	47
1.1	Zusatzmodul BETON	5	3.2	Materialien	48
1.2	BETON Team	6	3.3	Querschnitte	50
1.3	Gebrauch des Handbuchs	6	3.4	Lager	53
1.4	Aufruf des BETON-Moduls	7	3.5	Bewehrung	55
2.	Theoretische Grundlagen	9	3.5.1	Längsbewehrung	56
2.1	Tragfähigkeitsnachweis	9	3.5.2	Bügel	58
2.1.1	Biegung und Normalkraft	9	3.5.3	Bewehrungsanordnung	59
2.1.2	Querkraft	10	3.5.4	Mindestbewehrung	61
2.2	Gebrauchstauglichkeitsnachweis	13	3.5.5	Norm	64
2.2.1	Vorhandene Bewehrung	13	3.5.6	Vouten	66
2.2.2	Mindestbewehrung	13	4.	Berechnung	68
2.2.3	Begrenzung der Rissbreiten	14	4.1	Plausibilitätskontrolle	68
2.2.4	Begrenzung der Betonstahlspannungen	15	4.2	Details für nichtlineare Berechnung	68
2.2.5	Nachweis des Stababstands	15	4.2.1	Berechnungsansatz	68
2.2.6	Begrenzung der Verformungen	15	4.2.2	Tension Stiffening	70
2.3	Nichtlineare Bemessung	17	4.2.3	Konvergenzeinstellungen	72
2.3.1	Methode	17	4.3	Start der Berechnung	74
2.3.2	Dehnung und Krümmung	19	5.	Ergebnisse	76
2.3.3	Tension Stiffening	21	5.1	Erforderliche Bewehrung	76
2.3.3.1	Modell: Zugfestigkeit des Betons	22	5.1.1	Erforderliche Bewehrung	
2.3.3.2	Modifizierte Stahlkennlinie	24		querschnittsweise	76
2.3.4	Mittlere Momenten-Krümmungs-	25	5.1.2	Erforderliche Bewehrung stabsatzweise	79
	Beziehung	25	5.1.3	Erforderliche Bewehrung stabweise	/9
2.3.5	Ermittlung der Element-Steifigkeiten	26	5.1.4	Erforderliche Bewehrung x-stellenweise	80
2.3.5.1	Biegesteifigkeit	26	5.1.5	Erforderliche Bewehrung unbemessbar	81
2.3.5.2	Längs-, Schub- und Torsionssteifigkeit	27	5.2	Vorhandene Bewehrung	82
2.3.6	Kriechen und Schwinden	30	5.2.1	Vorhandene Längsbewehrung	82
2.3.6.1	Ermittlung der Eingangsgrössen	30	5.2.2	Vorhandene Bügelbewehrung	87
2.3.6.2	Rechnerische Berücksichtigung von Kriechen/Schwinden	35	5.2.3	Vorhandene Bewehrung x-stellenweise	90
2.3.7	Grenzzustand der Tragfähigkeit	36	5.2.4	Stahlliste	91
2.3.7.1	Materialkennwerte	37	5.3	Gebrauchstauglichkeitsnachweis	93
2.3.7.2	Sicherheitsnachweis	38	5.3.1	Gebrauchstauglichkeitsnachweis querschnittsweise	93
2.3.8	Grenzzustand der Gebrauchstauglichkeit	40	5.3.2	Gebrauchstauglichkeitsnachweis	
2.3.9	Konvergenz	42		stabsatzweise	95
3.	Eingabedaten	44	5.3.3	Gebrauchstauglichkeitsnachweis stabweise	96
3.1	- Basisangaben	44	5.3.4	Gebrauchstauglichkeitsnachweis x-	96
3.1.1	Tragfähigkeit	46	5.4	Nichtlineare Berechnung	97

Inhalt

	Inhalt	Seite		Inhalt	Seite
5.4.1	Nichtlineare Berechnung - Tragfähigkeit	97	9.1.3	Krümmung im Zustand I	119
5.4.2	Nichtlineare Berechnung-	00	9.1.4	Krümmung im Zustand II	120
5.4.2	Nicheli	99	9.1.5	Ermittlung der Durchbiegung	121
5.4.3	Nichtlineare Berechnung - Berechnungsdetails	101	9.1.6	Ergebnis in BETON	122
6.	Ergebnisauswertung	102	9.2	Verformungsberechnung NL im GZG	124
6.1	Bewehrungsvorschlag	102	9.2.1	Eingabedaten	124
62	3D-Bendering der Bewehrung	103	9.2.2	Grundeingaben in BETON	125
63	Fraebnisse am RSTAB-Modell	105	9.2.3	Kontrolle der Bewehrung	127
6.4	Ergebnisse units rab modeli	109	9.2.4	Vorgaben für nichtlineare Berechnung	128
6.5	Eilter für Ergebnisse	100	9.2.5	Ergebnisdarstellung und Auswertung	131
7.	Ausdruck	110	9.2.5.1	Materialkennwerte für Verformungsberechnung	132
7.1	Ausdruckprotokoll	110	9.2.5.2	Zustand I	132
7.2	Grafikausdruck	111	9.2.5.3	Zustand II	134
8.	Allgemeine Funktionen	112	9.2.5.4	Mittlere Krümmungen	140
8.1	BETON-Bemessungsfälle	112	9.2.6	Ergebnisbewertung	141
8.2	Querschnittsoptimierung	114	9.3	Stabilitätsuntersuchung Kragstütze	144
8.3	Einheiten und Dezimalstellen	115	9.3.1	Übersicht und Eingabe in RSTAB	144
8.4	Export der Ergebnisse	116	9.3.2	Nichtlineare Berechnung der Stütze	146
9.	Beispiele	118	9.3.2.1	Nachweis nach EN 1992-1-1, 5.7	146
9.1	Direkte Verformungsberechnung	118	9.3.2.2	Nachweis nach EN 1992-1-1, 5.6.8	150
9.1.1	Eingabedaten	118	Α	Literatur	154
9.1.2	Vorwerte der Verformungsberechnung	119	В	Index	156

1. Einleitung

1.1 Zusatzmodul BETON

Das Stahlbeton-Bemessungsmodul BETON ist vollständig in die RSTAB-Oberfläche integriert. Damit ist die lückenlose Bewältigung von Bemessungsaufgaben für Stabwerksmodelle mit Stahlbetonelementen gewährleistet.

Das Zusatzmodul übernimmt alle relevanten RSTAB-Strukturparameter wie Material, Querschnitte, Stäbe, Stabsätze, Lager sowie die Schnittgrössen der definierten Einwirkungen und Kombinationen. Im Programm sind jedoch auch Bemessungsalternativen mit geänderten Querschnitten – einschliesslich einer Querschnittsoptimierung – möglich.

BETON untersucht die Grenzzustände der Tragfähigkeit und der Gebrauchstauglichkeit. Die Nachweise lassen sich sowohl über eine klassisch lineare oder anhand einer nichtlinearen Analyse führen. Optional wird im Programm untersucht, ob der Brandschutznachweis nach EN 1992-1-2:2004 erfüllt ist.

Bei der nichtlinearen Berechnung kann der Einfluss von Kriechen und Schwinden zur Analyse der Rissbildung im Verformungszustand berücksichtigt werden. Die Erhöhung der Bauteilsteifigkeit infolge der Mitwirkung des Betons auf Zug zwischen den Rissen (*Tension Stiffe-ning*) lässt sich über benutzerdefinierte Parameter steuern.

Die Stahlbetonbemessung erfolgt nach folgenden nationalen und europäischen Normen:

- DIN 1045:1988-07
- DIN 1045-1:2001-07
- DIN 1045-1:2008-08
- DIN V ENV 1992-1-1:1992-06
- ÖNORM B 4700:2001-06
- EN 1992-1-1:2004
- ACI 318-08
- SIA 262

Die ermittelte erforderliche Bewehrung beinhaltet einen Bewehrungsvorschlag, der alle Anwendervorgaben zu Längs- und Bügelstäben berücksichtigt. Diese Bewehrungsausführung kann jederzeit angepasst werden; die mit den Änderungen verbundenen Nachweise werden automatisch aktualisiert.

Es besteht die Möglichkeit, die eingelegte Bewehrung fotorealistisch zu visualisieren. Diese wirklichkeitsgetreue Darstellung des Bewehrungskorbes kann – wie alle übrigen Ein- und Ausgabedaten des Moduls – im zentralen Ausdruckprotokoll von RSTAB dokumentiert werden.

Wir wünschen Ihnen viel Freude und Erfolg mit BETON. An dieser Stelle bedanken wir uns auch für die bisherige konstruktive Zusammenarbeit. Ihre Hinweise und Verbesserungsvorschläge werden in die Weiterentwicklung des Programms einfliessen.

Ihr Team von ING.-SOFTWARE DLUBAL GMBH

SIA 262	•
E DIN 1045-1:2008-08	
DIN 1045-1:2001-07	
DIN 1045:1988-07	
DIN V ENV 1992-1-1:1992-06	
CNORM B 4700:2001-06-01	
EN 1992-1-1:2004	
ACI 318-08	
SIA 262	

1.2 BETON Team

An der Entwicklung von BETON waren beteiligt:

Programmkoordinierung

Dipl.-Ing. Georg Dlubal Dipl.-Ing. (FH) Alexander Meierhofer Dipl.-Ing. (FH) Younes El Frem

Programmierung

Ing. Michal Balvon Jaroslav Bartoš Ing. Ladislav Ivančo Ing. Alexandr Průcha Ing. Roman Svoboda Dis. Jiří Šmerák RNDr. Stanislav Škovran

Programmkontrolle

Dipl.-Ing. (FH) Alexander Meierhofer Ing. Jan Fráňa Ing. Pavel Gruber Ing. Bohdan Šmid Jana Vlachová

Handbuch, Hilfesystem und Übersetzungen

Dipl.-Ing. (FH) Alexander Meierhofer Dipl.-Ing. (FH) Robert Vogl Mgr. Petra Pokorná Dipl.-Ing. Frank Faulstich Dipl.-Ü. Gundel Pietzcker

Technische Unterstützung und Endkontrolle

Dipl.-Ing. (BA) Markus Baumgärtel Dipl.-Ing. (BA) Sandy Baumgärtel Dipl.-Ing. (FH) Steffen Clauss Dipl.-Ing. (FH) Matthias Entenmann Dipl.-Ing. Frank Faulstich Dipl.-Ing. (FH) René Flori Dipl.-Ing. (FH) Stefan Frenzel Dipl.-Ing. (FH) Walter Fröhlich Dipl.-Ing. (FH) Andreas Hörold Dipl.-Ing. (FH) Bastian Kuhn M.Sc. Dipl.-Ing. Frank Lobisch Dipl.-Ing. (FH) Alexander Meierhofer M. Eng. Dipl.-Ing. (BA) Andreas Niemeier M.Eng. Dipl.-Ing. (FH) Walter Rustler Dipl.-Ing. (FH) Frank Sonntag Dipl.-Ing. (FH) Christian Stautner Dipl.-Ing. (FH) Robert Vogl Dipl.-Ing. (FH) Andreas Wopperer

1.3 Gebrauch des Handbuchs

Da die Themenbereiche Installation, Benutzeroberfläche, Ergebnisauswertung und Ausdruck im RSTAB-Handbuch ausführlich erläutert sind, wird hier auf eine Beschreibung verzichtet. Der Schwerpunkt dieses Handbuchs liegt auf den Besonderheiten, die sich im Rahmen der Arbeit mit dem Zusatzmodul BETON ergeben.

Grafik

Dieses Handbuch orientiert sich an der Reihenfolge und am Aufbau der Eingabe- und Ergebnismasken. Im Text werden die beschriebenen **Schaltflächen** (Buttons) in eckige Klammern gesetzt, z. B. [Grafik]. Gleichzeitig sind sie am linken Rand abgebildet. Zudem sind die **Begriffe** der Dialoge, Tabellen und Menüs in *Kursivschrift* hervorgehoben, um das Nachvollziehen der Erläuterungen zu erleichtern.

Das Handbuch ist nach schweizerischer Rechtschreibregel geschrieben. Am Ende befindet sich ein Stichwortverzeichnis. Sollten Sie trotzdem nicht fündig werden, so können Sie auf der Website **www.dlubal.de** die Suchfunktion benutzen, um in der Liste aller *Fragen und Antworten* nach bestimmten Kriterien zu filtern.

1.4 Aufruf des BETON-Moduls

Es bestehen in RSTAB folgende Möglichkeiten, das Zusatzmodul BETON zu starten.

Menü

Der Programmaufruf kann erfolgen über das RSTAB-Menü

```
\textbf{Zusatzmodule} \rightarrow \textbf{Stahlbetonbau} \rightarrow \textbf{BETON}.
```

1	<u>G</u> ehe zum aktuellen Modul		÷¢÷	🥸 🥵 🥵 🖗	°> 💠 🛝 🗙 🗗 🙆
	<u>Q</u> uerschnittswerte	Þ	My	Mz py pz	J. 😫 🗊 🐺 🌌 🎝 🎾
	<u>S</u> tahlbau	►			
	Stahl <u>b</u> etonbau	•		BETON	Stahlbeton-Bemessung
	<u>H</u> olzbau	×	Ĩ	BETON <u>S</u> tutzen	Stahlbeton-Bemessung von Stützen
	Ve <u>r</u> bundbau	•			
	<u>D</u> ynamik	►			
	<u>V</u> erbindungen	►			
	<u>F</u> undamente	►			
	S <u>t</u> abilität	►			
	G <u>i</u> ttermasten	×			
	Sonstige	Þ			

Bild 1.1: Menü Zusatzmodule \rightarrow Stahlbetonbau \rightarrow BETON

Navigator

BETON kann im Daten-Navigator aufgerufen werden über den Eintrag

 $\textbf{Zusatzmodule} \rightarrow \textbf{BETON}.$

Projekt-Navigator ×
RSTAB
😑 📲 Tragkonstruktion* [BETON]
🕀 📄 Strukturdaten
🕀 💼 Belastung
E Zusatzmodule
DUENQ 7 - Querschnittswerte dünnwandiger Profile
DICKQ 6 - Querschnittswerte dickwandiger Querschnitte
5TAHL - Allgemeine Spannungsanalyse von Stahlstäben
The STARLEG - Stahlbergssung nach Eurocode 3
T STAHLAISC - Bemessung nach AISC (LRFD oder ASD)
STARL IS - Stanibernessung nach IS 800
VADDA – Standemessung gemab StA 263;2003
EE-PCDK - Diegeuriik lick lachweis pach Theorie II Ordpupe (EEM)
EL-DL - Traggicherheitsnachweis nach meone II ordnang (FEM)
BETON - Stabileton-Remessing der Stäbe
BETON Stützen - Stableton-Bemessung der Stützen
HOLZ Pro - Bemessung von Holzstähen
HOLZ - Bemessung von Holzstäben
VERBUND-TR - Bemessung von Verbundeinfeld- und Verbunddurchlaufträger
T DYNAM - Dynamische Analyse
5TIRNPL - Anschlüsse für I-Balken
VERBIND - Querkraftanschlüsse im Stahlhochbau
RAHMECK Pro - Berechnung von geschraubten Rahmenecken
Daten 📮 Zeigen 🖉 🖉

Bild 1.2: Daten-Navigator Zusatzmodule \rightarrow BETON

Panel

BETON FA1 - Stahlbeton-B 🚽 < > LF1 - Eigengewicht und Aufbaas LF2 - Nutzlast

LF3 - Wind LF4 - Imperfektion nach +X LG1 - Bemessungswerte LG2 - Brand BETON FA1 - Stahlbeton-Bemessung BETON FA2 - Brand

<u>×_xx</u>

BETON

LF3 · Wind

Falls in der RSTAB-Position bereits Ergebnisse für BETON vorliegen, kann der relevante Bemessungsfall in der Liste der Lastfälle eingestellt werden (siehe links). Falls erforderlich, ist über die Schaltfläche [Ergebnisse ein/aus] die grafische Anzeige der Ergebnisse zu aktivieren.

Im Panel steht nun die Schaltfläche [BETON] zur Verfügung, die den Zugang zum Bemessungsmodul ermöglicht.

Bild 1.3: Panel-Schaltfläche [BETON]

2. Theoretische Grundlagen

2.1 Tragfähigkeitsnachweis

Auf eine ausführliche Beschreibung der linearen Bemessungsverfahren wird verzichtet, da dieses Handbuch kein Lehrbuch ersetzen soll.

2.1.1 Biegung und Normalkraft

In SIA 262 werden die Bemessungsgrundlagen für den Nachweis in den Grenzzuständen der Tragfähigkeit dargestellt. Diese Regelungen gelten für Biegung mit oder ohne Normalkraft und für Normalkraft allein.

Der rechnerische Versagenszustand tritt ein, wenn die Grenzdehnungen erreicht werden. Je nachdem, wo diese Grenzdehnungen auftreten, kann das Versagen durch den Beton oder den Betonstahl ausgelöst werden.

Das folgende Bild verdeutlicht die zulässigen Dehnungsverteilungen bei Biegung mit und ohne Längskraft nach SIA 262.

Bild 2.1: Rechnerisch mögliche Dehnungsverteilungen im Grenzzustand der Tragfähigkeit

Die im Bild gezeigten Bereiche der Dehnungsverteilungen bedeuten nach [17]:

Bereich 1

Dieser Bereich stellt sich bei einer mittigen Zugkraft oder bei einer Zugkraft mit geringer Ausmitte ein. Über dem gesamten Querschnitt treten nur Dehnungen auf. Der statisch wirksame Querschnitt besteht nur aus den beiden Bewehrungslagen A_{s1} und A_{s2}. Die Bewehrung versagt, weil die Grenzdehnung ε_{ud} erreicht wird.

Bereich 2

Bereich 2 tritt bei reiner Biegung und bei Biegung mit Längskraft (Druck- und Zugkraft) auf. Die Nulllinie liegt innerhalb des Querschnitts. Die Biegezugbewehrung wird voll ausgenutzt, d. h. der Stahl versagt durch das Erreichen der Grenzdehnung. Der Betonquerschnitt wird in der Regel nicht voll ausgenutzt: Die Stauchungen erreichen nicht die Grenzdehnung ε_{c2u} .

Bereich 3

Dieser Bereich stellt sich nur bei reiner Biegung und bei Biegung mit Längskraft (Druck) ein. Die Tragkraft des Stahls ist grösser als die Tragkraft des Betons. Der Beton versagt, weil seine Grenzdehnung $\varepsilon_{c_{2u}}$ erreicht wird.

Das Versagen des Betons kündigt sich wie in den Bereichen 1 und 2 durch Risse an, da der Stahl die Fliessgrenze überschreitet (Bruch mit Vorankündigung).

Bereich 4

Bereich 4 tritt bei Biegung mit einer Längsdruckkraft auf. Er stellt den Übergang eines vorwiegend auf Biegung beanspruchten Querschnitts zu einem auf Druck beanspruchten Querschnitt dar. Der Beton versagt, bevor im Stahl die Fliessgrenz erreicht wird, da die möglichen Dehnungen sehr klein sind. Dieser Bereich hat einen stark bewehrten Querschnitt zur Folge. Er wird daher durch Einlegen einer Druckbewehrung vermieden.

Kleine Stahldehnungen in der Zugzone führen zum Bruch ohne Vorankündigung (die Biegezugbewehrung gerät nicht ins Fliessen).

Bereich 5

Dieser Bereich liegt bei einer Druckkraft mit geringer Ausmitte (z. B. Stütze) oder bei einer zentrischen Druckkraft vor. Über dem gesamten Querschnitt treten nur Stauchungen auf. Die Stauchung am weniger gedrückten Rand liegt zwischen $0 > \varepsilon_{c1} > \varepsilon_{c2}$. Alle Stauchungsverteilungen schneiden sich im Punkt C.

2.1.2 Querkraft

Der Nachweis der Querkrafttragfähigkeit ist nur im Grenzzustand der Tragfähigkeit zu führen. Die Einwirkungen und die Widerstände gehen mit ihren Bemessungswerten ein. Das allgemeine Nachweisformat nach SIA 262 lautet:

 $V_{\text{Ed}} \leq V_{\text{Rd}}$

- mit V_{Ed} Bemessungswert der einwirkenden Querkraft
 - V_{Rd} Bemessungswert des Querkraftwiderstandes

Je nach Versagensmechanismus wird der Bemessungswert der Querkrafttragfähigkeit durch einen der folgenden drei Werte bestimmt.

- V_{Rd,s} Bemessungswert des Widerstands der Bügelbewehrung
- V_{Rd,c} Bemessungswert des Widerstands des Betondruckfelds

Bleibt die einwirkende Querkraft V_{Ed} unter dem Wert von V_{Rd,c}, dann ist rechnerisch keine Querkraftbewehrung erforderlich und der Nachweis ist erfüllt.

Liegt die einwirkende Querkraft V_{Ed} über dem Wert von $V_{Rd,cr}$ ist eine Querkraftbewehrung vorzusehen. Die Querkraftbewehrung muss die gesamte Querkraft aufnehmen

 $V_{\text{Ed}} \leq V_{\text{Rd,s}}$

Die verschiedenen Querkrafttragfähigkeiten bestimmen sich nach SIA 262 wie folgt.

Querkrafttragfähigkeit ohne Querkraftbewehrung

Der Bemessungswert für den Querkraftwiderstand ohne Querkraftbewehrung $V_{\mbox{\scriptsize Rd}}$ darf ermittelt werden mit:

$$V_{hd} = k_{d} \cdot \tau_{cd} \cdot d \cdot b_{w}$$
SIA 262 4.3.3.2.1 (32)

$$k_{d} = \frac{1}{1+k_{v} \cdot d}$$

$$\tau_{cr}$$
Schubfestigkeit in N/mm²
d
Statische Nutzhöhe der Biegebewehrung in m
b_w
die kleinste Querschnittsbreite innerhalb der Zugzone des Querschnitts in m

$$k_{v} = 2.2 \cdot \frac{m_{d}}{m_{Rd}}$$
SIA 262 4.3.3.2.2 (33)
Bei der Berechnung ist $\frac{m_{d}}{m_{Rd}} = 1,00$

$$k_{v} = 2.2 \cdot \frac{m_{d} - m_{Dd}}{m_{Rd} - m_{Dd}}$$
mit Berücksichtigung der Normalkraft
SIA 262 4.3.3.2.7
Nach [16] 4.5 Einfluss der Normalkraft wird mes wie folgt berechnet:
für $n_{e} < 0$ $m_{Dd} = -n_{d} \cdot \left(\frac{h}{2} - \frac{d}{3}\right)$
für $n_{e} > 0$ $m_{Dd} = -n_{d} \cdot \left(\frac{h}{2} - \frac{d}{3}\right)$
Bei der Berechnung ist $\frac{m_{d} - m_{Dd}}{m_{Rd} - m_{Dd}} = 1,00$
 $k_{v} = 3,00$
wenn plastische Verformungen der Biegebewehrung (z. B. plastische Biegegelenke im Bemessungszustand) nicht ausgeschlossen werden können SIA 262 4.3.3.2.2 **oder**
wenn eine *begrenzte Momenterunlagerung* nach SIA 262 4.1.4.2.5
durchgeführt wird
für Betonstahl mit f_{rd} > 435 N/mm² ist k_e mit dem Beiwert f_{rd} / 435 nach SIA 262 4.3.3.2.4
zu vergrössern.
für Betone mit dem Grösstkorn D_{max} < 32mm ist k_e mit dem Beiwert 48/(D_{max}+16) nach SIA 262 4.3.3.2.5
uvergrössern.
Ist die Längsbewehrung im Bereich s d vom Nachweisschnitt abgestuft, ist der Beiwert k_e um 50% zu vergrössern

Querkrafttragfähigkeit mit Querkraftbewehrung

Für Bauteile mit Querkraftbewehrung rechtwinklig zur Bauteilachse gilt:

$$V_{\text{Rd},s} = \left(\frac{A_{sw}}{s}\right) \cdot z \cdot f_{sd} \cdot \cot \alpha$$
 SIA 262 4.3.3.4.3 (37)
mit
 A_{sw} Querschnittsfläche der Querkraftbewehrung

s Bügelabstand

z Hebelarm der inneren Kräfte angenommen zu 0,9·d

f_{sd} Bemessungswert der Streckgrenze der Querkraftbewehrung

α Neigung der Betondruckstrebe

Die Neigung der Betondruckstrebe α darf in Abhängigkeit von der Beanspruchung innerhalb bestimmter Grenzen gewählt werden. Damit soll der Tatsache Rechnung getragen werden, dass ein Teil der Querkraft über die Rissreibung abgetragen wird und somit das Fachwerk nicht belastet. Folgende Grenzen sind in Gleichung (34) der SIA 262 empfohlen.

 $25^\circ \le \alpha \le 45^\circ$

SIA 262 4.3.3.3.2 (34)

SIA 262 4.3.3.4.5 (39)

Die Druckstrebenneigung α kann damit zwischen folgenden Werten variieren.

	Mindestneigung	Höchstneigung
α	25,0°	45,0°
cot α	2,14	1,0

Empfohlene Grenzen der Druckstrebenneigung

Querkrafttragfähigkeit der Betondruckstrebe

Für Bauteile mit Querkraftbewehrung rechtwinklig zur Bauteilachse ($\beta = 90^{\circ}$) gilt:

$$V_{\text{Rd,c}} = b_{\text{w}} \cdot z \cdot k_{\text{c}} \cdot f_{\text{cd}} \cdot \sin \alpha \cdot \cos \alpha$$

bei geneigter Querkraftbewehrung

$$V_{\text{Rd,c}} = b_{\text{w}} \cdot z \cdot k_{\text{c}} \cdot f_{\text{cd}} \cdot (\cos\alpha + \cot\beta \cdot \sin\alpha) \sin\alpha \qquad \qquad \text{SIA 262 4.3.3.4.5 (40)}$$

mit

b _w	Querschnittsbreite
Z	Hebelarm der inneren Kräfte angenommen zu 0,9·d
k _c	Reduktionsbeiwert für Betondruckfestigkeit
\mathbf{f}_{cd}	Bemessungswert der Betonfestigkeit

α Neigung der Betondruckstrebe

2.2 Gebrauchstauglichkeitsnachweis

Die Nachweise in den Grenzzuständen der Gebrauchstauglichkeit bestehen aus verschiedenen Einzelnachweisen.

2.2.1 Vorhandene Bewehrung

Ehe die Gebrauchstauglichkeitsnachweise geführt werden, prüft BETON die vorhandene Bewehrung. Dabei wird zunächst mit den Schnittgrössen der Gebrauchstauglichkeit eine Bemessung wie im Grenzzustand der Tragfähigkeit durchgeführt. Die sich damit ergebende statisch erforderliche Bewehrung wird mit der benutzerdefinierten vorhandenen Bewehrung verglichen.

Ist die vorhandene Bewehrung kleiner als die statisch erforderliche Bewehrung oder ergibt sich im Zuge dieser Untersuchung eine Unbemessbarkeit, so unterbleiben die Gebrauchstauglichkeitsnachweise.

2.2.2 Mindestbewehrung

Der Mindestbewehrungsquerschnitt zur Begrenzung der Rissbreite ermittelt sich gemäss SIA 262 4.4.2 vereinfacht wie folgt.

$$A_{s,min} = \frac{k_c \cdot k_t \cdot f_{ctm} \cdot A_{ct}}{\sigma_{s,adm}}$$

$$A_{s,min}$$
Mindestquerschnittsfläche der Betonstahlbewehrung in der Zugzone
 $\sigma_{s,adm}$ Zulässige Spannung der Betonstahlbewehrung k_c Beiwert zur Berücksichtigung der Spannungsverteilung in der Zugzone
 $k_c = 1,0$ bei reinem Zug
 $k_c = 0,4$ bei Biegung oder Biegung mit Normalkraft k_t Beiwert zur Berücksichtigung des Einflusses der Abmessung t
nach SIA 262 4.4.1.3 (84) $k_t = \frac{1}{1+0,5\cdot t} \leq 1,0$ t in mtgenerell die kleinste Bauteilabmessung, ausser für Platten- und Recht-
eckquerschnitte unter Biegebeanspruchung, dann gilt:
 $t = h/3$ tt in mfctmMittelwert der BetonzugfestigkeitDas Programm rechnet wahlweise mit einem variablen Abminderungsbeiwert k_{zt} für
die Betonzugfestigkeit fctm. $k_{zt} = 0,5$ bei der Rissbildung ausserhalb der ersten 28 Tage
 $k_{zt} = 0,5$ bei der Rissbildung zwischen dem 3. und 5. Tag A_{ct} Fläche der Betonzugzone

2.2.3 Begrenzung der Rissbreiten

Der Nachweis der Rissbreite wird gemäss SIA 262 4.4.2 geführt.

Nach SIA 262 4.4.2.2.3 werden die normale, erhöhte und hohe Anforderungen unterschieden:

Normale Anforderungen nach SIA 262 4.4.2.2.4 genügen, wenn Risse toleriert und keine besondere Ansprüche an die Dichtigkeit und das Aussehen gestellt werden. Erhöhte Anforderungen nach SIA 262 4.4.2.2.5 werden gestellt, wenn besondere Ansprüche an die Funktionstüchtigkeit und das Aussehen bestehen und eine gute Rissverteilung angestrebt wird. Hohe Anforderungen nach SIA 262 4.4.2.2.6 werden gestellt, wenn eine Begrenzung der Rissbreiten für quasiständige und häufige Lastfälle erwünscht ist.

Nach dieser Unterscheidung wird nach SIA 262 4.4.2.3.9 Tabelle 16 die Anforderungsklasse für die Spannungsbegrenzung gewählt.

Ziel	Anforderungen			
	normal	erhöht	hoch	
Verhindern spröden Versagens beim Erreichen von f_{ctd}	Α	А	Α	
Begrenzen der Rissbreiten unter aufgezwungenen oder behinderten Verformungen (beim Erreichen von f_{ctd})	A	В	С	
Begrenzen der Rissbreiten für quasi-ständige Lastfälle gemäss Norm SIA 260	-	-	С	
Begrenzen der Rissbreiten für häufige Lastfälle gemäss Norm SIA 260	-	f _{sd} - 80	f _{sd} - 80	

Die Spannungsbegrenzung in Funktion des Stababstandes ϕ wird nach SIA 262 4.4.2.3.10 Figur 31 dargestellt.

Nach [16] Seite 113 werden die Rissöffnungen für Anforderungsklasse B mit 0,5 mm und für C mit 0,2 mm definiert. Für die Anforderungsklasse A und f_{sd} -80 sind die Rissöffnungen variabel und werden nach [16] 10.15 berechnet:

$$\begin{split} w = & \frac{s \cdot (\sigma_{s,adm})^{3/2}}{4 \cdot E_s \cdot \sqrt{\pi \cdot f_{ct}}} \\ & s & \text{Stababstand} \\ & E_s & \text{Mittelwert des Elastizitätsmoduls von Betonstahl} \\ & f_{ct} & \text{Bemessungswert der Streckgrenze der Querkraftbewehrung} \\ & f_{ct} = k_t \cdot k_{zt} \cdot f_{ctm} \end{split}$$

2.2.4 Begrenzung der Betonstahlspannungen

Zur Vermeidung nichtelastischer Dehnungen, unzulässiger Rissbildungen und Verformungen sind gemäss SIA 262 4.4.2 die Zugspannungen in der Bewehrung zu begrenzen.

Nach SIA 262 4.4.2.3.9 Tabelle 16 werden die Anforderungsklasse für die Spannungsbegrenzung gewählt.

Für die Anforderungsklasse A gilt $\sigma_{\text{s,adm}} = f_{\text{sd}}$.

Für die Anforderungsklasse B und C werden die Werte $\sigma_{s,adm}$ nach [16] 10.15 berechnet .

$$\sigma_{s,adm} = \left(\frac{4 \cdot w \cdot E_s \sqrt{\pi \cdot f_{ct}}}{s}\right)^{2/3} \le f_{sd}$$

Für die Anforderungsklasse f_{sd} -80 gilt $\sigma_{s,adm} = f_{sd}$ -80 .

2.2.5 Nachweis des Stababstands

Der maximale Stababstand max si wird nach [16] 10.15 berechnet .

$$s = \frac{4 \cdot E_s \cdot w \cdot \sqrt{\pi \cdot f_{ct}}}{(\sigma_s)^{3/2}} \le 300 \text{mm}$$

2.2.6 Begrenzung der Verformungen

Die Richtwerte für zulässige Verformungen sind der Norm SIA 260 zu entnehmen :

Anhang A Gebäude

Tabelle 3: Richtwerte für Durchbiegungen von Decken und Balken

Grenzzustand	Folgen der Auswirkungen				
	irreversibel	reversibel	reversibel		
		Lastfall			
	selten (20)	häufig (21)	quasi-ständig (22)		
Funktionstüchtigkeit – Einbauten mit sprödem Verhalten – Einbauten mit duktilem Verhalten – Nutzung und Betrieb	$w \leq l/500^{-1} 2^{-3}$	$w \le l/350^{-1/2}$ $w \le l/350^{-4/2}$			
Komfort		$w \le l/350^{-4}$			
Aussehen			$w \le l/300^{-1}$		

¹⁾ Durchbiegung nach Abzug einer allfälligen Überhöhung. Allfällige Langzeitwirkungen aus Schwinden, Relaxation oder Kriechen sind zu berücksichtigen.

²⁾ Durchbiegung infolge der Einwirkungen und Langzeitwirkungen nach dem Einbau der relevanten nicht tragenden Bauteile bzw. technischen Ausrüstung.

- ³⁾ Wenn Einbauten besonders empfindlich auf Verformungen des Tragwerks reagieren, sind neben oder anstelle von bemessungstechnischen vor allem auch konstruktive Massnahmen gegen Beschädigungen vorzusehen.
 ⁴⁾ Durchbiegung infolge der veränderlichen Einwirkungen.
- Die Durchbiegungen sind gemäss den Normen SIA 262 bis 266 zu bestimmen.

Abweichende Grenzwerte für Durchbiegungen können in Abstimmung auf die Nutzungsanforderungen vereinbart und müssen in der Projektbasis festgelegt werden. Insbesondere für so genannt sekundäre Bauteile können reduzierte Anforderungen gelten.

Tabelle 4: Richtwerte für horizontale Auslenkungen von Wänden, Rahmen und Stützen

Grenzzustand	Folgen der Auswirkungen				
	irreversibel	reversibel	reversibel		
		Lastfall			
	selten (20)	häufig (21)	quasi-ständig (22)		
Funktionstüchtigkeit – Einbauten mit sprödem Verhalten – Einbauten mit duktilem Verhalten – Nutzung und Betrieb	$u \leq h/500^{-1/2}$	$u \le h/200^{-1}$ $u \le H/300$			
Aussehen			$u \le h/250^{-1}$		

¹⁾ Horizontale Auslenkung infolge der veränderlichen Einwirkungen.

²⁾ Wenn Einbauten besonders empfindlich auf Verformungen des Tragwerks reagieren, sind neben oder anstelle von bemessungstechnischen vor allem auch konstruktive Massnahmen gegen Beschädigungen vorzusehen.

Die horizontalen Auslenkungen sind gemäss den Normen SIA 262 bis 266 zu bestimmen.

Abweichende Grenzwerte für horizontale Auslenkungen können in Abstimmung auf die Nutzungsanforderungen vereinbart und müssen in der Projektbasis festgelegt werden. Insbesondere für Kranbahnen können erhöhte Anforderungen gelten.

Für weitere Konstruktionstypen sind folgende Anhänge zu öffnen.

Anhang B Strassenbrücken

Anhang C Fuss- und Radwegbrücken

Anhang D Normalspurbahnbrücken

Anhang E Schmalspurbahnbrücken

Im Programm wird die Verformung nach dem Verfahren EN 1992-1-1, 7.4.3 berechnet.

Diese Berechnungsmethode ermöglicht, die Begrenzung der Verformungen mit einer direkten Berechnung nachzuweisen. Die Durchbiegungen sind dabei wirklichkeitsnah zu ermitteln. Das Berechnungsverfahren muss das tatsächliche Bauwerksverhalten mit einer Genauigkeit wiedergeben, die auf den Nachweiszweck abgestimmt ist.

Die Durchbiegung wird durch zweimalige Integration aus der Differentialgleichung der Biegelinie ermittelt. Da sich bei einem Stahlbetonquerschnitt die Steifigkeit jedoch abschnittsweise infolge Rissbildung ändert, ist das Momenten-Krümmungs-Diagramm nichtlinear. Es bestehen grosse Unterschiede in der Krümmung und damit auch in der Durchbiegung für Zustand I und Zustand II.

Die Durchbiegung wird daher mit dem Prinzip der virtuellen Arbeiten für die Stelle der maximalen Verformung bestimmt. Für die Krümmung wird eine Näherungslinie verwendet, die die Extremwerte der Krümmung mit einer zum Momentenverlauf affinen Linie verbindet.

In der Handrechnung werden nach [17] drei Werte der Durchbiegung erfasst:

Unterer Rechenwert der Durchbiegung

Die geringste Durchbiegung erhält man, wenn die Berechnung für einen vollständig ungerissenen Querschnitt durchgeführt wird (Zustand I). Diese Durchbiegung wird als f₁ bezeichnet.

Oberer Rechenwert der Durchbiegung

Die grösste Durchbiegung erhält man, wenn die Berechnung für einen vollständig gerissenen Querschnitt durchgeführt wird (Zustand II). Diese Durchbiegung wird als f_{\parallel} bezeichnet.

Wahrscheinlicher Wert der Durchbiegung

Es ist anzunehmen, dass Teilbereiche des Querschnitts ungerissen und andere, höher beanspruchte Bereiche gerissen sind. Dabei verläuft die Momenten-Krümmungs-Beziehung bis zum ersten Riss nach Zustand I und dann teilweise gerissen. Diese Annahme liefert den wahrscheinlichen Wert der Durchbiegung *f*, der zwischen dem unteren und oberen Rechenwert

liegt. Nach EN 1992-1-1, 7.4.3 (3), Gl. (7.18) kann dieser aus folgender Beziehung gewonnen werden:

 $\alpha = \zeta \cdot \alpha_{||} + (1 - \zeta) \cdot \alpha_{||}$

Die Werte α_{I} und α_{II} kennzeichnen allgemeine Durchbiegungsparameter (z. B. f_{I} oder f_{II}). Dies kann eine Dehnung, Krümmung, Durchbiegung oder Verdrehung sein. ζ ist der Verteilungsbeiwert zwischen Zustand I und Zustand II und liegt wie in EN 1992-1-1, Gl. (7.19) dargestellt zwischen $0 \le \zeta < 1$. Um eine wahrscheinliche Durchbiegung zu ermitteln, wird die quasiständige Einwirkungskombination zur Berechnung der Schnittgrössen verwendet.

Das Kapitel 9 auf Seite 118 stellt ein Beispiel vor, in dem die Handrechnung einer Verformungsberechnung gemäss EN 1992-1-1 mit der BETON-Analyse verglichen wird.

2.3 Nichtlineare Bemessung

Die Norm SIA 262 ermöglicht laut 2.3.2.2 und 2.3.3 eine nichtlineare Schnittgrössenermittlung in den Grenzzuständen der Tragfähigkeit und Gebrauchstauglichkeit. Das Programm orientiert sich bei der Berechnung an der EN 1992-1-1. Dabei werden die Schnittgrössen und Verformungen unter Berücksichtigung des nichtlinearen Schnittgrössen-Verformungs-Verhaltens (physikalisch) ermittelt.

2.3.1 Methode

Das Prinzip der Analyse nichtlinearer Probleme wird am Beispiel der einachsigen Biegung vorgestellt. Zur Ermittlung des nichtlinearen Verformungs- und Schnittkraftverlaufs wird die Finite-Elemente-Methode mit elementweise konstanten Ersatzsteifigkeiten verwendet. Aus diesem Grund hat die gewählte Elementierung einen erheblichen Einfluss auf die Ergebnisse sowie die Konvergenz der Berechnung.

Um grobe Eingabefehler und ein elementweises Oszillieren zu vermeiden, wird bei der Berechnung zum einen eine adaptive Stabteilung, zum anderen eine gedämpfte "Steifigkeitsaufbringung" benutzt. Dadurch sollen zu grosse Steifigkeitsunterschiede zwischen benachbarten Elementen und ein daraus resultierendes Oszillieren zum nächsten Iterationszyklus verhindert werden. Kapitel 2.3.9 geht auf die Thematik der Konvergenz näher ein.

Das folgende Bild zeigt schematisch die vom Momentenverlauf abhängige Verteilung der Steifigkeiten.

Detailpunkt zur Verdeutlichung der adaptiven Teilung

Folgendes Flussdiagramm veranschaulicht den allgemeinen Ablauf einer nichtlinearen Berechnung:

Bild 2.3: Allgemeiner Berechnungsablauf einer nichtlinearen Bemessung

Die einzelnen Schritte und Routinen werden in den folgenden Kapiteln beschrieben.

2.3.2 Dehnung und Krümmung

Dieses Kapitel beschreibt die Ermittlung signifikanter Kenngrössen auf Querschnittsebene. Dabei wird die Beschreibung auf einen einfachen Rechteckquerschnitt unter einachsiger Biegung reduziert. Dies bietet den Vorteil einer geschlossenen Angabe der Momenten-Krümmungs-(Normalkraft)-Beziehung, die die beanspruchungsabhängige Steifigkeitsentwicklung am deutlichsten widerspiegelt. Dies bedeutet, dass der Momenten-Krümmungs-Verlauf abhängig ist von der Normalkraftbeanspruchung des Querschnitts.

Die beiden Kapitel 2.3.7.1 und 2.3.8 gehen auf die Materialkennwerte näher ein, die für die Grenzzustände der Tragfähigkeit und Gebrauchstauglichkeit angesetzt werden.

Es bestehen folgende grundlegenden Zusammenhänge zwischen Dehnung und Krümmung:

Linearisierte Darstellung

Bild 2.4: Zusammenhang zwischen Dehnung und Krümmung am infinitesimalen Element

Anhand der oben dargestellten Zusammenhänge ergeben sich folgende Beziehungen.

$$d\phi \approx \tan(d\phi) = \frac{ds}{r}$$
$$d\phi \approx \tan(d\phi) = \frac{\varepsilon_{s} \cdot ds - \varepsilon_{cc} \cdot ds}{d} = \frac{\varepsilon_{s} - \varepsilon_{cc}}{d} ds$$

Durch Gleichsetzen ergibt sich

$$\left(\frac{1}{r}\right) = \frac{\varepsilon_{s} - \varepsilon_{cc}}{d}$$

mit ε_{cc} negativ bei Stauchung des Betons

Für den ungerissenen Zustand I ergibt sich unter Zugrundelegung linear elastischen Werkstoffverhaltens der Zusammenhang zwischen Moment und Krümmung wie folgt.

$$\left(\frac{1}{r}\right) = \frac{M}{E \cdot I}$$

Im gerissenen Zustand (Zustand II) geht die direkte Affinität zwischen dem Verlauf der Momenten- und Krümmungslinie verloren. Der Wert E*I (die Sekantenbiegesteifigkeit) ist belastungsabhängig und somit nicht mehr konstant im Bereich gleicher geometrischer Randbedingungen.

Das folgende Bild verdeutlicht den grundlegenden Unterschied zwischen Sekanten- und Tangentensteifigkeit.

Bild 2.5: Sekantensteifigkeit (E*I) und Tangentenbiegesteifigkeit (B)

Bei der Berechnung der Verformungen hängt die Herangehensweise stark vom verwendeten Verfahren ab. QUAST weist in [30] auf die Vorteile der Nutzung des Übertragungsmatrizenverfahrens unter Ansatz der tangentialen Biegesteifigkeiten (bei bereichsweiser Linearisierung (1/r)₀+M/B_{II}) hin. Dies ist im Hinblick auf das erwähnte Verfahren oder für "Handrechnungen" zur Ermittlung der Verformungen oder Gelenkrotationen mit dem Prinzip der virtuellen Arbeit sicher zweckmässig.

Bei der Nutzung der FEM empfiehlt sich die Berechnung auf Grundlage konstanter Ersatzsteifigkeiten. Um hier den nichtlinearen Verlauf der Momenten-Krümmungs-Beziehung des Querschnitts auch im Bereich von sprunghaften Änderungen der tangentialen Biegesteifigkeit ausreichend genau zu erfassen, ist in solchen Übergangsbereichen (M_{cr}; M_y) eine feinere Teilung zwingend erforderlich. Diese erfolgt programmintern durch die Begrenzung der Steifigkeitsunterschiede von benachbarten Elementen.

2.3.3 Tension Stiffening

Aus der Bemessung im Grenzzustand der Tragfähigkeit ist bekannt, dass bei gerissenen Stahlbetonteilen die Zugkräfte im Riss allein durch die Bewehrung aufgenommen werden müssen. Zwischen zwei Rissen werden jedoch Zugspannungen über den (verschieblichen) Verbund in den Beton eingeleitet. Somit beteiligt sich der Beton – bezogen auf die Bauteillänge – an der Aufnahme innerer Zugkräfte, was zu einer Erhöhung der Bauteilsteifigkeit führt. Dieser Effekt wird als *Mitwirkung des Betons auf Zug zwischen den Rissen* oder auch als *Tension Stiffening* bezeichnet.

Bild 2.6: Spannungs- und Dehnungsverhalten zwischen zwei Primärrissen

Diese Erhöhung der Bauteilsteifigkeit durch die Zugversteifung kann auf zwei Arten berücksichtigt werden:

- In der Betonarbeitslinie wird eine nach der Rissbildung verbleibende konstante Restzugspannung abgebildet. Die Restzugspannung ist dabei deutlich kleiner als die Zugfestigkeit des Betons. Alternativ können modifizierte Spannungs-Dehnungs-Beziehungen für den Zugbereich eingeführt werden, die das Mitwirken des Betons auf Zug zwischen den Rissen in Form eines abfallenden Astes nach Erreichen der Zugfestigkeit beachten. Dieses Vorgehen erweist sich bei der numerischen Berechnung oft als sinnvoll.
- Die f
 ür praktische Nachweise gebr
 äuchlichere und auch anschaulichere Variante ist die Änderung der "nackten" Arbeitslinie des Stahls. Dabei wird im jeweils betrachteten Querschnitt eine verringerte Stahldehnung ε_{sm} angesetzt, die sich aus ε_{s2} und einem Abzugsterm infolge der Zugversteifung ergibt.

Im Programm BETON kann der Effekt des Tension Stiffening sowohl über eine modifizierte Stahlkennlinie nach [13] als auch über eine Spannungs-Dehnungs-Linie des Betons im Zugbereich gemäss [11] und [26] berücksichtigt werden.

Vor- und Nachteile der jeweiligen Vorgehensweise sowie der zweckmässige Einsatz der einzelnen Methoden sind mehrfach in der Literatur (z. B. [26]) untersucht und sollen hier nicht näher beleuchtet werden.

2.3.3.1 Modell: Zugfestigkeit des Betons

Dieses Modell zur Erfassung der Mitwirkung des Betons auf Zug zwischen den Rissen basiert auf einer definierten Spannungs-Dehnungs-Linie des Betons im Zugbereich (Parabel-Rechteck-Diagramm). Dabei ist die rechnerische Zugfestigkeit **keine** fixe Grösse, sondern bezieht sich auf die vorhandene Dehnung in der massgebenden Stahl(zug)faser. Der Ansatz wurde affin zu den Angaben in [11] dahingehend aufgegriffen, dass die maximale Zugfestigkeit f_{ctR} ab der definierten Rissdehnung bis zum Erreichen einer Dehnung von 2 ‰ in der massgebenden Stahlfaser linear auf null abnimmt.

Wie in [11] erläutert, stellt der Grenzwert 2 ‰, der leicht unter der tatsächlich angenommenen Fliessdehnung liegt, eine für baupraktische Belange ausreichend genaue Näherung dar. In diversen Forschungsvorhaben (u. a. [26]) wurde der Ansatz von QUAST weiter verfeinert bzw. modifiziert und an die Auswertung von Versuchen angepasst.

Nachfolgende Abbildung veranschaulicht das schematische Vorgehen.

Die Ermittlung des Parabel-Rechteck-Diagramms für die Zugzone erfolgt nach folgenden formellen Zusammenhängen:

mit:

α_{red}	Abminderungsfaktor des Basiswertes der Zugfestigkeit
£	Current verset Zuerfastielesit (= D.f.)

- fct.grund
 Grundwert Zugfestigkeit (z. B. fctm)

 fct.R
 Rechnerische Zugfestigkeit
- v Verhältniswert Druck- zu Zugfestigkeit
- ϵ_{cr} Rechnerische Dehnung bei Erreichen von $f_{cr,R}$
- n_{ct} Exponent der Parabel im Zugbereich
- $\sigma_{\text{ct,R}} \qquad \text{Rechnerische Spannung in Abhängigkeit der massgebenden Dehnung der Stahlfaser}$
- ϵ_{sy} Rechnerische Fliessdehnung (vereinfacht im Rechenmodell mit 2 ∞ angenommen)
- ε_{s2} Dehnung der massgebenden Stahlfaser

2.3.3.2 Modifizierte Stahlkennlinie

Der Tension Stiffening Effekt kann auch über eine modifizierte Stahlkennlinie berücksichtigt werden. Dabei wird die geringere tangentiale Steifigkeit (sprunghafte Änderung bei erneuter Rissbildung) während der Rissentwicklung näherungsweise über eine Unterscheidung zwischen Rissbildung und abgeschlossener Rissbildung erfasst.

Spannungs-Dehnungs-Linie des Stahls

Bild 2.9: Modifizierte Spannungs-Dehnungs-Linie des Betonstahls aus [13]

Erläuterung

Ungerissen – Zustand I ($0 < \sigma_s \le \sigma_{sr}$)

 $\epsilon_{sm}=\epsilon_{s1}$

Zustand der Erstrissbildung ($\sigma_{sr} < \sigma_s \le 1, 3\sigma_{sr}$)

$$\varepsilon_{sm} = \varepsilon_{s2} - \frac{\beta_t (\sigma_s - \sigma_{sr}) + (1, 3\sigma_{sr} - \sigma_s)}{0, 3\sigma_{sr}} (\varepsilon_{sr2} - \varepsilon_{sr1})$$

Zustand der abgeschlossenen Rissbildung (1,3 $\sigma_{sr} < \sigma_s \le f_y$)

 $\boldsymbol{\epsilon}_{sm} = \boldsymbol{\epsilon}_{s2} - \boldsymbol{\beta}_t \big(\boldsymbol{\epsilon}_{sr2} - \boldsymbol{\epsilon}_{sr1} \big)$

Plastisches Stahlfliessen bis zum Versagen ($f_y < \sigma_s \le f_t$)

$$\epsilon_{sm} = \epsilon_{sy} - \beta_t \left(\epsilon_{sr2} - \epsilon_{sr1} \right) + \delta_d \left(1 - \frac{\sigma_{sr}}{f_y} \right) \left(\epsilon_{s2} - \epsilon_{sy} \right)$$

Bezeichnungen:

ε _{sm}	mittlere Stahldehnung		
Esu	Bruchdehnung des Betonstahls		
Es1	Stahldehnung im ungerissenen Zustand		
ε _{s2}	Stahldehnung im gerissenen Zustand (im Riss)		
Esr1	Stahldehnung im ungerissenen Zustand unter Rissschnittgrössen		
Esr2	Stahldehnung im Riss unter Rissschnittgrössen		
β_t	Beiwert zur Berücksichtigung der Belastungsdauer bzw. Lastwiederholungen		
	0,40 kurzzeitige Belastung		
	0,25 andauernde Last oder häufige Lastwechsel		
σ_{sr}	Spannung in Zugbewehrung, berechnet auf Grundlage eines gerissenen Quer-		
	schnitts für die Einwirkungskombination, die zur Erstrissbildung führt		
σs	Stahlspannung im gerissenen Zustand (im Riss) in N/mm ²		
δ_{d}	Beiwert zur Berücksichtigung der Duktilität der Bewehrung		
	0,8 hochduktiler Stahl		
	0,6 normalduktiler Stahl		

2.3.4 Mittlere Momenten-Krümmungs-Beziehung

Die mittlere Momenten-Krümmungs-Beziehung beschreibt den Zusammenhang zwischen Moment und Krümmung unter Berücksichtigung der zugversteifenden Wirkung des Betons. Anhand diskreter Dehnungszustände (Krümmungen) kann ein zugehöriges Moment ermittelt werden. In der Regel wird ausgehend von der Bruchdehnung eine je nach Aufgabe variierende Teilung der Bruchkrümmung vorgenommen. Der Nachteil dieser Vorgehensweise ist die Notwendigkeit einer sehr feinen Teilung, um bei signifikanten Fliesspunkten auch die Übergangsbereiche abzubilden. Durch Verbindung der betreffenden Einzelpunkte erhält man einen Polygonzug als charakteristische Momenten-Krümmungs-Linie. Deren Verlauf wird auch von der wirkenden Längskraft beeinflusst bzw. ist davon abhängig. In den meisten baupraktischen Anwendungsfällen ist aber der Ansatz einer bereichsweise linearisierten Momenten-Krümmungs-Beziehung ausreichend.

BETON ermittelt verfahrensbedingt (Doppelbiegung, keine konstante Längskraft) die Steifigkeit an jedem Elementknoten direkt aus der Schnittgrösse der vorhergehenden Iteration. Ein Unterschied zwischen den zwei Methoden des Tension Stiffening Ansatzes besteht darin, dass beim Ansatz nach QUAST die mittlere Steifigkeit direkt aus der Spannungsberechnung hervorgeht. Im Gegensatz hierzu ist bei dem Ansatz über die modifizierte Stahlkennlinie die mittlere Krümmung nochmals separat zu bestimmen, was je nach Geometrie und System zu gewissen Geschwindigkeitseinbussen führen kann.

Für Druckglieder ist das Mitwirken des Betons grundsätzlich über das Modell von QUAST [11] zu berücksichtigen. Der Grund ist die vereinfachte Berechnung im ungerissenen Zustand bei dem Modell über die modifizierte Stahlkennlinie (siehe Kapitel 2.3.3.2 und 4.2.2).

Bild 2.10: Beispielhafte Darstellung einer Momenten-Krümmungs-Beziehung

2.3.5 Ermittlung der Element-Steifigkeiten

2.3.5.1 Biegesteifigkeit

Wie im Kapitel 2.2.1 erläutert wird bei der Berechnung von elementweise konstanten Ersatzsteifigkeiten ausgegangen. Wichtig bei dieser Vorgehensweise ist eine sehr feine Teilung in Bereichen von signifikanten Steifigkeitssprüngen (Reissen, Fliessen). Eine zu grosse Elementierung kann sowohl zu einer bereichsweisen Fehlinterpretation der Steifigkeitsverhältnisse als auch zu einem Oszillieren der Steifigkeiten führen. BETON nimmt daher eine adaptive Stabteilung vor, um diese Effekte zu unterdrücken. Dabei wird der Steifigkeitsunterschied zwischen den Elementknoten geprüft. Ist dieser zu gross, werden Zwischenknoten zur Minimierung der Steifigkeitsunterschiede eingefügt.

Ein weiterer wichtiger Aspekt zur Minimierung einer Inkonvergenz statisch unbestimmter Systeme ist die Dämpfung der Steifigkeitsänderung. Speziell in Fällen, in denen die Steifigkeit bei Rissbildung und Fliessen (schwach bewehrte Querschnitte) stark abnimmt, kann eine zu abrupte Änderung der Steifigkeiten zu einem "Ausbrechen" der Iteration führen.

Folgende Abbildung veranschaulicht den Zusammenhang zwischen Moment, Krümmung und Steifigkeit.

Nach den zuvor erläuterten Zusammenhängen ergibt sich die beanspruchungsabhängige Sekantensteifigkeit nach folgender Gesetzmässigkeit:

$$\mathsf{E} \cdot \mathsf{I}(\mathsf{x}) = \frac{\mathsf{M}(\mathsf{x})}{(1/r)(\mathsf{x})}$$

2.3.5.2 Längs-, Schub- und Torsionssteifigkeit

Die Ermittlung der Biegesteifigkeit als Eingangsgrösse für die nichtlineare Berechnung wurde in den vorherigen Kapiteln erläutert. Die noch fehlenden Steifigkeitsparameter können wie folgt bestimmt werden.

Längssteifigkeit

Die Längssteifigkeit E*A wird ähnlich dem Vorgehen bei Biegung aus der Relation der Dehnung ε_0 zur wirkenden Normalkraft bestimmt. Bei gleichzeitigem Auftreten von Biegemoment und Normalkraft kann diese Beziehung nicht mehr direkt angewendet werden, da sich aus konsequenter Auslegung des Vorgehens bereichsweise negative Steifigkeiten ergeben würden. Dies resultiert aus der vereinfachten Betrachtung ohne Berücksichtigung der Verschiebung der Dehnungsnulllinie. Diese fällt bei nichtlinearen Berechnungen nicht mehr mit dem Querschnittsschwerpunkt zusammen. Allgemein kann dies durch eine Entkopplung der Steifigkeitsmatrix vom Schwerpunkt beachtet werden. Daraus resultiert dann allerdings auch ein direkter Zusammenhang zwischen Moment und Normalkraft in den Termen der Steifigkeitsmatrix. BETON berücksichtigt die durch die Rissbildung bzw. physikalische Nichtlinearität bedingte Achsdehnung nicht.

Betrachtet man den Zusammenhang zwischen Normalkraft und Biegemoment, ist ein direkter Zusammenhang beider Steifigkeitsterme erkennbar. Zur Verdeutlichung stelle man sich eine Stütze mit konstanter Druckkraft vor: Wirkt nun zusätzlich zur Normalkraft ein ansteigendes Moment, so wird sich zum reinen konstanten Dehnungsverlauf eine Krümmung einstellen, die zu einer Verschiebung der resultierenden Normalkraft aus dem Schwerpunkt führt. Damit reduziert sich unter plastischem Gesichtspunkt auch die Wirkungsfläche der Resultierenden, was zwangsläufig zu grösseren Dehnungen und damit fallenden Steifigkeiten führt. Deshalb stellt die näherungsweise Berücksichtigung über eine Affinität zwischen Biege- und Dehnsteifigkeit bei Biegung mit Längskraft eine praktisch sinnvolle Lösung dar.

Schubsteifigkeit

Eine detaillierte Erfassung der Schubsteifigkeit ist im Stahlbetonbau sehr schwierig und bei diversen Geometrie- und Lastkonstellationen ein kaum "überschaubares" Unterfangen. Die Balkentheorie stösst schnell an die Grenzen, da zur Abbildung bei mässiger Querkraftbeanspruchung die Tragwirkung über die Fachwerkwirkung erfasst werden sollte. Zwar wurden mit derartigen Modellen verschieden Ansätze entwickelt, die in ihrer Anwendung im allgemeinen Fall allerdings nicht oder nur teilweise geeignet sind.

PFEIFFER [26] mindert in einem einfachen Ansatz die Schubsteifigkeit affin zur vorhandenen Biegesteifigkeit ab. Mag dieser Gedanke auf den ersten Blick etwas befremdlich wirken, so steckt doch ein recht einfacher und plausibler Grundgedanke hinter diesem Ansatz. Man stelle sich die Biege- und Schubbeanspruchung als unabhängige Grössen vor. Bei Betrachtung der veränderten Momenten- und Längskraftbeanspruchung ändert sich die Biegesteifigkeit entsprechend des Dehnungs- und Krümmungsverlaufs. Hiervon wird jedoch nicht nur die Steifigkeit in Trägerlängs-, sondern auch die in Trägerquerrichtung beeinflusst, die zur Abtragung von Querkräften dient.

Dieser Ansatz ist als eine Näherung zu verstehen, der eine ausreichende Schubtragfähigkeit voraussetzt und geneigte Risse, Zugkrafterhöhung etc. nicht oder nur vage erfasst. Trotz dieser Vereinfachungen kann der Ansatz nach PFEIFFER für mässig schlanke Balken als ausreichend genaue Näherung bezeichnet werden. Alternativ kann in BETON auch die linear elastische Schubsteifigkeit der Berechnung zugrunde gelegt werden.

Torsionssteifigkeit

Im Vergleich zur Biegesteifigkeit wird die Torsionssteifigkeit bei Rissbildung sehr stark abgebaut. Dies hat einerseits den positiven Aspekt, dass Torsionsmomente aus Zwang, die im Hochbau recht häufig vorkommen, bei Laststeigerung bis zum Bruch fast gänzlich abgebaut werden. Auf der anderen Seite steht die sogenannte Gleichgewichtstorsion, bei welcher der starke Abfall der Torsionssteifigkeit schon im Gebrauchszustand zu erheblichen Verdrehungen und somit zu einer Minderung des Gebrauchszustandes führen kann.

In der BETON-Berechnung stehen zwei unterschiedliche Vorgehensweisen zur Berücksichtigung der Torsionssteifigkeit zur Verfügung.

Torsionssteifigkeit nach LEONHARDT [23]

Torsionssteifigkeit im ungerissenen Zustand I

Bei der Torsionssteifigkeit im Zustand I wird berücksichtigt, dass sich bis zum Erreichen des Rissmoments die Steifigkeit um 30 und 35 % abbaut. Als Gründe hierfür gibt LEONHARDT an, dass sich der Betonkern der Beanspruchung entzieht und die Spannungen sich nach aussen verlagern. Zum Teil ist auch eine Mikrorissbildung an der Abnahme beteiligt.

$(G_{c} * I_{T}(x))$	$)_{1} = 0.8 * 0$	6 _c * I _{T,0} (x)	als Mittelwert
mit	Ι _τ	Torsionsträg	pheitsmoment
	Gc	Schubmodu	I

Torsionssteifigkeit im gerissenen Zustand II

Die Torsionssteifigkeit im Zustand II leitet sich aus einem räumlichen Fachwerkmodell her. Zur Vereinfachung kann die Neigung der Druckstrebe unter 45° angenommen werden. Nach LE-ONHARDT ist diese Annahme auch legitim, wenn Längs- und Querbewehrungsgrad nicht übereinstimmen. Aus der Gleichgewichtsbetrachtung bzw. aus der Bemessungsannahme ergeben sich geringere Strebenneigungen, falls der Bewehrungsgrad der Bügel geringer ist als der der Längsbewehrung. Allerdings ist in Versuchen zu beobachten, dass die angenommene flachere Neigung der Risse erst bei hoher Beanspruchung auftritt.

Versuche haben gezeigt, dass das Fachwerkmodell einen guten Algorithmus zur Erfassung der Torsionsbeanspruchung für den Versagenszustand bietet. Für den Gebrauchszustand ist allerdings festzustellen, dass die Stahlspannungen in der Bügel- und Längsbewehrung auch bei mehrmaliger Lastwiederholung nicht die Werte nach der Fachwerkanalogie erreichen.

Bügelneigungen von 90°:

$$(G_{c} * I_{T}(x))_{II} = \frac{4 * E_{c} * A_{k}^{3}}{u_{k}^{2}} * \frac{1}{k_{T}(1/\mu_{L} + 1/\mu_{B\ddot{u}}) + \frac{4 * \alpha * A_{k}}{u_{k} * t} * (1 + \phi)}$$

Bügelneigungen von 45°:

$$(G_{c} * I_{T}(x))_{II} = \frac{E_{c} * A_{k}^{2} * t}{u_{k}} * \frac{1}{k_{T}/\mu_{B\ddot{u}} + \frac{\alpha}{4} * (1+\phi)}$$

mit
$$k_{L} = 1 - \frac{T_{Ed} - 0.7 * T_{cr}}{T_{Rd,sy} - 0.7 * T_{cr}}$$
 bei 90° Druckstrebenneigung

$$k_L = 1 - \frac{T_{Ed} - 0.9 * T_{Cr}}{T_{Rd,sy} - 0.9 * T_{Cr}} \quad \text{bei 45° Druckstrebenneigung}$$

$$\mu_L = \frac{A_{sl}}{A_k}$$
 Auf Kernfläche bezogener Längsbewehrungsgrad

 $\mu_{B\ddot{u}} = \frac{a_{sw} * u_k}{A_k} \quad \text{Auf Kernfläche bezogener Querbewehrungsgrad}$

$$T_{Rd,sy} = min \begin{cases} A_{sw}/s_w * f_y * 2 * A_k \\ A_{sl}/u_k * f_y * 2 * A_k \end{cases}$$

Ermittlung des Rissmoments für Vollquerschnitt:

 Beginn:
 $f_{ctr1} = 0.55 * f_{ck}^{2/3}$

 Abschluss:
 $f_{ctr2} = 0.65 * f_{ck}^{2/3}$

Ermittlung des Rissmoments für Hohlquerschnitt:

Beginn:	$f_{ctr1} = 0,45 * f_{ck}^{2/3}$
Abschluss:	$f_{ctr2} = 0.55 * f_{ck}^{2/3}$

 $T_{Rd,sy}$

d,sy Torsionsmoment, bei dem die Stahlspannung im Fachwerkmodell die Fliessgrenze erreicht (aufnehmbares Torsionsmoment)

T_{cr} Torsionsmoment bei Übergang zum Zustand II (Rissmoment)

$$T_{Rd,sy} = min \begin{cases} W_T f_{ctr1} \\ 2 * A_k * t * f_{ctr1} \end{cases}$$

Ak durch Mittellinie der Wände eingeschlossene Fläche

- A_{sl} Querschnittsfläche der Längsbewehrung
- A_{sw} Querschnittsfläche der Bügelbewehrung
- α Verhältnisse der E-Moduli E_s/E_c
- uk Umfang der Fläche Ak
- s_w Bügelabstand
- t effektive Dicke der Wand
- φ Kriechbeiwert zur Berücksichtigung

Eine gegenseitige Beeinflussung von Torsions- und Biegesteifigkeit erfolgt nicht.

• Pauschale Abminderung der Torsionssteifigkeit

Alternativ kann auch mit einer prozentual abgeminderten, linear elastischen Torsionssteifigkeit im gerissenen Bereich gerechnet werden.

2.3.6 Kriechen und Schwinden

2.3.6.1 Ermittlung der Eingangsgrössen

Dieses Kapitel gibt einen Überblick über die zeitabhängigen Spannungen und Verformungen aus Kriechen und Schwinden.

Kriechen bezeichnet die zeitabhängige Verformung des Betons unter Belastung über einen bestimmten Zeitraum. Die wesentlichen Einflussgrössen sind ähnlich denen des Schwindens, wobei zusätzlich die sogenannte kriecherzeugende Spannung einen wichtigen Einfluss auf die Kriechverformungen hat. Besondere Beachtung bedarf dabei die Dauer der Belastung, der Zeitpunkt der Lastaufbringung sowie die Höhe der Beanspruchung. Die Grösse, durch die das Kriechen erfasst wird, ist die Kriechzahl $\omega(t,t_0)$ zum betrachteten Zeitpunkt *t*.

Schwinden beschreibt eine zeitabhängige Änderung des Volumens ohne Einwirkung von äusseren Lasten oder Temperatur. Auf die weitere Verzweigung des Schwindproblems in einzelne Erscheinungsformen (Trocknungsschwinden, autogenes Schwinden, plastisches Schwinden und Karbonatisierungsschwinden) wird hier nicht näher eingegangen. Wesentliche Einflussgrössen des Schwindens sind die relative Luftfeuchte, die wirksame Bauteildicke, die Gesteinskörnung, die Betonfestigkeit, der Wasserzementwert, die Temperatur sowie die Art und Dauer der Nachbehandlung. Die Grösse, durch die das Schwinden erfasst wird, ist das Schwindmass $\varepsilon_{cs}(t,ts)$ zum betrachteten Zeitpunkt *t*.

Ehe erläutert wird, wie Kriechen und Schwinden bei einer nichtlinearen Berechnung berücksichtigt werden, wird die Ermittlung der Kriechzahl $\omega(t,t_0)$ und des Schwindmasses $\varepsilon_{c,s}(t,t_s)$ gemäss EN 1992-1-1, Anhang B vorgestellt.

Kriechzahl ω(t,t₀)

Voraussetzung zur Anwendung der nachfolgenden Formeln ist, dass die kriecherzeugende Spannung σ_c der einwirkenden Dauerlast folgenden Wert nicht überschreitet:

```
\sigma_c \le 0,45 \cdot f_{ckj}
```

mit f_{ckj} Zylinderdruckfestigkeit des Betons zum Zeitpunkt des Aufbringens der kriecherzeugenden Spannung

Bild 2.13: Kriecherzeugende Spannung

Unter der Annahme eines linearen Kriechverhaltens ($\sigma_c \le 0,45f_{ckj}$) kann das Kriechen des Betons durch eine Abminderung des Elastizitätsmodul für den Beton erfasst werden (siehe Gleichung auf folgender Seite).

 $\mathsf{E}_{\mathsf{c},\mathsf{eff}} = \frac{1,1 \cdot \mathsf{E}_{\mathsf{cm}}}{1,1 + \varphi(\mathsf{t},\mathsf{t}_0)}$ E_{cm} mittlerer Elastizitätsmodul nach EN 1992-1-1, Tabelle 3.1 mit ω(t,t₀) Kriechzahl Betonalter zum betrachteten Zeitpunkt in Tagen t Betonalter zu Belastungsbeginn in Tagen t₀ Die Kriechzahl $\omega(t,t_0)$ zum untersuchten Zeitpunkt *t* darf wie folgt berechnet werden. $\varphi(t, t_0) = \varphi_{\mathsf{RH}} \cdot \beta(f_{\mathsf{cm}}) \cdot \beta(t_0) \cdot \beta_{\mathsf{c}}(t, t_0)$ $\phi_{\mathsf{RH}} = \left| 1 + \frac{1 - \frac{\mathsf{RH}}{100}}{0, 1 \cdot \sqrt[3]{\mathsf{h}_0}} \cdot \alpha_1 \right| \cdot \alpha_2$ mit RH Relative Luftfeuchte in [%] h₀ Wirksame Bauteildicke [mm] $h_0 = \frac{2 \cdot A_c}{u}$ Querschnittsfläche A_c u Querschnittsumfang Anpassungsfaktoren α_1, α_2 $\alpha_1 = \left(\frac{35}{f_{cm}}\right)^{0,7}$ $\alpha_2 = \left(\frac{35}{f_{cm}}\right)^{0,2}$ f_{cm} Mittelwert der Zylinderdruckfestigkeit $\beta(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}}$ f_{cm} Mittelwert der Zylinderdruckfestigkeit des Betons in [N/mm²] $\beta(t_0) = \frac{1}{0.1 + t_0^{0.20}}$ t₀ Betonalter zu Belastungsbeginn in Tagen $\beta_{\rm C}(t,t_0) = \left[\frac{t-t_0}{\beta_{\rm H}+t-t_0}\right]^{0,3}$ Betonalter zum betrachteten Zeitpunkt in Tagen t to Betonalter zu Belastungsbeginn in Tagen $\beta_{H} = 1.5 \cdot \left[1 + (0.012 \cdot RH)^{18} \right] \cdot h_{0} + 250 \cdot \alpha_{3} \le 1500 \cdot \alpha_{3}$ RH Relative Luftfeuchte [%] Wirksame Bauteildicke [mm] h₀ Anpassungsfaktor α_3
$$\label{eq:a3} \begin{split} \alpha_3 = 1 & \mbox{für } f_{cm} \leq 35 \ \mbox{N/mm}^2 \\ \alpha_3 = & \left(\frac{35}{f_{cm}}\right)^{0,5} & \mbox{für } f_{cm} \geq 35 \ \mbox{N/mm}^2 \end{split}$$

Folgende Eingaben sind zur Berechnung der Kriechzahl erforderlich:

- RH Relative Luftfeuchte [%] •
 - t₀ Betonalter zu Belastungsbeginn in Tagen
- Betonalter zum betrachteten Zeitpunkt in Tagen (wahlweise :) t

Der Einfluss hoher oder niedriger Temperatur in einem Bereich von 0 °C bis 80 °C auf den Aushärtungsgrad des Betons kann durch eine Korrektur des Betonalters durch folgende Gleichung berücksichtigt werden:

$$t_{T} = \sum_{i=1}^{n} e^{-\left[\frac{4000}{273 + T(\Delta t_{i})} - 13,65\right]} \cdot \Delta t_{i}$$

n

mit

•

Anzahl der Perioden mit gleicher Temperatur Temperatur in °C während des Zeitraums Δt_i $T(\Delta t_i)$

Anzahl der Tage mit dieser Temperatur T Δt_i

Der Einfluss der Zementart auf die Kriechzahl des Betons kann dadurch berücksichtigt werden, dass das Belastungsalter to mit Hilfe folgender Formel verändert wird.

$$t_0 = t_{0,T} \cdot \left(1 + \frac{9}{2 + (t_{0,T})^{1/2}}\right)^{\alpha} \ge 0.5$$

α

mit

Wirksames Betonalter bei Belastungsbeginn unter Berücksichti $t_{0,T} = t_T$ gung des Einflusses der Temperatur

Exponent, abhängig von der Zementart

α	Zementart
-1	langsam erhärtende Zemente der Klasse S
0	normal oder schnell erhärtende Zemente der Klasse N
1	schnell erhärtende hochfeste Zemente der Klasse R

Beispiel

Zement CEM 42,5 N RH: 50% Zwei Temperaturwechsel: Temperatur Dauer

Beton C25/30

Dauei	remperatur
6 Tage	15 °C
8 Tage	7 °C

Bild 2.14: Querschnitt

Betrachtetes Betonalter tk: 365 Tage

Betonalter bei Kriechbeginn:

$$t_{T} = \sum_{i=1}^{n} e^{-\left[\frac{4000}{273 + T(\Delta t_{i})} - 13,65\right]} \cdot \Delta t_{i} = e^{-\left[\frac{4000}{273 + T(\Delta t_{i})} - 13,65\right]} \cdot 6 + e^{-\left[\frac{4000}{273 + T(\Delta t_{i})} - 13,65\right]} \cdot 8 = 8,96$$
 Tage

Betonalter unter Einfluss der Zementart:

$$t_0 = t_{0,T} \cdot \left(1 + \frac{9}{2 + (t_{0,T})^{1/2}}\right)^{\alpha} = 8,96 \cdot \left(1 + \frac{9}{2 + (8,96)^{1/2}}\right)^0 = 8,96 \text{ Tage}$$

2 Theoretische Grundlagen

Wirksame Bauteildicken:

$$h_0 = \frac{2 \cdot A_c}{u} = \frac{2 \cdot 0.3 \cdot 0.5}{2 \cdot (0.3 + 0.5)} = 0.1875 \text{ cm}$$

Kriechzahl:

$$\begin{split} \phi(t,t_0) &= \phi_{RH} \cdot \beta(f_{cm}) \cdot \beta(t_0) \cdot \beta_c(t,t_0) = 1,933 \cdot 2,923 \cdot 0,606 \cdot 0,758 = 2,595 \\ mit \end{split}$$

$$\varphi_{\text{RH}} = \left[1 + \frac{1 - \frac{\text{RH}}{100}}{0, 1 \cdot \sqrt[3]{h_0}} \cdot \alpha_1\right] \cdot \alpha_2 = \left[1 + \frac{1 - \frac{50}{100}}{0, 1 \cdot \sqrt[3]{187, 5}} \cdot 1,042\right] \cdot 1,012 = 1,933$$
$$\alpha_1 = \left(\frac{35}{f_{\text{cm}}}\right)^{0,7} = \left(\frac{35}{33}\right)^{0,7} = 1,042 \quad \alpha_2 = \left(\frac{35}{f_{\text{cm}}}\right)^{0,2} = \left(\frac{35}{33}\right)^{0,2} = 1,012$$

$$\beta(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} = \frac{16.8}{\sqrt{33}} = 2,923$$

$$\beta(t_0) = \frac{1}{0.1 + t_0^{0.2}} = \frac{1}{0.1 + 8.96^{0.2}} = 0.606$$

$$\beta_{\rm C}(t,t_0) = \left[\frac{t-t_0}{\beta_{\rm H}+t-t_0}\right]^{0,3} = \left[\frac{365-8,96}{538,779+365-8,96}\right]^{0,3} = 0,758$$

$$\beta_{\rm H} = 1.5 \cdot \left[1 + (0.012 \cdot \text{RH})^{18} \right] \cdot h_0 + 250 \cdot \alpha_3 = 1.5 \cdot \left[1 + (0.012 \cdot 50)^{18} \right] \cdot 187.5 + 250 \cdot 1.030 = 538.779$$

$$\beta_{\rm H} \le 1500 \cdot \alpha_3 = 1500 \cdot 1.030 = 1545$$

$$\alpha_3 = \left(\frac{35}{33}\right)^{0,5} = 1,030$$

Schwindmass ε_{c,s}(t,ts)

Das Schwinden kann durch die Angabe der Schwindverformung $\epsilon_{c,s}(t,ts)$ definiert werden.

 $\varepsilon_{cs}(t, ts) = \varepsilon_{s}(f_{cm}) \cdot \beta_{RH} \cdot \beta_{S}(t, t_{s})$

mit $\epsilon_{s}(f_{cm}) = [160 + \beta_{sc} \cdot (90 - f_{cm})] \cdot 10^{-6}$

Zementfestigkeitsklasse	βsc
32,5	4
32,5 R; 42,5	5
42,5 R; 52,5	8

Bei Luftlagerung (40 % \leq RH < 99 %):

$$\beta_{RH} = -1,55 \cdot \beta_{sRH} \qquad \qquad \text{mit } \beta_{sRH} = 1 - \left(\frac{RH}{100}\right)^3$$

Bei Wasserlagerung (RH \geq 99%):

$$\beta_{\mathsf{RH}} = 0,25$$

$$\beta_{S}(t, t_{s}) = \sqrt{\frac{t - t_{s}}{0.035 \cdot h_{0}^{2} + t - t_{s}}}$$

t ts

Betonalter zum betrachteten Zeitpunkt in Tagen Betonalter zu Beginn des Schwindens in Tagen

Beispiel

Beton C25/30 Zement CEM 42,5 R RH: 50 % Betonalter ts bei Schwindbeginn: 28 Tage Betrachtes Betonalter t: 365 Tage

 $\epsilon_{cs}(t, ts) = \epsilon_{s}(f_{cm}) \cdot \beta_{RH} \cdot \beta_{S}(t, t_{s}) = 0,000445 \cdot 1,365 \cdot 0,464 = 0,282 \ \text{\%}$

mit

$$\epsilon_{s}(f_{cm}) = [160 + \beta_{sc} \cdot (90 - f_{cm})] \cdot 10^{-6} = [160 + 5 \cdot (90 - 33)] \cdot 10^{-6} = 0,000445$$

$$\beta_{\text{RH}} = -1,55 \cdot 0,875 = -1,365$$
 mit $\beta_{\text{sRH}} = 1 - \left(\frac{50}{100}\right)^3 = 0,875$

$$\beta_{S}(t, t_{s}) = \sqrt{\frac{t - t_{s}}{0,035 \cdot h_{0}^{2} + t - t_{s}}} = \sqrt{\frac{365 - 28}{0,035 \cdot 187,5^{2} + 365 - 28}} = 0,464$$

2.3.6.2 Rechnerische Berücksichtigung von Kriechen/Schwinden

Rechnerisch werden Kriechen und Schwinden im Modell wie folgt berücksichtigt.

Kriechen

Wird von der Kenntnis der Dehnungen zum Zeitpunkt t=0 sowie zu einem beliebigen späteren Zeitpunkt *t* ausgegangen, so lässt sich der Kriechbeiwert ω_t folgendermassen angeben.

$$\varphi_t = \frac{\varepsilon_t}{\varepsilon_{t=0}} - 1$$

Die Gleichung wird umgestellt auf die Dehnung zum Zeitpunkt *t*. Damit ergibt sich folgender Zusammenhang, der bei konstanten Spannungen (kleiner als circa 0,4 f_{ck}) gültig ist.

$$\varepsilon_t = \varepsilon_{t=0} \cdot (\varphi_t + 1)$$

Bei grösseren Spannungen als etwa 0,4 f_{ck} steigen die Dehnungen überproportional an, wodurch der linear angenommene Bezug verloren geht.

Für die Berechnung in BETON wird auf eine gängige, für baupraktische Zwecke sinnvolle Lösung zurückgegriffen: Die Spannungs-Dehnungs-Linie des Betons wird um den Faktor $(1+\phi)$ verzerrt.

Verzerrung der Spannungs-Dehnungs-Linie zur Berücksichtigung des Kriechens

Bild 2.15: Verzerrung der Spannungs-Dehnungs-Linie zur Erfassung des Kriecheinflusses

Wie im obigen Bild gezeigt handelt es sich bei der Berücksichtigung des Kriechens um die Annahme konstanter kriecherzeugender Spannungen über die Belastungszeit. Dieser Ansatz führt infolge nicht berücksichtigter Spannungsumlagerungen zu einer geringfügigen Überschätzung der Verformung. Zudem wird mit diesem Modell der Spannungsabbau ohne eine Dehnungsänderung (Relaxation) nur bedingt erfasst: Geht man von einem linear elastischen Verhalten aus, so könnte eine Proportionalität unterstellt werden und die horizontale Verzerrung würde die Relaxation im Verhältnis (1+ ϕ) ebenfalls widerspiegeln. Bei der nichtlinearen Spannungs-Dehnungs-Beziehung geht dieser Zusammenhang allerdings verloren.

Dieses Verfahren stellt somit eine Näherung dar. Eine Verminderung der Spannungen aus Relaxation sowie nichtlineares Kriechen kann nicht oder nur näherungsweise abgebildet werden.

Die in BETON angesetzte Kriechzahl ω_t ist als effektive Kriechzahl zu verstehen. Für Berechnungen im Grenzzustand der Tragfähigkeit bedeutet dies, dass das Verhältnis von kriecherzeugender zu wirkender Last berücksichtigt werden muss. Die gemäss Kapitel 2.3.6.1 ermittelten Kriechzahlen sind deshalb wie folgt anzupassen.

 $\phi_{t,eff} = \frac{kriecherzeugende \ Last}{wirkende \ Last} \cdot \phi_{t}$

Schwinden

Es stellt sich die Frage, wie die für die Berechnung relevanten Verkrümmungen des Bauteils entstehen. Der Grund hierfür ist die behinderte Verkürzung des Betons infolge der Bewehrung. Geht man von den Randbedingungen für übliche "schlanke" Bauteile von einer gleichmässigen Schwinddehnung aus, so entstehen Bauteilkrümmungen nur bei unsymmetrischer Bewehrungsverteilung.

Das Schwinden kann deshalb über eine Vordehnung der Betons bzw. Stahls abgebildet werden. Im Detail bedeutet dies, dass durch eine positive Vordehnung des Betons die "freie Dehnung" des Stahls behindert wird. In gleicher Weise liesse sich die Modellierung über eine negative Vordehnung des Stahls realisieren, sodass der Beton die freie Dehnung des vorgedehnten Stahls behindert. Während sich bei beiden Varianten die Spannungsverteilungen unter Berücksichtigung der jeweiligen Vordehnung identisch einstellen, unterscheidet sich die Dehnungsebene deutlich: Bei einer Vordehnung des Stahls ist aus dem Dehnungszustand sofort ersichtlich, wo Zug- und Druckbereiche infolge des Schwindens auftreten. Bei einer Vordehnung des Betons sind andererseits aus dem Dehnungszustand Aussagen über die tatsächliche Verkürzung des Betons möglich.

Da bei der Berechnung die Ermittlung der Verformungen im Vordergrund steht, ist es nicht von Interesse, ob die Modellierung bei der Steifigkeitsermittlung über eine positive Vordehnung des Betons oder eine negative Vordehnung der Bewehrung erfolgt.

5

Im Modul BETON wird die Schwinddehnung als negative Vordehnung des Betonstahls berücksichtigt.

2.3.7 Grenzzustand der Tragfähigkeit

Nichtlineare Betrachtungen im Grenzzustand der Tragfähigkeit dienen dazu, den Versagenszustand (Mechanismus) in realistischer Weise zu erfassen. Damit lässt sich die grosse Schwierigkeit dieses Nachweises erahnen: Realistische Abschätzungen sind nur mit realistischen Eingangs- und Rechenparametern möglich.

Bei den Materialeigenschaften handelt es sich nicht um deterministische Kenngrössen. Anders als bei der diskreten Querschnittsbemessung, wo immer das Konzept der "lokalen Fehlstellen" Anwendung findet, sind zur Ermittlung von Verformungen und Schnittgrössen mittlere Materialkennwerte zu benutzen.

Ein weiterer Aspekt, das Bauteilverhalten realistisch zu erfassen, ist die Berücksichtigung des Mitwirkens des Betons auf Zug zwischen den Rissen (*Tension Stiffening*, siehe Kapitel 2.3.3). Speziell für Druckglieder wird auch der Einfluss von Kriechen und Schwinden bedeutsam.

Nach EN 1992-1-1, 5.7 sind nichtlineare Verfahren zu verwenden, die zu einer realistischen Steifigkeit führen und Unsicherheiten beim Versagen berücksichtigen. Bemessungsverfahren, die in den massgebenden Anwendungsbereichen gültig sind, dürfen verwendet werden. Ein geeignetes nichtlineares Verfahren der Schnittgrössenermittlung einschliesslich Querschnittsbemessung ist das Verfahren mit den Durchschnittswerten der Materialeigenschaften und dem Ansatz eines globalen Teilsicherheitsfaktors γr, das im deutschen nationalen Anhang zu EN 1992-1-1, 5.7 angeführt bzw. in DIN 1045-1, 8.5 enthalten ist. Dieses Verfahren wird im Folgenden als *Verfahren nach EN 1992-1-1, 5.7* beschrieben.

Nach EN 1992-1-1, 5.7 (5) kann für Bauteile, bei denen die Auswirkungen nach Theorie II. Ordnung nicht vernachlässigt werden dürfen, das Verfahren nach EN 1992-1-1, 5.8.6 angewandt werden.

In BETON stehen beide oben beschriebenen nichtlinearen Berechnungsverfahren zur Verfügung (vgl. Bild 4.2, Seite 68).

2.3.7.1 Materialkennwerte

Verfahren nach EN 1992-1-1, 5.7

Dem Nachweis nach EN 1992-1-1, 5.7 liegen mittlere Materialkennwerte zugrunde, die zur Realisierung eines globalen Sicherheitsbeiwerts kalibriert wurden. Hierdurch ergibt sich eine reduzierte Betondruckfestigkeit, die wegen der Verzerrung der mittleren Betonkennlinie zu Diskussionen geführt hat.

Rechnerische Mittelwerte der Baustofffestigkeiten

• Spannungs-Dehnungs-Linie Stahl nach EN 1992-1-1, Bild NA.3.8.1

\mathbf{f}_{yR}	$= 1,1 * f_{yk}$	
\mathbf{f}_{tR}	= 1,08 * f _{yR}	Betonstahl hohe Duktilität

 $f_{tR} = 1,05 * f_{yR}$ Betonstahl normale Duktilität

- E_s = 200000 N/mm² Elastizitätsmodul Stahl
- Spannungs-Dehnungs-Linie Beton nach EN 1992-1-1, Bild 3.2

 $f_{cR} = 0.85 * \alpha * f_{ck}$ E_{cm}

mittlerer Elastizitätsmodul Beton (Sekante)

Es besteht folgender Zusammenhang zwischen dem globalen Sicherheitsbeiwert γ_R und den mittleren Materialfestigkeiten:

Beton (γ _c =1,5):	$1,5 * 0,85 = 1,275 \sim \gamma_R = 1,3$
Betonstahl ($\gamma_c = 1, 15$):	$1,15 * 1,1 = 1,265 \sim \gamma_R = 1,3$

Das folgende Bild zeigt, wie sich die reduzierte Betondruckspannung f_e im Vergleich zur Spannungs-Dehnungs-Beziehung des Betons mit den rechnerischen Mittelwerten auswirkt. Die starke Verzerrung der Betonkennlinie ist deutlich erkennbar. Diese führt insbesondere in höher ausgelasteten Bereichen zu einer Überschätzung der Dehnungen und somit auch der Krümmungen.

Bild 2.16: Spannungs-Dehnungs-Beziehung für Schnittgrössen und Verformungsberechnung

Bei der Betrachtung der Betonkennwerte fällt auf, dass zwar von reduzierten Spannungen (0,85 * α * f_{ck}) ausgegangen wird, der E-Modul aber nach EN 1992-1-1, 3.1.5 dem mittleren Wert entspricht.

Verfahren nach EN 1992-1-1, 5.8.6

Abschnitt 5.8.6 der Euronorm beschreibt die nichtlineare Berechnung von stabilitätsgefährdeten Bauteilen. Nach EN 1992-1-1, 5.8.6 (3) sind die Spannungs-Dehnungs-Linien auf der Grundlage von Bemessungswerten zu definieren.

Bemessungswerte der Baustofffestigkeiten zur Schnittkraft- und Verformungsberechnung sowie zum Nachweis auf Querschnittsebene

• Spannungs-Dehnungs-Linie Stahl nach EN 1992-1-1, 3.2.7

 $f_{yd} = f_{yk} \, / \, \gamma_s$

$$f_{td} = k * f_{yk} / \gamma_s$$

- E_{sm} = mittlerer Elastizitätsmodul Stahl (200000 N/mm²)
- Spannungs-Dehnungs-Linie Beton nach EN 1992-1-1, 3.1.5

 $f_{cm} = f_{cd} = \alpha * f_{ck} / \gamma_c$

 $E_c = E_{cd} = E_{cm} / \gamma_{cE}$

2.3.7.2 Sicherheitsnachweis

Verfahren nach EN 1992-1-1, 5.7

Nach EN 1992-1-1, 5.7 ist die Sicherheit nichtlinearer Berechnungen über einen globalen Sicherheitsbeiwert γ_R nachzuweisen. Ermöglicht wird dieser "Kunstgriff" durch die (nicht unumstrittene) Modifizierung der mittleren Bauteilsteifigkeiten (f_{cR}, f_{yR} etc.) Die rechnerische Stahlspannung wurde dabei erhöht und die rechnerische Betonspannung vermindert, was wiederum eine Rückführung auf den globalen Sicherheitsbeiwert γ_R = 1,3 (bzw. 1,1 für aussergewöhnliche Einwirkungskombinationen) erlaubt.

Um eine ausreichende Tragfähigkeit zu gewährleisten, ist nachzuweisen, dass folgende Bedingung erfüllt ist:

$$E_d \leq R_d = \frac{R}{\gamma_R} \Big(f_{cR} \, , \, f_{yR} \, , \, f_{tR} \, , \, \ldots \Big)$$

mit

Ed Bemessungswert der massgebenden Einwirkungskombination

R_d Bemessungswert des Tragwiderstandes

γ_R einheitlicher Teilsicherheitsbeiwert auf der Traglastseite

In BETON wird mit einer γ_R -fachen Einwirkung gerechnet. Diese kann adäquat einer inkrementellen Traglastberechnung in Lastschritten aufgebracht werden.

Der Nachweis gilt als erfüllt, wenn die γ_R -fachen Einwirkung grösser als die Traglast ist. Dies entspricht einer Umformung der obenstehenden Gleichung.

$$\gamma_{\mathsf{R}} \cdot \mathsf{E}_{\mathsf{d}} \leq \mathsf{R}_{\mathsf{d}} = \mathsf{R}(\mathsf{f}_{\mathsf{C}\mathsf{R}}, \mathsf{f}_{\mathsf{V}\mathsf{R}}, \mathsf{f}_{\mathsf{t}\mathsf{R}}, \ldots)$$

Damit wird auch der Aspekt berücksichtigt, den Abbau von Zwangsschnittgrössen sicher zu erfassen.

Vor- und Nachteile des Verfahrens

Der massgebliche Vorteil dieser Vorgehensweise liegt auf der Hand: Es handelt sich um die Verwendung nur eines einzigen Werkstoffgesetzes für die gesamte Berechnung. Dies führt zu einer einfacheren Handhabung sowie zu Zeitersparnissen bei der Berechnung, da Schnittkraftermittlung und Nachweis in einem Zuge erledigt werden.

Der Nachteil wird nur dann explizit sichtbar, wenn von der Kompatibilität der Ausdrücke

$$\frac{\mathsf{R}}{\gamma_{\mathsf{R}}} \left(\mathsf{f}_{\mathsf{C}\mathsf{R}}, \mathsf{f}_{\mathsf{Y}\mathsf{R}}, \mathsf{f}_{\mathsf{t}\mathsf{R}}, \ldots \right) = \mathsf{R} \left(\frac{\mathsf{f}_{\mathsf{C}\mathsf{R}}}{\gamma_{\mathsf{R}}}, \frac{\mathsf{f}_{\mathsf{Y}\mathsf{R}}}{\gamma_{\mathsf{R}}}, \frac{\mathsf{f}_{\mathsf{t}\mathsf{R}}}{\gamma_{\mathsf{R}}}, \ldots \right)$$

ausgegangen wird. Bei nichtlinearen Berechnungen ist diese selbstverständlich <u>nicht</u> uneingeschränkt gegeben. Ein Beispiel, bei dem eine derartige Herangehensweise stark auf der unsicheren Seite liegen kann, ist die Berücksichtigung von Zwangsschnittgrössen. Hier führt die Verwendung durch γ_R geteilter Materialkennwerte zu stark verminderten Steifigkeiten, welche wiederum zu einer starken Reduktion der Zwangsschnittgrössen führt. Zur Verdeutlichung der Problematik des verminderten Stahl E-Moduls ist diese Darstellung allerdings sehr gut geeignet.

Die direkte Abminderung der Festigkeiten wird von QUAST [29] näher erläutert und im Bezug auf schlanke Druckglieder kritisch beurteilt.

Zur Verdeutlichung der Zusammenhänge soll vereinfacht ein horizontaler Ast der Betonstahlkennlinie ($f_{yd} = f_{td}$) angenommen werden. Damit ergibt sich der abgeminderte Tragwiderstand R_d zu:

 $(\mathbf{1})$

$$R_{d} = \frac{R}{\gamma_{R}} = \frac{1}{\gamma_{R}} \int a^{*} \sigma_{R} [\varepsilon(y, z)] dA \qquad \text{mit:} a = \begin{cases} 1 \\ z \\ -y \end{cases}$$
$$R_{d} = \frac{1}{\gamma_{R}} \int a [-f_{cR} \le \sigma_{cR}(\varepsilon, f_{cR}) \le 0; -f_{yR} \le \sigma_{sR}(\varepsilon) \le f_{yR}] dA$$
$$R_{d} = \int a [\frac{-f_{cR}}{\gamma_{R}} \le \frac{\sigma_{cR}(\varepsilon, f_{cR})}{\gamma_{R}} \le 0; \frac{-f_{yR}}{\gamma_{R}} \le \frac{\sigma_{sR}(\varepsilon)}{\gamma_{R}} \le \frac{f_{yR}}{\gamma_{R}}] dA$$

Setzt man nun für $\sigma_{sR} = E_s * \epsilon$, so ergibt sich:

$$R_{d} = \int a \left[\frac{-f_{cR}}{\gamma_{R}} \le \frac{\sigma_{cR}(\epsilon, f_{cR})}{\gamma_{R}} \le 0; \frac{-f_{yR}}{\gamma_{R}} \left[\le \frac{E_{s}}{\gamma_{R}} \epsilon \le \frac{f_{yR}}{\gamma_{R}} \right] dA$$

Für die praktische Ermittlung von Schnittgrössen nach Theorie I. Ordnung ohne Zwangsschnittgrössen ist eine Berechnung mit den abgeminderten Steifigkeiten durchaus legitim. Hier wird der Schnittkraftverlauf ohnehin vorwiegend vom Verhältnis der Steifigkeiten unterschiedlicher Bereiche zueinander geprägt.

Problematisch jedoch erweist sich dieses Konzept für den Nachweis schlanker Druckglieder nach Theorie II. Ordnung. Aufgrund der verminderten Systemsteifigkeit kommt es zu einer Überschätzung der Verformungen und somit auch der Schnittgrössen bei Berechnungen nach Theorie II. Ordnung.

Schlanke Druckglieder versagen im Allgemeinen bei Erreichen der Fliessdehnung in der Bewehrung. Somit wird deutlich, dass aufgrund des abgeminderten Elastizitätsmoduls und der resultierenden grösseren Krümmungen bei Fliessbeginn die Verformungen überschätzt werden. Dies führt zu einer geringeren zulässigen Stützenlast oder die Bewehrung ist entsprechend zu erhöhen. QUAST [29] sieht hierfür keine Veranlassung.

Verfahren nach EN 1992-1-1, 5.8.6

Der Nachweis der ausreichenden Tragsicherkeit kann gemäss EN 1992-1-1, 5.8.6 (3) auf der Grundlage von Bemessungwerten (f_{cd}, f_{yd}, ...) der Baustoffkenngrössen direkt geführt werden. Zur Ermittlung der Schnittgrössen und Verformungen sind gemäss Absatz (3) ebenfalls die auf Grundlage von Bemessungswerten definierten Spannungs-Dehnungs-Linien zu verwenden.

Hinweis zum deutschen NAD DIN EN 1992-1-1, 5.8.6

Nach dem Nationalen Anhang Deutschland EN 1992-1-1, 5.8.6 (NDP 5.8.6 (3)) dürfen die Schnittgrössen und Verformungen mit mittleren Baustoffkennwerten (f_{cm}, f_{ctm}, ...) bestimmt werden. Der Nachweis der Grenztragfähigkeit in den massgebenden Schnitten ist jedoch mit den Bemessungswerten (f_{cd}, f_{yd}, ...) der Baustoffkenngrössen zu führen.

Dieses "inkonsistente" Vorgehen sorgte in der Fachwelt für Diskussionsstoff. Problematisch bei diesem Ansatz ist, dass bei statisch unbestimmten Systemen teilweise keine Konvergenz der Ergebnisse erreicht werden kann: Die mit den Mittelwerten der Baustoffeigenschaften errechneten Schnittgrössen können bei der Bemessung mit den anzusetzenden Designwerten nicht aufgenommen werden. Eine Vergrösserung der Bewehrung führt zu einer Vergrösserung der Steifigkeit der betreffenden Bereiche, wodurch im nächsten Iterationsschritt wiederum eine Erhöhung der Bewehrung erforderlich wird. Anzumerken bleibt weiterhin, dass eine Ausnutzung der plastischen Reserven im Grenzzustand der Tragfähigkeit kaum möglich ist, da das rechnerische Bemessungsmoment M_{Ed} (Designwerte für Baustofffestigkeiten) den Wert der Fliessmoments M_y (mittleren Baustoffeigenschaften) nicht erreichen wird.

Im Modul BETON erfolgt der Sicherheitsnachweis gemäss Norm durch eine Gegenüberstellung von vorhandener Bewehrung und für die Bemessungswerte der Baustoffkenngrössen ermittelter erforderlicher Bewehrung. Dies ist bei einer händischen Korrektur der Bewehrung (Stichwort Steifigkeitserhöhung) immer mit zu beachten.

2.3.8 Grenzzustand der Gebrauchstauglichkeit

Im Rahmen der DIN 1045-1 und EN 1992-1-1 halten auch ausführlichere Nachweise im Grenzzustand der Gebrauchstauglichkeit immer häufiger Einzug in die Ingenieurbüros.

Der Grenzzustand der Gebrauchstauglichkeit gliedert sich in drei Untergruppen:

- Begrenzung der Spannungen (DIN 1045-1, 11.1 bzw. EN 1992-1-1, 7.2)
- Begrenzung der Rissbreiten (DIN 1045-1, 11.2 bzw. EN 1992-1-1, 7.3)
- Begrenzung der Verformungen (DIN 1045-1, 11.3 bzw. EN 1992-1-1, 7.4)

Im Folgenden wird ausschliesslich die Begrenzung der Verformung beschrieben. Dabei wird auch der Einfluss des Kriechens und Schwindens berücksichtigt.

Der Grund für die genauere Untersuchung der Verformungen liegt wieder am nichtlinearen Verhalten des Verbundbaustoffs Stahlbeton. Infolge der Rissbildung reduziert sich die Steifigkeit im Verhältnis zum reinen Zustand I (ungerissen) in bestimmten Bereichen erheblich. Wird somit die Rissbildung nicht berücksichtigt, führt dies zu einer Unterschätzung der auftretenden Verformungen. Unter Berücksichtigung von Kriechen und Schwinden kann sich durchaus die 3- bis 8-fache Verformung – je nach Beanspruchungszustand und Randbedingungen – einstellen.

Als Grundlage der Verformungen werden die massgebenden Krümmungen ermittelt. Dabei darf die Mitwirkung des Betons auf Zug zwischen den Rissen nicht vergessen werden, da sonst unrealistische Ergebnisse zu erwarten sind.

Für die richtige Interpretation der Ergebnisse nichtlinearer Berechnungen ist die Kenntnis der wichtigsten Einflussgrössen unabdingbar. Deshalb werden die wichtigsten Kenngrössen, die die Steifigkeiten im Zustand I und Zustand II beeinflussen, gegenübergestellt:

Einflussgrösse	Zustand I	Zustand II
Kriechen (hier als Abminderung des Beton-E-Moduls)	Die Steifigkeit wird hauptsächlich durch den Beton gesteuert. Ein abgeminderter E-Modul führt somit zu einer deutlichen Reduk- tion der Steifigkeit.	Einfluss geringfügig
Bewehrungsgrad	Einfluss geringfügig (Begründung siehe <i>Kriechen</i>)	Die Steifigkeit im Zustand II wird hauptsächlich durch die Beweh- rung gesteuert. Der Einfluss ist deshalb enorm.
Normalkraft	Einfluss kaum gegeben (Bei vereinfachten linear-elasti- schen Betrachtungen besteht gar kein Einfluss.)	Eine Zugkraft vermindert die Stei- figkeit erheblich. Dies ist ggf. bei der Modellierung des Schwindens zu berück- sichtigen, da diese zu Zugspan- nungen im Beton führt.

Tabelle 2.1: Einflussgrössen und deren Wichtung im ungerissenen und gerissenen Zustand

Materialkennwerte

Zur Berechnung der Verformung benutzt man im Allgemeinen die mittleren Baustoffeigenschaften. Das Mitwirken des Betons auf Zug zwischen den Rissen (*Tension Stiffening*) ist ebenfalls durch geeignete Ansätze (siehe Kapitel 2.3.3) zu berücksichtigen, da anderenfalls keine realistische Verformungsberechnung möglich ist.

Die mittleren Materialkennwerte nach DIN 1045-1 und EN 1992-1-1 zur Ermittlung der Verformungen unterscheiden sich nicht bzw. nur marginal.

Rechnerische Mittelwerte der Baustofffestigkeiten

• Spannungs-Dehnungs-Linie Stahl nach EN 1992-1-1, Bild NA.3.8.1

$f_y = f_{yk}$	
$f_t = f_{yk}$	für Gebrauchsbetrachtungen
$E_{sm} = 200000 \text{ N/mm}^2$	mittlerer Elastizitätsmodul Stahl

- Spannungs-Dehnungs-Linie Beton nach EN 1992-1-1, 3.1.5 und 5.7
 - fcmmittlere BetondruckfestigkeitEcmmittlerer Elastizitätsmodul Beton (Sekante)

2.3.9 Konvergenz

Wie schnell und sicher eine nichtlineare Berechnung konvergiert, hängt von einer Vielzahl von Faktoren ab und kann für den allgemeinen Fall nur tendenziell angegeben werden.

Hauptansatzpunkt der Konvergenzbeurteilung ist das verwendete Verfahren. So ist bekannt, dass Verfahren, die auf tangentialen Verbesserungen (tangentiale Steifigkeitsmatrix) basieren, meist schneller konvergieren (quadratische Konvergenz im Bereich der gesuchten Lösung) als Verfahren, die mit Sekantensteifigkeiten eine iterative Verbesserung ermitteln. Jedoch sind Sekantenverfahren im Allgemeinen numerisch stabiler, speziell im Bereich sehr flacher Gradienten nahe dem Versagenszustand (tangentiale Steifigkeit geht gegen null). Selbstverständlich ist keine Pauschalierung möglich, da die Konvergenz durch inkrementelle Lastaufbringung, diverse Iterationsverfahren (NEWTON-RAPHSON, RIKS/WEMPNER/WESSELS etc.) und viele andere Parameter beeinflusst wird.

Im Folgenden soll das Konvergenzverhalten des verwendeten Algorithmus kurz vorgestellt werden. BETON führt die eigentliche Iteration des Dehnungszustandes auf Querschnittsebene durch. Das bedeutet, dass ausgehend von einem Schnittkraftverlauf innerhalb eines Iterationszyklus immer neue, aktuelle Dehnungs-Spannungs-Zustände berechnet werden. Die Konvergenz ist dann erreicht, wenn sich ein Gleichgewichtszustand einstellt, also der Schnittgrössenverlauf in zwei aufeinanderfolgenden Iterationsschritten innerhalb einer vorgegebenen Schranke verbleibt.

Dieses Vorgehen allein ist bei geringeren Schwankungen der Steifigkeiten in statisch unbestimmten Tragwerken sehr stabil. Probleme ergeben sich allerdings bei sprunghafter Änderung bzw. grösseren Steifigkeitssprüngen. Hier kann es zu einem Oszillieren der Berechnung kommen, die auch nicht mittels adaptiver Teilung abgefangen werden kann. Um diese Inkonvergenz zu umgehen, wurde eine gedämpfte Steifigkeitsreduktion in die Berechnung implementiert. Dabei wird der Sprung zwischen den Steifigkeiten zweier Iterationsschritte entsprechend der Vorgaben des Benutzers gedämpft. Die Berechnung verlangsamt sich dadurch etwas, sie ist aber numerisch deutlich stabiler. Es bleibt anzumerken, dass eine Dämpfung bei statisch bestimmten Systemen keinen Sinn ergibt.

Damit ergeben sich die beiden steuerbaren Abbruchkriterien der nichtlinearen Berechnung:

 $\varepsilon_1 = |(1/\gamma)_i - (1/\gamma)_{i-1}| \leq \text{Toleranz 1}$

 γ ist ein Indikator für das Verhältnis von Bruchmoment zu wirkendem Moment. Somit berücksichtigt das Abbruchkriterium ε_1 die Änderung der Schnittkräfte.

 $\epsilon_2 = (EI_i - EI_{i-1})^2 / (EI_i)^2 \qquad \leq \text{ Toleranz 2}$

Dieses Kriterium kontrolliert den Steifigkeitsunterschied zweier aufeinander folgender Iterationsschritte an den Knoten.

Zusätzlich wird intern die Verformungsdifferenz zwischen zwei Iterationen kontrolliert:

 $\varepsilon_3 = |\mathbf{u}_i - \mathbf{u}_{i-1}| \leq \text{Toleranz 3 (fix)}$

Die maximale Verformungsdifferenz ist fix auf den Wert \leq 0,1 mm eingestellt.

Konvergiert die nichtlineare Berechnung nicht, bestehen im Dialog *Einstellungen für nichtlineare Berechnung* verschiedene Möglichkeiten zur Verbesserung des Konvergenzverhaltens.

Berechnungsansatz Tension Stiffenin	g Konvergenzeinstellungen		
Adaptive Stabteilung		Iterationskennwerte	
Parameter m: 20 📚 🚺 n: 40 📚]	Maximale Anzahl der Iterationen pro Laststufe:	50 🚔
		Dämpfung der Steifigkeitsänderung in einem	Iterationszyklus
Teilungsfaktor bei Verfeinerung: 1 震		Dämpfungsfaktor:	0.500 🚖
		Abbruchschranken	
Grenzlängen der Stabteilungen		$\varepsilon_1 = [(1/\gamma)_i - (1/\gamma)_{i-1}]$	0.0010 😂
Maximal: 0.500 😭 [m]		$\epsilon_2 = (E _i - E _{i-1})^2 / (E _i)^2 :$	0.0010 🚔
Minimal: 0.100 😭 [m]		so = Lu==u + U==u + L/ Dämpfungsfaktor	1.0000 🖎 [m
Laststufen		es = Fomax, Fomax, FTF7 Dempforigsfactor.	1.0000 💌 [m
Laststufen Anzahl der Laststufen: 3 💭		100 90 101 102	
Laststufen Anzahl der Laststufen: 3 💭 Lastaufbringung: 📀 Linear 🔿 Trilinear:		100 100 100 100	
Laststufen Anzahl der Laststufen: 3 Lastaufbringung: O Linear Trilinear: Zwischen-Last- schritt stufe	Aufgebrachter Lastantei [%]	100 90 100 100 100 100 100 100 100 100 1	
Laststufen Anzahl der Laststufen: 3 Lastaufbringung: O Linear Trilinear: Zwischen-Last- schritt stufe	Aufgebrachter Lastanteil [%] 50.0	100 90 100 100 100 100 100 100 100 100 1	

Bild 2.17: Dialog Einstellungen für nichtlineare Berechnung, Register Konvergenzeinstellungen

Erhöhung der Iterationsanzahl

Der Iterationsprozess hängt sehr von Querschnittsform, System und Belastung ab. Dadurch kann es zu einem unterschiedlichen Konvergenzverhalten kommen. Stark auf Druck beanspruchte Bauteile konvergieren in der Regel etwas langsamer. Da die aktuellen Abweichungen ϵ_1 und ϵ_2 während der Berechnung ständig gezeigt werden, kann auf einfache Art und Weise entschieden werden, ob eine Erhöhung der Iterationszahl (langsame, aber stete Konvergenz) sinnvoll ist.

Erhöhung der Anzahl an Laststufen ggf. trilinear

Im ersten Lastschritt wird als Ausgangsgrösse die linear-elastische Steifigkeit verwendet. Damit kann sich bei Berechnung mit nur einem Lastschritt im ersten Iterationszyklus eine sehr grosse Steifigkeitsdifferenz ergeben, welche die Konvergenz behindert. In diesem Fall kann es zweckmässig sein, die Last schrittweise aufzubringen.

Grenzlänge der Stabteilung und adaptive Stabteilung

Mit dieser Option kann effizient der Steifigkeitsverlauf beeinflusst werden. Da BETON mit konstanten mittleren Steifigkeiten im Verlauf eines FE-Elements rechnet, ist es zweckmässig, im Bereich grösserer Steifigkeitsänderungen eine feinere Elementierung zu wählen (siehe Bild 2.2, Seite 17). Mit einer adaptiven Teilung übernimmt BETON diese Aufgabe über eine Kontrolle der Steifigkeitsunterschiede an den Endknoten eines Elements. Wird die festgelegte Toleranzgrenze überschritten, werden zusätzlich Zwischenteilungen eingefügt. Nähere Angaben zur Funktionalität sind über die [Info]-Schaltfläche direkt im Dialog zugänglich.

Verringerung des Dämpfungsfaktors

Durch eine gezielte Verminderung der Steifigkeitssprünge zwischen zwei Iterationsschritten kann dem Oszillieren der Berechnung entgegengewirkt werden. Bei zwei aufeinander folgenden Iterationsschritten wird der Steifigkeitsunterschied an einem Knoten ermittelt. Der Dämpfungsfaktor charakterisiert den Anteil der Steifigkeitsdifferenz, der für die neu angesetzte Steifigkeit des nächsten Iterationsschrittes berücksichtigt wird:

 $E \cdot I_{i,qedampft} = E \cdot I_{i-1} \cdot (1 - Dampfungsfaktor) + E \cdot I_i \cdot Dampfungsfaktor$

Das heisst: Je grösser der Dämpfungsfaktor, umso geringer ist der Einfluss der Dämpfung. Bei einem Faktor von 1 übt die Dämpfung keinen Einfluss auf die iterative Berechnung aus.

3. Eingabedaten

Alle Eingaben zur Definition der Bemessungsfälle erfolgen in Masken. Eine [Pick]-Funktion ermöglicht es, die zu bemessenden Objekte grafisch auszuwählen.

Nach dem Aufruf des Zusatzmoduls wird in einem neuen Fenster links ein Navigator angezeigt, der alle aktuell anwählbaren Masken verwaltet. Darüber befindet sich eine Pulldownliste mit den eventuell bereits vorhandenen Bemessungsfällen (siehe Kapitel 8.1, Seite 112).

Wird BETON zum ersten Mal in einer RSTAB-Position aufgerufen, so liest das Zusatzmodul folgende bemessungsrelevante Daten automatisch ein:

- Stäbe und Stabsätze
- Lastfälle, Lastfallgruppen, Lastfallkombinationen und Superkombinationen
- Materialien
- Querschnitte
- Schnittgrössen (im Hintergrund, sofern berechnet)

Die Ansteuerung der Masken erfolgt entweder durch Anklicken eines bestimmten Eintrags im BETON-Navigator oder durch Blättern mit den beiden links gezeigten Schaltflächen. Die Funktionstasten [F2] und [F3] blättern ebenfalls eine Maske vorwärts bzw. zurück.

ОК
Abbrechen

G.

Mit [OK] werden die getroffenen Eingaben gesichert und das Modul BETON verlassen, während [Abbruch] ein Beenden des Zusatzmoduls ohne Sicherung zur Folge hat.

3.1 Basisangaben

In Maske 1.1 *Basisangaben* werden die zu bemessenden Einwirkungen ausgewählt. Die für den Tragfähigkeits-, Gebrauchstauglichkeits- und Brandschutznachweis relevanten Lastfälle, LF-Gruppen und -Kombinationen lassen sich in den jeweiligen Registern zuweisen.

FA1 - Stahlbetonbernessung v Eingabedaten Basisangaben Materialien	a ▼ ↓1 Basisangaben Stahlbetonbernessung nach Norm: CISIA 262 ▼ Nationaler Anhang: ▼ ♥
⊢ Querschnite ⊢ Lager Bewehrung └─ 1	Tragfähigkeit Gebrauchstauglichkeit Existierende Lastfälle IF2 LF3 Gk+psi*Qk1_feld 1 LF3 Gk+psi*Qk1_feld 1 LF4 gama*(Gk+Qk1_feld 1) gama*(Gk+Qk1_feld 2) IF3 LF7 gama*(Gk+Qk1_feld 2) LF7 Test LF7 Test LF7 Test ILF7 Test ILF7 <t< th=""></t<>
	Kommentar

Bild 3.1: Maske 1.1 Basisangaben, Register Tragfähigkeit

Stahlbetonbemessung nach Norm / Nationaler Anhang

Die Bemessungsnorm wird in dieser Maske einheitlich für alle Nachweisarten festgelegt. Es stehen folgende Stahlbetonnormen zur Auswahl.

Bild 3.2: Auswahl der Bemessungsnorm

Für EN 1992-1-1:2004 kann in der Liste rechts der Nationale Anhang ausgewählt werden.

Nationaler Anhang:	CEN	X 💌
	CEN	EU K
	BS	Vereinigtes Königreich
	CSN	Tschechien
	🔳 DIN	Deutschland
	DK	Dänemark
	NEN	Niederlande
	NF	Frankreich
	in PN	Polen
	🛨 SFS	Finnland
	SIST	Slowenien
	55 🔚	Schweden
	🚝 SS	Singapur
	💴 STN	Slowakei
	UNI	Italien
	ÖNOR	M Österreich

~

Mit der Schaltfläche [Bearbeiten] lassen sich die Beiwerte des gewählten Nationalen Anhangs überprüfen und ggf. anpassen.

urocode-Einstellungen			
Nationaler Anhang Norm: 🚾 CEN			
Eurocode-Einstellungen			
🖃 2. Grundlagen für die Tragwerksplanung			
😑 2.4.2.4 Teilsicherheitsbeiwerte für Eigenschaften von Baustoffen			
 Teilsicherheitsbeiwert f ür Beton im Grenzzust änd der Tragf ähigkeit 	γo	1.5000	
 Teilsicherheitsbeiwert f ür Stahl im Grenzzust änd der Tragf ähigkeit 	γs	1.1500	
 Teilsicherheitsbeiwert f ür Beton im Grenzzust änd der Gebrauchstauglichke 	eit γo	1.0000	
Teilsicherheitsbeiwert f ür Stahl im Grenzzust änd der Gebrauchstauglichkei	t γ _s	1.0000	
🖂 3. Baustoffe			
🕀 3.1 Beton			
 Maximal zulässige Betondruckfestigkeitsklasse 	Cmax	C90/105	
 Beiwert zur Berücksichtigung Langzeiteinwirkung auf Druckfestigkeit 	acc	1.0000	
 Beiwert zur Berücksichtigung Langzeiteinwirkung auf Zugfestigkeit 	act	1.0000	
- □ 3.2 Stahl			
 Maximallwert f ür die Flie ßspannung 	fyk	600.000	N/mm ²
Faktor zur Ermittlung des Designwertes der Grenzdehnung Betonstahl	kud1	0.9000	
🖂 4. Dauerhaftigkeit und Betondeckung			
😑 4.4.1 Mindestbetondeckung für Betonstahl			
 Anforderungsklasse 	A.K.	S4	
 Modifikationen der Anforderungsklasse 			
 Mindestbetondeckung 			
 Additives Sicherheitselement zur Erh	∆c _{dur,y}	0.00	mm
 Abminderungsbeiwert bei Verwendung von rostfreiem Stahl 	∆c _{dur,st}	0.00	mm
 Abminderungsbeiwert f ür Beton mit zus ätzlichem Schutz 	∆Cdur,add	0.00	mm
🖃 Erhöhungswerte bei Verschleißbeanspruchung			
- Erhöhungswert	k1	5.00	mm
Erhöhungswert	k2	10.00	mm
Erhöhungswert	k3	15.00	mm

Bild 3.4: Dialog Eurocode-Einstellungen

Im Dialog *Eurocode-Einstellungen* kann über die Schaltfläche [Neu] eine Kopie des aktuellen Anhangs erzeugt werden. Nach dem Ändern der Parameter lässt sich die Kopie unter einem anderen Namen speichern. Die benutzerdefinierten Parameter stehen anschliessend in der Liste *Nationaler Anhang* positionsübergreifend zur Verfügung.

Symbol	Land
Norm: CEN (kopiert)	Kaledonien

Bild 3.5: Anlegen eines benutzerdefinierten Nationalen Anhangs

3.1.1 Tragfähigkeit

Das erste Register der Maske 1.1 Basisangaben ist im Bild 3.1 auf Seite 44 dargestellt.

Existierende Lastfälle / LF-Gruppen und LF-Kombinationen

In diesen beiden Abschnitten werden alle in RSTAB definierten Einwirkungen und Kombinationen aufgelistet, die für die Bemessung infrage kommen. Die Schaltfläche [▶] überträgt selektierte Lastfälle oder Lastfallgruppen, -kombinationen sowie Superkombinationen in die Liste *Zu bemessen* nach rechts. Die Auswahl kann auch per Doppelklick erfolgen. Die Schaltfläche [▶▶] übergibt die komplette Liste nach rechts.

Ist ein Lastfall mit einem Sternchen (*) gekennzeichnet, so kann dieser nicht bemessen werden: Es sind entweder keine Lasten definiert oder es liegt ein Imperfektionslastfall vor.

Zu bemessen

In der rechten Spalte werden die für den Nachweis ausgewählten Einwirkungen aufgelistet. Mit der Schaltfläche [◄] lassen sich selektierte Lastfälle, Lastfallgruppen oder -kombinationen wieder aus der Liste entfernen. Auch hier kann die Auswahl per Doppelklick erfolgen. Die Schaltfläche [◄] leert die ganze Liste.

Die Bemessung einer einhüllenden *Oder*-Lastfallkombination verläuft schneller als die Bemessung aller pauschal übernommenen Lastfälle oder Lastfallgruppen. Andererseits ist bei einer LK-Bemessung der Einfluss der enthaltenen Einwirkungen wenig transparent.

Nichtlineare Berechnung Zustand II

Soll der Nachweis der Tragfähigkeit nach dem nichtlinearen Bemessungsverfahren erfolgen, ist das Kontrollfeld unterhalb der Liste *LF-Gruppen und LF-Kombinationen* zu aktivieren. Das nichtlineare Verfahren wird im Theoriekapitel 2 erläutert. Das Kapitel 2.3.7 auf Seite 36 stellt die nichtlineare Analyse für den Grenzzustand der Tragfähigkeit ausführlich vor.

Nichtlineare Analysen nach EN 1992-1-1 können nur für Lastfälle und Lastfallgruppen erfolgen, <u>nicht</u> für Lastfallkombinationen. Die Untersuchung ist getrennt oder zusammen für den Grenzzustand der Tragfähigkeit und Gebrauchstauglichkeit möglich.

Die Schaltfläche [Bearbeiten] ruft den Dialog *Einstellungen für nichtlineare Berechnung* auf. Dieser Dialog besteht aus drei Registern, die im Kapitel 4.2 ab Seite 68 erläutert sind.

Für die nichtlineare Berechnung lässt sich optional der Einfluss infolge *Kriechen/Schwinden berücksichtigen*. Nähere Informationen hierzu finden sich im Kapitel 2.3.6 auf Seite 30. Ist das Kontrollfeld aktiv, so können in Maske 1.3 *Querschnitte* die Kriechzahl und das Schwindmass definiert werden (siehe Bild 3.11, Seite 52).

Kommentar

Dieses Eingabefeld steht für eine benutzerdefinierte Anmerkung zur Verfügung, die beispielsweise den aktuellen BETON-Bemessungsfall erläuternd beschreibt.

 Kriechen/Schwinden berücksichtigen

3.1.2 Gebrauchstauglichkeit

All'stanibetonbetnessung v Eingabedaten - <mark>Basisangaben</mark> Auerschnitte Querschnitte	Stahlbetonbemessung nach Norm: SIA 262 Nationaler Anhang: Tranfähinkalt Gebruuchetsundicklool	
Bewehrung ☐ 1	Existierende Lastfälle Zu bemessen LF1 Gk+Qk1_feld 1u 2 LF2 Gk+psf*Qk1_feld 1 LF3 Gk+psf*Qk1_feld 1 LF3 gama*(Gk+Qk1_feld 1u 2) LF5 gama*(Gk+Qk1_feld 1u 2) LF7 Test LF7 Test LF7 Test E >> E >> Test > E >>	Stape Betonbemessur
	Kommentar	

Bild 3.6: Maske 1.1 Basisangaben, Register Gebrauchstauglichkeit

Existierende Lastfälle / LF-Gruppen und LF-Kombinationen

In diesen beiden Abschnitten werden alle in RSTAB definierten Einwirkungen und Kombinationen aufgelistet. Die Schaltfläche [▶] überträgt selektierte Lastfälle, Lastfallgruppen, Lastfallkombinationen oder Superkombinationen in die Liste *Zu bemessen* nach rechts. Die Auswahl kann auch per Doppelklick erfolgen. Mit der Schaltfläche [▶▶] wird die ganze Liste nach rechts übergeben.

Zu bemessen

>

✓ Nichtlineare Berechnung

Kriechen/Schwinden

berücksichtigen

Zustand II...

In der rechten Spalte werden die für den Gebrauchstauglichkeitsnachweis ausgewählten Einwirkungen aufgelistet. Mit der Schaltfläche [◄] lassen sich selektierte Lastfälle, Lastfallgruppen oder -kombinationen wieder aus der Liste entfernen. Auch hier kann die Auswahl per Doppelklick erfolgen. Die Schaltfläche [◀◀] leert die ganze Liste.

Nichtlineare Berechnung Zustand II

Soll der Nachweis der Gebrauchstauglichkeit nach dem nichtlinearen Bemessungsverfahren erfolgen, ist das Kontrollfeld unterhalb der Liste *LF-Gruppen und LF-Kombinationen* zu aktivieren. Das Kapitel 2.3.8 auf Seite 40 stellt die nichtlineare Analyse für den Grenzzustand der Gebrauchstauglichkeit ausführlich vor.

Nichtlineare Analysen nach DIN 1045-1 oder EN 1992-1-1 können nur für Lastfälle und Lastfallgruppen erfolgen, nicht für Lastfallkombinationen. Die Untersuchung ist getrennt oder zusammen für den Grenzzustand der Tragfähigkeit und Gebrauchstauglichkeit möglich.

Die Schaltfläche [Bearbeiten] ruft den Dialog *Einstellungen für nichtlineare Berechnung* auf. Die drei Register dieses Dialogs sind im Kapitel 4.2 ab Seite 68 beschrieben.

Für die nichtlineare Berechnung lässt sich optional der Einfluss infolge *Kriechen/Schwinden berücksichtigen*. Nähere Informationen hierzu finden sich im Kapitel 2.3.6 auf Seite 30. Ist das Kontrollfeld aktiv, so können in Maske 1.3 *Querschnitte* die Kriechzahl und das Schwindmass definiert werden (siehe Bild 3.11, Seite 52).

3.2 Materialien

Diese Maske ist zweigeteilt. Im oberen Abschnitt sind die bei der Bemessung verwendeten Beton- und Stahlgüten aufgelistet. Im Abschnitt *Materialkennwerte* unterhalb werden die Eigenschaften des aktuellen Materials angezeigt, d. h. des Materials, dessen Zeile im oberen Abschnitt selektiert ist.

Bei der Bemessung nicht benutzte Materialien erscheinen in grauer, unzulässige Materialien in roter Schrift. Modifizierte Materialien werden in blauer Schrift dargestellt.

Die zur Schnittgrössenermittlung in RSTAB benötigten Materialkennwerte sind im Kapitel 5.2 des RSTAB-Handbuchs ausführlich beschrieben. Die bemessungsrelevanten Materialeigenschaften werden in der globalen Materialbibliothek mit gespeichert und sind automatisch voreingestellt.

Die Einheiten und Nachkommastellen der Materialkennwerte und Festigkeiten lassen sich über das Menü **Einstellungen** → **Einheiten und Dezimalstellen** anpassen (siehe Bild 8.6, Seite 115).

Bild 3.7: Maske 1.2 Materialien

Materialbezeichnung

Beton-Festigkeitsklasse

Die in RSTAB definierten Beton-Materialien sind voreingestellt; andersartige Materialien werden in roter Schrift dargestellt. Wenn eine manuell eingetragene *Materialbezeichnung* mit einem Eintrag der Materialbibliothek übereinstimmt, liest BETON die Materialkennwerte ein.

Die Auswahl eines Materials ist über die Liste möglich: Platzieren Sie den Cursor in Spalte A und klicken dann die Schaltfläche [♥] an oder betätigen die Funktionstaste [F7]. Es öffnet sich die links dargestellte Liste. Nach der Übernahme werden die Kennwerte aktualisiert.

In der Liste werden nur Materialien der Kategorie *Beton* angeführt, die dem jeweiligen Bemessungskonzept der gewählten Norm entsprechen. Die Übernahme von Materialien aus der Bibliothek ist nachfolgend beschrieben.

Betonstahl

In dieser Spalte ist eine gängige Stahlgüte voreingestellt, die dem Bemessungskonzept der gewählten Norm entspricht.

Wie bei der Beton-Festigkeitsklasse ist die Auswahl eines anderen Betonstahls über die Liste möglich: Platzieren Sie den Cursor in Spalte B und klicken dann die Schaltfläche [♥] an oder betätigen die Funktionstaste [F7]. Es öffnet sich die links dargestellte Liste. Nach der Übernahme werden die Kennwerte aktualisiert.

Die Übernahme von Materialien aus der Bibliothek ist nachfolgend beschrieben.

Materialbibliothek

Eine Vielzahl von Beton- und Betonstahlmaterialien ist in einer Bibliothek hinterlegt. Diese wird aufgerufen über die links dargestellte Schaltfläche, die jeweils für die Beton-Festigkeitsklassen und Betonstähle unterhalb der Spalte A bzw. B zur Verfügung steht.

Filter	Material zum Übernehmen			
vlaterial Kategorie:	BSt 550 S (A)		EN 1992-1-1:	2005-10
Materian Categorie.	BSt 550 M (A)		EN 1992-1-1:	2005-10
Betonstahl	BS(550 S (B)		EN 1992-1-1:	2005-10
Norm-Gruppe:	BSE500 S (A)		EN 1992-1-1	2005-10
The second	BSt 500 M (A)		EN 1992-1-1:	2005-10
EN	BSt 500 S (B)		EN 1992-1-1:	2005-10
Norm	BSt 500 M (B)		EN 1992-1-1:	2005-10
	BSt 420 S (B)		EN 1992-1-1:	2005-10
EN 1992-1-1: 2000-10	BSE450 S (6)		EN 1992-1-1	2005-10
	BSt 450 S (C)		EN 1992-1-1:	2005-10
Anzeigen:				
Materialien von 'alten' Normen				
Nur Favoriten				[
VE				U
Materialkennwerte			BSt 500 S (A) B	EN 1992-1-1: 2005
🗆 RSTAB-Relevante				
— Elastizitätsmodul		E	20000.00	kN/cm ²
 Schubmodul 		G	7700.00	kN/cm ²
 Poissonsche Zahl (Querdehnza 	ahl)	μ	0.300	
 Spezifisches Gewicht 		γ	78.50	kN/m ³
 Temperaturdehnzahl (Wärmede 	ehnzahl)	α	1.0000E-05	1/°C
 Teilsicherheitsbeiwert 		2'M	1.00	
Domosounos Doloupato				
- Demessungs-meievante		Es	20000.00	kN/cm ²
Elastizitätsmodul		E+L.	52.50	kN/cm ²
Elastizitätsmodul Charakteristische Zugfestigkeit		TER	25,000	‰
Elastizitätsmodul Charakteristische Zugfestigkeit Grenzdehnung		εuk	20.000	
Elastizitätsmodul Charakteristische Zugfestigkeit Grenzdehnung Charakteristische Streckgrenze	3	Euk Fyk	50.00	kN/cm ²
Elastizitätsmodul Charakteristische Zugfestigkeit Grenzdehnung Charakteristische Streckgrenze	3	εuk fyk	50.00	kN/cm ²
Elastizitäsmodul Charakteristische Zugfestigkeit Grenzdehnung Charakteristische Streckgrenze	3	Euk fyk	50.00	kN/cm ²

Bild 3.8: Dialog Material aus Bibliothek übernehmen

Die normrelevanten Materialien sind bereits als Vorauswahl eingestellt, sodass im Abschnitt *Filter* keine anderen Kategorien oder Normen zugänglich sind. Das Material können Sie in der Liste *Material zum Übernehmen* auswählen und dessen Kennwerte im unteren Bereich des Dialogs kontrollieren. Die Materialeigenschaften sind hier grundsätzlich nicht editierbar.

Mit [OK] oder [→] wird das gewählte Material in die BETON-Maske 1.2 übernommen.

<u>
</u>

Im Kapitel 5.2 des RSTAB-Handbuchs ist ausführlich beschrieben, wie Materialien ergänzt oder neu sortiert werden können. Auf diese Weise lässt sich über die Schaltfläche [Neu] ein neuer Beton oder Betonstahl mit benutzerdefinierten Materialkennwerten anlegen und für spätere Anwendungszwecke speichern.

B500A	-
B500A	
B500B	
B450C	

3.3 Querschnitte

In dieser Maske werden die nachweisrelevanten Querschnitte verwaltet.

BETON - [Rahmen]								
Datei Bearbeiten Eins	tellungen	Hilfe						
A1 - Stahlbeton-Berness	ung 🔽	1.3 Qu	erschnit	ite				
Eingabedaten			A	В	(C	D	E	Rechteck 900.0/600.0
Basisangaben		Querchn.	Material		Opti-		Kriechzahl /	
Materialien		Nr.	Nr.	Querschnittsbezeichnung	mieren	Anmerkung	Schwinddehnung	
Querschnitte		1	1	Rechteck 900/600			2.806/-0.408	
Lager		2	1	Rechteck 900/900			2.722/-0.407	
Bewehrung		3	1	Rechteck 1000/1400			2.631/-0.381	
1 - Riegel		4	1	Rechteck 550/1400			2.771/-0.408	
2 - Stützen		5	1	Rechteck 550/900			2.827/-0.408	
		6	1	Rechteck 400/500			3.008/-0.447	
		7	2	HE-B 700		32) 35) 36) 37) 36)	0.000/0.000	
		8	2	IS 1500/200/10/15/15		32) 35) 36) 37) 36)	0.000/0.000	
								[r
			-					
			3					
0 5 5		Berechr	iuna	Kontrolle Meldungen		Grafi	k	OK Abbrech
					,			

Bild 3.9: Maske 1.3 Querschnitte

Querschnittsbezeichnung

Die in RSTAB verwendeten Querschnitte sind beim Aufruf der Maske voreingestellt, ebenso die zugeordneten Materialnummern.

Die vorgegebenen Querschnitte können jederzeit für die Bemessung abgeändert werden. Die Querschnittsbezeichnung eines modifizierten Profils wird in dieser Spalte mit blauer Schrift hervorgehoben.

Zum Ändern eines Profils wird die neue Querschnittsbezeichnung in die entsprechende Zeile eingetragen oder das neue Profil aus der Bibliothek ausgewählt. Diese können Sie wie gewohnt mit der Schaltfläche [Querschnittsbibliothek] aufrufen. Alternativ platzieren Sie den Cursor in der gewünschten Zeile und drücken dann [...] oder die Funktionstaste [F7]. Es erscheint die aus RSTAB bekannte Querschnittsbibliothek bzw. Profilreihe. Für die BETON-Bemessung sind nur ausgewählte Einträge des Abschnitts *Massive Querschnitte* zugänglich:

- Rechteck
- Plattenbalken (symmetrisch, unsymmetrisch oder konisch)
- Überzug (symmetrisch oder unsymmetrisch)
- I-Querschnitt (symmetrisch, unsymmetrisch oder konisch)
- Kreis
- Ring
- Rechteckhohlkasten (Z-symmetrisch)
- Konus (symmetrisch)
- U-Profil (symmetrisch)

Die Auswahl von Querschnitten aus der Bibliothek ist im Kapitel 5.3 des RSTAB-Handbuchs ausführlich beschrieben.

Liegen unterschiedliche Querschnitte in BETON und in RSTAB vor, so zeigt die Grafik rechts in der Maske beide Profile an.

Optimieren

Jeden Querschnitt kann einer Optimierungsanalyse unterzogen werden. Dabei wird mit den RSTAB-Schnittgrössen derjenige Querschnitt innerhalb der gleichen Profilreihe ermittelt, der die Bewehrungsvorgaben des Dialogs *Optimierungsparameter* mit den geringstmöglichen Abmessungen erfüllt (siehe Bild 8.5, Seite 114).

Um einen bestimmten Querschnitt zu optimieren, ist dessen Kontrollfeld in Spalte C zu aktivieren. Empfehlungen zur Profiloptimierung finden Sie im Kapitel 8.2 auf Seite 114.

Anmerkung

In dieser Spalte werden Hinweise in Form von Fussnoten angezeigt, die am unteren Ende der Querschnittsliste näher erläutert sind.

Kriechzahl / Schwinddehnung

In Spalte E werden die nach dem voreingestellten Verfahren ermittelten Werte der Kriechzahl und der Schwinddehnung angezeigt. Über die links dargestellte Kontextschaltfläche lassen sich diese Werte anpassen. Die Vorgaben werden in einem neuen Dialog getroffen, der im Bild 3.11 dargestellt ist.

PB 600.0/1900.0/220.0/900.0

600.0/900.0

0.000

900.0

8

[mm]

[mm]

Art der Ermittlung			
Ermittlung der Kriechzahl		Alter 🗾	
Ermittlung des Schwindmaßes		Alter	
🗆 Eingabedaten			
 Betrachtetes Betonalter (Kriechen) 	t-k	27393	Tage
 Betrachtetes Betonalter (Schwinden) 	t-s	27393	Tage
🕞 Wirksame Bauteildicke			
 Querschnittsfläche 	Ac	0.540	m^2
 Luft ausgesetzter Umfang 	u	3.000	m
Wirksame Bauteildicke	hO	0.360	m
 Zementart 	ZArt	N	
 Relative Luftfeuchte 	BH	50	%
 Betonalter Schwindbeginn 	ts	28	Tage
🖃 Betonalter Kriechbeginn		Ermitteln	
 Temperatur berücksichtigen 		Nein	
 Wirksames Alter (Temperatur) 	tT	7.000	Tage
 Zementart berücksichtigen 		Ja	
Betonalter Kriechbeginn	łO	7.000	Tage
🗄 Ergebnis			
instellungen zuordnen			
Querschnitt: Rechteck 900/600		~	
Allen Querschnitten			
Querschnitten Nr.: 1-6			

Bild 3.11: Dialog Einstellungen für Kriechen und Schwinden

Der oberste Eintrag *Art der Ermittlung* umfasst jeweils zwei Möglichkeiten, Kriechzahl und Schwindmass festzulegen:

- Alter Kriechzahl und Schwindmass werden über Parameter berechnet
- Definieren Kriechzahl und Schwindmass sind direkt anzugeben

Die Ermittlung von Kriechzahl und Schwindmass ist im Kapitel 2.3.6 ab Seite 30 beschrieben.

Am Ende der Tabelle wird als *Ergebnis* die ermittelte Kriechzahl $\phi(t,t_0)$ und das ermittelte Schwindmass $\epsilon_{c,s}(t,t_s)$ angegeben.

Im Abschnitt *Einstellungen zuordnen* kann festgelegt werden, ob die getroffenen Angaben für einen einzelnen Querschnitt, für alle Querschnitte oder für ausgewählte Querschnitte anzuwenden sind.

3.4 Lager

In dieser Maske werden die Lagerungsbedingungen der Stäbe im Detail festgelegt. Die in RSTAB definierten Knotenlager an <u>horizontalen</u> Stäben sind voreingestellt und können ggf. angepasst werden. BETON erkennt auch, ob ein Zwischen- oder ein Endauflager vorliegt.

Lagerbreiten ungleich Null wirken sich auf die Bemessung (Momentenumlagerung, -ausrundung, Querkraftabminderung) und den Bewehrungsvorschlag (Verankerungslänge) aus. Dies gilt jedoch nur für Stäbe in horizontaler oder leicht geneigter Lage, nicht für Stützen!

tei Bearbeiten <u>E</u> instellung	gen <u>H</u> ilf	e							
- Stahlbetonbernessung voi 🔻	1.5 Lage	er							
gabedaten	1	A	В	С	D	E	F	G	
Basisangaben	Lager	Knoten	Lagerbreite	Direkte	Monolithische	End-	M-Verhältnis		
Materialien	Nr.	Nr.	b [mm]	Lagerung	Verbindung	Lager	δ [-]	Kommentar	
Querschnitte	1	1	0.00	×		×	1.00		
Lager	2	2	0.00	×		×	1.00		
Bewehrung	3	3	0.00	×		×	1.00		
L 1	4								
bnisse	5								
Erforderliche Bewehrung	6								
	/								
	8								
	9								b/3 2*b/3
									i
									i
									1
									1
									Berücksichtigung einer begrenzten
									Stiltzmomente nach 41425
									Statementer Haerr 4, 1, 4, 2, 5
		(*)							Reduktion der Querkräfte im
		4							Lagerbereich nach 4.3.3.4.1
						_			

Bild 3.12: Maske 1.5 Lager

Knoten Nr.

In dieser Spalte werden die gelagerten Knoten derjenigen Stäbe aufgelistet, die eine horizontale oder bis zu 15° geneigte Stablage aufweisen. Über die Schaltfläche [...] in dieser Spalte lassen sich zusätzliche Knoten im RSTAB-Arbeitsfenster grafisch auswählen.

Lagerbreite b

Hier wird die tatsächliche Breite des jeweiligen Knotenlagers festgelegt. Damit kann z. B. die flächige Lagerung durch eine Wand erfasst werden, die im RSTAB-Modell nur als singuläre Stützung abgebildet ist.

Direkte Lagerung

Diese Spalte steuert die Lagerungsart des Trägers. Wird die Last eines Nebenträgers in einen Hauptträger eingeleitet, so liegt eine indirekte Lagerung vor und das Kontrollfeld ist zu deaktivieren.

Die Vorgaben in dieser Spalte wirken sich auf die Verankerungslängen und auf die Querkraftbemessung aus.

Monolithische Verbindung

Es ist anzugeben, ob eine biegesteife Verbindung mit der Unterstützung oder eine frei drehbare Lagerung einschliesslich Ausrundungsmöglichkeit der Stützmomente vorliegt.

.....

5

Endlager

1.00

0.65

0.7 0.75

0.8

0.85 0.9

0.95

Ein Endauflager wirkt sich anders auf das Bemessungsmoment und die Verankerungslängen aus als ein Zwischenauflager. Diese Spalte steuert die Zuordnung.

M-Verhältnis δ

Für durchlaufende Bauteile wird in Spalte F das Verhältnis δ von umgelagertem Moment zu elastisch ermitteltem Ausgangsmoment festgelegt. Diese Spalte ist nur zugänglich, wenn unterhalb der Grafik die Option *Berücksichtigung einer begrenzten Momentenumlagerung* angehakt ist.

Die δ -Werte sind standardmässig auf 1,00 eingestellt, weitere Werte sind aus dem Menü auswählbar.

Kommentar

Für jedes Lager kann ein Kommentartext eingegeben werden, der die gewählten Lagerungsbedingungen erläutert.

Berücksichtigung der Lagerbreiten

Unter der interaktiven Grafik in dieser Maske werden zwei Kontrollfelder angeboten, deren Vorgaben sich je nach Bemessungsnorm unterschiedlich auf die erforderliche Bewehrung auswirken. Die Einstellungen sind global für den aktuellen Bemessungsfall wirksam.

Berücksichtigung einer begrenzten Momentenumlagerung

Für Durchlaufträger können die linear-elastischen Verfahren mit begrenzter Umlagerung der Stützmomente angewandt werden. Die resultierende Schnittgrössenverteilung muss dabei mit den einwirkenden Lasten im Gleichgewicht stehen. In den Normen werden die einzuhaltenden Momentenverhältnisse δ genannt, damit die Rotationsfähigkeit in den kritischen Bereichen ohne besondere Nachweise gewährleistet ist.

RF-BETON Stäbe ermittelt diesen Grenzwert und vergleicht ihn mit dem Wert, der in Spalte F vorgegeben ist. Für die Umlagerung wird dann der grössere dieser beiden Werte verwendet.

Reduktion der Querkräfte im Lagerbereich

Bei einer direkten Lagerung sowie bei Einleitstellen grosser Kräfte kann der Bemessungswert der Querkraft abgemindert werden, vgl. SIA 262 4.3.3.4.1.

- Berücksichtigung einer begrenzten Momentenumlagerung der Stützmomente nach 5.5
- Momentenausrundung bzw. Bemessung für das Anschnittmoment bei monolithischer Lagerung nach 5.3.2.2
- Reduktion der Querkräfte im Lagerbereich nach 6.2.2

3.5 Bewehrung

Diese Maske besteht aus mehreren Registern, in denen sämtliche Angaben zur Bewehrung erfasst werden. Da die Bewehrungsvoraussetzungen für die einzelnen Stäbe meist unterschiedlich sind, können in jedem BETON-Fall mehrere Bewehrungssätze angelegt werden. Die Bewehrungsvorgaben lassen sich dann stab- oder stabsatzweise treffen.

Bewehrungssätze

Ein neuer Bewehrungssatz wird über die Schaltfläche [Neu] im Abschnitt *Bewehrungssatz* angelegt. Die Nummer wird automatisch vergeben. Eine benutzerdefinierte *Bezeichnung* erleichtert den Überblick über alle im Bemessungsfall angelegten Bewehrungssätze.

A1 - Stahlbeton-Bernessung	✓ 1.6 Bewehrung		
ingabedaten — Basisangaben — Materialien — Querschnitte — Lager	Bewehrungssatz Nr.: Bezeichnung: 1 v Riegel	Angewendet auf Stäbe: 10 Stabeätze: 4,5	
Bewehrung 1 - Riegel 2 - Stützen	Längsbewehrung Büge Stabstahl Bewel Mögliche Durchmesser: 8.00 Hinn 12.00 14.00 26.00 Veran 22.00 Gera 28.00 32.00	Bewehrungsanordnung Mindestbewehrung EN 1992-1-1 ngslagen zahl Lagen: 1 v rlichter Bewehrungsabstand age a: 25.00 (mm) JB ungsatt ungsatt	5 - Rechteck 550/900
	E deto Bewel ○ Ke ③ St. Be [mm]	ngsstaffelung s Staffelung slung nach Anzahl slung nach Anzahl skrungsstäben Stäbe: 2 v	Einstellungen Vomehmen Marken Vomehmen Marken Mar

<u>~</u>

Bild 3.13: Maske 1.6 Bewehrung mit zwei Bewehrungssätzen

Die Auswahl von Bewehrungssätzen erfolgt über die Nr.-Liste oder die Navigatoreinträge.

Mit der Schaltfläche [Löschen] wird der aktuelle Bewehrungssatz ohne weitere Warnung aus dem BETON-Fall entfernt. Für Stäbe und Stabsätze, die in diesem Bewehrungssatz enthalten waren, findet damit keine Bemessung statt. Um sie zu bemessen, müssen sie einem neuen oder bestehenden Bewehrungssatz zugewiesen werden.

Der Abschnitt Angewendet auf regelt, für welche Stäbe oder Stabsätze der aktuelle Bewehrungssatz gültig ist. Es sind Alle Stäbe und Alle Stabsätze voreingestellt. Mit dieser Vorgabe kann kein weiterer Bewehrungssatz erstellt werden, denn Stäbe bzw. Stabsätze lassen sich in einem Bemessungsfall nicht nach unterschiedlichen Bewehrungsvorgaben bemessen. Um die Möglichkeit von Bewehrungssätzen nutzen zu können, muss daher mindestens eines der Alle-Kontrollfelder deaktiviert werden.

Im Eingabefeld sind die Nummern der relevanten *Stäbe* bzw. *Stabsätze* einzutragen, für die die Bewehrungsvorgaben aller Register dieser Maske gelten. Mit [Pick] lassen sich die Objekte auch grafisch im RSTAB-Arbeitsfenster auswählen. Auf diese Weise wird die Schaltfläche [Neuer Bewehrungssatz] zugänglich. Dort dürfen – wie oben angedeutet – nur Stäbe und Stabsätze ausgewählt werden, die noch keinem anderen Bewehrungssatz zugewiesen sind.

In den Stabzügen enthaltene Einzelstäbe werden zur Bemessung automatisch deaktiviert.

Bewehrungsvorschlag

Die Grafik rechts in der Maske zeigt an, wie sich die Eingaben in den diversen Registern auf den Querschnitt auswirken. Die Liste oberhalb der Grafik ermöglicht es, zwischen den Querschnitten zu wechseln. Die Grafik wirkt dynamisch: Änderungen bei den Bewehrungsvorgaben werden sofort grafisch umgesetzt.

Das Kontrollfeld *Bewehrungsvorschlag vornehmen* steuert, ob BETON die Vorgaben in den diversen Registern auch in eine Stabstahlbewehrung umsetzt. Wird dieses Feld deaktiviert, so sind einige Eingabefelder unzugänglich. BETON ermittelt in diesem Fall nur die erforderlichen Bewehrungsquerschnitte.

Wurde in Maske 1.1 *Basisangaben* der Nachweis für den Grenzzustand der Gebrauchstauglichkeit oder für den Brandschutz aktiviert, so kann der Bewehrungsvorschlag nicht unterdrückt werden: Die GZG-Nachweise basieren auf einer tatsächlich vorhandenen Bewehrung. Rissbreiten, Rissabstände etc. lassen sich nur mit den verwendeten Stabdurchmessern und -abständen ermitteln. Gleiches gilt für eine Bemessung nach dem nichtlinearen Verfahren.

In den folgenden Kapiteln werden die einzelnen Registerkarten der Maske 1.6 vorgestellt.

3.5.1 Längsbewehrung

In diesem Register erfolgen die Vorgaben zur Längsbewehrung.

1.6 Bewehrung		
Bewehrungssatz Nr.: Bezeichnung: Image: Bezeichnung: Image: Bigel Längsbewehrung Bügel Bewehrungsand Stabstahl Bewehrungslagen Mögliche Durchmesser: B.00 Knimaler lichter Bewehrung 1000	Angewendet auf Stäbe: 10 Stabsätze: 4.5 ordnung Mindestbewehrung EN 1992-1-1	5 - Rechteck 550/900
1000 - Erste Lage a. z 1200 - Weitere Lagen b. b. 14.00 Verankerungsart V b. 2000 Gerade V b. 28.00 Stahloberflächer, Gerippt 30.00 23.00 Perunknungsart bifdung b.		
Keine Staffelung Staffelung Staffelung Staffelung nach Bereic Anzehl Bereic Staffelung nach Bewe Azzehl Stäf	As_oben: ✓ As_unten: n: 0 ♀ 2 ♀ [-] dt 10 0 ♀ 20.00 ♀ [mm]	[mm] Einstellungen Vornehmen
	Hife I.6 Bewehrungsatz Nr.: Bezeichnung: I ♥ Riegel Längsbewehrung Bügel Bewehrungsan Stabstahl Bewehrungslagen Mögliche Duchmesser: 8.00 12.00 14.00 14.00 25.00 25.00 25.00 25.00 25.00 Bewehrungsatatfelung Keine Staffelung Stahloberfläche: Gerippt 32.00 Bewehrungsstaffelung Keine Staffelung Staffelung nach Berei Anzehl Berei Staffelung nach Berei	Hilfe 1.6 Bewehrungssatz Nt:: Bezeichnung: I Riegel Stabsatah Bewehrungsaarc Kanzahl Lager: Stabsatah Bewehrungslagen Mögliche Duchmesser: Minimaler lichter Bewehrungsabstand Frste Lage a: Stabsatah Verankerungsat Verankerungsat Verankerungstatfelung Stahloberfläche: Gerippt Vorhandene Grundbewehrung Stalfelung Stalfelung nach Bereichen Anzehl Bereiche: Stalfelung Stalfelung nach Bereichen Anzehl Bereiche: Stalfelung nach Bereichen Stalfelung Stalfelung nach Bereichen Stalfelung Stalfelung

Bild 3.14: Maske 1.6 Bewehrung, Register Längsbewehrung

Stabstahl

Die Liste der möglichen Durchmesser enthält neben den in DIN 488 genannten Nenndurchmessern von Betonstabstahl auch einige im Ausland gebräuchliche Durchmesser. Eine Mehrfachselektion für die Bemessung ist ohne Weiteres möglich.

-

Mit der Schaltfläche [Bearbeiten] lässt sich die Liste der angezeigten Stabdurchmesser anpassen.

Liste der möglichen Duro	chmesser bearbeiten 🛛 🔀
Durchmesser für Längsbewel	hrung (z.B. '8.0 10.0 12.0')
8.0 10.0 12.0 14.0 16.0 20.0 3	25.0 26.0 28.0 30.0 36.0 40.0
	OK Abbrechen

Bild 3.15: Dialog Liste der möglichen Durchmesser bearbeiten

In der Eingabezeile können Einträge geändert, gelöscht oder ergänzt werden.

Bewehrungslagen

BETON berücksichtigt beim Bewehrungsvorschlag auch eine mehrlagige Anordnung der Bewehrungsstäbe. Über die Liste lässt sich die zulässige Anzahl der Lagen vorgeben. Es sind bis zu drei Bewehrungslagen möglich. Die Angaben für den Minimalen lichten Bewehrungsabstand a der Bewehrungsstäbe der ersten Lage sowie ggf. *b* von weiteren Lagen erfolgen in den entsprechenden Eingabefeldern.

Bei der Erstellung des Bewehrungsvorschlags werden diese konstruktiven Vorgaben berücksichtigt. Sie wirken sich auf die Anzahl der möglichen Bewehrungsstäbe jeder Lage und auf den Hebelarm der inneren Kräfte aus.

Bei Anordnung mehrerer Bewehrungslagen ist keine Staffelung der Bewehrung möglich.

Verankerungsart

Die beiden Listen in diesem Abschnitt bieten eine grosse Auswahl an Verankerungsmöglichkeiten. Auch hier wirkt die Grafik rechts dynamisch, d. h. geänderte Vorgaben werden sofort grafisch angezeigt.

Die Verankerung wirkt sich wie die *Stahloberfläche* (glatt, gerippt) auf die erforderliche Verankerungslänge aus.

Bewehrungsstaffelung

Die Voreinstellung ist *Keine Staffelung*. Wurden mehrere Bewehrungslagen vorgegeben, so sind die beiden übrigen Optionen gesperrt.

Wird eine *Staffelung nach Bereichen* gewählt, kann über die Liste rechts festgelegt werden, wie viele Bereiche mit jeweils gleicher Bewehrung beim Bewehrungsvorschlag zulässig sind. BE-TON untersucht dann, wie mit den zur Verfügung stehenden Bewehrungsstäben eine optimale Abdeckung der erforderlichen Stahlquerschnittsflächen zu erreichen ist.

Bei der *Staffelung nach Bewehrungsstäben* erfolgt die Ausweisung eines neuen Bereiches erst, wenn die vorgegebene maximale Anzahl an Bewehrungsstäben erreicht ist. Auch hier ist die Vorgabe der Stabanzahl über die Liste rechts möglich.

Vorhandene Grundbewehrung

In diesem Abschnitt kann eine Grundbewehrung getrennt für die obere und untere Lage vorgegeben werden. Nach dem Anhaken der Kontrollfelder sind die Eingabefelder unterhalb zugänglich. Dort können die Anzahl der Bewehrungsstäbe *n* und die Stabdurchmesser *d* definiert werden. Das Feld A₅ zeigt die entsprechenden Bewehrungsflächen an.

Die benutzerdefinierte Grundbewehrung wird beim Erstellen des Bewehrungsvorschlages berücksichtigt. Sie wird über die gesamte Stab- bzw. Stabsatzlänge eingelegt. Falls die erforderliche Bewehrung nicht von der Grundbewehrung abgedeckt werden kann, ermittelt RF-BETON die zusätzlich benötigten Bewehrungsstäbe und legt sie in den Querschnitt ein.

3.5.2 Bügel

Datei Bearbeiten Einstellungen	Hilfe				
FA1 - Stahlbeton-Bernessung 🗸	1.6 Bewehrung				
Eingabedaten Basisangaben Materialien Querschnitte	Bewehrungssatz Nr.: Bezeich 1 V Riegel	inung:	Angewendet auf Stäbe: 10 Stabsätze: 4,5	5 5	Alle
Lager Bewehrung 1 - Riegel	Längsbewehrung	Bügel Bewehrungsanordnung Mir	destbewehrung EN 1992-1-1	5 · Rechteck 550/900	~
⊢ 2 - Stùtzen	Stabstahl Mögliche Durchmesser. 6.00 8.00 10.00 12.00 14.00 16.00 20.00 25.00 28.00 30.00	Bügelparameter Anzahl Schnitte: 2 v Neigung: 90.00 (1) Verankerungsart: Haken v Bügelanordnung / Bügelabstände O Gleiche Bügelabstände			*y
	32.00	O Unterteilung nach Bereichen: O Unterteilung nach Bügelabstand:	Anzahl Bereiche: 3 🖌 Abstand: 🚺 🎓 [m]	Einstellungen	[mm]
	[mm] 📴	 O Definierte Bügelabstände: ✓ Max. Abstand: 0.300 ♀ [m] 	3: 100 - 300 mm, 100 mm 💌 💽 Min. Abstand:	Bewehrungsvorschlag vornehmen)
	Berechnung	Kontrolle	Grafik		brechen

Dieses Register beinhaltet die Bewehrungsvorgaben für die Querkraftbewehrung.

Bild 3.16: Maske 1.6 Bewehrung, Register Bügel

Stabstahl

Die Liste der möglichen Durchmesser enthält neben den in DIN 488 genannten Nenndurchmessern von Betonstabstahl auch einige im Ausland gebräuchliche Durchmesser. Eine Mehrfachselektion für die Bemessung ist ohne Weiteres möglich.

Mit der Schaltfläche [Bearbeiten] lässt sich die Liste der angezeigten Stabdurchmesser anpassen (siehe Bild 3.15).

Bügelparameter

Das Feld *Anzahl Schnitte* steuert die Bügelschnittigkeit. Die voreingestellte Zweischnittigkeit lässt sich über die Liste ändern. Es sind bis zu vier Schnitte möglich.

Die *Neigung* der Schubbewehrung wird durch den Winkel zwischen Längs- und Schubbewehrung festgelegt. Voreingestellt sind 90°, also lotrechte Bügel.

Verankerungsart

Die Liste enthält verschiedene Möglichkeiten der Bügelverankerung, die sich auf die Ermittlung der Verankerungslängen auswirken. Auch hier wirkt die Grafik rechts dynamisch, d. h. geänderte Vorgaben werden sofort grafisch angezeigt.

Bügelauslegung

Dieser Abschnitt ist nur dann zugänglich, wenn ein Bewehrungsvorschlag erstellt wird.

Es sind Gleiche Bügelabstände für alle Stäbe und Stabzüge voreingestellt.

Wird eine *Unterteilung nach Bereichen* gewählt, so ist in der Liste die Anzahl der Bereiche mit gleicher Bügelanordnung anzugeben. Die Vorgabe von einem Bereich bewirkt, dass neben dem Bereich mit maximalem Bügelabstand (Mindestbewehrung) noch ein Bereich gebildet

Haken	×
Ohne Verankerung	- R
Haken	
Winkelhaken	
Gerade mit Stab	
Gerade mit zwei Stäben	

wird, der den Maximalwert der erforderlichen Bügelbewehrung abdeckt. Bei zwei Bereichen bestimmt BETON den Mittelwert aus erforderlicher Mindest- und Maximalbewehrung und setzt die entsprechenden x-Stellen im Stab als weitere Bereichsgrenzen an.

Bei der *Unterteilung nach Bügelabstand* ist ein Abstand für die Bügelbereiche festzulegen. Ein Wechsel der Bereiche erfolgt in den Abstandsintervallen, die ebenfalls aus erforderlicher Mindest- und Maximalbewehrung mit einem Interpolationsverfahren ermittelt werden.

Werden *Definierte Bügelabstände* vorgegeben, kann in der links dargestellten Liste ein Eintrag ausgewählt werden. Die Schaltfläche [Bearbeiten] ermöglicht es, diese Einträge anzupassen oder einen neuen Eintrag mit benutzerdefinierten Bügelabständen anzulegen.

Nr.	Listenbezeichnung
4	75 - 250 mm, 25 mm
Bügələk	etende (7 B "50 100 150 200 ") [m]
Duyeiak	stande (2.5. 30 100 130 200) [m]
0.075	0.100 0.125 0.150 0.175 0.200 0.225 0.250

Bild 3.17: Dialog Neue Liste der möglichen Bewehrungsabstände

Der Maximale und Minimale Abstand der Bügelbewehrung kann direkt angegeben werden.

Die im Bewehrungsvorschlag ausgewiesenen Bereiche können nachträglich in Maske 3.2 *Bügelbewehrung* geändert oder ergänzt werden (siehe Kapitel 5.2.2, Seite 87).

3.5.3 Bewehrungsanordnung

Dieses Register steuert, wie die Bewehrung eingelegt wird und welche RSTAB-Schnittgrössen bemessen werden sollen.

FA1 - Stahlbeton-Bemessung	n nire ▼ 1.6 Bewehrung		
Eingabedaten Basisangaben Materialien Querschnitte Bager Bewehrung 1 - Riegel 2 - Stützen	Bewehrungssatz Nr.: Bezeichnung: 1 Riegel Längsbewehrung Bügel Betondeckung Coben: coben: 45.00 ⊕ [mm] cunten: 45.00 ⊕ [mm] Achsmaß-Deckung uoben 5900 ⊕ [mm] Unten: 5900 ⊕ [mm]	Angewendet auf Stabe: Stabeätze: 4.5 mdestbewehrung EN 1992-1-1 (mm) (mm) (mm)	S - Rechteck 550/900
	Bewehrungsverteilung Dben - Unten (optimierte Verteilung) Bewehrungsanteil A-s,oben / A-s: Bewehrungs- verteilung: Caleichmäßig über gesamte Plattenbreite verteilen	Einstellungen Zu berücksichtigende Schnitt- größen bei der Bernessung. ♥ N ♥ MT ♥ Vy ♥ My ♥ Vz ♥ Mz	i i Einstellungen Vornehmen

Bild 3.18: Maske 1.6 Bewehrung, Register Bewehrungsanordnung

1: 50 - 300 mm, 50 mm

3: 100 - 300 mm, 100 mm

1: 50 - 300 mm, 50 mm 2: 50 - 300 mm, 25 mm

Betondeckung

Die Angaben zu den Betondeckungen stehen in Interaktion mit der Vorgabe eines Bewehrungsvorschlags: Wird ein Bewehrungsvorschlag erstellt, beziehen sich die Deckungen auf die Randmasse *c* der Bewehrung. Falls jedoch kein Bewehrungsvorschlag angewiesen ist, so sind die Angaben auf die Achsmasse *u* der Bewehrungsstäbe bezogen. Das folgende Bild veranschaulicht diesen Unterschied.

Je nach Vorgabe sind die oberen oder die unteren Eingabefelder des Abschnitts zugänglich.

Bild 3.19: Bezug der Betondeckung

Im Feld *c*_{oben} ist die Betondeckung der oberen Längsbewehrung, im Feld *c*_{unten} die der unteren Längsbewehrung anzugeben. Diese Werte stellen die Nennmasse der Betondeckung c_{nom} z. B. nach SIA 262 5.2.2 dar. BETON ermittelt aus diesen Vorgaben und unter Berücksichtigung der verwendeten Stabdurchmesser den Hebel der inneren Kräfte.

"Oben" und "unten" ist durch die Lage der lokalen Stabachsen in RSTAB eindeutig definiert. Die Deckung *c*_{seitig} wird für die Ersatzwanddicke zur Torsionsbemessung benötigt.

Bei der Eingabe der Randmasse *u* ist zu beachten, dass sich dieser Abstand bei mehrlagigen Bewehrungen auf den Bewehrungsschwerpunkt beziehen muss.

Bewehrungsverteilung

Die Liste enthält verschiedene Möglichkeiten, wie die Bewehrung im Querschnitt angeordnet werden können:

- Oben Unten (optimierte Verteilung)
- Oben Unten (symmetrische Verteilung)
- Oben Unten (Anteil A_{s,oben} / A_s definieren)
- Oben Unten (Anteil A_{s,Zug} / A_s definieren)
- In Ecken (symmetrische Verteilung)
- Gleichmässig umlaufend

BETON führt für die Bewehrungsverteilung *Oben - Unten (optimierte Verteilung)* auch eine Optimierung bei zweiachsiger Biegung durch.

Die Bewehrung kann damit auch über das Verhältnis von Oberer Bewehrung zu Gesamtbewehrung oder von Zug- zu Gesamtbewehrung definiert werden. Die Angabe des Verhältniswerts erfolgt im Eingabefeld unterhalb. Damit ist eine effiziente Nachbildung von Bestandskonstruktionen möglich.

Bei Plattenbalken und I-Querschnitten lässt sich zudem die *Bewehrung gleichmässig über die gesamte Plattenbreite verteilen*. Dadurch wird ein Teil der Bewehrungsstäbe ausgelagert.

Änderungen in der Bewehrungsanordnung werden dynamisch in der Grafik rechts umgesetzt.

Liegt bei einer Bewehrungsverteilung *Oben - Unten* ein Momentenverlauf von $M_y = 0$ und $M_z > 0$ vor, werden erhöhte Bewehrungsquerschnitte ausgegeben: Das Bemessungsmoment wirkt nicht in die vorgegebene Verteilungsrichtung der Bewehrung. In diesem Fall ist die Bewehrungverteilung *In Ecken* zu wählen, damit die Bemessung korrekt durchgeführt werden kann.

 Oben - Unten (optimierte Verteilung)
 Image: Comparison of the state o

3.5.4 Mindestbewehrung

Dieses Register verwaltet die Vorgaben zu Mindest- und Konstruktionsbewehrung sowie die Parameter zur Begrenzung der Rissbreite.

A1 - Stahlbetonbemessung vor	 1.6 Bewehrung 		
ingabedaten — Basisangaben — Materialien — Querschnitte — Lager	Bewehrungssatz Nr.: Bezeichnung:	Angewendet auf §täbe: 1.2 Stabsätze:	
≟+ <u>Bewehrung</u> ∟1	Längsbewehrung Bügel Bewehrungsanord Min As, oben: 1200.00 ÷ [mm ²] Min As, unten: 1200.00 ÷ [mm ²] Ø Mindestlängsbewehrung nach Norm Ø Mindestschubbewehrung nach Norm Mindestschubbewehrung nach Norm Max. Bewehrungs- abstand: ÷ [mm]	ung Mindestbewehrung SIA 262 Rissbretenbegrenzung Anforderungsklasse nach 4.4.2.3.3 Klasse: B • • • • • • • • • • • • • • • • • •	1 - Rechteck 30/50 Rechteck 30/50
	Identischer Stabstahl-Durchmesser wie bei Längsbewehrung d _s : [mm] Konstruktive Eckbewehrung hinzufügen	As,min - Anordnung: Oben/Unten V Auslegung der Längsbewehrung für GZG	C Einstellungen Bewehrungsvorschlag vornehmen

Bild 3.20: Maske 1.6 Bewehrung, Register Mindestbewehrung

Mindestbewehrung

Zur Vorgabe einer globalen Mindestbewehrung stehen zwei Eingabefelder zur Verfügung, in die die Stahlquerschnitte für *Min As,oben* und *Min As,unten* eingetragen werden können. Über die Schaltfläche [Bearbeiten] lassen sich diese Querschnittsflächen aus der Anzahl der Bewehrungsstäbe und den Stabdurchmessern in einem separaten Dialog ermitteln.

Bei der Berechnung der erforderlichen Bewehrung kann wahlweise und unabhängig voneinander die *Mindestlängsbewehrung* und die *Mindestschubbewehrung* gemäss jeweiliger Norm berücksichtigt oder ausgeklammert werden.

Konstruktive Bewehrung

Dieser Abschnitt ist nur aktiv, wenn ein Bewehrungsvorschlag erstellt werden soll.

Der *Maximale Bewehrungsabstand* der konstruktiven, d. h. statisch nicht erforderlichen Bewehrungsstäbe im Querschnitt wird durch die Angabe eines Höchstwertes festgelegt. Der Bewehrungsvorschlag strebt dann mit dieser Vorgabe eine gleichmässige Verteilung der Stäbe an (z. B. bei Plattenbalkenstegen oder schlanken Rechteckquerschnitten).

Die Option *Identischer Durchmesser wie bei Längsbewehrung* gleicht die konstruktive Bewehrung an die Stabdurchmesser der erforderlichen Bewehrung an. Alternativ wird anhand der Liste ein bestimmter Durchmesser d_s für die konstruktive Bewehrung vorgegeben.

Mit der Möglichkeit *Konstruktive Eckbewehrung hinzufügen* wird generell eine konstruktive Bewehrung in allen Ecken des Querschnitts angeordnet. Damit lässt sich auch bei I-förmigen Querschnitten eine Bewehrung ausserhalb des Stegs definieren.

Wie die Mindestbewehrung wird die konstruktive Bewehrung – soweit ausreichend verankert – für den Sicherheitsnachweis und die Rissbreitenberechnung berücksichtigt.

Rissbreitenbegrenzung

Die Eingabefelder dieses Abschnitts sind nur zugänglich, wenn in Maske 1.1 *Basisangaben* die Nachweise im Grenzzustand der Gebrauchstauglichkeit aktiviert wurden. Zudem ist dieser Abschnitt an die gewählte Norm angeglichen. Folgende Beschreibung bezieht sich auf SIA 262.

Der Anforderungsklasse kann über die Liste ausgewählt werden.

Bild 3.21:: Rissbreiten in Abhängigkeit von der Anforderungsklasse (SIA 262)

Für die Nachweise der Rissbreitenbeschränkung ist zwischen Last- und Zwangseinwirkungen zu unterscheiden. Eine *Zwangsbeanspruchung* wird durch die Rissbildung im Bauteil deutlich verringert, sodass eine ausreichend dimensionierte Mindestbewehrung *A_{s,min}* für eine Verteilung der gesamten Bauteilverkürzung auf mehrere Risse mit entsprechend kleinen Rissbreiten sorgt. Die Rissbreiten infolge einer Lastbeanspruchung hingegen sind von der vorhandenen Stahlspannung und der Bewehrungsanordnung abhängig.

In BETON wird die Rissbreite nach SIA 262 4.4.2.3.3 für Lastbeanspruchungen direkt berechnet. Für Zwangsbeanspruchungen wird die Mindestbewehrung zur Begrenzung der vorgegebenen Rissbreite ausgelegt.

$$A_{s,min} = \frac{k_c \cdot k_{zt} \cdot f_{ctm} \cdot A_{ct} \cdot k_t}{\sigma_s}$$

Liegt eine *Reine Zugbeanspruchung* vor, so kann die Zwangsbeanspruchung über das Kontrollfeld näher spezifiziert werden: Die Vorgabe beeinflusst den Beiwert kc. Bei reiner Zugbeanspruchung wird kc = 1,0 angesetzt. Bei ausschliesslicher Biegebeanspruchung ist σ c in der Bauteilachse gleich null und damit wird kc = 0,4. Der Faktor kc berücksichtigt neben der Spannungsverteilung auch näherungsweise die Vergrösserung des inneren Hebelarms bei Rissbildung.

Ist mit einer *Rissbildung innerhalb der ersten 28 Tage* zu rechnen, ist möglich eine Abminderung der wirksamen Betonzugfestigkeit f_{ctm} mit dem Faktor k_{zt} vorzunehmen. Im Eingabefeld kann der entsprechende *Abminderungsfaktor der Betonzugfestigkeit* angegeben werden.

Die Grösse der Abminderung wird bei direktem Zwang von der Bauteildicke beeinflusst, da mit zunehmenden Querschnittsabmessungen höhere Eigenspannungen entstehen. Von aussen aufgezwungene Verformungen (z. B. Lagerverformungen) verursachen hingegen keine Eigenspannungen. In diesen Fällen beträgt der Abminderungsbeiwert 1,0.

Das Auswahlfeld A_{s,min} - Anordnung steuert, welcher Bewehrungslage die Mindestbewehrung zugewiesen werden soll.

Mit der Schaltfläche [Bearbeiten] lassen sich die Vorgaben zur Auslegung der Längsbewehrung für den Grenzzustand der Gebrauchstauglichkeit überprüfen und ggf. anpassen. Es öffnet sich folgender Dialog.

Programm BETON © 2011 Ingenieur-Software Dlubal GmbH

🕼 Maximale Bewehrungsabstand lim sj				

Bild 3.22: Dialog Einstellungen für die Auslegung der Bewehrung

Für den Nachweis der Gebrauchstauglichkeit können diverse Kriterien für den Spannungsnachweis und Rissbreitennachweis ausgewählt, nach denen die Bewehrung ausgelegt wird:

Nachweis	Normative Vorgabe in SIA 262
Begrenzung der Stahlspannung $\sigma_{s,adm}$	[16] (10.15)
Maximaler Bewehrungsabstand lim s	[16] (10.15)
Begrenzung der Rissbreite wk	SIA 262 4.4.2
Mindestbewehrung min As	SIA 262 4.4.2.3.6

Tabelle 3.1: Spannungs- und Rissbreitennachweise

Grundsätzlich muss nur <u>eines</u> der Kriterien $\sigma_{s,adm}$, *lim s*_l oder *w*_k für den Nachweis der Rissbreite erfüllt sein.

Das Kriterium der Mindestbewehrung *min A*₅ nach SIA 262 4.4.2.3.6 muss bei Zwangseinwirkung stets erfüllt sein.

Ferner kann eine Kontrolle der Durchbiegungen für den *Verformungsnachweis* angeordnet werden.

Die Richtwerte für zulässige Verformungen sind der Norm SIA 260 Anhang A - E zu entnehmen, im Eingabefeld ist der zugehörige *Grenzwert* anzugeben.

Das Nachweiskriterium der Verformung u_{lz} betrachtet die Verschiebung in Richtung der lokalen Stabachse z. Der Durchhang ist auf das unverformte System bezogen, d.h. die Verschiebungen der Anfangs- und Endknoten bleiben unberücksichtigt.

3.5.5 Norm

OG:

Das fünfte Register der Maske wird von der Norm gesteuert, die in Maske 1.1 *Basisangaben* ausgewählt wurde (siehe Bild 3.2, Seite 45). Dieses Register verwaltet die normspezifischen Bewehrungsvorgaben. Sie werden im Folgenden für SIA 262 beschrieben.

Im unteren Bereich des Registers wird die Schaltfläche [Standard] angeboten, mit der sich die Ausgangswerte der aktuellen Norm wiederherstellen lassen.

······	Lo bewenrung		
Eingabedaten Basisangaben Materialien Querschnitte Lager	Bewehnungssatz Nr.: Bezeichnung: 1	Angewendet auf Stabe: 1.2 Stabsgitze:	I A I I I I I I I I
L <u>L'euwriun</u> z) L 1	Längsbewehrung Bügel Bewehrungsan Bewehrungsgrad Maximum Allgemein: 8.00 ⊕ [%] Diverses Ø Begrenzung der Druckzone nach 4.14.25 Durchmesser des Zuschlagstoffgrößitkorns Dmax : 32.00 ⊕ [mm] Querkraftbewehrung Druckstrebenneigung nach 4.3.3.32	ordnung Mindestbewehrung SIA 262 Faktoren Teilsicherheitsbeiwerte für Tragsicherheit nach 2.3.2.6 - für Beton: γ₀: 1.50 ⊕ - für Betonstahl γ₅: 1.15 ⊕ Teilsicherheitsbeiwerte für Gebrauchstauglichkeit nach 4.4.1.2 - für Beton: γ₀: 1.00 ⊕ - für Betonstahl γ₅: 1.00 ⊕	I - Rechteck 30/50 Rechteck 30/50
	- <u>Mirimum:</u> 25.000 ⊕ [*] - Magimum: 45.000 ⊕ [*]		Einstellungen Bewehrungsvorschlag vornehmen

Bild 3.23: Maske 1.6 Bewehrung, Register SIA 262

Bewehrungsgrad

Dieses Eingabefeld steuert den generellen Höchstbewehrungsgrad für Balken. SIA 262 5.5.4.5 empfiehlt den Wert von $A_{s,max} = 0,08A_c$ in Druckgliedern.

Diverses

Wenn die Betondruckzone nicht mehr in der Lage ist, die Druckkräfte aufzunehmen, wird eine Druckbewehrung erforderlich. Dieser Fall tritt dann ein, wenn das Biegemoment überschritten ist, das sich bei einer Betonrandstauchung von -3.50 ‰ und der Dehnung beim Erreichen der Streckgrenze des Betonstahls ergibt.

Über das Kontrollfeld kann die Höhe der Druckzone gemäss SIA 262 4.1.4.2.5 begrenzt werden. In diesem Fall beträgt das maximale Verhältnis x/d = 0,35 für Beton bis zur Festigkeitsklasse C50/60 bei der Verwendung den Betostahlklassen B oder C.

Querkraftbewehrung

Diese beiden Eingabefelder stecken den zulässigen Bereich der Druckstrebenneigung ab. Liegen benutzerdefinierte Winkel ausserhalb der Gültigkeitsgrenzen der Norm, so erscheint eine entsprechende Fehlermeldung.

SIA 262 stellt ein ganzheitliches Modell zur Berechnung der Querkrafttragfähigkeit zur Verfügung. Für Bauteile mit Querkraftbewehrung rechtwinklig zur Bauteilachse (β = 90°) gilt:

$V_{Rd,s} = \frac{A_{sw}}{s} \cdot z \cdot f_{sd} \cdot \cot \alpha$	SIA 262 4.3.3.4.3 (37)
mit	

A_{sw} Querschnittsfläche der Querkraftbewehrung s Bügelabstand

- f_{sd} Bemessungswert der Streckgrenze der Querkraftbewehrung
- z Hebelarm der inneren Kräfte (angenommen zu 0,9·d)
- α Neigung der Betondruckstrebe

Die Neigung der Betondruckstrebe α darf in Abhängigkeit von der Beanspruchung innerhalb bestimmten Grenzen gewählt werden. Damit soll der Tatsache Rechnung getragen werden, dass ein Teil der Querkraft über die Rissreibung abgetragen wird und damit das Fachwerk nicht belastet. Diese Grenzen sind in SIA 262 4.3.3.3.2 (34) wie folgt angegeben:

 $25^\circ \le \alpha \le 45^\circ$

SIA 262 4.3.3.3.2 (34)

Die Druckstrebenneigung α kann damit zwischen folgenden Werten variieren.

	Mindestneigung	Höchstneigung
α	25,0°	45,0°
cot α	2,14	1,0

Empfohlene Grenzen der Druckstrebenneigung

Faktoren

Die beiden oberen Eingabefelder legen jeweils den *Teilsicherheitsbeiwert* für Beton γ_c und für Betonstahl γ_s fest, der für den Nachweis der Tragfähigkeit Verwendung findet. Es sind die Werte nach SIA 262 2.3.2.6 voreingestellt.

In den Eingabefeldern unterhalb sind entsprechend die beiden Teilsicherheitsbeiwerte für den Nachweis der Gebrauchstauglichkeit nach SIA 262 4.4.1.2 zu definieren. Hier entsprechen die voreingestellten Teilsicherheitsbeiwerte denen der Tragsicherheit, um die Spannungen auf die Bemessungswerte zu begrenzen. Dies zeigt sich zum Beispiel anhand der Rissbreitenbegrenzung nach SIA 262 4.4.2.3.9 Tabelle 16. Die Spannung $\sigma_{s.adm}$ wird hier durch f_{sk}/γ_s mit γ_s =1,15 auf f_{sd} begrenzt.

3.5.6 Vouten

Dieses Register erscheint nur, wenn Voutenstäbe im RSTAB-Modell existieren.

BETON - [Rahmen]			X
Datei Bearbeiten Einstellungen	Hilfe		
FA1 - Stahlbeton-Bernessung 💌	1.6 Bewehrung		
Eingabedaten Basisangaben Materialien Querschnitte Lager Berswehrung	Bewehrungssatz Nr.: Bezeichnung: 1 Riegel	Angewendet auf Stäbe: 10 Stabsätze: 4,5	Alle
1 - Riegel	Längsbewehrung Bügel Bewehrungsanordnung Min	destbewehrung EN 1992-1-1 Vouten	5 - Rechteck 550/900
- 2 · 3(0221)	Veryungung Gleichmäßig Unten Unten		
			[mm]
			Einstellungen Bewehrungsvorschlag vornehmen Einstellungen
	Berechnung Kontrolle	Grafik	OK Abbrechen

Bild 3.24: Maske 1.6 Bewehrung, Register Vouten

BETON bemisst auch Voutenstäbe, sofern der gleiche Querschnittstyp am Stabanfang und Stabende vorliegt. Ist dies nicht der Fall, können keine Zwischenwerte interpoliert werden und RSTAB gibt vor der Berechnung eine entsprechende Fehlermeldung aus.

RSTAB Fehler Nr. 1614
Stab Nr. 1
Unzulässige (nicht kompatible) Anordnung der beiden Querschnitte bei dem Voutenstab!
Überprüfen Sie bitte in Tabelle 1.7, eventuell in einer anderen!

Bild 3.25: Fehlermeldung bei inkompatiblen Voutenquerschnitten

Gevoutete Stabsätze werden nur dann bemessen, wenn der gesamte Stabsatz einen linearen Querschnittsverlauf aufweist.

Verjüngung

Für die genaue Beschreibung der Voute stehen drei Möglichkeiten zur Auswahl:

- Gleichmässig
- Unten
- Oben

Diese Vorgabe wirkt sich auf die Bemessung und die Anordnung der Längsbewehrung aus.

Bild 3.26: Voute mit geneigter Unterseite

🔿 Oben	

🔘 Gleichmäßig

💿 Unten

4. Berechnung

Berechnung

Kontrolle

In jeder Eingabemaske kann die [Berechnung] über die gleichnamige Schaltfläche gestartet werden.

4.1 Plausibilitätskontrolle

Vor der Bemessung sollte kurz die Eingabedaten überprüft werden. Diese Funktion kann mit der Schaltfläche [Kontrolle] in jeder Maske von BETON aufgerufen werden. Werden keine Eingabefehler entdeckt, erscheint eine entsprechende Meldung.

	BETON Hinweis Nr. 1003
Plausibi	litätskontrolle in Ordnung!

Bild 4.1: Erfolgreiche Plausibilitätskontrolle

4.2 Details für nichtlineare Berechnung

Für die Analyse mit dem nichtlinearen Nachweisverfahren stehen Steuerungsparameter zur Verfügung, die das Berechnungsverfahren und das Konvergenzverhalten beeinflussen. Diese Parameter werden im Dialog *Einstellungen für nichtlineare Berechnung* verwaltet, der in Maske 1.1 *Basisangaben* über die Schaltfläche [Einstellungen] zugänglich ist (siehe Bild 3.1, Seite 44 oder Bild 3.6, Seite 47). Der Dialog besteht aus drei Registern.

4.2.1 Berechnungsansatz

Einstellungen für nichtlineare Berechnung	
Berechnungsansatz Tension Stiffening Konvergenzeinstell	ungen
Berechnungsansatz - Formänderungen und Schnittgrößen	Berechnungsansatz - Schub- und Torsionssteifigkeit
 Verfahren mit Durchschnittswerten der Material- eigenschaften und globalem Teilsicherheitsfaktor (EN 1992-1-1, 5.7) 	Schubsteifigkeit: Ansetzen der linear-elastischen Schubsteifigkeit Abminderung der Schubsteifigkeit affin zur Biegesteifigkeit
Globaler Teilsicherheitsbeiwert auf der Traglastseite γR : 1.30 牵	Torsionssteifigkeit: 📀 Berechnung nach Ansatz von Leonhardt
 Allgemeines Bemessungsverfahren bei Stäben mit Druck nach Theorie II. Ordnung (EN 1992-1-1, 5.8.6) Einschließlich Bewehrungsoptimierung 	Pauschale Abminderung der Torsionsstelfigkeit bezogen auf den ungerissenen Zustand: [%]
☑ Ausnutzung des Fließbereiches zulassen	
	UK Abbrechen

Bild 4.2: Dialog Einstellungen für nichtlineare Berechnung, Register Berechnungsansatz für SIA 262

Die Inhalte dieses Registers sind an die gewählte Norm angepasst.

Formänderungen und Schnittgrössen

Verfahren mit Durchschnittswerten der Materialeigenschaften

Wie in Kapitel 2.3.7 erläutert sind nach EN 1992-1-1 zwei Verfahren zur nichtlinearen Berechnung genormt. Das Verfahren mit Durchschnittswerten der Materialeigenschaften und globalem Teilsicherheitsnachfaktor nach EN 1992-1-1, 5.7 ist voreingestellt.

Globaler Teilsicherheitsbeiwert auf Traglastseite

Das Verfahren nach EN 1992-1-1, 5.7 wurde zur einheitlichen Anwendung nur eines Sicherheitskonzeptes kalibriert (siehe Kapitel 2.3.7, Seite 37).

Nach EN 1992-1-1, 5.7 (NA.10) Deutschland wird dieser Wert wie folgt definiert:

- $\gamma_R = 1,3$ für ständige und vorübergehende Bemessungssituationen und Nachweis gegen Ermüdung
- $\gamma_R = 1,1$ für aussergewöhnliche Bemessungssituationen

Allgemeines Bemessungsverfahren

Alternativ kann das Allgemeine Bemessungsverfahren bei Stäben mit Druck nach Theorie II. Ordnung nach EN 1992-1-1, 5.8.6 genutzt werden. Dieses Verfahren eignet sich besonders für die Berechnung schlanker Druckglieder, da infolge der Verformungs- und Schnittgrössenermittlung mit abgesicherten Mittelwerten in der Regel eine wirtschaftlichere Bemessung möglich ist. Hintergründe und weitere Erläuterungen hierzu finden sich in Kapitel 2.3.7.2.

Einschliesslich Bewehrungsoptimierung

Für einfache Strukturen kann eine Optimierung der Bewehrung durchgeführt werden. Hierbei sind jedoch die Ausführungen in [33], Seite 233 zu nichtlinearen Nachweiskonzepten zu beachten: Unter Umständen kann eine Bewehrungsoptimierung infolge der ständigen Steifigkeitsänderung kein konvergentes Ergebnis erreichen.

Ausnutzung des Fliessbereichs zulassen

Für beide oben beschriebenen Berechnungsverfahren gemäss EN 1992-1-1, 5.7 oder 5.8.6 ist das Kontrollfeld *Ausnutzung des Fliessbereiches zulassen* zugänglich. Hintergrund ist der Abschnitt 8.6.1 (5) in DIN 1045-1, der plastische Gelenke (Krümmungen $(1/r)_m > (1/r)_y$) für Bauteile unter Längsdruck nicht gestattet. Infolge des abrupten Steifigkeitsabfalls bei Bildung von plastischen Zonen bzw. Gelenken führen diese in schlanken Druckgliedern meist zum Stabilitätsverlust und somit zum Versagen der Stütze.

Das Kontrollfeld ist standardmässig deaktiviert: Dieses Kriterium wird bei der Berechnung der Querschnittskrümmungen beachtet, es sind keine plastischen Krümmungen möglich.

Schub- und Torsionssteifigkeit

Ansetzen der linear-elastischen Schubsteifigkeit

Die Schubflächen werden linear-elastisch berechnet und ohne Berücksichtigung einer Reduktion infolge Rissbildung angesetzt.

Abminderung der Schubsteifigkeit affin zur Biegesteifigkeit

Der linear-elastische Schubsteifigkeitsverlauf wird affin zum Verlauf der Biegesteifigkeit reduziert. Die theoretischen Grundlagen sind im Kapitel 2.3.5.2 auf Seite 27 erläutert.

Torsionssteifigkeit nach LEONHARDT

Die Torsionssteifigkeit wird unter Berücksichtigung der Rissbildung nach dem Verfahren von LEONHARDT [23] berechnet (vgl. Kapitel 2.3.5.2, Seite 28).

Pauschale Abminderung der Torsionssteifigkeit

Die Torsionssteifigkeit bei Rissbildung wird auf einen benutzerdefinierten Restwert reduziert. Es eine verbleibende Torsionssteifigkeit von 10 % voreingestellt, die sich aufgrund des starken Abfalls der Torsionssteifigkeit (vgl. Bild 2.12, Seite 28) ergibt.

4.2.2 Tension Stiffening

Berechnungsansatz Tension Stiffening Kon	vergenzeins	stellungen				
Ansatztyp von Tension Stiffening	Material E	eton - Berechnungsparam	neter			
 Ansatz über eine Beton(rest)zugfestigkeit (Verfahren Quast) 	Material Nr.	Beton-Festigkeitsklasse	Standard- werte	Faktorv fc / fct,R	Exponent n	E-Modul E _{ctm} [N/mm ²
Anasta i iber medifizierte Stablkennlinie	1	Beton C20/25	×	21.21	2.25	30000.000
Ohne Ansatz von Tension Stiffening	2	Beton C30/37	×	21.84	2.01	33000.000
	Belastun	, gsdauer der zu bemessend	en Lastfälle/	Lastfallgrup	pen	
		LF/LG-			Als	Faktor
	Nr.	Bezeichnu	ng	D	auerlast	β2
ension Stiffening	LF1	Eigengewichte			×	0.40
Virksame Zugstärke f _{ot R}	LF2	Verkehrslasten Dach				0.60
) fetm	LG13	g+p				0.505
fctk,0.05	(TB)					
) fctk,0.95						
npassungsfaktor der Jugstärke fot,R: 0.60 💭 x fot						
Normalkraft als Initialkraft						

Bild 4.3: Dialog Einstellungen für nichtlineare Berechnung, Register Tension Stiffening

Die Vorgaben zu Tension Stiffening (Mitwirken des Betons zwischen den Rissen) können getrennt für Tragfähigkeit, Gebrauchstauglichkeit und Brandschutz definiert werden.

Ansatztyp von Tension Stiffening

Ansatz über eine Beton(rest)zugfestigkeit

Das Verfahren basiert auf einer Restzugfestigkeit des Betons nach QUAST [11], die abhängig von der massgebenden Dehnung der Stahlfaser in der Zugzone definiert wird. Dieser Ansatz ist im Kapitel 2.3.3.1 auf Seite 22 grafisch dargestellt.

Ansatz über modifizierte Stahlkennlinie

Wie im Kapitel 2.3.3.2 auf Seite 24 erläutert kann der Tension Stiffening Effekt auch über eine modifizierte Stahlkennlinie erfasst werden. Der Rechenaufwand erhöht sich dabei etwas, da neben der reinen Berechnung im Zustand II auch eine Berechnung im ungerissenen Zustand sowie die Ermittlung der Rissschnittgrössen notwendig ist.

Ohne Ansatz von Tension Stiffening

Wird Tension Stiffening nicht berücksichtigt, so erfolgt lediglich die Unterscheidung nach gerissenen und ungerissenen Bereichen: In den ungerissenen Bereichen wird mit der entsprechenden Steifigkeit des Betons im Zustand I (unter Berücksichtigung der vorhandenen Längsbewehrung), in den gerissenen Bereichen mit den Steifigkeiten im reinen Zustand II gerechnet.

Tension Stiffening

Die Rechenwerte der Betonzugfestigkeit bestimmen den Exponenten des Parabelbereichs in der Weise, dass sich eine Steigung affin zum Druckbereich ergibt ($E_{cm} = E_{ctm}$).

Wirksame Zugstärke f_{ct,R}

Zur Berücksichtigung des entsprechenden Sicherheitsniveaus kann für die anzusetzende Betonzugfestigkeit zwischen folgenden Festigkeiten gewählt werden:

- f_{ctm} Mittelwert der zentrischen Zugfestigkeit
- f_{ctk;0,05} Charakteristischer Wert des 5%-Quantils der zentrischen Zugfestigkeit
- f_{ctk,0,95} Charakteristischer Wert des 95%-Quantils der zentrischen Zugfestigkeit

Anpassungsfaktor der Zugstärke fct,R

Der rechnerisch anzusetzende Wert der Betonzugfestigkeit f_{ct,R} kann über einen Anpassungsfaktor beeinflusst werden. Damit lassen sich die Randbedingungen berücksichtigen wie zum Beispiel eine vorhandene Schädigung.

PFEIFFER [26] schlägt eine Abminderung auf 60 % der Zugfestigkeiten vor (Voreinstellung).

Normalkraft als Initialkraft

Dieses Kontrollfeld ist für die Berechnung der Rissschnittgrössen von Bedeutung: Ist es aktiv, so wird die Normalkraft für die Berechnung der Rissmomente konstant gehalten. Dieser Fall gilt beispielsweise für das Aufbringen einer Vorspannung. Wenn das Kontrollfeld deaktiviert ist, wird bei der Berechnung der Rissschnittgrössen der gesamte Lastvektor berücksichtigt.

Material Beton - Berechnungsparameter

Die Beton-*Standardwerte* der Berechnungsparameter sind voreingestellt (vgl. Kapitel 2.3.3.1, Seite 22). Wird dieses Kontrollfeld (in der dritten Spalte) deaktiviert, so kann die Spannungs-Dehnungs-Linie des Zugbereichs direkt beeinflusst werden. Da die Werte untereinander abhängig sind, werden nach einer Änderung die zugehörigen Werte entsprechend angepasst.

Belastungsdauer der zu bemessenden Lastfälle/Lastfallgruppen

Dieser Abschnitt verwaltet die Völligkeitsbeiwerte β zum Ansatz des Abzugsterms ($\epsilon_{sr2} - \epsilon_{sr1}$), d. h. der Dehnungen der massgebenden Stahlfasern für die Rissschnittgrössen im gerissenen bzw. ungerissenen Zustand (vgl. Kapitel 2.3.3.2, Seite 24). Der Faktor β ist von der Lasteinwirkungsdauer abhängig:

- 0,4 Dauerlast oder wiederholte Belastung
- 0,6 Kurzzeitige Belastung

Beim Ansatz über eine modifizierte Stahlkennlinie kann anhand des Kontrollfeldes gesteuert werden, ob ein Lastfall *Als Dauerlast* zu betrachten ist.

Für Lastfallgruppen stellt der angesetzte Faktor β_2 das Mittel aus den jeweiligen β_2 -Werten der in der LF-Gruppe enthaltenen Lastfälle dar.

Hinweis für Druckglieder

Für die Bemessung von Druckgliedern ist grundsätzlich das Tension Stiffening Modell nach QUAST (*Ansatz über Betonrestzugfestigkeit*) zu verwenden. Die verbleibende Restzugkraft kann über den *Anpassungsfaktor der Zugstärke* beeinflusst werden.

Das Tension Stiffening Modell mit modifizierter Stahlkennlinie basiert auf einer Unterscheidung zwischen gerissenen (M>M_{cr}) und ungerissenen Bereichen (M < M_{cr}): Im ungerissenen Bereich wird linear elastisch mit einem konstanten E-Modul für den Beton (E_{cm,eff}) gerechnet. Bei überwiegendem Druck treten jedoch wegen des nichtlinearen Verlaufes der Spannungs-Dehnungs-Linie des Betons deutlich vergrösserte Krümmungen bei kleinen Momentenbeanspruchungen auf. Die Ergebnisse können somit stark auf der unsicheren Seite liegen.

4.2.3 Konvergenzeinstellungen

3erechnungsansal	z Tension 9	Stiffening	Konvergenzeinstellungen		
Adaptive Stabteilu	ng			tterationskennwerte	
Parameter m: n:	20 📚	0		Maximale Anzahl der Iterationen pro Laststufe:	50 🌪
				Dämpfung der Steifigkeitsänderung in einem Iterationszyklus	
l ellungstaktor bei Verfeinerung: 1 🚭				Dämpfungsfaktor:	0.500 😂
				Abbruchschranken	
Grenzlängen der S	tabteilungen			$\varepsilon_1 = [(1/\gamma)_i + (1/\gamma)_{i-1}]$:	0.0010 🚔
Maximal:	0.500	🗘 [m]		$\varepsilon_2 = (E _i - E _{i-1})^2 / (E _i)^2 $	0.0010 🚭
Minimal: 0.100 🔿 [m]				ε3 = umax,i - umax,i-1 / Dämpfungsfaktor:	1.0000 😂 [mm
.aststufen Anzahl der				100 T	
Laststufen:	3 📚			90 - 80 -	
Lastaufbringung:	 Linear 			70	
	O Trilinear:			50	
	Zwischen- schritt	Last- stufe	Aufgebrachter Lastanteil [%]	40	
	1	1	50.0	10	
	2	2	80.0	• 	2

Bild 4.4: Dialog Einstellungen für nichtlineare Berechnung, Register Konvergenzeinstellungen

Hinweise zu diesem Register finden sich auch im Kapitel 2.3.9 Konvergenz ab Seite 43.

Adaptive Stabteilung

Die Elementierung übt einen entscheidenden Einfluss auf die nichtlineare Berechnung aus: Sind die Steifigkeitssprünge innerhalb eines Elements zu gross, so kann dies zu ungenauen Ergebnissen oder einer nicht konvergenten Berechnung führen. Die *Adaptive Stabteilung* kontrolliert die Steifigkeitsunterschiede an den Elementknoten und legt bei zu grossen Unterschieden entsprechende Zwischenteilungen an.

Parameter m / n

Da BETON mit konstanten mittleren Steifigkeiten im Verlauf eines FE-Elementes rechnet, empfiehlt sich im Bereich grösserer Steifigkeitsänderungen eine feinere Elementierung (vgl. Bild 2.2, Seite 17). Nähere Angaben zum formellen Zusammenhang der Parameter *m* und *n* sind über die [Info]-Schaltfläche im Dialog zugänglich.

Nach [26] haben sich Werte für m \cong 20 und n \cong 40 bewährt. Hierzu sei jedoch erwähnt, dass PFEIFFER im Rahmen des verwendeten Übertragungsmatrizenverfahrens mit tangentialen Biegesteifigkeiten rechnet. Diese weisen im Bereich von Rissbildung und Fliessbeginn eine deutlich grössere Gradiente auf. Aus diesem Grund können sich im Einzelfall auch andere Werte für *m* und *n* als sinnvoll erweisen.

Teilungsfaktor bei Verfeinerung

Dieses Eingabefeld steuert, durch wie viele Knoten das FE-Element geteilt wird.

Grenzlänge der Stabteilung

Die *maximale* Grenzlänge der Stabteilung gibt die grösstmögliche Länge eines FE-Balkenelements vor, die *minimale* Grenzlänge repräsentiert die kleinste zulässige Länge für ein finites Element.

Die Grenzlängen stellen auch die Schranken für die adaptive Stabteilung dar. Bei Vergleichsrechnungen haben sich die voreingestellten Längen von 0,5 m und 0,1 m als sinnvolle Werte erwiesen. Weiter reduzierte Längen wirken sich nur geringfügig auf die Ergebnisse aus, sie ver-

langsamen jedoch die Berechnung erheblich infolge der erhöhten Anzahl an FE-Elementen. Bei sehr starken Steifigkeitssprüngen (z. B. bei unterbewehrten Querschnitten vom Zustand I zum Zustand II) kann es aber sinnvoll sein, die minimale Grenzlänge zu verfeinern.

Iterationskennwerte

Die Iterationskennwerte ermöglichen es, den Iterationsprozess zu beeinflussen.

Maximale Anzahl der Iterationen pro Laststufe

Der Iterationsprozess hängt sehr von Querschnittsform, System und Belastung ab. Damit ist auch die erforderliche Iterationsanzahl zum Erreichen der definierten Abbruchschranken starken Schwankungen ausgesetzt. Der voreingestellte Wert von *50* Iterationen ist für die meisten praktischen Anwendungen ausreichend, kann aber bei Bedarf angepasst werden.

Dämpfung der Steifigkeitsänderung in einem Iterationszyklus

Im Zuge von zwei aufeinander folgenden Iterationsschritten wird der Steifigkeitsunterschied an einem Knoten ermittelt. Der Dämpfungsfaktor charakterisiert den Anteil der Steifigkeitsdifferenz, der für die neu angesetzte Steifigkeit des nächsten Iterationsschrittes berücksichtigt wird. Durch eine gezielte Verminderung der Steifigkeitssprünge zwischen zwei Iterationsschritten kann dem Oszillieren der Berechnung entgegengewirkt werden.

Je grösser der Dämpfungsfaktor, desto geringer ist der Einfluss der Dämpfung. Bei einem Faktor gleich 1 übt die Dämpfung keinen Einfluss auf die iterative Berechnung aus.

Abbruchschranken $\varepsilon_1 / \varepsilon_2 / \varepsilon_3$

Die Abbruchschranken können je nach Zweck und Aufgabe angepasst werden: Führen bei Berechnungen nach Theorie I. Ordnung (z. B. Balkenverformungen im GZG) relativ grobe Abbruchschranken ($\varepsilon_1 = \varepsilon_2 \le 0,01$) zu ausreichend genauen Ergebnissen, so empfiehlt es sich dennoch, die Toleranzen für Stabilitätsberechnungen zu verfeinern ($\varepsilon_1 = \varepsilon_2 \le 0,001$). Das Beispiel 3 im Kapitel 9.3 stellt diesen Effekt in anschaulicher Weise dar.

Anhand der Abbruchschranke ε_3 wird zusätzlich die Verformungsänderung kontrolliert. Dieses Kriterium verfolgt, wie sich die Grösse der maximalen Verformung ändert. Dabei wird auch der vorgegebene Dämpfungsfaktor berücksichtigt.

Laststufen

Die Belastung kann schrittweise aufgebracht werden, um eine abrupte Steifigkeitsänderung in den einzelnen FE-Elementen zu vermeiden oder abzumindern ("Gewöhnung" des Systems an die Belastung). Das Ziel ist es, keine zu grossen Steifigkeitssprünge während einer Iteration entstehen zu lassen. Wird die Last schrittweise aufgebracht, so kann in dem Iterationsschritt einer Laststufe immer auf die entsprechende Endsteifigkeit des Elements der vorangegangenen Laststufe zurückgegriffen werden.

Anzahl der Laststufen

In diesem Eingabefeld wird die Anzahl der einzelnen Laststufen für die nichtlineare Berechnung festgelegt.

Lastaufbringung

Linear

Die Belastung wird in linearen Schritten aufgebracht.

Trilinear

Da bei einer linearen Lastaufbringung auf die belastungsabhängige Steifigkeitsentwicklung nur mit entsprechend feiner Abstufung reagiert werden kann, ist alternativ eine trilineare Lastaufbringung möglich. Damit kann z. B. auf Randbedingungen wie Fliessen nahe dem Bruchzustand entsprechend eingegangen werden.

Die trilineare Lastaufbringung wird über die Tabelle gesteuert: Es sind zwei Zwischenpunkte anzugeben, die den bis dahin aufgebrachten Lastanteil charakterisieren.

Start der Berechnung 4.3

Berechnung

Die [Berechnung] wird über die gleichnamige Schaltfläche gestartet, die in jeder Eingabemaske des Moduls BETON zur Verfügung steht.

BETON sucht nach den Ergebnissen der zu bemessenden Lastfälle, Lastfallgruppen und Lastfallkombinationen. Falls diese nicht vorliegen, startet zunächst die RSTAB-Berechnung zur Ermittlung der nachweisrelevanten Schnittgrössen. Es wird dabei auf die vorgegebenen Berechnungsparameter von RSTAB zurückgegriffen.

Auch aus der RSTAB-Oberfläche kann die Bemessung durch BETON gestartet werden. Alle Zusatzmodule werden im Dialog Zu berechnen wie ein Lastfall oder eine Lastfallgruppe aufgelistet. Dieser Dialog wird in RSTAB aufgerufen über Menü

Nicht berechnete				Zur Berechnung aus	sgewählt	e
Programm / Mo	Nr.	Bezeichnung	•	Programm / Mo	Nr.	Bezeichnung
RFEM	LF1	Gk+Qk1_feld 1u 2		RF-BETON Stäbe	FA1	Stahlbetonbemessung von Stäb
RFEM	LF2	Gk+psí*Qk1_feld 1				
RFEM	LF3	Gk+psí*Qk1_feld 2				
RFEM	LF4	gama*(Gk+Qk1_feld 1u 2)				
RFEM	LF5	gama*(Gk+Qk1_feld 1)	>			
RFEM	LF6	gama*(Gk+Qk1_feld 2)	\gg			
☑ <u>Z</u> usatzmodule ar	nzeigen			og og		

Bild 4.5: Dialog Zu berechnen

Sollten die BETON-Bemessungsfälle in der Liste Nicht berechnete fehlen, muss das Kontrollfeld Zusatzmodule anzeigen am Ende der Liste aktiviert werden.

> Berechnen Mit der Schaltfläche [▶] werden die selektierten BETON-Fälle in die rechte Liste übergeben. Die Berechnung wird dann mit der entsprechenden Schaltfläche gestartet.

Über die Liste der RSTAB-Symbolleiste kann ein bestimmter BETON-Bemessungsfall ebenfalls direkt berechnet werden: Stellen Sie den gewünschten Bemessungsfall ein und klicken dann die Schaltfläche [Ergebnisse ein/aus] an.

Er <u>q</u> ebnisse <u>E</u> xtras	<u>T</u> abelle <u>O</u> ptionen	<u>Z</u> usatzmodule <u>F</u> enster <u>H</u> ilfe
🔲 🖳 BETON FA1	- Stahlbeton-B 🎽 🔇	🔹 🚛 🎬 😂 🔛 🕊 📾 📾 🗄 🎆 🛱 🤹 🤹
e - 🛛 💥 🤍 🕅	🏗 🛱 🗊 🗗 🖄	Ergebnisse ein/aus Z Mr My Mz Py Pz

Bild 4.6: Direkte Berechnung eines BETON-Bemessungsfalls in RSTAB

Der Ablauf der Bemessung kann anschliessend in einem Dialog verfolgt werden.

۹

Gesamtablauf			
RSTAB - Berechnung			
BETON	FA1		
Einzelschritte			
Bemessung nach EN 1992-1-1		Anzahl der Stäbe	15
- Initialisieren der Daten		Anzahl der Stabsatze Anzahl der Bewehrungssätz	2
- Berechnung der erforderliche	n Bewehrung	Anzahl der Lastfälle	1
- Berechnung der vorhandene	n Bewehrung	Anzahl der LF-Gruppen Anzahl der LF-Kombinations	2
- Berechnung der Rissbreiten.		Anzahl der Modul-Fälle	1
- Nichtlineare Berechnung		Nichtlineare Berechnung	1/2
		Lastfaktor:	0.33
		Iteration Nr.	4/50
		Iterationen Total:	7 0.084
		Eps-1 :0.00003 < 0.0010	[-]
L Stab Nr. 12 (12/15)		Eps-2:0.00000 < 0.0010	[·]
		Eps-3 :0.00002 < 1.0000	[mm]
]		

Bild 4.7: BETON-Bemessungsablauf

5. Ergebnisse

Unmittelbar nach der erfolgreichen Bemessung erscheint die Maske 2.1 Erforderliche Bewehrung querschnittsweise.

Die für den Tragfähigkeitsnachweis erforderlichen Bewehrungsquerschnitte werden in den Ergebnismasken 2.1 bis 2.4 aufgelistet. Wurde ein Bewehrungsvorschlag erstellt, erscheint die vorhandene Bewehrung inklusive Stahlliste in den Ergebnismasken 3.1 bis 3.4. Die Rissbreitennachweise werden in den Masken 4.1 bis 4.4 ausgegeben, die Masken 5.1 bis 5.4 sind für die Brandschutznachweise reserviert. Falls eine nichtlineare Bemessung durchgeführt wurde, werden diese Ergebnisse in den Masken 6.1 bis 6.4 ausgegeben.

Die diversen Masken lassen sich direkt über den BETON-Navigator ansteuern. Alternativ werden die beiden links dargestellten Schaltflächen oder die Funktionstasten [F2] und [F3] benutzt, um eine Maske vor- oder zurückzublättern.

[OK] sichert die Ergebnisse und beendet das Modul BETON.

Dieses Handbuchkapitel stellt die Ergebnismasken der Reihe nach vor. Die Auswertung und Kontrolle der Resultate ist im Kapitel 6 *Ergebnisauswertung* ab Seite 102 beschrieben.

5.1 Erforderliche Bewehrung

5.1.1 Erforderliche Bewehrung querschnittsweise

Datei Bearbeiten Einstellungen	Hilfe										
FA1 - Stahlbeton-Bemessung 🔽 2.1 Erforderliche Bewehrung querschnittsweise											
Eingabedaten	A	В	С	D	E	F		G	^	Rechteck 1000.0/1400.0	
Basisangaben		Stab	Stelle	LF / LG	Bewehrungs-		Fehl	ermeldung			
Materialien	Bewehrung	Nr.	LK	fläche	Einheit	Einheit bzw. Hinweis					
Querschnitte	Querschnitt Nr. 3 - Rechteck 1000/1400										
- Lager	As,oben	10	16.000	LG1	31.31	cm ²					
Bewehrung	As,unten	10	8.000	LG1	40.06	cm ²					
1 - Riegel	As,T	10	0.000	LG1	0.00	cm ²					
2 - Stützen	as,wv Bügel 10 16.000				5.25	cm ² /m	58)				
Fraebnisse	as,w⊤ Bügel	0.00	cm ² /m	n ² /m				_			
Ergodinisso E- Erforderliche Bewehrung	Querschnitt Nr. 4 - Rechteck 550/1400										
	As.oben	11	0.000	LG1	20.06	cm ²				i i	
Ouerschnitt Nr. 1	As.unten	13	8.000	LG1	6.91	cm ²			-144	÷	
Querschnitt Nr. 2	As.T	11	0.000	LG1	0.00	cm ²				Z	
Quersehnitt Nr. 2	as my Bügel	11	0.000	1.61	2.37	cm ² /m	58)				
Querschnitt Nr. 4	as.wT Bügel	11	0.000	LG1	0.00	cm ² /m	/		~		[
Querschnitt Nr. 5										01	
etaboatzwaica	Zwischener	Zwischenergebnisse - Querschnitt Nr. 3 - Rechteck 1000/1400 - LG1								Sigina-c (winnez)	=h2 [wo]
	Obere Längsb	ere Längsbewehrung					31.31	cm ²	~		23.30
	Untere Längst	Jntere Längsbewehrung					0.00	cm ²		1 1	
 X-steller inverse 	Torsionslängst	newehrun	,	As T		0.00	cm ²				
	Querkrafthüge	hewehrur	י חת	as in V Bi	iael	5.25	cm ² /m	- 3			
	Torsionshijgel	hewehrun	а П		асшт Ві	iael	0.00	cm ² /m			
	Innerer Hebela	arm z für d	e Schubber	essuna	Z	1	220.40	mm			
	Debnung der o	nheren Be	webrung	oooang	Es oben		22 500	%	- 1		
	Debnung der u	interen Be	ewebrung		Es unten			%	- 1		
	Betondebnung	anteren be	an Querschni	Iterand	Cs,unter		23.299	%.	- 1		
	Betondehnung	ann obere	en Querschin	itterand	Co,open		.2 109	×.	- 1		V
	Debnung Solo	y ann aintei warachoo	on queisenn	mararia	co,unter		10.595	~~~ %.	- 1		k
	Druckzonenho	iha			- CD - V		116 21	 mm	- 1	20.000	2.4
	Druckzonenho	iha Mutek	ähe		×/d		0.096		-	-20.000	-2.1
	Lotuckzonenno	nernuczn	ione		Nu		0.005				

Bild 5.1: Maske 2.1 Erforderliche Bewehrung querschnittsweise

Es werden für alle bemessenen Querschnitte die maximal erforderlichen Bewehrungsflächen ausgewiesen, die sich aus den Parametern der Bewehrungssätze und den Schnittgrössen der massgebenden Einwirkungen ergeben.

Die Bewehrungsflächen der Längs- und Bügelbewehrung sind nach Querschnitten geordnet aufgelistet. In den beiden Bereichen dieser Maske werden diejenigen Bewehrungsarten und Bemessungsdetails angezeigt, die im Dialog *Ergebnisse zu zeigen* aktiv sind (siehe Bild 5.2).

Im unteren Teil der Maske werden die Zwischenergebnisse für die oben selektierte Zeile angezeigt. Dadurch ist eine gezielte Auswertung anhand der Bemessungsdetails möglich. Die Ausgabe der Zwischenergebnisse im unteren Bereich aktualisiert sich automatisch, sobald im oberen Abschnitt eine andere Zeile selektiert wird.

Bewehrung

Es sind folgende Längs- und Bügelbewehrungen voreingestellt:

Bewehrung	Erläuterung
A _{s,oben}	Bewehrungsquerschnitt der erforderlichen oberen Längsbewehrung in- folge Biegung mit oder ohne Längskraft oder Längskraft allein
A _{s,unten}	Bewehrungsquerschnitt der erforderlichen unteren Längsbewehrung infolge Biegung mit oder ohne Längskraft oder Längskraft allein
A _{s,T}	Bewehrungsquerschnitt einer gegebenenfalls erforderlichen Torsions- längsbewehrung
a sw,V Bügel	Querschnitt der erforderlichen Schubbewehrung zur Aufnahme der Querkraft, bezogen auf die Einheitslänge 1 m
a sw,T Bügel	Querschnitt der erforderlichen Bügelbewehrung zur Aufnahme des Tor- sionsmoments, bezogen auf die Einheitslänge 1 m

Tabelle 5.1: Längs- und Bügelbewehrungen

Die untere Bewehrung befindet sich auf der Stabseite in Richtung der positiven lokalen Stabachse z, die obere Bewehrung entsprechend in Richtung der negativen z-Achse. In der RSTAB-Oberfläche lassen sich die Stabachsen im Zeigen-Navigator oder Stab-Kontextmenü zur Kontrolle einblenden.

Über die Schaltfläche [Zu zeigen] kann gezielt festgelegt werden, welche Bewehrungs- und Zwischenergebnisse in den beiden Abschnitten der Maske erscheinen. Diese Einstellungen steuern gleichzeitig die Ergebnisarten für das Ausdruckprotokoll.

Ergebnisse zu zeigen ¦ EN 1992-1-1 🛛 🔀
Zu zeigen - Bewehrung
Obere Längsbewehrung A-s,oben
Untere Längsbewehrung A-s,unten
Torsionslängsbewehrung A-s,T
🔽 Querkraftbügelbewehrung a-s,wV Bügel
Torsionsbügelbewehrung a-s,wT Bügel
Gesamte obere Bewehrung A-s,oben + A-s,T/2
Gesamte untere Bewehrung A-s,unten + A-s,T/2
Gesamte Bügelbewehrung 2×a-s,wT Bügel + a-s,wV Bügel
Alle
Zu zeigen - Zwischenergebnisse
🔽 Obere Längsbewehrung A-s,oben 🛛 🔊
🔽 Untere Längsbewehrung A-s, unten
🔽 Torsionslängsbewehrung A-s,T
🔽 Querkraftbügelbewehrung a-s,wV Bügel
Torsionsbügelbewehrung a-s,wT Bügel
Innerer Hebelarm z für die Schubbemessung z
Dehnung der oberen Bewehrung Eps-s,oben
Dehnung der unteren Bewehrung Eps-s, unten
Betondehnung am oberen Querschnittsrand Eps-c,oben
Betondehnung am unteren Querschnittsrand Eps-c, unten
Deselektieren
OK Abbrechen

Bild 5.2: Dialog Ergebnisse zu zeigen

Obere und Untere Lage

Zu zeigen...

Stab Nr.

Es wird für jeden Querschnitt und jede Bewehrungsart die Nummer des Stabes angegeben, der die grösste Bewehrungsfläche aufweist.

Stelle x

Es wird jeweils die x-Stelle im Stab angegeben, für die die Maximalbewehrung ermittelt wurde. Zur tabellarischen Ausgabe werden diese RSTAB-Stabstellen *x* herangezogen:

- Anfangs- und Endknoten
- Teilungspunkte gemäss eventuell vorgegebener Stabteilung
- Extremwerte der Schnittgrössen

LF / LG /LK

In dieser Spalte werden die Nummern der Lastfälle, Lastfallgruppen und -kombinationen bzw. Superkombinationen angegeben, die für die jeweilige Bemessung massgebend sind.

Bewehrungsfläche

Spalte E gibt Auskunft über die maximalen Bewehrungsflächen für jede Bewehrungsart. Diese sind zur Erfüllung des Tragsicherheitsnachweises erforderlich.

Die in Spalte F angegebenen Einheiten der Bewehrungen lassen sich anpassen über Menü

```
\textbf{Einstellungen} \rightarrow \textbf{Einheiten} \text{ und } \textbf{Dezimalstellen}.
```

Es wird der im Bild 8.6 auf Seite 115 gezeigte Dialog aufgerufen.

Fehlermeldung bzw. Hinweis

Die letzte Spalte verweist auf Unbemessbarkeiten oder Bemerkungen, die sich im Zuge der Bemessung ergeben haben. Die Nummern sind in der Statusleiste näher erläutert.

Meldungen...

Alle [Meldungen] des aktuellen Bemessungsfalls lassen sich zusammengefasst über die links dargestellte Schaltfläche einsehen. Es erscheint ein informativer Dialog mit einer Übersicht.

Bild 5.3: Dialog Fehlermeldungen bzw. Hinweise

Jatei Bearbeiten Einstellungen	Hille											
A1 - Stahlbeton-Bernessung 🛛 🔽	2.2 Erforde	rliche B	ewehrung	stabsat	tzweise	eise						
Eingabedaten	daten A B C D					F		G	^	Rechteck 900.0/600.0		
Basisangaben		Stab	Stelle	LF / LG	Bewehrungs-		Fehl	ermeldung				
- Materialien	Bewehrung	Nr.	x [m]	LK	fläche	Einheit	bzw	. Hinweis				
- Querschnitte	Stabsatz Nr. 2	 Rechte 	ck 900/600									
- Lager	As,oben	3	0.000	LG1	10.80	cm ²	23) 25	i)				
Bewehrung	As,unten	3	0.000	LG1	-		12) 23	3) 25)		(
1 - Riegel	as,w∨Bügel	3	0.000	LG1	0.00	cm ² /m	58)					
2 - Stützen	Stabsatz Nr. 3	 Rechte 	ck 900/600									
raebnisse	As,oben	1	0.000	LG1	10.80	cm ²	23) 25	i)				
Erforderliche Bewehrung	As,unten	1	0.000	LG1			12) 23	3) 25)	=			
auerschnittsweise	as,w∨Bügel	1	0.000	LG1	0.00	cm ² /m	58)					
stabsatzweise	Stabsatz Nr. 4	Stabsatz Nr. 4 - Rechteck 550/1400										
Stabsatz Nr. 1 - Bechl	As,oben	11	0.000	LG1	20.06	cm ²				1 ÷		
Stabsatz Nr. 2 - Bechl	As,unten	11	8.000	LG1	11.25	cm ²	27)			z		
Stabsatz Nr. 3 - Bechl	as,w∨Bügel	11	0.000	LG1	4.82	cm ² /m	58) 69	ŋ	~	[
Stabsatz Nr. 4 - Bechl										Sigma o (N/mm/2) Enc (%)		
stabweise	Zwischener	Zwischenergebnisse – Stabsatz Nr. 3 – 🛛								Signale [ikinin 2] Eps [kij		
x-stellenweise	Obere Längsb	ewehrung			As,oben		10.80	cm ²	~	-20.000 -2.69		
Vorbandene Bewehrung	Untere Längst	ewehrung	1	As,unten								
I angsbewehrung	Torsionslängst	ewehrung	1		As,T		0.00	cm ²				
 Bijgebewehrung 	Querkraftbüge	bewehrun	- IQ		as,w∨Bi	igel	0.00 cm ² /m		- 3			
Bewehrung wstellenweise	Torsionsbugel	bewehrun	5	as.w⊤ Bi	igel	0.00	cm ² /m					
Deweinung watenenweise	Innerer Hebela	arm z für di	, e Schubbern	essuna	z	-	504.00	mm				
	Dehnung der o	beren Be	wehruna		€s.oben		-2.580	‰				
	Dehnung der u	unteren Be	wehrung		د. ٤s.unten			‰				
	Betondehnung	am obere	n Querschni	ttsrand	ξc.oben		-2.687	‰				
	Betondehnung	am unter	en Querschn	ittsrand	ξc.unten		-1.084	‰				
	Dehnuna Sch	werachse			ED		1.885	‰				
	Druckzonenho	ihe			×	1	005.49	mm		-15.802 -1.08		
	Druckzonenho	ihe/Nutzh	öhe		x/d		1.796		~			
		_			_			_				

5.1.2 Erforderliche Bewehrung stabsatzweise

Diese Maske präsentiert die maximalen Bewehrungsflächen, die für die einzelnen Stabsätze erforderlich sind. Die Spalten sind im vorherigen Kapitel 5.1.1 erläutert.

5.1.3 Erforderliche Bewehrung stabweise

FA1 - Stahlbeton-Bemessung ✓ 2.3 Erforderliche Bewehrung st Stab Basisangaben - Materialien - Querschnitte - Lager A B C Bewehrung - Querschnitte - Lager Nt. Nt. x (m) Bewehrung - 2. stützen Nt. 11 0.0001 Erforderliche Bewehrung - 2. stützen aw./Bügel 11 0.0001 Erforderliche Bewehrung - 2. stützen aw./Bügel 11 0.0001 Erforderliche Bewehrung - Stab Nr. 1 - Rechteck Aw./Bügel 12 0.6000 Bestabweise Stab Nr. 1 - Rechteck Stof-7001 Aw./Bügel 12 0.0001 Stab Nr. 1 - Rechteck - Stab Nr. 3 - Rechteck Stab Nr. 1 - Rechteck Stof-7001 Aw./Bügel 12 0.0001 Stab Nr. 3 - Rechteck - Stab Nr. 3 - Rechteck Stab Nr. 1 - Rechteck Stof-7001 Aw./Bügel 13 0.0001 Stab Nr. 3 - Rechteck Stab Nr. 3 - Rechteck Stab Nr. 3 Rechteck Stab Nr. 3 Stab Nr. 5 - Rechteck Stab Nr. 5 - Rechteck Stab Nr. 5 Stab Nr. 5 Stab Nr. 5	stabwei D LF / LG LG1 LG1 LG1 LG1 LG1 LG1 LG1 L	ise E Bewehrungs- fläche 11.25 4.82 15.05 11.25 4.82 11.87 11.25 4.82	F Einheit cm ² cm ² /m cm ² /m cm ² /m cm ² /m cm ² /m	27) 58) 69 27) 58) 69 27) 58) 69	G ermeldung . Hinweis		Rechteck 550.0/1400.0	
A B C Basisangaben Stable Stable I Materialen Stable I Bewehrung N: x (m) Lager Stable I Revehrung N: x (m) - 1 - Riegel - 1 Revehrung As.uten 11 0.000 - 2 - Stützen - 2 Stable 11 0.000 - 2 - Stützen - 2 Stable 11 0.000 - 2 - Stützen - 2 Stable 11 0.000 - 2 - Stützen - 2 Stable 11 0.000 - 2 - Stützen - 2 - 12 16.000 - Stable N: 1 - Rechteck - 3 16.000 - Stable N: 2 - Rechteck - 3 0.0000 - Stable N: 3 - Rechteck - 3 0.0000 - Stable N: 3 - Rechteck - 3 0.0000 - Stable N: 5 - Rechteck - Stable - Stable - Stable - Stable N: 5 -	D LF7LG LK LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1	E Bewehrungs- fläche 11.25 4.82 11.25 4.82 11.25 4.82 11.87 11.25 4.82	F Einheit cm ² cm ² /m cm ² /m cm ² /m cm ² /m cm ² /m	27) 58) 69 27) 58) 69 27) 58) 69	G ermeldung . Hinweis		Rechteck 550.0/1400.0	
Basisangaben Stab Stab Stalle I Materialien Bewehrung Nr. × fm] Image: Stab	LF / LG LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1 L	Bewehrungs- fläche 20.06 11.25 4.82 15.05 11.25 4.82 11.87 11.25 4.82	Einheit cm ² cm ² /m cm ² cm ² cm ² cm ² /m cm ² cm ² /m	Fehk bzw 27) 58) 69 27) 58) 69 27) 58) 69))			
Materialien Bewehrung Nr. x (m) Querschnitte Stab Nr. 11 - Rechteck 550/1400 Lager As_oben 11 0.000 Bewehrung As_unten 11 8.000 - 1 - Riegel - 2 - Stützen Stab Nr. 12 - Rechteck 550/1400 Ergebnisse As_oben 12 16.000 Babweise As_unten 12 2.667 Babweise As_unten 13 16.000 Stab Nr. 12 - Rechteck Soon 13 16.000 Stab Nr. 13 - Rechteck Soon 13 16.000 Stab Nr. 13 - Rechteck Soon 13 16.000 Stab Nr. 13 - Rechteck As_uve Bigel 13 0.000 Stab Nr. 13 - Rechteck Soon 13 0.000 Stab Nr. 3 - Rechteck Sub Nr. 4 Stab Nr. 5 Stab Nr. 5 Stab Nr. 5 - Rechteck Öber Längsbewehrung Stab Nr. 5	LK LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1	fläche 20.06 11.25 4.82 15.05 11.25 4.82 11.87 11.25 4.82	Einheit cm ² cm ² /m cm ² cm ² /m cm ² cm ² /m cm ² cm ²	27) 58) 69 27) 58) 69 27) 58) 69 27) 58) 69)))))			
Querschnitte Stab №. 11 - Rechteck 550/1400 Lager Ás.oben 11 0.000 Bewehrung As.urten 11 0.000 - 1 - Riegel Stab №. 11 0.000 - 2 - Stützen Stab №. 12 Rechteck 550/1400 Erforderliche Bewehrung As.urten 12 16.000 Erforderliche Bewehrung As.urten 12 2.607 etabweise Stab №. 12 Rechteck 550/1400 As.urten 12 2.667 stabatzweise Stab №. 13 Rechteck 550/1400 As.urten 13 8.000 Stab №. 1 Stab №. 13 Rechteck Bauwe Bigel 13 0.000 Stab №. 2 Rechteck Sum 13 16.000 As.urten 13 8.000 Stab №. 3 Rechteck Sum 13 0.000 Stab №. 4 Stab №. 5 Rechteck Stab №. 5	LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1	20.06 11.25 4.82 15.05 11.25 4.82 11.87 11.25 4.82	cm ² cm ² /m cm ² cm ² cm ² cm ² /m cm ² cm ² cm ²	27) 58) 69 27) 58) 69 27) 27) 27) 58) 69))))))			
Lager As oben 11 0.000 Bewehrung As unten 11 8.000 - 1 - Riegel Stab Nr. 12 - Rechteck 550/1400 As unten 12 16.000 - 2 - Stützen Stab Nr. 12 - Rechteck 550/1400 As unten 12 2.667 - Stab Nr. 13 - Rechteck Stab Nr. 13 - Rechteck 550/1400 As unten 12 2.667 - Stab Nr. 1 - Rechteck Stab Nr. 13 - Rechteck Stab Nr. 13 - Rechteck As unten 13 8.000 - Stab Nr. 1 - Rechteck As unten 13 8.000 As unten 13 8.000 - Stab Nr. 3 - Rechteck Stab Nr. 4 - Rechteck Visischenergebnisse - Stab Nr. Stab Nr. 5 - Rechteck - Stab Nr. 4 - Rechteck Zwischenergebnisse - Stab Nr. Stab Nr. 5 - Rechteck Zwischenergebnisse - Stab Nr. <td>LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1</td> <td>20.06 11.25 4.82 15.05 11.25 4.82 11.87 11.25 4.82</td> <td>cm² cm²/m cm²/m cm² cm²/m cm² cm²</td> <td>27) 58) 69 27) 58) 69 58) 69 27) 27) 58) 69</td> <td>))))))</td> <td></td> <td></td> <td></td>	LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1	20.06 11.25 4.82 15.05 11.25 4.82 11.87 11.25 4.82	cm ² cm ² /m cm ² /m cm ² cm ² /m cm ² cm ²	27) 58) 69 27) 58) 69 58) 69 27) 27) 58) 69))))))			
Bewehrung As.unten 11 8.000 1 - Riegel 3s.unten 11 8.000 2 - Stützen Stab Nr. 12 Rechteck 550/1400 gebrisse As.oben 12 16.000 Brite Werkrung As.unten 12 2.667 Brite Substatzweise As.oben 12 2.000 Stab Nr. 13 - Rechteck Stab Nr. 13 16.000 Stab Nr. 1 - Rechteck As.oben 13 16.000 Stab Nr. 1 - Rechteck As.oben 13 16.000 Stab Nr. 2 - Rechteck Stab Nr. 3 - Rechteck Stab Nr. 3 - Rechteck Stab Nr. 4 - Rechteck Stab Nr. 4 - Rechteck Stab Nr. 5 - Rechteck Obset Längsbewehrung	LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1	11.25 4.82 15.05 11.25 4.82 11.87 11.25 4.82	cm ² cm ² /m cm ² cm ² /m cm ² /m	27) 58) 69 27) 58) 69 58) 69 27) 27) 58) 69))))))			
1 - Riegel 2 - Stützen 2 - Stützen Stab Nr. 12 - Rechteck. 550/1400 Stab Nr. 12 - Rechteck. 550/1400 As oben 2 Erforderliche Bewehrung As oben ⊕ ruerschnittsweise Stab Nr. 12 - Rechteck. 550/1400 ⊕ duerschnittsweise Stab Nr. 13 - Rechteck. 550/1400 ⊕ stabaztweise Stab Nr. 13 - Rechteck. 550/1400 → Stab Nr. 1 - Rechteck As oben - Stab Nr. 2 - Rechteck - Stab Nr. 3 - Rechteck - Stab Nr. 3 - Rechteck - Stab Nr. 4 - Rechteck - Stab Nr. 4 - Rechteck - Stab Nr. 5 - Rechteck - Stab Nr. 5 - Rechteck - Stab Nr. 5 - Rechteck - Stab Nr. 5 - Rechteck // Disc Nr 2 - Rechteck	LG1 LG1 LG1 LG1 LG1 LG1 LG1 LG1	4.82 15.05 11.25 4.82 11.87 11.25 4.82	cm ² /m cm ² cm ² /m cm ² /m	58) 69 27) 58) 69 27) 27) 58) 69))))))			
2 - Stutzen rgebrisse 5trorderliche Bewehrung €ridroderliche	LG1 LG1 LG1 LG1 LG1 LG1 LG1	15.05 11.25 4.82 11.87 11.25 4.82	cm ² cm ² /m cm ² /m cm ² cm ² /m	27) 58) 69 27) 27) 581 69)]			
rgebnisse ☐ fdrotefliche Bewehrung ⊕ querschnittsweise ☐ stabatzweise ☐ stabatzweise ☐ stabweize ☐ stab Nr. 1 - Rechteck ☐ Stab Nr. 2 - Rechteck ☐ Stab Nr. 3 - Rechteck ☐ Stab Nr. 4 - Rechteck ☐ Stab Nr. 5 - Rechteck	LG1 LG1 LG1 LG1 LG1 LG1 LG1	15.05 11.25 4.82 11.87 11.25 4.82	cm ² cm ² /m cm ² /m cm ² cm ² /m	27) 58) 69 27) 27)	I)			
Erforderliche Bewehrung As.unten 12 2.667 ⊕ querschnittsweise as.uve Bigel 12 0.000 ⊕ stabsztweise Stab. Nr. 13 - Rechteck 550/1400 → Stab. Nr. 2 - Rechteck As.unten 13 16.000 → Stab. Nr. 2 - Rechteck As.unten 13 8.000 → Stab. Nr. 3 - Rechteck As.unten 13 8.000 → Stab. Nr. 3 - Rechteck As.unten 13 8.000 → Stab. Nr. 3 - Rechteck Stab. Nr. 4 - Rechteck Stab. Nr. 5 - Rechteck → Stab. Nr. 5 - Rechteck Övers Längsbewehrung Stab. Nr. 5 - Rechteck	LG1 LG1 LG1 LG1 LG1 LG1	11.25 4.82 11.87 11.25 4.82	cm ² cm ² /m cm ² cm ² cm ² /m	27) 58) 69 27) 27))]		2222	
Guerschnittsweise esuw 50igel 12 0.000 stabsatzweise stabsatzweise stab Nr. 1 - Rechteck stab Nr. 1 - Rechteck stab Nr. 1 - Rechteck stab Nr. 2 - Rechteck stab Nr. 4 - Rechteck Stab Nr. 4 - Rechteck Stab Nr. 5 - Rechteck [Dere Längsbewehrung	LG1 LG1 LG1 LG1	4.82 11.87 11.25 4.82	cm ² /m cm ² cm ² cm ² /m	58) 69 27) 58) 69)]		z	
stabsatzweise stabsverise stab Nr. 13 - Rechteck 550/1400 As.oben 13 16.000 As.oben 13 80.000 Stab Nr. 1 - Rechteck As.urten 13 80.000 Stab Nr. 3 - Rechteck Stab Nr. 4 - Rechteck Stab Nr. 5 - Rechteck Obere Längsbewehnung	LG1 LG1 LG1	11.87 11.25 4.82	cm ² cm ² cm ² /m	27)			z	
Istabweize As.oben 13 16.000 Stab Nr. 1 - Rechteck, As.unten 13 8.000 Stab Nr. 2 Rechteck, As.unten 13 8.000 Stab Nr. 3 - Rechteck, As.unten 13 8.000 Stab Nr. 3 - Rechteck, As.unten 13 8.000 Stab Nr. 4 - Rechteck, Zwischenergebnisse - Stab Nr. Stab Nr. 5 - Rechteck, Übere Längsbewehrung - Stab Nr.	LG1 LG1 LG1	11.87 11.25 4.82	cm ² cm ² cm ² /m	27)			z	
Stab Nr. 1 - Rechteck As.unten 13 8.000 Stab Nr. 2 - Rechteck as.wv Bügel 13 0.000 Stab Nr. 3 - Rechteck Stab Nr. 4 - Rechteck Stab Nr. 5 - Rechteck [Obere Längsbewehrung	LG1 LG1	11.25 4.82	cm ² cm ² /m	27)				
Stab Nr. 2 - Rechteck as, av Bügel 13 0.000 Stab Nr. 3 - Rechteck Stab Nr. 4 - Rechteck Zwischenergebnisse - Stab Nr Stab Nr. 5 - Rechteck Obere Längsbewehrung	LG1	4.82	cm ² /m	58169			1	
Stab Nr. 3 - Rechteck Stab Nr. 4 - Rechteck Stab Nr. 5 - Rechteck Obere Längsbewehrung	. 11			00,00	ŋ –	~		[r
Stab Nr. 4 - Rechteck Zwischenergebnisse - Stab Nr. Stab Nr. 5 - Rechteck Obere Längsbewehrung	- 11						Sigma-c [N/mm^2]	Eps [‰]
Stab Nr. 5 - Rechteck Obere Längsbewehrung	Zwischenergebnisse – Stab Nr. 11 – Rec							
	Obere Längsbewehrung							23.30
Stab Nr. 6 - Rechteck Untere Längsbewehrung		As,unten		0.00	cm ²			
Stab Nr. 7 - Rechteck Torsionslängsbewehrung		As,T		0.00	cm ²			
Stab Nr. 8 - Rechteck Querkraftbügelbewehrung		as,w∨Bi	igel	4.82	cm ² /m			
Stab Nr. 9 - Rechteck Torsionsbügelbewehrung		as,w⊤ Bü	igel	0.00	cm ² /m			
Stab Nr. 10 - Rechtec Innerer Hebelarm z für die Schubbernes	essung	z	12	220.40	mm			
Stab Nr. 11 - Rechtec Dehnung der oberen Bewehrung		€s,oben	2	22.500	‰			
Stab Nr. 12 - Rechtec Dehnung der unteren Bewehrung		€s,unten			‰			
Stab Nr. 13 - Rechtec Betondehnung am oberen Querschnitts	Betondehnung am oberen Querschnittsrand							
★ x-stellenweise Betondehnung am unteren Querschnitt	Betondehnung am unteren Querschnittsrand							V
Vorhandene Bewehrung Dehnung Schwerachse		ε٥	1	10.502	‰			k
Druckzonenhöhe		×	1	125.77	mm		-20.000	-2.30
Druckzonenhöhe/Nutzhöhe		x/d		0.093		~		

Bild 5.5: Maske 2.3 Erforderliche Bewehrung stabweise

Die maximalen Bewehrungsflächen sind nach Stäben geordnet aufgelistet. Bei Voutenträgern werden beide Querschnittsbezeichnungen neben den Stabnummern angegeben.

Bild 5.4: Maske 2.2 Erforderliche Bewehrung stabsatzweise

Datei Bearbeiten Linsteilungen Hilfe											
FA1 - Stahlbeton-Bemessung 🔽 2.4 Erforderliche Bewehrung x-stellenweise											
Eingabedaten	A	В	С	E	F		G	^	Rechteck 1000.0/1400.0		
Basisangaben		Stab	Stelle	Bewehrungs-		Fehl	ermeldung				
Materialien	Bewehrung Nr. x[m] LK flä				fläche	Einheit	bzw	. Hinweis			
Querschnitte	Stab Nr. 10 - Rechteck 1000/1400 - x: 8.000 m, rech				m, rechts					7777777	Z
- Lager	As,oben	10	8.000	LG1	5.00	cm ²	11)				
Bewehrung	As,unten	10 8.000		LG1	40.06	cm ²					
1 - Riegel	as,w∨Bügel	10	8.000	LG1	8.76	cm ² /m	58) 69	9)			2
2 - Stützen	Stab Nr. 10 - F	lechteck "	1000/1400 -	x: 10.667	'n						
Taebnisse	As,oben	10	10.667	LG1	5.00	cm ²					
 Erforderliche Bewehrung 	As,unten	10	10.667	LG1	20.45	cm ²	27)				
e guerschnittsweise as wy Bügel 10 10.667 LG1						cm ² /m	58) 69	3)			
Stab Nr. 10 - Rechteck 1000/1400 - x: 13.333 m										÷	
stabweise	As,oben	13.333	20.45	cm ²	11) 26	6)		Z			
	As,unten 10 13.333 LG1					cm ²					
Stab Nr. 1 - Bechteck 900	as,wvBügel 10 13.333 LG1					cm ² /m	58) 69))	~		[m
- Stab Nr. 2 - Rechteck 900									Sigma-c [N/mm ⁴ 2]	Ens (%)	
Stab Nr. 3 - Rechteck 900	Zwischenergebnisse - Stab Nr. 10 - x: 8					- LG1				oriĝina o frantin El	
Stab Nr. 4 - Rechteck 90(Obere Längsbewehrung						5.00	cm ²	^	-20.000	-2.50
- Stab Nr. 5 - Rechteck 90(Untere Längsb	ewehrung	1		As,unten		40.06	cm ²		0	
Stab Nr. 6 - Rechteck 900	Torsionslängsb	ewehrung	,		As,T		0.00	cm ²	_		
Stab Nr. 7 - Rechteck 900	Querkraftbüge	lbewehrur	ig i		as,w∨Bi	igel	8.76	cm ² /m			1
- Stab Nr. 8 - Rechteck 90(Torsionsbügelt	bewehrung	3		as,wт Bi	igel	0.00	cm ² /m			
- Stab Nr. 9 - Rechteck 90(Innerer Hebela	ırm z für di	e Schubbern	essung	z		1220.40	mm			
Stab Nr. 10 - Rechteck 10	Dehnung der d	beren Be	wehrung		۶,oben ٤		-1.687	‰			
- Stab Nr. 11 - Bechteck 55	Dehnung der u	interen Be	wehrung		٤s,unten		22.500	‰			
- Stab Nr. 12 - Bechteck 5	Betondehnung	am obere	n Querschni	€c,oben		-2.498	‰				
Stab Nr. 13 - Bechteck 5	Betondehnung	am unter	en Querschn	٤c,unten		23.311	‰				
Vorhandene Rewehrung Dehnung Schwerachse							10.406	‰			
• Vorhandene Bewehrung	Dealer I.	ihe		×		135.51	mm	1	·	23.31	
Vorhandene Bewehrung	Druckzonenno										

5.1.4 Erforderliche Bewehrung x-stellenweise

Bild 5.6: Maske 2.4 Erforderliche Bewehrung x-stellenweise

Für jeden Stab werden die erforderlichen Bewehrungsflächen mitsamt Zwischenergebnissen nach x-Stellen geordnet aufgelistet:

- Anfangs- und Endknoten
- Teilungspunkte gemäss eventuell vorgegebener Stabteilung
- Extremwerte der Schnittgrössen

Unstetigkeitsstellen werden gesondert dokumentiert.

Diese Maske bietet die Möglichkeit, gezielt Informationen zu den Bemessungsergebnissen abzurufen. So lässt sich beispielsweise die erforderliche Bügelbewehrung mit den zugehörigen Details für eine bestimmte Stabstelle (Bemessungsschnitt) überprüfen.

Die einzelnen Spalten sind im Kapitel 5.1.1 erläutert.

FA1 - Stahlbeton-Bemessung 🛛 🔽	2.5 Erforde	rtiche B	ewehrung	; unbem	essbar					
Eingabedaten	A	В	С	D	E	F	G	^	Rechteck 250.0/450.0	
Basisangaben		Stab	Stelle	LF / LG	Bewehrungs-		Fehlermeldu	ing		
Materialien	Bewehrung	Nr.	x [m]	LK	fläche	Einheit	bzw. Hinwe	eis		
Querschnitte	As,oben	10	8.000	LG1	Unbemessbar	cm ²	6) 18)			
Lager	As,unten	10	8.000	LG1	Unbernessbar	cm ²	18)			
Bewehrung	Stab Nr. 10 - F	Rechteck	250/450 · x	: 10.667 m						
1 - Riegel	As,oben	10	10.667	LG1	Unbernessbar	cm ²	6) 18)			
2 - Stützen	As,unten	10	10.667	LG1	Unbemessbar	cm ²	18)			
Eraebnisse	as,w∨Bügel	10	10.667	LG1	Unbernessbar	cm ² /m	58) 71)		11111	
Erforderliche Bewehrung	Stab Nr. 10 - F	Rechteck	250/450 · x	: 13.333 m						
. auerschnittsweise	as,w∨Bügel	10	13.333	LG1	Unbernessbar	cm ² /m	58) 89)	_		
stabsatzweise	Stab Nr. 10 - P	Rechteck	250/450 - x	: 16.000 m					+	
 stabweise 	As,oben	10	16.000	LG1	Unbemessbar	cm ²	18)	=	2	
🔄 x-stellenweise	As,unten	10	16.000	LG1	Unbernessbar	cm ²	7) 18)			
unbernessbar	as,w∨Bügel	10	16.000	LG1	Unbernessbar	cm ² /m	58) 89)	~		[
Stab Nr. 5 - Rechteck 30									Sigma-c [N/mm^2]	Eps (%)
Stab Nr. 6 - Rechteck 30	Zwischener	gebniss	e - Stabl	۲. 10 -	x: 10.667 i	n - LG1				
Stab Nr. 7 - Rechteck 30	Obere Längsb	ewehrung			As,oben	Unbem	essbar cm ²	^	-20.000	-3.50
Stab Nr. 8 - Rechteck 30	Untere Längst	bewehrung)		Asjunten	Unbern	essbar cm ²			
Stab Nr. 10 - Rechteck 2	Torsionslängsl	bewehrung]		As,T		0.00 cm ²	_		
	Querkraftbüge	lbewehrur	ng		a _{s,w} ∨Büge	Unbem	essbar cm² /n	0		
	Torsionsbügel	g	as,w⊤ Büge	1	0.00 cm ² /r	0		V		
	Innerer Hebela	arm z für di	ie Schubberr	essung	z		365.40 mm			· - · ſ
	Dehnung der	oberen Be	wehrung		٤s,oben		-2.657 ‰			
	Dehnung der	unteren Be	ewehrung		s,unten ٤		4.278 ‰			
	Betondehnung	g am obere	en Querschni	ttsrand	€c,oben		-3.500 ‰			
	Betondehnung	g am unter	en Querschr	ittsrand	εc,unten		5.121 ‰			
	Dehnung Sch	werachse			ε٥		0.810 %			\sim
	Druckzonenhi	ihe			×	1	82.70 mm			5.12
<	Druckzonenhi	ihe/Nutzh	öhe		x/d		0.450	~		

5.1.5 Erforderliche Bewehrung unbemessbar

Bild 5.7: Maske 2.5 Erforderliche Bewehrung unbemessbar

Diese Maske wird nur angezeigt, wenn während der BETON-Analyse Unbemessbarkeiten oder Probleme festgestellt wurden. Die Fehlermeldungen sind nach Stäben und x-Stellen geordnet.

Die in Spalte G angegebene Nummer der Fehlermeldung wird in der Fusszeile kommentiert.

Meldungen...

Die Schaltfläche [Meldungen] zeigt sämtliche Sonderkonditionen an, die sich während der Bemessung der aktuellen x-Stelle ergeben haben.

Bild 5.8: Dialog Fehlermeldungen bzw. Hinweise zur Bemessung

Ein Klick auf [Alle] in diesem Dialog zeigt sämtliche verfügbaren Meldungen für BETON an.

Alle

5.2 Vorhandene Bewehrung

Die Ergebnismasken 3.1 bis 3.4 erscheinen nur dann, wenn in Maske 1.6 *Bewehrung* die Option *Bewehrungsvorschlag vornehmen* aktiviert wurde (siehe Seite 56) und wenn keine Unbemessbarkeiten vorliegen (siehe Kapitel 5.1.5, Seite 81). Die Nachweise der Gebrauchstauglichkeit und die nichtlineare Berechnung erfordern ebenfalls die Ermittlung einer vorhandenen Bewehrung.

BETON ermittelt mit den Vorgaben in Maske 1.6 einen Bewehrungsvorschlag für die Längsund Bügelbewehrung. Dabei wird versucht, die erforderliche Bewehrung unter Berücksichtigung der Parameter (vorgegebene Stabdurchmesser, mögliche Anzahl an Bewehrungslagen, Staffelung, Verankerungsart) mit einem möglichst geringen Bedarf an Bewehrungsstäben bzw. -querschnitten abzudecken.

Die vorgeschlagene Bewehrung lässt sich in den Masken *Vorhandene Bewehrung* editieren, sodass Durchmesser, Anzahl, Lage und Länge der einzelnen Bewehrungsgruppen den jeweiligen Erfordernissen angepasst werden können.

BETON - [Rahmen] Datei Bearbeiten Einstellungen Hilfe FA1 - Stahlbeton-Bemessung 🔽 3.1 Vorhandene Längsbewehrung F T int A B C Position Anzah G Н Eingabedaten Länge G x [m] ds Basisangahen Bewehrungslage Stäbe Verankerung [kg] Meldung Nr. [mm] [m] von bis Materialien Stab Nr. 10 - Rechteck 1000/1400 Querschnitte 12.542 Oben 20.00 4.305 16.847 × 21.22 Lager 2.911 16.847 30.83 66.39 Oben 20.00 3.127 6.733 -0.216 × Bewehrung -1 - Riegel -2 - Stützen Oben 20.00 10.114 4 Oben 20.00 20.00 6.38 -0.216 7.148 6.164 16.847 × 62.91 Ergebnisse Erforderliche Bewehrung Oben 9.699 × 95.63 Unter 25.00 20.00 3 502 5 983 9.485 × 13.49 13.438 0.178 13.260 ⊕ querschnittsweise ⊕ stabsatzweise Unten 196.11 Unten 20.00 16 793 -0.200 16 593 × 248.3E 8 12.00 12 16.000 0.000 16.000 170.37 Konstruktiv 🗄 stabweise Stab Nr. 14 - Rechteck 550/900 x-stellen Vorhandene Bewehrung Längsbewehrung Stab Nr. 5 1 20, 1 = 4.305 m Stab Nr. 6 24\$20, 1 = 3.127 m (3)4∳20, 1 = 6.733 m Stab Nr. 7 $(5)4\phi20, 1 = 9.699$ $(4)4\phi20, 1 = 6$ Stab Nr. 10 Stab Nr. 14 ()12€12. Stabsatz Nr. 1 Stabsatz Nr. 2 Stabsatz Nr. 3 Stabsatz Nr. 4 (8)6\$20, 1 = 16.793 m Bügelbewehrung 7 6∳20, 1 = 13.260 m Bewehrung x-stellenweis Stahlliste 6 1\$25, 1 = 3.502 m 🔊 🔍 Berechnung 3D-Rendering Meldungen... Grafik OK Abbrechen

5.2.1 Vorhandene Längsbewehrung

Bild 5.9: Maske 3.1 Vorhandene Längsbewehrung

Die Ausgabe der vorhandenen Bewehrung erfolgt stab- und stabsatzweise nach *Positionen* (Bewehrungsgruppen) geordnet.

Im unteren Abschnitt wird die Bewehrung grafisch mit Positionsstäben skizziert. Die aktuelle Position (die Zeile im Abschnitt oben, in der sich der Cursor befindet) ist rot gekennzeichnet. Änderungen bei den Parametern im Abschnitt oben werden sofort grafisch umgesetzt.

Der Bewehrungsvorschlag berücksichtigt auch konstruktive Vorschriften. Nach SIA 262 5.5.2.5 ist beispielsweise in den Auflagerbereichen mindestens 25% der im Feld erforderlichen Gurtbewehrung zu verankern.

Position Nr.

Die Auflistung erfolgt nach *Positionen* geordnet, die jeweils gleiche Eigenschaften besitzen (Durchmesser, Länge).

Die Positionen aller Stäbe und Stabsätze werden in Maske 3.4 Stahlliste zusammengefasst.

Bewehrungslage

Diese Spalte gibt die Lage der Bewehrung im Querschnitt an:

- Oben
- Unten
- In Ecken
- Umlaufend
- Konstruktiv

Für die Anordnung der Bewehrung berücksichtigt BETON die Benutzervorgaben in Maske 1.6 *Bewehrung*, Register *Bewehrungsanordnung* (siehe Kapitel 3.5.3, Seite 60).

Anzahl Stäbe

Die Anzahl der Bewehrungsstäbe einer Position ist editierbar: Selektieren Sie die Zelle und klicken dann die Schaltfläche [...] an, um den Bearbeitungsdialog zu öffnen.

Längsbe	wehrung ·	Koordina	aten Stabsat	z Nr. 1, Position Nr. 1 🛛 🛛 🛛
Bewehru	ingsstäbe			
Anzahl:	6 🚔			
				• • •
Stab-Koo	ordinaten und	Hakendreh	ung	
	A	В	C	
	Koordi	naten	Hakendrehung	
Nr.	y [mm]	z [mm]	β[°]	
1	-392.50	-392.50	180.0	
2	0.00	-392.50	180.0	
3	392.50	-392.50	180.0	z
4	-392.50	392.00	0.0	
5	0.00	392.00	0.0	
6	392.50	392.00	0.0	
✓ Stäbe	gleichmäßig	verteilen	×	
Ø				OK Abbrechen

Bild 5.10: Dialog Längsbewehrung - Koordinaten

×

Die Anzahl der Bewehrungsstäbe lässt sich manuell über die Drehfelder oder durch die Vorgabe einer anderen Anzahl ändern. Über die diversen Eingabezeilen im unteren Abschnitt kann anschliessend die Lage eines jeden Bewehrungsstabes angepasst werden. Die Schaltfläche [Löschen] entfernt die im unteren Abschnitt selektierte Zeile.

Die Lage eines Bewehrungsstabes wird anhand seiner *Stab-Koordinaten* festgelegt: Die Koordinaten *y* und *z* geben den globalen Abstand vom Querschnittsschwerpunkt an, der Winkel β beschreibt die Neigung gegen die Stablängsachse für die Verankerungstypen "Haken" und "Winkelhaken". Eine *Hakendrehung* um den Winkel $\beta = 90$ ° beispielsweise bewirkt bei der oberen Bewehrung eine Drehung nach unten (d. h. in Richtung z), der Winkel $\beta = 270$ ° dreht das Verankerungsende der unteren Bewehrung nach oben. Für den Verankerungstyp "Gerade" ist die Spalte C bedeutungslos.

3D-Rendering

Bei Änderungen der Hakendrehung empfiehlt sich eine anschliessende Kontrolle über das [3D-Rendering].

ds

Die verwendeten Stabdurchmesser wirken sich auf die Berechnung des inneren Hebels der Kräfte und die Anzahl von Bewehrungsstäben je Lage aus. Über die Liste lässt sich der Stabdurchmesser für die aktuelle Positionsnummer ändern.

Länge

In dieser Spalte wird für jede Position die Gesamtlänge eines repräsentativen Bewehrungsstabes angezeigt. Die Angabe, der sich aus der erforderlichen Stablänge und den Verankerungslängen an beiden Stabenden zusammensetzt, kann hier nicht editiert werden.

Stelle x von ... bis

Diese Werte geben die rechnerischen Anfangs- und Endpositionen des Bewehrungsstabes an. Sie sind auf den Stabanfangsknoten von RSTAB (x = 0) bezogen. Bei der Ermittlung dieser Masse werden die Lagerbedingungen und Verankerungslängen I_1 und I_2 berücksichtigt.

Die Angaben können in diesen beiden Spalten nicht geändert werden. Dies ist nur über die Schaltfläche [Bearbeiten] im unteren Grafikabschnitt möglich (siehe Bild 5.12, Seite 86).

Verankerung

Die Verankerungslängen des Bewehrungsvorschlags können über die Liste geändert werden. Die Option *Details* ruft folgenden Bearbeitungsdialog auf.

Verankerungen ¦ Stab Nr. 10, Position Nr. 1	×
Verankerung am Anfang	Verankerung am Ende
Verankerungsart: Winkelhaken	Verankerungsart: Gerade 💌
	Volume naio
Verankerungs- I1: 0.20 🗘 [m]	Verankerungs- I1: 0.61 🗢 [m]
Lange: I2: 0.10 💭 [m]	Lange:
Σ: 0.34 [m]	Σ: 0.61 [m]
Biegerollen- durchmesser d _{br} 0.14 🐑 [m]	Biegerollen- durchmesser dbr:
Winkelhaken	Gerade
h <u>h</u>	
	OK Abbrechen

Bild 5.11: Dialog Verankerungen

Dieser Dialog verwaltet die Parameter der *Verankerung am Anfang* und am *Ende* des Bewehrungsstabes.

Über die Liste kann jeweils die *Verankerungsart* angepasst werden. Die Verankerungsart ist im Kapitel 3.5.1 auf Seite 57 beschrieben.

Der Bemessungswert der Verbundspannung beträgt:

$$f_{bd} = \frac{1.4 \cdot f_{ctm}}{\gamma_c}$$
 SIA 262 5.2.5.2 (88)

Der Grundwert der Verankerungslänge für Verankerungen in der Zugzone beträgt:

$$I_{bd,net} = \frac{\emptyset}{4} \frac{f_{sd}}{f_{bd}} \ge 25\emptyset$$
 SIA 262 5.2.5.3 (89)

Programm BETON © 2011 Ingenieur-Software Dlubal GmbH

Der Grundwert der Verankerungslänge I_{bd,net} wird in jedem Schnitt gerechnet und der Bemessungswert der Fliessgrenze von Betonstahl f_{sd} wird in so einem Schnitt mit dem wirklichen Wert der Stahlbetonspannung σ_{sd} ersetzt.

Für die angebotene Verankerungsarte nach SIA 5.2.5.4 – 6 gilt:

Gerade	$I_{bd} = I_{bd,net}$
• Haken	$I_{bd} = 0.70 \cdot I_{bd,net} \ge 150$
Winkelhaken	$I_{bd} = 0,70 \cdot I_{bd,net} \ge 150$
Gerade mit Stab	$I_{bd} = 0.85 \cdot I_{bd,net} \ge 15\emptyset$
Haken mit Stab	$I_{bd} = 0.70 \cdot I_{bd,net} \ge 150$
Gerade mit zwei Stäben	$I_{bd} = 0,70 \cdot I_{bd,net} \ge 150$

Zur Kontrolle wird der Bemessungswert der Verankerungslänge Ibd angezeigt.

Bei Haken und Winkelhaken wird die *Verankerungslänge* I_2 als 5 ϕ betragen.

Der erforderliche *Biegerollendurchmesser* d_{br} wird gemäss SIA 5.2.4.1 angegeben und kann gegebenenfalls angepasst werden.

Haken, Winkelhal	ken	$d_2 = 6\emptyset$	für Stäbe	≤ 20mm	1		
		$d_2 = 8\emptyset$	für Stäbe	> 20mm	und	l ≤ 30)mm
		d ₂ =10Ø	für Stäbe	> 30mm	und	1 ≤ 40)mm

Die gesamte Verankerungslänge Σ an jedem Stabende wird aus den jeweiligen Anteilen gebildet.

Gewicht

Die Spalte I der Maske 3.1 gibt für jede Position die Masse sämtlicher Bewehrungsstäbe an.

Meldung

Falls eine Fussnote in der letzten Spalte angezeigt wird, liegt eine Sonderbedingung vor. Die Nummern sind in der Statusleiste näher erläutert.

Meldungen...

Gerade

Ohne Verankerung Gerade Haken Winkelhaken Gerade mit Stab Haken mit Stab Gerade mit zwei Stäber X

Alle [Meldungen] der aktuellen Position lassen sich über die links dargestellte Schaltfläche einsehen. Es erscheint ein informativer Dialog mit einer Übersicht (vgl. Bild 5.3, Seite 78).

25

Bewehrungsvorschlag ändern

Im unteren Abschnitt der Maske 3.1 wird die Bewehrung mit Positionsstäben skizziert. Die aktuelle Bewehrungsposition (die Zeile, in der sich der Cursor im Abschnitt oben befindet) ist rot hervorgehoben. Ein Klick auf die Schaltfläche [Bearbeiten] rechts unten in der Grafik ruft den Bearbeitungsdialog dieser Position auf.

Bild 5.12: Dialog Längsbewehrung bearbeiten

In diesem Dialog sind die bereits beschriebenen Bewehrungsparameter zusammenfasst. Hier lassen sich die Angaben zu Bereich, Lage der Bewehrungsstäbe, Bewehrungsdurchmesser und Verankerungen kontrollieren und gegebenenfalls modifizieren.

Bei Änderungen werden die zu führenden Nachweise automatisch mit der neuen vorhandenen Bewehrung nochmals berechnet. Eine Ausnahme gilt für die Ergebnisse nichtlinearer Analysen: Diese werden gelöscht und es ist erneut eine manuelle [Berechnung] erforderlich.

Berechnung

5.2.2 Vorhandene Bügelbewehrung

A B C D E F G H I Basisangaben A B C D E F G H I Basisangaben Materialen Guerschnitte Lager Stab Nr. 5 - Rechteck 900/900 I Interpretation Stab Nr. 5 - Rechteck 900/900 Interpretation Stab Nr. 5 - Rechteck 900/900 Interpretation Interpretation Stab Nr. 5 - Rechteck 900/900 Interpretation	J Gewicht [kg] 79.07	K Meldung
Eingabedaten A B C D E F G H I Basisangaben Materialen Querschnitte Länge Stelle x (m) Abstand Bügelabmessungen Anzahl Querschnitte Länger Stelle x (m) Materialen (mn) (mn) Schnitte Bewehrung 1 35 10.00 10.400 0.000 10.400 0.306 860.00/860.00/113.09 2 2 Stab Nr. 6 Rechteck 300/300 1 35 10.00 10.400 0.306 860.00/860.00/113.09 2 2 Stab Nr. 6 Rechteck 300/300 Eigebnisse 1 35 10.00 10.400 0.000 10.400 0.306 860.00/860.00/113.09 2 Stab Nr. 6 Rechteck 1000/1400 1 35 10.00 10.400 0.000 2.000 0.2201 1360.00/360.00/115.0 2 9 stabsatzweise 1 11 10.00 2.000 0.200 1360.00/360.00/115.0 2 9 Vorhandene Bewehrung Stab Nr. 5 Stab Nr. 5 Stab	J Gewicht [kg] 79.07	K Meldung
Basisangaben Nr. 6 · Rechteck 300/300 Stall ds Stall mg St	Gewicht [kg] 79.07	Meldung
Materialien Nr. Bugel mml mml mml von bis sea [m] [mm] Schnitte Lager Stab Nr. 5 - Rechteck 900/900 1 35 10.00 10.400 0.000 10.400 0.306 860.00/860.00/113.09 2 Bewehrung 1 35 10.00 10.400 0.000 10.400 0.306 860.00/860.00/113.09 2 Stab Nr. 6 - Rechteck 900/900 1 35 10.00 10.400 0.306 860.00/860.00/113.09 2 Stab Nr. 7 - Rechteck 900/900 1 35 10.00 10.400 0.306 860.00/860.00/113.09 2 Stab Nr. 7 - Rechteck 1000/1400 1 35 10.00 10.400 0.306 860.00/860.00/115.0 2 ⊕ stabsatzweise 3 20 10.00 2.000 0.200 1360.00/960.00/115.0 2 ⊕ stabsatzweise 3 20 10.00 4.000 12.000 16.000 0.200 1360.00/960.00/115.0 2 ⊕ stabsatzweise Stab Nr. 6 - Stab Nr. 14 - Rechteck 550/900 Im	[kg] 79.07	Meldung
Queschnitte Lager Lager 1 35 10.00 10.400 0.306 860.00/860.00/113.09 2 Bewehrung -1 -1 Riegel -2 Stab Nr. 6 - Rechteck 900/900 -2 -2 Stab Nr. 6 - Rechteck 900/900 -0.000 10.400 0.306 860.00/860.00/113.09 2 2 Stab Nr. 6 - Rechteck 900/900 -0.000 10.400 0.306 860.00/860.00/113.09 2 2 Stab Nr. 7 - Rechteck 1000/1400 -1 <td>79.07</td> <td></td>	79.07	
Lager 1 35 10.00 10.400 0.000 10.400 0.306 860.00/860.00/113.09 2 Bewehrung 1 Riegel 35 10.00 10.400 0.000 10.400 0.306 860.00/860.00/113.09 2 Stab Nr. 6 Stab Nr. 7 Rechetek 300/900 1 35 10.00 10.400 0.306 860.00/860.00/113.09 2 Stab Nr. 7 Rechetek 300/900 1 35 10.00 10.400 0.306 860.00/860.00/113.09 2 Erorderliche Bewehrung 1 35 10.00 10.400 0.000 10.400 0.306 860.00/860.00/113.09 2 Stab Nr. 10 Rechetek 1000/1400 1 10.00 2.000 0.200 1360.00/960.00/115.0 2 3 20 10.00 4.000 12.000 0.2278 1360.00/960.00/115.0 2 3 20 10.00 4.000 12.000 0.2278 1360.00/960.00/115.0 2 Stab Nr. 5 Stab Nr. 10 Stab Nr. 10 Stab Nr. 14 Rechteck 550/900 10.00 10.00 10	79.07	
Bewehrung 1 1 35 10.00 10.400 0.306 660.00/660.00/113.09 2 1 35 10.00 10.400 0.306 660.00/660.00/113.09 2 Stab Nr. 7 Fechteck 300/300 1 35 10.00 10.400 0.306 660.00/660.00/113.09 2 Erforderliche Bewehrung	79.07	
1 35 10.00 10.400 0.000 10.400 0.306 \$60.00/860.00/113.09 2 2 Stab Nr. 7 Rechteck 300/900 1 35 10.00 10.400 0.306 \$60.00/860.00/113.09 2 2 Stab Nr. 7 Rechteck 1000/1400 1 1 10.00 2.000 0.200 1360.00/960.00/115.0 2 2 stabatweise 3 20 10.00 10.00 12.000 0.2201 1360.00/960.00/115.0 2 3 20 10.00 4.000 12.000 0.200 1360.00/960.00/115.0 2 3 20 10.00 4.000 12.000 0.200 1360.00/960.00/115.0 2 3 20 10.00 4.000 12.000 0.200 1360.00/960.00/115.0 2 9 Vothandene Bewehrung Stab Nr. 5 Stab Nr. 6 Stab Nr. 14 Rechteck 550/900 9 Stab Nr. 10 Stab Nr. 11 Stab Nr. 14 Rechteck 550/900 9 \$1400-0.270 p.02 \$1400-0.270 p.02 \$1400-0.270 p.02 \$1400-0.270 p.02 \$1400-0.270 p.02 \$1400	79.07	
□ 2 - Stützen Stab Nr. 7 - Rechteck 300/300 Ergebrisse ■ Erfordeliche Bewehrung ■ ⊕ stabskrweise ■ ⊕ stabskrweise ■ ⊕ stabsstzweise ■ ⊕ Längstewehrung ■ ⊕ Stab Nr. 5 = Stab Nr. 10 = Stab Nr. 10 = = Stab Nr. 10 = = Stab Nr. 10 = = Stab Nr. 10 = = Stab Nr. 10 = = Stab Nr. 10 = = Stab Nr. 10 = = Stab Nr. 10 = = Stab Nr. 10 = = Stab Nr. 10 = = Stab Nr. 10 = = Stab Nr. 11 = = Stab Nr.	13.07	
Ergebnisse Ergebnisse 1 35 10.00 10.400 0.000 10.400 0.306 860.00/360.00/113.09 2 Stab Nr. 10 - Rechteck 100/1400 1 11 11 0.00 2.000 0.000 2.000 12.000 0.200 1360.00/360.00/115.0 2 2 36 10.00 10.000 2.000 12.000 0.200 1360.00/360.00/115.0 2 3 20 10.00 4.000 12.000 16.000 0.200 1360.00/360.00/115.0 2 Stab Nr. 5 Stab Nr. 5 Stab Nr. 5 Stab Nr. 7 Stab Nr. 14 Stab Nr. 14		
E Fforderliche Bewehrung	79.07	
⊕ querschnittsweise 1 11 10.00 2.000 0.200 1360.00950.00/115.0 2 ⊕ stabsatzweise 2 36 10.00 12.000 2.200 0.220 1360.00950.00/115.0 2 ⊕ stabsweise 3 20 10.00 4.000 12.000 0.200 1360.00950.00/115.0 2 ⊕ vstellenweise Stab Nr. 14 - Rechteck 550/900 -<		
⊕ stabsatzweise ⊕ stabsweise ⊕ stabweise ⊕ stabweise ⊕ vorhandene Bewehrung ⊕ Längsbewehrung ⊕ Stab Nr. 5 − Stab Nr. 7 − Stab Nr. 7 − Stab Nr. 14	33.01	
⊕ stabweise 3 20 10.00 4.000 12.000 16.000 0.200 1360.00/960.00/115.0 2 ⊕ wstellerweise Stab Nr. 14 - Rechteck 550/900 ⊕ Uofnandene Bewehrung Bigelbewehrung ⊕ Bigelbewehrung Stab Nr. 5 - Stab Nr. 6 Stab Nr. 7 - Stab Nr. 10 Stab Nr. 10 - Stab Nr. 10 Stab Nr. 10 - Stab Nr. 11 Stabsatz Nr. 1 - Stab Nr. 12 - Stab Nr. 10 - Stab Nr. 10 - Stab Nr. 10 - Stab Nr. 10 - Stab Nr. 10 - Stab Nr. 11 - Stab Nr. 12	108.04	
• Vorhandene Bewehrung • Stab Nr. 5 • Stab Nr. 5 • Stab Nr. 6 • Stab Nr. 7 • Stab Nr. 10 • Stab Nr. 10 • Stab Nr. 10 • Stab Nr. 12 • Other the stab of the sta	60.02	
• Vorhandene Bewehrung • Etigebewehrung • Stab Nr. 5 • Stab Nr. 5 • Stab Nr. 7 • Stab Nr. 7 • Stab Nr. 10 • Stab Nr. 14 • Stab Str. 1		
Eargsbewehrung Stab Nr. 5 Stab Nr. 7 Stab Nr. 10 Stab Str. 1		
Bigelbewehrung Stab Nr. 5 Stab Nr. 7 Stab Nr. 7 Stab Nr. 10 Stab Nr. 10 Stab Nr. 12 Stab Nr. 12		
- Stab Nr. 5 - Stab Nr. 6 - Stab Nr. 7 - Stab Nr. 10 - Stab Nr. 14 - Stabsatz Nr. 1 - Stabsatz Nr. 1 - Stabsatz Nr. 1 - Stab Nr. 14 - Stabsatz Nr. 1 - Stabsatz Nr.		
- Stab Nr. 6 - Stab Nr. 7 - Stab Nr. 10 - Stab Nr. 14 - Stabsatz Nr. 1 - Stab stab Nr. 1 - Stab Str. 1 - Stab Stab Str. 1 - Stab Str. 1 - Stab Str. 1 - Stab Str.		
Stab Nr. 7 Stab Nr. 10 Stab Nr. 10 Stab Nr. 14 Stabsatz Nr. 1 Stabsatz Nr		
Stab Nr. 10 Stab Nr. 14 Stabsalz Nr. 1 Stabsalz Nr. 1 (1) 11010-0, 200 m (2) 36010-0, 278 m (3) 20010-0, 200 m		
Stab Nr. 14 Stabsatz Nr. 1 Stabsatz Nr. 1 (1) 11410-0, 200 p. (2) 56410-0, 278 p. (3) 20410-0, 200 p.		
Stabsatz Nr. 1		
Chabcata Mr. 2 (1)11010-0, 200 m (2)36010-0, 278 m (3)20010-0, 200 m		
Stabsatzini, Z		
Stabsatz Nr. 3		
Stabsatz Nr. 4		
Bewehrung x-stellenweise		
Stabiliste		

Bild 5.13: Maske 3.2 Vorhandene Bügelbewehrung

Wie die Längsbewehrung wird vorhandene Bügelbewehrung stab- und stabsatzweise nach *Positionen* (Bewehrungsgruppen) geordnet ausgegeben.

Im unteren Abschnitt wird die Bewehrung grafisch mit Positionsbügeln skizziert. Die aktuelle Position (die Zeile im Abschnitt oben, in der sich der Cursor befindet) ist rot gekennzeichnet. Änderungen bei den Parametern im Abschnitt oben werden sofort grafisch umgesetzt.

Der Bewehrungsvorschlag berücksichtigt auch konstruktive Vorschriften. Nach SIA 262 5.5.2.2 sind beispielsweise in Balken stets Bügel anzuordnen, deren gegenseitiger Abstand 25Ø nicht übersteigt und deren Querschnitt mindestens 0,2% des zugehörigen Betonquerschnitts betragen soll. Bei breiten Stegen darf die Stegbreite mit maximal 400 mm in Rechnung gestellt werden.

Position Nr.

Die Auflistung erfolgt nach *Positionen* geordnet, die jeweils gleiche Eigenschaften besitzen (Durchmesser, Abstand).

Die Positionen aller Stäbe und Stabsätze werden in Maske 3.4 Stahlliste zusammengefasst.

Anzahl Bügel

Bei Ermittlung der Bügelbewehrung berücksichtigt BETON die Benutzervorgaben der Maske 1.6 *Bewehrung*, Register *Bügel* (siehe Kapitel 3.5.2, Seite 58).

Die Anzahl der Bügel einer Position ist editierbar: Nach einem Klick in die Zelle ist einfach ein anderer Wert einzutragen. Der Bügelabstand (Spalte G) wird dabei automatisch umgerechnet.

d₅

Der Bewehrungsvorschlag benutzt die Vorgaben der Maske 1.6 *Bewehrung*, Register *Bügel*. Über die Liste lässt sich der Stabdurchmesser für die aktuelle Positionsnummer ändern.

Länge

In Spalte D wird für jede Position die Gesamtlänge des Bügelbereichs angezeigt. Sie ermittelt sich aus den Anfangs- und Endstellen x und kann in dieser Spalte nicht editiert werden. Dies ist nur über die Schaltfläche [Bearbeiten] im Grafikabschnitt möglich (siehe Bild 5.14, Seite 89).

Stelle x von ... bis

Diese Werte geben die Anfangs- und Endpositionen des Bewehrungsbereichs an. Sie sind auf den Stabanfangsknoten von RSTAB (x = 0) bezogen. Die Einträge in diesen beiden Spalten sind editierbar, sodass die Bereichsgrenzen durch Ändern der Werte verschoben werden können.

Um einen Bereich zu unterteilen, ist bei der Anfangs- oder Endposition eine Stelle x einzutragen, die zwischen den beiden Werten liegt. BETON legt dann automatisch einen neuen Bügelbereich an.

Abstand SBü

Der vorgeschlagene Bügelabstand berücksichtigt die Vorgaben der Maske 1.6 *Bewehrung*, Register *Bügel* (siehe Kapitel 3.5.2, Seite 58). Dieser Wert ist editierbar: Nach einem Klick in die Zelle ist einfach ein anderer Abstand einzutragen. Die Bügelanzahl (Spalte B) wird dabei automatisch angepasst. Der exakte Bügelabstand wiederum errechnet sich dann auf Basis einer ganzzahligen Bügelmenge.

Bügelabmessungen

In dieser Spalte werden die Bügelmasse in der Form "Höhe/Breite/Verankerungslänge" angegeben. BETON berücksichtigt die vorgegebenen Stabdurchmesser und Betondeckungen. Die Werte sind nicht editierbar.

Anzahl Schnitte

Die Schnittigkeit der Bügel basiert auf den Vorgaben der Maske 1.6 *Bewehrung*, Register *Bügel* (siehe Kapitel 3.5.2, Seite 58). Über die Liste kann die Anzahl der Schnitte geändert werden.

Gewicht

Die Spalte J der Maske 3.2 gibt für jede Position die Masse aller Bügelbewehrungsstäbe an.

Meldung

Falls eine Fussnote in der letzten Spalte angezeigt wird, liegt eine Sonderbedingung vor. Die Nummern sind in der Statusleiste näher erläutert.

Meldungen...

Anzah

Schnitte

Alle [Meldungen] der aktuellen Position lassen sich über die links dargestellte Schaltfläche einsehen. Es erscheint ein informativer Dialog mit einer Übersicht (vgl. Bild 5.3, Seite 78).

Bewehrungsvorschlag ändern

Im unteren Abschnitt der Maske 3.2 wird die Bewehrung mit Positionsbügeln skizziert. Die aktuelle Bewehrungsposition (die Zeile, in der sich der Cursor im Abschnitt oben befindet) ist rot hervorgehoben. Ein Klick auf die Schaltfläche [Bearbeiten] rechts unten in der Grafik ruft den Bearbeitungsdialog dieser Position auf.

Bügelbewel	nrung bearbeiten ¦	Stab Nr.	10, Positio	n Nr. 3	Þ
Bereich		Bügelabm	essungen		
x-Stelle von: bis: Länge:	8.000 [m] 16.000 [m] 8.000 [m]	Höhe: Breite: Haken:	Anfang 1360.00 960.00 115.00	Ende 1360.00 960.00 [mm]	(mm) (mm)
Bügelparamet	ter				
Abstand:	0.250 [m]	Anzahl:	32		
Durch- messer:	10.00 💌 [mm]	Gesamt- masse:	96.0	[kg]	
Schnitte:	2 😽				
			ОК	Abbr	echen

Bild 5.14: Dialog Bügelbewehrung bearbeiten

In diesem Dialog sind die bereits beschriebenen Bewehrungsparameter zusammenfasst. Hier lassen sich die Angaben zu *Bereich, Bügelabmessungen* und *Bügelparameter* kontrollieren und gegebenenfalls modifizieren.

Berechnung

Bei Änderungen werden die zu führenden Nachweise automatisch mit der neuen vorhandenen Bügelbewehrung nochmals berechnet. Eine Ausnahme gilt hierbei für die Ergebnisse nichtlinearer Analysen: Diese werden gelöscht und es ist erneut eine manuelle [Berechnung] erforderlich.

5.2.3 Vorhandene Bewehrung x-stellenweise

Diese Maske gibt Auskunft über die eingehaltenen oder nicht erfüllten Nachweise der Tragfähigkeit. Ein grosser Vorteil liegt in der Dynamik des Sicherheitsnachweise: Bei Änderungen an den vorhandenen Bewehrungen werden die Nachweise automatisch aktualisiert.

atel bearbeiten Einstellunge	n Hilfe									
A1 - Stahlbeton-Bemessung	✓ 3.3 Vorha	andene Bewel	nrung x-stellen	weise						
Eingabedaten	A	B	C	D		E		^	Rechteck 1000.0/1400.0	
- Basisangaben	Stelle	As,oben	As,unten	as,Bügel						
- Materialien	x [m]	[cm²]	[cm²]	[cm4/m]		Meldung				-00
Querschnitte	0.000	38.70	18.85	8.84						
- Lager	0.463	38.70	18.85	8.84						
Bewehrung	0.463	38.70	37.70	8.84						
rgebnisse	2.321	38.70	37.70	8.84					X///X/*//*	///
- Erforderliche Bewehrung	2.321	26.14	37.70	8.84				_		
 querschnittsweise 	2.667	26.14	37.70	8.84						
	5.333	26.14	37.70	8.84						
🗉 stabweise	5.333	13.57	37.70	8.84						
🖅 x-stellenweise	6.464	13.57	37.70	8.84						
Vorhandene Bewehrung	6.464	13.57	40.84	8.84					z	
Längsbewehrung	8.000	13.57	40.84	8.84						
Bügelbewehrung	8.000	26.14	40.84	8.84				$\mathbf{\mathbf{v}}$		[
Bewehrung x-stellenweis	e								Sigma-c [N/mm^2]	Eps [‰]
- Stab Nr. 1	Zwischen	ergebnisse -	Stelle x: 2.32	1 m					• • •	
Stab Nr. 2	Bewehrung	sgrad oben		,⊅oben		0.187	%	^	-20.000	-2.7
Stab Nr. 3	Bewehrung	sgrad unten		<i>β</i> unten		0.269	%		7	6
Stab Nr. 4	Bügelbewe	hrungsgrad		ρw		0.088	%			· · - · -/
- Stab Nr. 5	Längsbewe	hrungssicherheit	oben	vorh As,ober	n ∕erfA _{s,}	2.080				4
- Stab Nr. 8	Längsbewe	hrungssicherheit	unten	vorh As, unte	n ∕erfAs	1.556		1-1		
Stab Nr. 9	Bügelsicher	heit		vorh a _{s,w} /	erfas,w	1.008				
Stab Nr. 10	Erforderlich	e Bewehrung obe	n	erf As,oben		12.57	cm ²	Щ		
- Stab Nr. 11	Erforderlich	e Bewehrung unte	en	erf As,unten		24.22	cm ²	1		
- Stab Nr. 12	Erforderlich	e Bügelbewehrun	g	erf as,Bügel		8.76	cm2/m	1		
Stab Nr. 13	Bemessung	smoment		My,Sds,max		204.018	kNm	1		
Stabliste	Bemessung	Ismoment		My,Sds,min		1300.930	kNm	1		
	Sicherheits	peiwert		γ		2.171		1		23.63
	Dehnung d	er oberen Bewehr	rung im Bruchzusta	n €s,oben,u		-1.658	‰	~		

Bild 5.15: Maske 3.3 Vorhandene Bewehrung x-stellenweise

Im oberen Abschnitt werden die Längs- und Bügelbewehrungsquerschnitte für jede Stabstelle x aufgelistet.

Stelle x

Die vorhandenen Bewehrungsflächen sind für jeden Stab nach x-Stellen geordnet:

- Anfangs- und Endknoten
- Teilungspunkte gemäss eventuell vorgegebener Stabteilung
- Extremwerte der Schnittgrössen

Bei gestaffelten Bewehrungen erscheinen die x-Stellen zweifach für die Bereichsgrenzen.

A_{s,oben}

Dieser Wert gibt den Bewehrungsquerschnitt der vorhandenen oberen Längsbewehrung an.

A_{s,unten}

Dieser Wert repräsentiert den Bewehrungsquerschnitt der vorhandenen unteren Längsbewehrung.

as,Bügel

In dieser Spalte wird der Querschnitt der vorhandenen Bügelbewehrung angegeben.

5

Die Zwischenergebnisse im unteren Abschnitt ermöglichen eine detaillierte Bewertung der geführten Nachweise. Hier werden die Bemessungsdetails der aktuellen (d. h. im Abschnitt oben aktiven) Stelle x mit allen nachweisrelevanten Parametern ausgewiesen. Zu zeigen...

Über die Schaltfläche [Zu zeigen] lassen sich die angezeigten Ergebnisparameter reduzieren.

Ergebnisse zu zeigen ¦ EN 1992-1-1: 2004	×
Zu zeigen - Zwischenergebnisse	
🗹 Bewehrungsgrad oben Rho-oben	~
🕑 Bewehrungsgrad unten Rho-unten	
🗹 Bügelbewehrungsgrad Rho-w	
Längsbewehrungssicherheit oben vorh A-s,oben / erf A-s,oben	
Zängsbewehrungssicherheit unten vorh A-s,unten / erf A-s,unten	
🔽 Bügelsicherheit vorh a-s,w / erf a-s,w	
Erforderliche Bewehrung oben erf A-s,oben	
Erforderliche Bewehrung unten erf A-s,unten	
Erforderliche Bügelbewehrung erf a-s, Bügel	
Bemessungsmoment M-y,Sds,max	≡
Bemessungsmoment M-y,Sds,min	
🗹 Sicherheitsbeiwert Gamma	
Dehnung der oberen Bewehrung im Bruchzustand Eps-s,oben,u	
Dehnung der unteren Bewehrung im Bruchzustand Eps-s,unten,u	
Betondehnung am oberen Querschnittsrand im Bruchzustand Eps-c,oben,u	
🛛 🗹 Betondehnung am unteren Querschnittsrand im Bruchzustand Eps-c,unten,u	
🔽 Druckzonenhöhe im Bruchzustand x,u	
🕑 Bezogene Druckzonenhöhe im Bruchzustand x/h,u	
🗹 Statische Nutzhöhe d	
Hauptkrümmung im Bruchzustand 1/r-,u	
Winkel der Nullachse im Bruchzustand Alpha-0,u	
Spannung der oberen Bewehrung im Bruchzustand Sigma-s,oben,u	×
Deselektieren	
	_
DK Abbreche	n

Bild 5.16: Dialog Ergebnisse zu zeigen

Die Zwischenergebnisse geben Auskunft über den *Bewehrungsgrad* und die *Sicherheit* der gewählten Bewehrung, d. h. dem Verhältnis von vorhandener zu erforderlicher Bewehrung. Dabei wird die Sicherheit der Längsbewehrung mit einem vergrösserten Moment nachgewiesen, das das Versatzmass berücksichtigt.

5.2.4 Stahlliste

In einer Übersicht werden die vorhandenen Bewehrungsstäbe zusammengestellt. Diese Tabelle ist nicht editierbar.

BETON - [Rahmen]										×
Datei Bearbeiten Einstellungen	Hilfe									
FA1 - Stahlbeton-Bemessung 🛛 💌	3.4 Sta	hlliste								
FA1 - Stahlbeton-Bemessung Eingabedaten Basisangaben Materialien Querschnitte Lager Bewehrung 1 - Riegel 2 - Stützen Ergebnisse Enforderliche Bewehrung Buderschnittsweise stabsatzweise Astabweise Vorhandene Bewehrung Bügelbewehrung Bügelbewehrung Bugelbewehrung Bugelbewehrung Bewehrung Stahliste	3.4 Sta A Position Nr. Material 1 2 3 4 5 6 7 8 9 10 11 Summe	hlliste Bewehrungs- typ Längs Längs Längs Längs Längs Bigel Bügel Bügel Bügel	C ds [mm] ahl BSt 5 12.0 20.0 20.0 20.0 20.0 20.0 10.0 10.0	D Ober- fläche OOS (A) Gerippt Gerippt Gerippt Gerippt Gerippt Gerippt Gerippt	E Anzahl Stäbe 12 8 48 3 6 2 2 2 18 14 112 56 281	F Länge (m) 16.000 10.800 10.800 16.518 16.634 8.400 8.536 4.866 2.966 3.666 3.066	G Veranke Anfang Ohne Verankerung Gerade Gerade Winkelhaken Gerade Winkelhaken Haken Haken Haken Haken	H rungstyp Ende Ohne Verankerung Gerade Gerade Gerade Gerade Haken Haken Haken Haken	L Biegerollen- durchmesser [m] 0.140 0.140 0.040 0.040	J Gewicht [kg] 1770.4 56.8 1277.8 1227.1 246.9 41.4 42.1 54.0 255.6 253.0 105.8 2395.9
	Berechn	ung					Grafik		OK Abt	prechen

Bild 5.17: Maske 3.4 Stahlliste

Position Nr.

Die Auflistung der Bewehrungsstäbe erfolgt nach *Positionen* geordnet, die jeweils gleiche Eigenschaften besitzen (Durchmesser, Länge, Verankerungstyp etc.)

Die Positionsnummern sind in der Regel nicht mit den Nummern der Masken 3.1 und 3.2 identisch.

Bewehrungstyp

Diese Spalte gibt an, ob es sich um eine Längs- oder eine Bügel-Bewehrung handelt.

ds

Spalte C benennt die verwendeten Stabdurchmesser.

Oberfläche

In dieser Spalte wird angegeben, ob die Oberfläche des Bewehrungsstahls *Gerippt* oder *Glatt* ist.

Anzahl Stäbe

Die Anzahl gleichartiger Bewehrungsstäbe einer jeden Position kann in Spalte E abgelesen werden.

Länge

In dieser Spalte wird für jede Position die Gesamtlänge eines repräsentativen Bewehrungsstabes angegeben.

Verankerungstyp Anfang / Ende

Diese beiden Spalten informieren über die Verankerungstypen am Anfang und Ende der Bewehrungsstäbe (Ohne Verankerung, Gerade, Haken, Winkelhaken etc.)

Biegerollendurchmesser

Bei Bügeln und Haken wird der Biegerollendurchmesser dbr in Spalte I angegeben.

Gewicht

Die letzte Spalte gibt für jede Position die Masse sämtlicher Bewehrungsstäbe an.

Summe

Am Ende der Stahlliste wird neben der Gesamtanzahl der Bewehrungsstäbe die Masse des insgesamt benötigten Stahls angegeben. Diese ermittelt sich aus den Werten der einzelnen Positionen oberhalb.

5.3 Gebrauchstauglichkeitsnachweis

Die Ergebnismasken 4.1 bis 4.4 erscheinen nur dann, wenn in Maske 1.1 die Bemessung für *Gebrauchstauglichkeit* aktiviert wurde (siehe Kapitel 3.1.2, Seite 47) und wenn keine Unbemessbarkeiten vorliegen (siehe Kapitel 5.1.5, Seite 81 und Kapitel 5.2.3, Seite 90).

Die Nachweise im Grenzzustand der Gebrauchstauglichkeit werden mit der Bewehrungsanordnung geführt, die in den Masken 3.1 und 3.2 als *Vorhandene Bewehrung* vorliegt.

5.3.1 Gebrauchstauglichkeitsnachweis querschnittsweise

BETON - [Rahmen]											
Datei Bearbeiten Einstellungen	Hilfe										
FA1 - Stahlbeton-Bemessung 🛛 💌	4.1 G	ebrauc	hstaugli	chkeit	snachwe	eis quers	schnitt	sweise			
Eingabedaten	A	В	С	D	E	F	G	Н		J	K
Basisangaben	Quersc	Stab	Stelle	LF / LG	Øs .	σc	min As	Stababstand	Rissbreite	Durchbiegur	
- Materialien	Nr.	Nr.	x [m]	LK	[N/mm ²]	[N/mm ²]	[cm ²]	lim sı (mm)	max w _k (mm)	uı,z (mm)	Meldung
Querschnitte	1	2	4.400	LG1	-3.6	-5.9	0.00	300.00	0.00	4.17	204)
- Lager	2	8	0.000	LG1	-0.8	-5.8	0.00	300.00	0.00	0.00	204)
Bewehrung	3	10	8.000	LG1	262.7	-10.4	54.13	290.69	0.29	36.14	331)
- 1 - Riegel	4	11	0.000	LG1	213.1	-9.2	35.03	300.00	0.17	7.51	
2 - Stützen	5	13	16.000	LG1	264.4	-12.4	22.52	287.81	0.26	5.40	
Ergebnisse	Maßge	bend:									
Erforderliche Bewehrung	5	13	16.000	LG1	264.4	-12.4	22.52	287.81	0.26	5.40	
guerschnittsweise											
stabsatzweise											
stabweise											
• x-stellenweise											
-Vorhandene Bewehrung											
Längsbewehrung											
Bügelbewehrung											
Bewehrung x-stellenweise											
Stabliste											
Gebrauchstauglichkeitsnachwei											
stahsatzweise											
- stabueise											
accontrate a. v. stallenueise											
. x-steller weise											
<											
	Berec	nnung		(Meldunge	n		Gra	fik		OK Abbrechen
204) Querschnitt ist überdrückt, dahe	er keine l	Rissentv	/icklung.								

Bild 5.18: Maske 4.1 Gebrauchstauglichkeitsnachweis querschnittsweise

Es werden die Extremwerte der diversen Kriterien angegeben, die für die Gebrauchstauglichkeit nachzuweisen sind. Diese resultieren aus den Parametern der Bewehrungssätze zur Rissbreitenbegrenzung (siehe Kapitel 3.5.4, Seite 61), der vorhandenen Bewehrung und den Schnittgrössen der massgebenden Einwirkungen.

Für die Auswertung dieser Ausgabemaske beachten Sie bitte die Erläuterungen zum Dialog *Einstellungen für Auslegung der Bewehrung* auf Seite 63.

Querschnitt Nr.

Die Nachweise sind nach Querschnittsnummern geordnet. Die letzte Zeile der Tabelle gibt an, welcher Querschnitt *Massgebend* für den Nachweis der Gebrauchstauglichkeit ist.

Stab Nr.

In dieser Spalte wird die Nummer des Stabes angegeben, der für jeden Querschnittstyp die Extremwerte liefert.

Stelle x

Es wird jeweils die x-Stelle im Stab angegeben, an der die ungünstigsten Werte auftreten. Die Abstände beziehen sich auf den Anfangsknoten des massgebenden Stabes.

LF / LG /LK

In dieser Spalte werden die Nummern der Lastfälle, Lastfallgruppen und -kombinationen bzw. Superkombinationen angegeben, die für die einzelnen Nachweise massgebend sind.

σs

Diese Werte drücken die Spannungen in der Bewehrung bei gerissener Zugzone aus, die sich aus dem Produkt von Stahldehnung und E-Modul ermitteln:

 $\sigma_s = \epsilon_s \cdot E_s$

σ

In dieser Spalte werden die Betonspannungen im Grenzzustand der Gebrauchstauglichkeit angegeben.

min As

Die Mindestquerschnittsfläche der Betonstabstahlbewehrung nach SIA 262 4.4.2 beträgt:

$$A_{s,min} = k_c \cdot k \cdot f_{ct,eff} \cdot \frac{A_{ct}}{\sigma_s}$$

mit k

Kc	der Erstrissbildung
k	Beiwert zur Berücksichtigung von nichtlinear über den Querschnitt verteil- ten Eigenspannungen
$\mathbf{f}_{ct,eff}$	Mittelwert der wirksamen Betonzugfestigkeit beim Auftreten der Risse

- A_{ct} Betonzugzone im ungerissenen Zustand bei Erstrissbildung
- f_{ct,eff} Wirksame Betonzugfestigkeit zum massgebenden Zeitpunkt
- σ_s Zulässige Stahlspannung unmittelbar nach der Rissbildung (ggf. in Abhängigkeit vom Grenzdurchmesser oder Höchstwert der Stababstände)

Stababstand lim s_I

Der maximale Stababstand max s_i wird nach [16] 10.15 berechnet .

$$s = \frac{4 \cdot E_s \cdot w \cdot \sqrt{\pi \cdot f_{ct}}}{(\sigma_s)^{3/2}} \le 300 \text{mm}$$

Rissbreite max w_k

Nachweiss der Rissbreite wird gemäss SIA 262 4.4.2 bestimmt.

Durchbiegung u_{l,z}

In der vorletzten Spalte wird jeweils der Absolutwert der Verformung angegeben, der in Richtung der lokalen Stabachse z vorliegt.

Die zulässige relative Durchbiegung wird im Dialog *Einstellungen für die Auslegung der Längsbewehrung* (siehe Bild 3.22, Seite 63) verwaltet.

Meldung

Die letzte Spalte verweist auf Probleme oder Bemerkungen, die sich bei der Durchführung der Nachweise ergeben haben. Die Nummern sind in der Statusleiste näher erläutert.

Meldungen...

Alle [Meldungen] der aktuellen Gebrauchstauglichkeitsanalyse lassen sich zusammengefasst über die links gezeigte Schaltfläche einsehen. Es erscheint ein informativer Dialog mit einer Übersicht.

Verwe	ndete Fehlermeldungen bzw. Hinweise	
201	Größter Durchmesser > maximaler Durchmesser	
202	Bewehrungsabstand > max Abstand für Rissbegrenzung	ſ
204	Querschnitt ist überdrückt, daher keine Rissentwicklung.	
331	Durchbiegung/Stablänge > 1/500	
		ĺ
۲.		
<u> </u>		

Bild 5.19: Dialog Fehlermeldungen bzw. Hinweise zur Bemessung

5.3.2 Gebrauchstauglichkeitsnachweis stabsatzweise

BETON - [Rahmen]											2
Datei Bearbeiten Einstellungen	Hilfe										
A1 - Stahlbeton-Bemessung 🔽 4.2 Gebrauchstauglichkeitsnachweis stabsatzweise											
Eingabedaten	A	В	C	D	E	F	G	Н		J	K
- Basisangaben	Stabsa	Stab	Stelle	LF / LG	Øs	σc	min As	Stababstand	Rissbreite	Durchbiegur	1
Materialien	Nr.	Nr.	x [m]	LK	[N/mm ²]	[N/mm ²]	[cm ²]	lim si [mm]	max w _k [mm]	ui,z (mm)	Meldung
- Querschnitte	1	8	0.000	LG1	-0.8	-5.8	0.00	300.00	0.00	0.00	204)
- Lager	2	3	0.000	LG1	-5.3	-5.1	0.00	300.00	0.00	0.00	204)
Bewehrung	3	2	4.400	LG1	-3.6	-5.9	0.00	300.00	0.00	4.17	204)
- 1 - Riegel	4	11	0.000	LG1	213.1	-9.2	35.03	300.00	0.17	7.51	
2 - Stützen	5	13	16.000	LG1	264.4	-12.4	22.52	287.81	0.26	5.40	
Ergebnisse	Maßge	bend:									
- Erforderliche Bewehrung	5	13	16.000	LG1	264.4	-12.4	22.52	287.81	0.26	5.40	
querschnittsweise											
stabsatzweise											
stabweise											
x-stellenweise											
Vorhandene Bewehrung											
Längsbewehrung											
Bügelbewehrung											
Bewehrung x-stellenweise											
Stahlliste											
Gebrauchstauglichkeitsnachwei											
auerschnittsweise											
stabsatzweise											
stabweise											
• x-stellenweise											
a stolici molso											
<											
	Berect	nnung		(Meldunge	:n		Gra	fik		OK Abbrechen

Bild 5.20: Maske 4.2 Gebrauchstauglichkeitsnachweis stabsatzweise

Wurden Stabsätze zur Bemessung ausgewählt, so werden in dieser Maske die massgebenden Gebrauchstauglichkeitsnachweise nach Stabsätzen geordnet ausgegeben.

Die einzelnen Spalten sind im vorherigen Kapitel 5.3.1 erläutert.

Datei Bearbeiten Einstellungen	Hilte									
FA1 - Stahlbeton-Bemessung 🛛 💌	4.3 Ge	brauch	stauglio	chkeitsn	achweis	stabw	eise			
Eingabedaten	A	В	С	D	E	F	G	Н		J
- Basisangaben	Stab	Stelle	LF / LG	Øs .	σc	min As	Stababstand	Rissbreite	Durchbiegur	
Materialien	Nr.	x [m]	LK	[N/mm ²]	[N/mm ²]	[cm ²]	lim sı [mm]	max w _k [mm]	ui,z (mm)	Meldung
Querschnitte	1	6.000	LG1	-10.0	-6.3	0.00	300.00	0.00	0.95	204)
Lager	2	4.400	LG1	-3.6	-5.9	0.00	300.00	0.00	4.17	204)
Bewehrung	3	0.000	LG1	-5.3	-5.1	0.00	300.00	0.00	0.00	204)
1 - Riegel	4	3.740	LG1	-6.6	-3.2	0.00	300.00	0.00	4.09	204)
2 - Stützen	5	0.000	LG1	-2.2	-8.1	0.00	300.00	0.00	0.00	204)
Ergebnisse	6	0.000	LG1	-8.2	-6.0	0.00	300.00	0.00	0.00	204)
Englishing Bewehrung	7	0.000	LG1	-8.7	-6.5	0.00	300.00	0.00	0.00	204)
auerschnittsweise	8	0.000	LG1	-0.8	-5.8	0.00	300.00	0.00	0.00	204)
ctabeatzwaica	9	4.400	LG1	-1.1	-4.7	0.00	300.00	0.00	4.04	204)
stabueise	10	8.000	LG1	262.7	-10.4	54.13	290.69	0.29	36.14	331)
	11	0.000	LG1	213.1	-9.2	35.03	300.00	0.17	7.51	
Vorhandene Bewehrung	12	16.000	LG1	164.9	-7.2	35.03	300.00	0.10	7.17	
	13	16.000	LG1	264.4	-12.4	22.52	287.81	0.26	5.40	
Bijgelbewebrung	14	0.000	LG1	112.5	-5.0	22.52	300.00	0.05	5.40	
Bewehrung wetellenweise	Maßgeb	end:								
Stabiliste	13	16.000	LG1	264.4	-12.4	22.52	287.81	0.26	5.40	
Gebrauehetaudiehkeitenaehuusi										
guerechnitteweise										
queiscrinitisweise										
stabsatzweise										
stadweise										
x-stellenweise										
e)										
· · · · · · · · · · · · · · · · · · ·										
	Develo			.	-1-1		-	0.0		

5.3.3 Gebrauchstauglichkeitsnachweis stabweise

Bild 5.21: Maske 4.3 Gebrauchstauglichkeitsnachweis stabweise

In dieser Maske erfolgt die Ausgabe der Rissbreitennachweise nach Stäben geordnet. Die einzelnen Spalten entsprechen denen der Maske 4.1. Sie sind im Kapitel 5.3.1 erläutert.

5.3.4 Gebrauchstauglichkeitsnachweis x-stellenweise

BETON - [Rahmen]												
Datei Bearbeiten Einstellung	en	Hilfe										
FA1 - Stahlbeton-Bemessung	~	4.4 Get	orauch	stauglich	keitsnach	weis x-s	tellenweise	,				
querschnittsweise	~	A	В	С	D	E	F	G	Н		l.	^
 stabsatzweise 		Stelle	LF / LG	Øs	Øc	min As	Stababstand	Hissbreite	Durchbiegur			
 stabweise 		x [m]	LK	[N/mm4]	[N/mm4]	[cm ²]	lim si [mm]	max wk [mm]	ui,z [mm]		Meldung	
 x-stellenweise 		Stab Nr.	1 · Rec	hteck 900/6	500							
Vorhandene Bewehrung		0.000	LG1	-20.9	-4.1	0.00	300.00	0.00	0.00	204)		
Längsbewehrung		3.000	LG1	-18.9	-4.5	0.00	300.00	0.00	-0.04	204)		
Bügelbewehrung		6.000	LG1	-10.0	-6.3	0.00	300.00	0.00	0.95	204)		
Bewehrung x-stellenweise		Stab Nr.	2 · Rec	hteck 900/6	500							
Stahlliste		0.000	LG1	-12.0	-4.2	0.00	300.00	0.00	0.95	204)		
Gebrauchstauglichkeitsnach		4.400	LG1	-3.6	-5.9	0.00	300.00	0.00	4.17	204)		
- querschnittsweise		Stab Nr.	3 - Rec	hteck 900/6	500							
- stabsatzweise		0.000	LG1	-5.3	-5.1	0.00	300.00	0.00	0.00	204)		
- stabweise		3.000	LG1	-14.0	-3.4	0.00	300.00	0.00	1.09	204)		
- x-stellenweise		6.000	LG1	-13.5	-3.5	0.00	300.00	0.00	2.94	204)		
- Stab Nr. 1		Stab Nr.	4 - Rec	hteck 900/6	500							
- Stab Nr. 2		0.000	LG1	-9.0	-2.7	0.00	300.00	0.00	2.94	204)		
- Stab Nr. 3		3.740	LG1	-6.6	-3.2	0.00	300.00	0.00	4.09	204)		
- Stab Nr. 4	=	4.400	LG1	-6.7	-3.2	0.00	300.00	0.00	4.06	204)		
- Stab Nr. 5		Stab Nr.	5 - Rec	hteck 900/9	900							
- Stab Nr. 6		0.000	LG1	-2.2	-8.1	0.00	300.00	0.00	0.00	204)		
- Stab Nr. 7		1.040	LG1	-8.2	-7.0	0.00	300.00	0.00	0.19	204)		
- Stab Nr. 8		2.080	LG1	-13.9	-5.9	0.00	300.00	0.00	0.70	204)		
- Stab Nr. 9		2.600	LG1	-16.7	-5.4	0.00	300.00	0.00	1.04	204)		
- Stab Nr. 10		3.120	LG1	-19.3	-5.0	0.00	300.00	0.00	1.41	204)		
- Stab Nr. 11		4.160	LG1	-24.1	-4.1	0.00	300.00	0.00	2.21	204)		
- Stab Nr. 12		5.200	LG1	-19.6	-4.9	0.00	300.00	0.00	3.01	204)		
- Stab Nr. 13		6.240	LG1	-15.4	-5.7	0.00	300.00	0.00	3.72	204)		
Stab Nr. 14		7.280	LG1	-11.7	-6.4	0.00	300.00	0.00	4.26	204)		
	~	7.800	LG1	-10.1	-6.7	0.00	300.00	0.00	4.44	204)		
		8.320	LG1	-8.5	-7.0	0.00	300.00	0.00	4.54	204)		N
		Berechn	ung		Meldu	ngen		Grafik			ОК	Abbrechen

Bild 5.22: Maske 4.4 Gebrauchstauglichkeitsnachweis x-stellenweise

Diese Maske listet die diversen Nachweise (siehe Kapitel 5.3.1) detailliert nach x-Stellen auf.

✓ Nichtlineare Berechnung Zustand II...

5.4 Nichtlineare Berechnung

Die Ergebnismasken 6.1 bis 6.4 erscheinen nur dann, wenn in den diversen Registern der Maske 1.1 die *Nichtlineare Berechnung Zustand II* aktiviert wurde (siehe Kapitel 3.1, Seite 44) und wenn keine Unbemessbarkeiten vorliegen (siehe Kapitel 5.1.5, Seite 81 und Kapitel 5.2.3, Seite 90).

Die Nachweise werden mit der Bewehrungsanordnung geführt, die in der Maske 3.1 als Vorhandene Bewehrung vorliegt.

5.4.1 Nichtlineare Berechnung - Tragfähigkeit

Datei Bearbeiten Einstellungen	Hilfe								
FA2 - Nichtlineare Bemessung 🔽	6.1 Tra	gfähigkeit	für nicht	lineare Berechnu	ng				
Eingabedaten	Stab	Stelle	Maßgeb.	Sicherheits-	Ausnutzung				
Basisangaben	Nr.	x [m]	LF/LG	Faktor γ [·]	1/γ [·]		A	Anmerkung	
- Materialien	1	1.560	LG1	3.472	0.288				
- Querschnitte		1.650	LG1	3.409	0.293				
Lager		1.700	LG1	3.381	0.296				
 Bewehrung 		1.750	LG1	3.357	0.298				
L-1		1.830	LG1	3.330	0.300				
Ergebnisse		1.910	LG1	3.313	0.302				
😑 Erforderliche Bewehrung		1.990	LG1	3.307	0.302				
 querschnittsweise 		2.070	LG1	3.312	0.302				
🖅 stabweise		2.140	LG1	3.325	0.301				
🖅 x-stellenweise		2.210	LG1	3.346	0.299				
🖢 Vorhandene Bewehrung		2.310	LG1	3.392	0.295				
Längsbewehrung		2.400	LG1	3.449	0.290				
🕀 Bügelbewehrung	Zuricche	noroohni	see Stal	k.N⊭ 1 ⇒ 1.03	0.1.61				
Bewehrung x-stellenweise	Zwische	ZWISChenergebnisse - Stab Nr. 1, X: 1.830, LG1							
Stahlliste		🗆 Bruchschnittgrößen Ru							
 Nichtlineare Berechnung 	Bruc	hmoment un	i die y-Achse	•	Myu	73.54	kNm		
Tragfähigkeit	Bruc	chmoment un	i die z-Achse	•	Mzu	0.00	kNm		
Berechnungsdetails	Bruc	chnormalkraft			Nu	0.00	kN		
	🗆 Spa	innungs- u	nd Dehnun	gsberechnung					
	— B	ruchkrümmur	ng		1/fu	4.1254E-02	1/m		
	— B	ruchkrümmur	ng in y-Richtu	ung	1/ryu	-0.0000E+00	1/m		
	— B	ruchKrümmu	ng in z-Richti	ung	1/rzu	4.1254E-02	1/m		
	— н	auptkrümmu	ngsrichtung		đu	0.0	*		
	ΞB	erechnungso	letails						
		Stahlspann	ung in der ma	aßgebenden Faser	đSu	557.42	N/mm^2		
		Stahldehnu	ng in der maf	3gebenden Faser	εsu	8.752	‰		
Betonspannung in der maßgebenden Fase				aßgebenden Faser	σcu	-14.77	N/mm ²		
		Betondehnu	ıng in der ma	aßgebenden Faser	εCu	-3.500	‰		

Bild 5.23: Maske 6.1 Tragfähigkeit für nichtlineare Berechnung

Für die bemessenen Stäbe werden die massgebenden Sicherheiten ausgegeben, die bei der nichtlinearen Tragfähigkeitsanalyse ermittelt wurden. Diese resultieren aus den Parametern der Bewehrungssätze, den Schnittgrössen der Einwirkungen und den Vorgaben des Dialogs *Einstellungen für nichtlineare Berechnung* (siehe Bild 4.2, Seite 68 und Bild 4.3, Seite 70).

Im unteren Teil der Maske werden die Zwischenergebnisse für die oben selektierte Zeile angezeigt. Dadurch ist eine gezielte Auswertung anhand der Bemessungsdetails möglich. Die Ausgabe der Zwischenergebnisse im unteren Bereich aktualisiert sich automatisch, sobald im oberen Abschnitt eine andere Zeile selektiert wird.

Der theoretische Hintergrund zur nichtlinearen Bemessung ist im Kapitel 2.2.1 ab Seite 13 ausführlich erläutert.

Stab Nr.

Die Sicherheitsfaktoren und Ausnutzungen werden nach Stäben geordnet ausgegeben.

Stelle x

Die x-Stellen repräsentieren die bei der nichtlinearen Berechnung verwendeten FE-Knoten im Stab. Sie basieren auf den Vorgaben zur adaptiven Stabteilung im Dialog *Einstellungen für nichtlineare Berechnung*, Register *Konvergenzeinstellungen* (siehe Bild 2.17, Seite 43).

Massgebender LF / LG

Es werden die Nummern der Lastfälle oder Lastfallgruppen angegeben, die an den jeweiligen Stellen x massgebend sind.

Sicherheitsfaktor γ

Diese Spalte gibt Auskunft über den Sicherheitsfaktor γ an jeder x-Stelle. Dieser drückt das Verhältnis von Grenzlast zur vorhandenen Belastung aus.

$$\gamma = \frac{R_d}{E_d} \ge 1.0$$

mit

$$\begin{split} R_{d} &= \begin{vmatrix} N_{Rd} \\ M_{y,Rd} \\ M_{z,Rd} \end{vmatrix} \qquad & \text{Bemessungswert des Tragwiderstandes} \\ E_{d} &= \begin{vmatrix} N_{Ed} \\ M_{y,Ed} \\ M_{z,Ed} \end{vmatrix} \qquad & \text{Bemessungswert der Einwirkung} \end{split}$$

Ist der Sicherheitsfaktor an einer Stelle kleiner als 1 oder wird keine Konvergenz erreicht, so ist der Tragfähigkeitsnachweis nicht erfüllt. Die ganze Tabelle wird rot dargestellt.

Ausnutzung 1/γ

Die Einträge in dieser Spalte stellen die Kehrwerte der Sicherheitsfaktoren γ dar. Damit lassen sich schnell die Reserven im Querschnitt bewerten.

Die Zwischenergebnisse in der unteren Hälfte der Maske geben Auskunft über sämtliche Nachweisdetails. Sie sind in Form einer Baumstruktur organisiert.

🖃 Spannungs- und Dehnungsberechnung			
 mittlere Hauptkrümmung 	1/rm	2.7579E-03	1/m
 Mittlere Krümmung in y-Richtung 	1/rym	-9.9103E-10	1/m
 Mittlere Krümmung in z-Richtung 	1/rzm	-2.7579E-03	1/m
 Hauptkrümmungsrichtung 	αm	-180.0	*
🖃 Berechnungsdetails			
 Stahlspannung in der maßgebenden Faser 	₫\$m	96.73	N/mm^2
 Stahldehnung in der maßgebenden Faser 	٤۶m	0.484	‰
 Betonspannung in der maßgebenden Faser 	σcm	-3.47	N/mm^2
 Betondehnung in der maßgebenden Faser 	80m	-0.473	‰
 Rechnerisch angesetzte Betonrestzugfestigkeit 	σctm	1.31	N/mm^2
Maximale Betonzugdehnung	εctm	0.630	‰
🕀 Querschnittseigenschaften			
 Mittleres Trägheitsmoment um die Achse y 	lym	3.31141E+08	mm^4

Bild 5.24: Zwischenergebnisse, Abschnitt Spannungs- und Dehnungsberechnung

Da bei der Berechnung unterschiedliche Tension Stiffening Ansätze verwendet werden können (siehe Kapitel 2.3.3, Seite 21), weichen auch die Details der einzelnen Modelle etwas voneinander ab.

Anmerkung

Die letzte Spalte verweist auf Unbemessbarkeiten oder Bemerkungen, die sich im Zuge der Bemessung ergeben haben (z. B. wenn im letzten Lastschritt der Berechnung die maximale Anzahl an Iterationen erreicht wurde, ohne das Abbruchkriterium zu erfüllen). Die angegebenen Nummern sind in der Statusleiste näher erläutert.

Meldungen...

Die [Meldungen] des aktuellen Bemessungsfalls lassen sich zusammengefasst über die links dargestellte Schaltfläche einsehen. Es erscheint ein informativer Dialog mit einer Übersicht (vgl. Bild 5.19, Seite 95).

5.4.2 Nichtlineare Berechnung - Gebrauchstauglichkeit

A2 - Nichtlineare Bemessung 🔽	6.2 Gebrau	uchstau	glichkeit	für nichtlineare	Bered	chnung			
Eingabedaten	Stab	Stelle	Maßgeb.	Globale Verschiebur	ngen	Lokale Verschiebunge	n Ri	ssbreite	
Basisangaben	Nr.	x [m]	LF/LG	ug (mm)		uj (mm)	v	1k [mm]	
Materialien	2	0.000	LG1		0.000	0.0	00	0.15	
Querschnitte		0.050	LG1		0.022	0.0	22	0.14	
Lager		0.100	LG1	1	0.040	0.0	40	0.13	
Bewehrung		0.150	LG1		0.054	0.0	54	0.12	
L1		0.200	LG1		0.064	0.0	64	0.11	
Ergebnisse		0.250	LG1	I	0.072	0.0	72	0.10	
Erforderliche Bewehrung		0.300	LG1		0.076	0.0	76	0.10	
querschnittsweise		0.350	LG1	I	0.077	0.0	77	0.09	
stabsatzweise		0.400	LG1	I	0.076	0.0	76	0.08	
stabweise		0.450	LG1		0.072	0.0	72	0.07	
🛓 - x-stellenweise		0.500	LG1	I	D.066	0.0	66	0.06	
Vorhandene Bewehrung		0.571	LG1	1	0.053	0.0	53	0.05	
Längsbewehrung	Zuricchono	rachnic	ico Sta	⊾NE 2	0.10	1			
Bügelbewehrung	Zwischene	rigennis	se - sta		JU, LU	,			_
Bewehrung x-stellenweise	🗆 Spannun	ngs- und	Dehnungs	sberechnung					
Stahlliste	Hauptm	nomente			M	19.92	kNm		
Gebrauchstauglichkeitsnachwei	Biegem	oment um	die y-Achse		Му	-19.92	kNm		
querschnittsweise	Biegem	oment um	die z-Achse	•	Mz	0.00	kNm		 _
stabsatzweise	Normalk	kraft			N	0.00	KN		
stabweise	- Querso	chnittszu	istand			Erstrissbildung			
• x-stellenweise	mittlere	Hauptkru	mmung		1/fm	3.2414E-03	1/m		
Nichtlineare Berechnung	Mittiere	Krummun	g in y-Richtu	ing	17/fym 17/m	0.0000E+00	1/m		
Gebrauchstauglichkeit	- Mittlere	Krummun Chaladala	g in z-Hichtu	ing	1/f2m	-3.1130E-03	1/m		
- Berechnungsdetails	- mittiere	Stanidenr	nung 		٤sm	0.717	700		
					A.	0.500			
	Beiw	ent zur bei	iliel die latie	ng der Verbundeigei	P1	0.500			
	Beiwe	en zur Bei	rucksichtigu	ng dei Ait and Daue	P2 Mor	0.509	libler.		
2	— DISS	nomeni			MICI	19.86	I KINM		

Bild 5.25: Maske 6.2 Gebrauchstauglichkeit für nichtlineare Berechnung

Es werden für die bemessenen Stäbe die massgebenden Verformungen und Rissbreiten ausgegeben, die bei der nichtlinearen Gebrauchstauglichkeitsanalyse ermittelt wurden. Diese resultieren aus den Parametern der Bewehrungssätze, den Schnittgrössen der Einwirkungen und den Vorgaben des Dialogs *Einstellungen für nichtlineare Berechnung* (siehe Bild 4.2, Seite 68 und Bild 4.3, Seite 70).

Im unteren Teil der Maske werden die *Zwischenergebnisse* für die oben selektierte Zeile angezeigt. Dadurch ist eine gezielte Auswertung anhand der Bemessungsdetails möglich.

Der theoretische Hintergrund zur nichtlinearen Bemessung ist im Kapitel 2.2.1 ab Seite 13 ausführlich erläutert.

Stab Nr.

Die Verformungen und Rissbreiten werden nach Stäben geordnet ausgegeben.

Stelle x

Die x-Stellen repräsentieren die bei der nichtlinearen Berechnung verwendeten FE-Knoten im Stab. Sie basieren auf den Vorgaben zur adaptiven Stabteilung im Dialog *Einstellungen für nichtlineare Berechnung*, Register *Konvergenzeinstellungen* (siehe Bild 2.17, Seite 43).

Massgebender LF / LG

Es werden die Nummern der Lastfälle oder Lastfallgruppen angegeben, die an den jeweiligen Stellen x massgebend sind.

Globale Verschiebungen ug

In dieser Spalte werden die resultierenden Verschiebungen ausgegeben, die sich auf das globale XYZ-Koordinatensystem beziehen.

Bei den Zwischenergebnissen können im Abschnitt *Globale Knotenverformungen* die Verformungsanteile an den FE-Knoten in Richtung jeder globalen Achse abgelesen werden.

Lokale Verschiebungen u

Die Einträge in dieser Spalte stellen die resultierenden Verschiebungen in Richtung des lokalen xyz-Stabachsensystems dar.

Bei den Zwischenergebnissen können im Abschnitt *Lokale Knotenverformungen* die Verformungsanteile an den FE-Knoten in Richtung der einzelnen Stabachsen abgelesen werden.

Rissbreite w_k

In dieser Spalte werden die charakteristischen Rissbreiten nach EN 1992-1-1, 7.3.4, Gl. (7.8) ausgegeben.

 $w_k = s_{r,max} \cdot (\varepsilon_{sm} - \varepsilon_{cm})$

- mit s_{r,max} Maximaler Rissabstand bei abgeschlossenem Rissbild
 - εsm Mittlere Dehnung der Bewehrung unter Berücksichtigung der Mitwirkung des Betons auf Zug zwischen den Rissen
 - εsm Mittlere Dehnung des Betons zwischen den Rissen

Für die Ermittlung von Rissabstand und Dehnungen werden die Schnittgrössen der nichtlinearen Berechnung verwendet.

Die Zwischenergebnisse in der unteren Hälfte der Maske geben Auskunft über sämtliche Nachweisdetails. Sie sind in Form einer Baumstruktur organisiert.

–⊟Zustand II			
🕀 Querschnittseigenschaften			
 Trägheitsmoment um die y-Achse 	lyn	2.13666E+08	mm^4
 Trägheitsmoment um die z-Achse 	Izu	5.20833E+08	mm^4
Fläche	Aii	16025.00	mm^2
Spannungs- und Dehnungsberechnung			
— Hauptkrümmung	1/m	2.4039E-03	1/m
 Krümmung in y-Richtung 	1/iyii	1.6413E-10	1/m
 Krümmung in z-Richtung 	1/rzjj	-2.4039E-03	1/m
 Hauptkrümmungsrichtung 	αμ	-180.0	٠
 Stahlspannung in der maßgebenden Faser 	σs	103.92	N/mm^2
— Stahldehnung	ES11	0.520	‰
 Betonspannung in der maßgebenden Faser 	σcii	-2.53	N/mm^2
 Betondehnung in der maßgebenden Faser 	8C	-0.315	‰

Bild 5.26: Zwischenergebnisse, Abschnitt Zustand II

5.4.3 Nichtlineare Berechnung - Berechnungsdetails

BETON - [Beispiel-Durchlauf	trägerNL]							
Dater Bearbeiten Einstellungen	4 4 Nightlingste Berechnung Berechn	unas dataila						
FAZ · Nichtlineare bemessung	6.4 Nichttmeare Berechnung - Berechn	ungsuetans	1					
Eingabedaten	Kontreigenzenistenangen							
Basisangaben	Abbruchschranken	00						
Materialien	Abbruchkriterium ca	0.0010						
Uuerschnitte	Abbruchkiterium so	0.0010						
Lager	Abbruchkriterium so	1.0000	[mm]					
Bewenrung	Dämpfungsfaktor	0.200	[hmd]					
	Anzahl der Lastetufen:	0.300						
Érgebnisse		3						
	Grenzzustand der Tradfähidkeit							
querschnittsweise	Erreichte Gesamtanzahl der Iterationen	7						
stadweise	Iteration der letzten Laststufe erfolg	reich beende						
X-stellenweise								
Voinandene Bewenrung	I asterije Nr. 1							
Langsbewenrung	Lastfaktor der Laststufe	0.333						
Bouchtung	Abbruchkriterien der einzelnen Iteration	nen						
Etabliate	El Iteration Nr. 0	eration Nr. 0						
Nichtline tre Berechnung	Abbruchkriterium ɛ1	0.05957	> 0.0010					
Trafibiakait	Abbruchkriterien	0.000001	,					
Percebnungedetaile	Abbruchkriterium #3	0.01192	< 1.0000 [mm]					
Derechnungsdetails	Filteration Nr. 1							
	Abbruchkriterium ɛ1	0.00415	> 0.0010					
	Abbruchkriterien	0.00047						
	Abbruchkriterium ɛз	0.00402	< 1.0000 [mm]					
	- Iteration Nr. 2	i i i i i i i i i i i i i i i i i i i						
	 Abbruchkriterium ε₁ 	0.00004	< 0.0010					
	- Abbruchkriterien	0.00000						
	Abbruchkriterium ε3	0.00006	< 1.0000 [mm]					
	Iteration der Laststufe erfolgreich beendet							
	⊟ Laststufe Nr. 2							
			Grafik OK Abbrechen					

Bild 5.27: Maske 6.4 Nichtlineare Berechnung - Berechnungsdetails

Die letzte Ergebnismaske stellt eine wichtige Kontrollmöglichkeit zum Verlauf der nichtlinearen Berechnung dar. Die Ausgabe ist in zwei Hauptpunkte gegliedert.

Konvergenzeinstellungen

In diesem Abschnitt sind die wesentlichen globalen Vorgaben zur nichtlinearen Berechnung aufgelistet (siehe Erläuterungen zu Bild 2.17, Seite 43).

Konvergenzverhalten

Das Konvergenzverhalten ist ein wichtiger Ansatzpunkt, um anhand des Iterationsprozesses die Ergebnisse der nichtlinearen Berechnung zu beurteilen. Hierzu werden die Abbruchkriterien der einzelnen Iterationsschritte getrennt für den Grenzzustand der Tragfähigkeit, der Gebrauchstauglichkeit und den Brandschutznachweis sowie für jede Laststufe ausgegeben.

Im Allgemeinen konvergiert eine nichtlineare Berechnung, da die Abweichungen hinsichtlich der Schnittgrössen, Steifigkeiten und Verformungen stetig abnehmen. Dieser Effekt kann anhand der ε_1 und ε_2 Werte nachfolgender Iterationen überprüft werden: Sprünge oder ein Anwachsen der Abweichungen (z. B. bei Stabilitätsuntersuchungen) sind somit gut nachvollziehbar.

Anhand des Konvergenzverhaltens ist eine gute Einschätzung des Berechnungsablaufs möglich. Es lassen sich auch Rückschlüsse ableiten, wie ggf. die Berechnungsparameter zu beeinflussen sind (siehe Kapitel 2.3.9 *Konvergenz*, Seite 42).

6. Ergebnisauswertung

Nach der Bemessung lassen sich die Ergebnisse in verschiedener Weise auswerten. Im Kapitel 5 wurden die Ergebnistabellen vorgestellt, das folgende Kapitel beschreibt die grafische Auswertung.

6.1 Bewehrungsvorschlag

Die Ergebnismasken 3.1 und 3.2 stellen dar, wie die erforderlichen Bewehrungsflächen mit Bewehrungsstäben abgedeckt werden können, damit z. B. der Nachweis der Gebrauchstauglichkeit erfüllt ist. Dieser Bewehrungsvorschlag wird im unteren Bereich der Masken 3.1 *Längsbewehrung* und 3.2 *Bügelbewehrung* als Bewehrungsskizze grafisch dargestellt (siehe Bild 5.9, Seite 82 und Bild 5.13, Seite 87).

Bild 6.1: Bewehrungsskizze in Maske 3.1 Vorhandene Bewehrung

Die aktuelle Position (diejenige Zeile in der Tabelle oberhalb, in der sich der Cursor befindet) ist rot gekennzeichnet. Diese Grafik ermöglicht es, die Lage und Anordnung der einzelnen Positionsstäbe abzulesen und entsprechend zu bewerten.

-

Die Schaltfläche [Bearbeiten] rechts unten in der Skizze ruft den Bearbeitungsdialog der aktuellen Bewehrungsposition auf. Dieser Dialog ist im Bild 5.12 auf Seite 86 bzw. Bild 5.14 auf Seite 89 dargestellt. Dort lassen sich die diversen Parameter der gewählten Längs- bzw. Bügelbewehrung überprüfen und gegebenenfalls anpassen.

6.2 3D-Rendering der Bewehrung

3D-Rendering

In den beiden Masken 3.1 Längsbewehrung und 3.2 Bügelbewehrung steht die Schaltfläche [3D-Rendering] zur Verfügung, die eine fotorealistische Visualisierung der vorhandenen Bewehrung ermöglicht. Sie ruft ein neues Fenster mit der gerenderten Darstellung des Bewehrungskorbes des aktuellen Stabes oder Stabsatzes auf (d. h. des Objekts, in dessen Tabellenzeile der Cursor positioniert ist).

Bild 6.2: 3D-Rendering der vorhandenen Längs- und Bügelbewehrung

Mit dieser Grafik lässt sich die gewählte Bewehrung wirklichkeitsnah überprüfen.

Die Darstellung wird über das Pulldownmenü Ansicht oder die zugeordneten Schaltflächen gesteuert (siehe Tabelle 6.1). Wie in RSTAB steht auch hier die Greiffunktion zur Verfügung: Verschieben, Zoomen oder Drehen mit gedrückter [Umschalt]- bzw. [Strg]-Taste.

Die aktuelle Grafik kann auch direkt auf den Drucker ausgegeben bzw. in das Ausdruckprotokoll oder in die Zwischenablage übergeben werden.

Die Schaltflächen in der Symbolleiste sind mit folgenden Funktionen belegt:

Schaltfläche	Bezeichnung	Funktion
4	Drucken	Öffnet den Dialog <i>Grafikausdruck</i> (Bild 7.4, Seite 111) mit den Druckeinstellungen
	Verschieben	Ermöglicht das Verschieben der Ansicht mit der Maus (Zoomen/Rotieren mit [Umschalt]- bzw. [Strg]-Taste)
Q	Zoomen	Ermöglicht das Vergrössern eines Grafikbereiches durch Aufziehen eines Fensters mit der Maus
8	Zeige alles	Stellt die Gesamtansicht wieder her
Ð	Vorherige Ansicht	Zeigt die zuletzt gewählte Ansicht an
₽x	Ansicht in X	Stellt die Ansicht auf YZ-Ebene dar
, Fg	Ansicht in Y	Stellt die Ansicht auf XZ-Ebene dar
₽	Ansicht in Z	Stellt die Ansicht auf XY-Ebene dar
Ø	Isometrie	Stellt die räumliche Ansicht dar
ď	Perspektive	Bildet die Ansicht in perspektivischer Darstellung ab (mit allen vier Ansichtstypen kombinierbar)
Ø	Drahtmodell	Blendet das Betonmaterial aus
	Vollmodell	Stellt den Beton im Stab oder Stabsatz dar
	Obere Bewehrung	Stellt die oben im Stab liegende Längsbewehrung dar
	Untere Bewehrung	Stellt die unten im Stab liegende Längsbewehrung dar
	Umlaufende Bewehrung	Stellt die umlaufende oder konstruktive Längsbeweh- rung dar
	Bügelbewehrung	Stellt die Bügelbewehrung dar
4	Stab-Achsensystem	Steuert die Anzeige der lokalen Stabachsen xyz
H	Obere Längsbewehrung	Stellt die Positionsstäbe der oberen Bewehrung oberhalb des Stabes dar
Ţ	Untere Längsbewehrung	Stellt die Positionsstäbe der unteren Bewehrung unterhalb des Stabes dar
	Schubbewehrung	Stellt die Positionsstäbe der Bügelbewehrung dar

Tabelle 6.1: Schaltflächen für 3D-Rendering

Stützenbewehrung: Perspektivische Ansicht in X

(1)45∳10-0.250 m

6.3 Ergebnisse am RSTAB-Modell

Zur grafischen Auswertung der Nachweise kann auch das RSTAB-Arbeitsfenster genutzt werden.

RSTAB-Hintergrundgrafik

Die RSTAB-Grafik im Hintergrund kann hilfreich sein, um die Lage eines bestimmten Stabes im Modell zu kontrollieren. Ist in der Ergebnismaske von BETON eine Tabellenzeile selektiert, so wird der betreffende Stab in der RSTAB-Hintergrundgrafik farblich hervorgehoben. Ein Pfeil kennzeichnet zusätzlich die x-Stelle am Stab, um die es sich in der aktuellen Tabellenzeile handelt.

Bild 6.3: Kennzeichnung des Stabes und der aktuellen Stelle x im RSTAB-Modell

Diese Funktion steht allerdings nur zur Verfügung, wenn in der Oberfläche von RSTAB die Ergebnisse des aktuellen BETON-Falls eingestellt sind. Dies wird z. B. durch einen Wechsel in die [Grafik] und wieder zurück in das Modul [BETON] erreicht.

RSTAB-Arbeitsfenster

Grafik

Alle Bewehrungsflächen und Zwischenergebnisse lassen sich am Strukturmodell von RSTAB visualisieren: Mit der Schaltfläche [Grafik] wird das Modul BETON zunächst beendet. Im RSTAB-Arbeitsfenster werden nun die diversen Bewehrungen und Nachweisgrössen grafisch wie die Schnittgrössen oder Verformungen eines RSTAB-Lastfalls angezeigt. Die Steuerung der Ergebnisarten erfolgt über den *Ergebnisse*-Navigator von BETON.

Der *Ergebnisse*-Navigator ist auf die Nachweise des BETON-Moduls abgestimmt. Es stehen die Bewehrungsarten für die Nachweise der Tragfähigkeit, der Gebrauchstauglichkeit, des Brandschutzes und der nichtlinearen Berechnung mit allen Zwischenergebnissen zur Wahl.

Bild 6.4: Ergebnisse-Navigator von BETON und Panel mit ausgewählten Ergebnisarten

Der *Ergebnisse*-Navigator ermöglicht es, mehrere Bewehrungsarten oder Nachweise gleichzeitig darzustellen. Damit lässt sich z. B. grafisch die erforderliche Längsbewehrung mit der vorhandenen Längsbewehrung vergleichen. Das Panel wird dabei mit den gewählten Ergebnisarten synchronisiert.

Wegen der Mehrfachauswahl und automatischen Farbzuweisung sind die in RSTAB angebotenen Möglichkeiten des Zeigen-Navigators zur Darstellung der Stabergebnisse wirkungslos.

Da die RSTAB-Tabellen für die Auswertung der Ergebnisse von BETON keine Funktion haben, können sie ggf. deaktiviert werden.

Wie bei den RSTAB-Schnittgrössen blendet die Schaltfläche [Ergebnisse ein/aus] die Darstellung der Bemessungsergebnisse ein oder aus. Die rechts davon angeordnete Schaltfläche [Ergebnisse mit Werten anzeigen] steuert die Anzeige der Ergebniswerte in der Grafik.

Die Auswahl der Bemessungsfälle erfolgt wie gewohnt über die Liste in der BETON-Menüleiste.

Wie bei den Stabschnittgrössen kann im mittleren Panel-Register *Darstellungsfaktoren* eine Skalierung der Stabverläufe vorgenommen werden. Damit lassen sich die Bemessungsergebnisse für die Auswertung (und den Ausdruck) grafisch skalieren.

Bild 6.5: Panel-Register Darstellungsfaktoren

Die Ergebnisse nichtlinearer Analysen können ebenfalls gezielt ausgewertet werden.

Bild 6.6: Grafische Ausgabe der nichtlinearen Bemessungsergebnisse

Alle Ergebnisdarstellungen lassen sich wie RSTAB-Grafiken in das zentrale Ausdruckprotokoll übertragen (siehe Kapitel 7.2, Seite 111).

Über die Schaltfläche [BETON] im Panel erfolgt die Rückkehr in das Bemessungsmodul.

6.4 Ergebnisverläufe

In der RSTAB-Grafik sind die Ergebnisverläufe zugänglich über Menü

$\mathbf{Ergebnisse} \rightarrow \mathbf{Ergebnisverläufe} \text{ an selektierten Stäben}$

oder die entsprechende Schaltfläche in der RSTAB-Symbolleiste.

Es öffnet sich ein Fenster, das den Verlauf der Bewehrungsflächen und Zwischenergebnisse am gewählten Stab oder Stabsatz zeigt.

Bild 6.7: Dialog Ergebnisverläufe im Stab

Im Navigator links sind die Bewehrungen und Zwischenergebnisse auszuwählen, die im Ergebnisdiagramm erscheinen sollen. Über die Listen in der Symbolleiste kann zwischen den Bemessungsfällen von BETON und den Stäben bzw. Stabsätzen gewechselt werden.

Eine ausführliche Beschreibung des Dialogs *Ergebnisverläufe* finden Sie im Kapitel 9.8.4 des RSTAB-Handbuchs ab Seite 205.

Ĩ≣

6.5 Filter für Ergebnisse

Neben den Ergebnismasken, die durch ihre Struktur bereits eine Auswahl nach bestimmten Kriterien erlauben, stehen die im RSTAB-Handbuch beschriebenen Filtermöglichkeiten zur grafischen Auswertung der Nachweise zur Verfügung.

Zum einen kann auf bereits definierte Ausschnitte zurückgegriffen werden (siehe RSTAB-Handbuch, Kapitel 9.8.6 ab Seite 208), die es gestatten, Objekte in geeigneter Weise zu gruppieren.

Zum anderen können im Register *Filter* des Steuerpanels die Nummern der Stäbe bestimmt werden, deren Ergebnisse in der Grafik gefiltert zur Anzeige kommen sollen. Die Beschreibung dieser Funktion finden Sie im Kapitel 4.4.6 des RSTAB-Handbuchs auf Seite 71.

Bild 6.8: Filtern von Stäben im Panel

Im Unterschied zur Ausschnittfunktion wird das Modell vollständig mit angezeigt.

7. Ausdruck

7.1 Ausdruckprotokoll

Wie für RSTAB wird zunächst ein Ausdruckprotokoll mit den BETON-Daten generiert, das mit Grafiken und Erläuterungen ergänzt werden kann. Zudem ist in dieser Druckvorschau festzulegen, welche Ergebnisse der Stahlbetonbemessung letztendlich zu Papier gebracht werden.

Bei sehr grossen Modellen ist es ratsam, anstelle eines einzigen, umfangreichen Protokolls die Daten auf mehrere kleine Protokolle aufzuteilen. Legt man ein separates Protokoll für BETON an, kann dieses Ausdruckprotokoll relativ schnell aufgebaut werden.

Das Ausdruckprotokoll ist im RSTAB-Handbuch ausführlich beschrieben. Insbesondere das Kapitel 10.1.3.4 *Selektion der Zusatzmodul-Daten* auf Seite 226 behandelt die Auswahl der Einund Ausgabedaten in den Zusatzmodulen.

Es bestehen die üblichen Selektionsmöglichkeiten zur Auswahl der Bemessungsfälle sowie der Eingabe- und Ergebnisdaten von BETON.

Ausdruckprotokoll-Sel	lektion D1
Programm / Modul	Gebrauchstauglichkeitsnachweis Brandschutz Zustand II
RSTAB	Globale Selektion Eingabedaten Bewehrung
DETOIN	Anzeigen von
	Erforderliche Bewehrung NrSelektion (z.B. 1-5,20)
	🗹 2.1 querschnittsweise Querschnitte: Alles 🛛 🗸 🔚
	🗹 2.2 stabsatzweise
	🗹 2.3 stabweise
	🗹 2.4 x-stellenweise Stäbe: Alles 💽 💽
	🗹 2.5 unbemessbar Stäbe: 🛛 Alles 🛛 🔽 🐧
	Längsbewehrung
	🗹 3.1 vorhanden Stäbe: Alles 🛛 💽 🚷
	🔽 vorhanden - Verankerungen Stabsätze: Alles 🛛 🖌 💽
	🔽 vorhanden - Grafik
	Schubbewehrung
	🗹 3.2 vorhanden Stäbe: Alles 🛛 💌 🚺
	🗹 vorhanden - Grafik Stabsätze: Alles 💽 💽
	🗹 3.3 Bewehrung vorhanden - x-stellenweise . Stäbe: 🕼 🕼
	☑ 3.4 Stahiliste
	Zwischenergebnisse - Bemessung Stäbe: Alles
Anzeigen	Zwischenergebnisse - Bewehrung Stäbe: Alles
Deckblatt	Fehlermeldungen bzw. Hinweise
✓ Inhalt	
Into-Bilder	
	OK Abbrechen

Bild 7.1: Ausdruckprotokoll-Selektion der BETON-Ergebnisse, Register Bewehrung

7.2 Grafikausdruck

Die Nachweisgrafiken können entweder in das Ausdruckprotokoll eingebunden oder direkt auf den Drucker geleitet werden. Im Kapitel 10.2 des RSTAB-Handbuchs wird das Drucken von Grafiken ausführlich erläutert.

Wie in RSTAB kann jedes Bild, das im Grafikfenster des Hauptprogramms angezeigt wird, in das Ausdruckprotokoll übernommen werden. Ebenso lassen sich die 3D-Rendering-Grafiken und die Stab-Ergebnisverläufe mit den [Drucken]-Schaltflächen in das Protokoll übergeben.

Die aktuelle BETON-Grafik im RSTAB-Arbeitsfenster kann gedruckt werden über Menü

$Datei \rightarrow Drucken$

oder die entsprechende Schaltfläche in der Symbolleiste.

ş	1						RSTA	3 7.03 - [[Tragkonstr	uktion*]		
÷	<u>D</u> atei	Bearbeite <u>n</u>	<u>A</u> nsicht	Einfügen	Berechnung	Er <u>q</u> ebnisse	<u>E</u> xtras	<u>T</u> abelle	<u>O</u> ptionen	<u>Z</u> usatzmodule	<u>F</u> enster	<u>H</u> ilfe
] 📄 🎒	🔋 🔒 🗐		🗅 🗠 🖉	😼 🗗 📗	🔲 🖳 BE	FON FA1	- Stahlbet	on-B 🐐 🔍	> 1 1 xxx	x.xx 60	88 8 8
1	× % 🗈	ዿ 🎉 🎙	Drucker	1 🕅 🎮 -	<u>9</u> ** 😫 🔮) - i 💥 🥰	🍳 🎵	₿-y ₿z	🗊 🗗 💆	- 1 🔮 17 -	-	Vy Vz

Bild 7.2: Schaltfläche Drucken in der Symbolleiste des Hauptfensters

Stab Nr. 1 - Kreis 300	
Datei Extras Ansicht	
– ● ● Q & B R R R R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Drucken	

Bild 7.3: Schaltfläche Drucken in der Symbolleiste des 3D-Rendering-Fensters

Es wird folgender Dialog angezeigt.

Grafikhild	Welche Fenster	Grafikgröße			
 Sofort ausdrucken In Ausdruckprotokoll: D1 aufrehmen In Zwischenablage ablegen 	Nur das aktive Alle	 Wie Bildschirm-Ansicht ⊙ Fensterfüllend ∫ Im Maßstab 1: 100 			
Grafikbild-Größe	Optionen				
Über gesamte Seitenbreite Über gesamte Seitenhöhe Höhe: 72	Ausdruckprotokoll nach [OK] anzeigen Im Ergebnisverlauf Werte an gewünschter x-Stelle ausgeben Grafikbild sperren (ohne Aktualisierung)				
Drehung: 0 🚔 [*]					
Grafik-Überschrift					
BETON - GZT_Erforderliche Beweh	rung oben und unten				

Bild 7.4: Dialog Grafikausdruck, Register Basis

Dieser Dialog ist im Kapitel 10.2 des RSTAB-Handbuchs ab Seite 242 ausführlich beschrieben. Dort sind auch die weiteren Register *Optionen* und *Farbskala* erläutert.

Eine BETON-Grafik kann im Ausdruckprotokoll per Drag & Drop an eine andere Stelle verschoben werden. Zudem lassen sich eingefügte Grafiken nachträglich anpassen: Klicken Sie den entsprechenden Eintrag im Protokoll-Navigator mit der rechten Maustaste an und wählen im Kontextmenü dessen *Eigenschaften*. Es erscheint wieder der *Grafikausdruck*-Dialog mit diversen Modifikationsmöglichkeiten.

8. Allgemeine Funktionen

Dieses Kapitel stellt einige Menüfunktionen sowie Exportmöglichkeiten für die Bemessungsergebnisse vor.

8.1 BETON-Bemessungsfälle

Es besteht die Möglichkeit, Stäbe und Stabsätze in verschiedenen Bemessungsfällen zu gruppieren. Damit können beispielsweise Bauteilgruppen mit spezifischen Bemessungsvorgaben (Materialien, Querschnitte, Bewehrungsanordnung etc.) beaufschlagt werden.

Es bereitet kein Problem, einen Stab oder Stabsatz in unterschiedlichen Bemessungsfällen zu untersuchen.

Die BETON-Fälle sind im RSTAB-Arbeitsfenster wie ein Lastfall oder eine Lastfallgruppe in der Liste der Symbolleiste zugänglich.

Neuen BETON-Fall anlegen

Ein neuer Bemessungsfall wird angelegt über das BETON-Menü

 $Datei \rightarrow Neuer Fall.$

Es erscheint der folgende Dialog.

Neuerl	BETON-Fall
Nr. 2	Bezeichnung Stahlbeton-Bemessung
D	OK Abbrechen

Bild 8.1: Dialog Neuer BETON-Fall

In diesem Dialog sind eine (noch nicht belegte) *Nummer* sowie eine *Bezeichnung* für den neuen Bemessungsfall anzugeben. Nach Bestätigen mit [OK] erscheint die BETON-Maske 1.1 *Basisangaben* zur Eingabe der neuen Bemessungsdaten.

BETON-Fall umbenennen

Die Bezeichnung eines Bemessungsfalls kann geändert werden über BETON-Menü

$Datei \rightarrow Fall umbenennen.$

Es erscheint der Dialog BETON-Fall umbenennen.

BETON	Fall umbenennen	
Nr. 2	Bezeichnung Neue Bezeichnung	~
D	OK	Abbrechen

Bild 8.2: Dialog BETON-Fall umbenennen

BETON-Fall kopieren

Die Eingabedaten des aktuellen Bemessungsfalls werden kopiert über BETON-Menü

Datei \rightarrow Fall kopieren.

Es erscheint der Dialog *BETON-Fall kopieren*, in dem die Nummer und Bezeichnung des neuen Falls festzulegen sind.

BETON	Fall kopieren 🛛 🔀
Kopiere	n von Fall
FA2 - N	leue Bezeichnung 🔽
Neuer F	all
Nr.: 3	Bezeichnung: Bemessung Stützen - Brandfall
٦	OK Abbrechen

Bild 8.3: Dialog BETON-Fall kopieren

BETON-Fall löschen

Es besteht die Möglichkeit, Bemessungsfälle zu löschen über das BETON-Menü

Datei \rightarrow Fall löschen.

Im Dialog *Fall löschen* ist in der Liste *Vorhandene Fälle* ein Bemessungsfall auszuwählen, der dann mit [OK] gelöscht wird.

Vorhar	idene Fälle	
Nr.	Bezeichnung	
1	Stahlbeton-Bemessung	
2	Neue Bezeichnung	
2	OK Abbred	hen:

Bild 8.4: Dialog Fall löschen

8.2 Querschnittsoptimierung

Wie in Kapitel 3.3 erwähnt bietet BETON die Möglichkeit einer querschnittsweisen Optimierung an. Hierzu ist in Spalte C der Maske 1.3 *Querschnitte* der betreffende Querschnitt durch Ankreuzen festzulegen. Dies erfolgt am einfachsten über einen Klick in das Kästchen. Dabei erscheint ein Dialog, in dem detaillierte Vorgaben getroffen werden können.

)ptimie	rungsparamete	er, PB 750/90	0/200/250			
Zu optim	ieren					. ь .
Opti- miere	Vorhanden	Minimal	Maximal	Schrittweite		N
🗸 h:	750.0	500.0 🚖	1000.0 높	50.0	[mm]	
b:	900.0	÷	÷	*	[mm]	
t	200.0	÷	÷	*	[mm]	+yy
s:	250.0	Ŷ	\$	Ŷ	[mm]	
Angestra 3ewehru	ebter Ingsgrad: 2.0 [€ [%] ○ Da	arf an keiner Stell s Durchschnittsw	e überschritten w	erden	
		St	ab bzw. Stabsatz			PB 750/900/2007250
2	8					OK Abbreche

Bild 8.5: Dialog Optimierungsparameter eines Plattenbalkens

In der Spalte *Optimiere* wird zunächst durch Anhaken festgelegt, welcher (oder auch welche) Parameter modifiziert werden soll. Damit werden die Spalten *Minimal* und *Maximal* zugänglich, um dort die Unter- und Obergrenze des Parameters zur Optimierung vorzugeben. Die Spalte *Schrittweite* steuert, in welchem Intervall die Abmessungen dieses Parameters beim Optimierungsprozess variieren.

Als Optimierungskriterium gilt, dass ein *Angestrebter Bewehrungsgrad* entweder an keiner Stelle überschritten werden darf oder als Durchschnittswert über den gesamten Stab oder Stabsatz vorliegen soll. Der gewünschte Bewehrungsgrad kann im Eingabefeld angegeben werden.

Im Zuge der Optimierung untersucht BETON, mit welchen Abmessungen des zulässigen Parameters der Nachweis noch gelingt. Dabei ist zu beachten, dass die Schnittgrössen nicht automatisch neu mit den geänderten Querschnitten berechnet werden. Es bleibt dem Anwender überlassen, wann die optimierten Querschnitte für einen neuen Rechenlauf nach RSTAB übergeben werden. Wegen der geänderten Steifigkeiten im System können die Schnittgrössen erheblich differieren, die sich mit den neuen Querschnitten ergeben. Es empfiehlt sich daher, nach einer ersten Optimierung die Schnittgrössen neu zu berechnen und die Querschnitte ggf. nochmals zu optimieren.

Die geänderten Querschnitte brauchen nicht manuell nach RSTAB übergeben werden: Stellen Sie die Maske 1.3 *Querschnitte* ein und wählen dann das Menü

Bearbeiten \rightarrow Querschnitt in RSTAB übernehmen.

Das links dargestellte Kontextmenü der Tabellenzeile in Maske 1.3 enthält ebenfalls Möglichkeiten zum Export modifizierter Querschnitte nach RSTAB.

Berechnung

Vor der Übergabe erfolgt eine Sicherheitsabfrage, da diese Massnahme mit dem Löschen der Ergebnisse verbunden ist. Wird in BETON dann die [Berechnung] gestartet, vollzieht sich die Ermittlung der RSTAB-Schnittgrössen und der Bewehrungsflächen in einem einzigen Berechnungsablauf.

Analog kann über die oben beschriebene Menüfunktion wieder der RSTAB-Originalquerschnitt in BETON eingelesen werden. Bitte beachten Sie, dass auch diese Möglichkeit nur in der Maske 1.3 *Querschnitte* besteht.

Liegt ein Voutenstab zur Optimierung vor, werden die Anfangs- und Endstellen optimiert. Danach werden die Flächenträgheitsmomente an den Zwischenstellen linear interpoliert. Da diese mit der vierten Potenz eingehen, können die Nachweise bei grossen Unterschieden der Anfangs- und Endquerschnittshöhen ungenau werden. In diesem Fall empfiehlt es sich, die Voute in einzelne Stäbe zu unterteilen, deren Anfangs- und Endquerschnitte geringere Höhenunterschiede aufweisen.

8.3 Einheiten und Dezimalstellen

Die Einheiten und Nachkommastellen werden für RSTAB sowie für sämtliche Zusatzmodule zentral verwaltet. In BETON ist der Dialog zum Einstellen der Einheiten zugänglich über das Menü

Einstellungen \rightarrow Einheiten und Dezimalstellen.

Es wird der aus RSTAB bekannte Dialog aufgerufen. Das Modul BETON ist voreingestellt.

ogramm / Modul		BETON						
STAHI	A	Eingabedaten				Ergebnisse		
STAHL EC3			Einheit		DezStellen		Einheit	DezSteller
STAHL AISC		Längen:	m	~	3 🚔	Spannungen:	N/mm^2	2 🔿
STAHL IS		Guerschnittsmaße:	mm		1 🚔	Längen:	m	3 🚔
STAHL SIA		Lagerbreiten:				Bowebrungeflächen:		
KAPPA		Lagerbreiten.	mm	Ľ.		bewenirungsnachen.	cm Z	
BGDK		Bewehrungstlachen:	cm ²	×	2	Nrarte:	KN N	
FL-PL		Kräfte:	kN	~	2 🚔			
C-ZU-T	≡	Spannungen:	N/mm^2	~	3 🚭			
FE-BEUL		Einheitenlos:		V	3 🗢			
ASD		Winkel:	*		2 🌧			
KRANBAHN								
BETON								
UN Stutzen								
HOLZ FIO								
- DYNAM								
- STIRNPL								
VERBIND								
RAHMECK Pro								
RAHMECK								
DSTV								
nontrnur								

Bild 8.6: Dialog Einheiten und Dezimalstellen

Die Einstellungen können als Benutzerprofil gespeichert und in anderen Positionen wieder verwendet werden. Die Beschreibung dieser Funktionen finden Sie im Kapitel 11.6.2 des RSTAB-Handbuchs auf Seite 334.

8.4 Export der Ergebnisse

Die Ergebnisse der Stahlbetonbemessung sind auch in anderen Programmen verwertbar.

Zwischenablage

Markierte Zellen der BETON-Ergebnismasken lassen sich mit [Strg]+[C] in die Zwischenablage kopieren und mit [Strg]+[V] z. B. in ein Textverarbeitungsprogramm einfügen. Die Überschriften der Tabellenspalten werden dabei nicht berücksichtigt.

Ausdruckprotokoll

Die BETON-Daten können in das Ausdruckprotokoll gedruckt (vgl. Kapitel 7.1, Seite 110) und von dort dann exportiert werden über Menü

 $Datei \rightarrow Export in RTF-Datei bzw. BauText.$

Diese Funktion ist im Kapitel 10.1.11 des RSTAB-Handbuchs auf Seite 238 beschrieben.

Excel / OpenOffice

BETON ermöglicht den direkten Datenexport zu MS Excel und OpenOffice.org Calc. Diese Funktion wird aufgerufen über Menü

 $\textbf{Datei} \rightarrow \textbf{Tabellen exportieren}.$

Es öffnet sich folgender Exportdialog.

Export - MS Excel						
Einstellungen Tabelle	Applikation					
🗹 Mit Tabellenkopf	 Microsoft Excel 					
🗌 Nur markierte Zeilen	OpenOffice.org Calc					
Einstellungen						
✓ Tabelle in die aktive Arbeitsmappe exportieren Tabelle in die aktive Tabelle exportieren						
🗹 Existierende Tabelle überschr	eiben					
Selektierte Tabellen						
 Aktuelle Tabelle Alle Tabellen Eingabetabellen Ergebnistabellen 	Export-Tabellen mit Details					
9	OK Abbrechen					

Bild 8.7: Dialog Export - MS Excel

Sind die gewünschten Parameter ausgewählt, kann der Export mit [OK] gestartet werden. Excel bzw. OpenOffice werden automatisch aufgerufen. Die Programme brauchen nicht im Hintergrund geöffnet sein.

	-									
G		▼_) ₹	-	Fabelle1 [K	Compatibilitätsmo	dus] - Micr	osoft Excel			×
	Start Ein	fügen S	eitenlayout	Formeln	Daten Üb	erprüfen	Ansicht Entwicklerto	ols Acrobat	 Ø – 	D X
Ein Zwi	fügen 💞 calibr	i ▼ 1. K <u>U</u> ▼ A Schriftart		≡ <mark>=</mark> ∃ ≣ ≣ ∰ ≇ ≫•• srichtung	Text	Formatvo	lagen Tagen B [™] Löschen ▼ BFormat ▼ Zellen	∑	en Suchen rn ▼ Auswäh rbeiten	und Ien ₹
	A3	• (•	f _x (Querschnit	t Nr. 1 - Kreis 35	0				×
	А	В	С	D	E	F	G	н	I	
1		Stab	Stelle	LF / LG	Bewehrungs-		Fehlermeldung			
2	Bewehrung	Nr.	x [m]	LK	fläche	Einheit	bzw. Hinweis			
3	Querschnitt Nr.	1 - Kreis 3	50							
4	A _{s,oben}	1	0,000	LG1	43,35	cm^2	15)			
5	A _{s, unten}	1	0,000	LG1	-		15)			
6	A _{s,T}	1	0,000	LG1	0,00	cm^2				
7	a _{s, wv} Bügel	1	0,000	LG1	0,00	cm^2/m	58)			
8	а _{s, w} Bügel	1	0,000	LG1	0,00	cm^2/m				
9	Querschnitt Nr.	2 - PB 800/	/900/200/25	50						
10	A _{s,oben}	2	6,000	LG1	24,69	cm^2				
11	A _{s, unten}	2	2,400	LG1	18,15	cm^2				
12	A _{s,T}	2	0,000	LG1	0,00	cm^2				
13	a _{s, wv} Bügel	2	0,000	LG1	8,19	cm^2/m	58) 69)			
14	a _{s, w} Bügel	2	0,000	LG1	0,00	cm^2/m				
15										
16										-
- 14 - 4	D → H 2.1 Erfor	derliche Be	ewehrung o	ue / 2.2	Erforderliche Bew	ehrung st 🛛			-	
Ber	eit 📶						10	0% 🕞 — —	-0	÷.;

Bild 8.8: Ergebnis in Excel

Beispiele 9.

In einem Beispiel wird die Begrenzung der Verformungen gemäss EN 1992-1-1, 7.4.3 mit direkter Berechnung nachgewiesen.

Direkte Verformungsberechnung 9.1

Eingabedaten 9.1.1

System

3.250

100 cm

Querschnitt

	\$.500	_	50 G	
4	.210		<u> </u>	
Bild 9.1: System, Belastung und C	Querschnitt			
Material:	C20/25			
	B500A			
statische Höhe:	d=17,00cm			
Bewehrung:	As1,vorh=4,52cm ²			
Einwirkungen				
Eigengewicht Beton:	0,2m·1m·25,0kN/m ³	=	5	,00 kN/m
Belag und Putz:			1	,50 kN/m
	gk	=	6	,50 kN/m
Nutzlast Büro:			2	,00 kN/m
Trennwandzuschlag:			1	,25 kN/m
	gk	=	3	,25 kN/m

Maximalmoment für quasi-ständige Belastung

Kombinationsbeiwert:	ψ2 = 0,3 (Nutzlast Büro)	
Kombinationsbeiwert:	ψ 2 = 1,0 (Trennwandzuschlag)	
Quasi-ständige Belastung:	6,5kN/m+1,23kN/m+0,30·2,00kN/m=	8,35 kN/m
Maximalmoment:	$M_{quasi-ständig} = 8,35 kN/m \cdot \frac{4,21^2 m^2}{8} =$	18,50kNm

9.1.2 Vorwerte der Verformungsberechnung

Parameter

Mittlerer E-Modul	E _{cm} =30370N/mm2
Mittlere Zugfestigkeit	$f_{ctm}=2,21N/mm^2$
Endkriechzahl	φ=1,8 (Innenraum)
Schwinddehnung	ε _{cs} =-0,5‰

Längsbewehrungsgrad

 $\rho^{l} = \frac{A_{s1}}{b h} = \frac{4,52 \text{cm}^{2}}{100 20 \text{cm}^{2}} = 0,00226$

$$\rho = \frac{A_{s1}}{b d} = \frac{4,52 \text{ cm}^2}{100 \ 17 \text{ cm}^2} = 0,0026588$$

$$\alpha_{e} = \frac{E_{s}}{E_{c,eff}} = \frac{205000N/mm^{2}}{10846N/mm^{2}} = 18,90$$

Berücksichtigt man die Nettoflächen der Querschnitte, verwendet man $\alpha_e = \alpha_e$ -1 anstelle von α_e .

Wirksamer Beton-Elastizitätsmodul

Kriechdehnung durch Abminderung des E-Moduls mit der Kriechendzahl φ erfasst.

 $E_{c,eff} = \frac{E_{cm}}{1+\phi} = \frac{30370N/mm^2}{1+1.8} = 10846N/mm^2$

9.1.3 Krümmung im Zustand I

Querschnittswerte für Zustand I

$$\xi^{I} = \frac{0.5 + \alpha_{e}^{*} \cdot \rho^{I} \cdot d/h}{1 + \alpha_{e}^{*} \cdot \rho^{I}} = \frac{0.5 + (17,90 \cdot 0,00226 \cdot 17/20)}{1 + (17,90 \cdot 0,00226)} = 0,5136$$

 $x^{I} = \xi^{I} \cdot h = 0,5136 \cdot 20cm = 10,272cm$

 $S^{I} = A_{s1} \cdot (d - x^{I}) = 4,52 \text{ cm}^{2} \cdot (17 - 10,272) \text{ cm} = 30,41 \text{ cm}^{3} = 3,04 \cdot 10^{-5} \text{ m}^{3}$

$$\kappa^{l} = 1 + 12 \cdot (0.5 - \xi^{l})^{2} + 12 \cdot \alpha_{e}^{*} \cdot \rho^{l} \cdot (d/h - \xi^{l})^{2}$$

$$\kappa^{l} = 1 + 12 \cdot (0.5 - 0.5136)^{2} + 12 \cdot 17,90 \cdot 0.00226 \cdot (17/20 - 0.5136)^{2} = 1,0572$$

$$I^{I} = \kappa^{I} \cdot \frac{bh^{3}}{12} = 1,0572 \cdot \frac{(100 \cdot 20^{3})cm^{4}}{12} = 70480cm^{4} = 7,05 \cdot 10^{-4} m^{4}$$

Krümmung infolge Belastung

Grundlagen: $\sigma_{c2}^{l} = \frac{M_{Ed}}{l^{l}} \cdot x^{l}$ und $E_{c,eff} = \frac{\sigma_{c2}^{l}}{\epsilon_{c2}^{l}}$

$$(1/r)_{M}^{l} = \frac{\varepsilon_{c2}^{l}}{x^{l}} = \frac{\sigma_{c2}^{l}}{x^{l} \cdot \varepsilon_{c,eff}} = \frac{M_{Ed}}{E_{c,eff} \cdot l^{l}} \cdot \frac{x^{l}}{x^{l}} = \frac{M_{Ed}}{E_{c,eff} \cdot l^{l}} \quad \text{mit} \quad \varepsilon_{c2}^{l} = \frac{\sigma_{c2}^{l}}{E_{c,eff}} \quad \text{und} \quad \sigma_{c2}^{l} = \frac{M_{Ed}}{l^{l}} \cdot x^{l}$$

 $(1/r)_{M}^{l} = \frac{M_{Ed}}{E_{c,eff} \cdot l^{l}} = \frac{0,01850MNm}{10847MN/m^{2} \cdot 0,000705MN/m^{2}} = 2,42 \cdot 10^{-3} \cdot 1/m$

Krümmung infolge Schwindens

$$(1/r)_{cs}^{l} = \varepsilon_{cs} \cdot \alpha_{e} \cdot \frac{S^{l}}{l^{l}} = 0.5 \cdot 10^{-3} \cdot 18.9 \cdot \frac{30.41 \text{cm}^{3}}{70480 \text{cm}^{4}} = 4.08 \cdot 10^{-6} \cdot 1/\text{cm} = 4.08 \cdot 10^{-4} \cdot 1/\text{m}$$

Gesamtkrümmung

 $(1/r)_{tot}^{I} = (1/r)_{cs} + (1/r)_{M} = 4,08 \cdot 10^{-4} \cdot 1/m + 2,42 \cdot 10^{-3} \cdot 1/m = 2,828 \cdot 10^{-3} \cdot 1/m$

9.1.4 Krümmung im Zustand II

Krümmung infolge Belastung

Unter Gebrauchslasten zeigt Beton ein linear elastisches Verhalten. Die Verteilung der **Betonspannung** über die Druckzone wird dreieckförmig angenommen.

Querschnittswerte für den Zustand II

 $\xi = -\alpha_{e} \cdot \rho + \sqrt{(\alpha_{e} \cdot \rho)^{2} + 2 \cdot \alpha_{e} \cdot \rho}$ $\xi = -18,9 \cdot 0,0026588 + \sqrt{(18,9 \cdot 0,0026588)^{2} + 2 \cdot 18,9 \cdot 0,0026588} = 0,2707$

 $x = \xi \cdot d = 0,2707 \cdot 17cm = 4,602cm$

 $z = d - \frac{x}{3} = 17 cm - \frac{4,602 cm}{3} = 15,466 cm$

 $S = A_{s1} \cdot (d-x) = 4,52 \text{ cm}^2 \cdot (17 \text{ cm} - 4,602 \text{ cm}) = 56,04 \text{ cm}^3 = 5,604 \cdot 10^{-5} \text{ m}^3$

$$I = \kappa \cdot \frac{bd^3}{12} = 0,40 \cdot \frac{100 \cdot 17^3}{12} = 16376 \text{ cm}^4 = 1,64 \cdot 10^{-4} \text{ m}^4$$

Zugspannung in der Bewehrung

 $\sigma_{s1} = \frac{F_{s1}}{A_{s1}} \Longrightarrow \sigma_{s1} = \frac{M_{Ed}}{A_{s1} \cdot z} = \frac{0,01850MNm}{4,52 \cdot 10^{-4} m^2 \cdot 0,15466m} = 264,64N/mm^2$

 $\varepsilon_{s} = \frac{\sigma_{s}}{E_{s}} = \frac{264,64 \text{N/mm}^{2}}{205000 \text{N/mm}^{2}} = 1,29 \cdot 10^{-3}$

Krümmung infolge Belastung

 $(1/r)_{M}^{II} = \frac{\varepsilon_{s}}{d-x} = \frac{1,29 \cdot 10^{-3}}{170 \text{ mm} - 46,02 \text{ mm}} = 1,04 \cdot 10^{-5} \text{ mm} = 1,04 \cdot 10^{-2} \text{ m}$

Krümmung infolge Schwindens

$$(1/r)_{cs}^{II} = \varepsilon_{cs} \cdot \alpha_{e} \cdot \frac{S}{I} = 0.5 \cdot 10^{-3} \cdot 18.9 \cdot \frac{5.604 \cdot 10^{-5} m^{3}}{1.64 \cdot 10^{-4} m^{4}} = 3.23 \cdot 10^{-3} \cdot 1/m^{-3}$$

Gesamtkrümmung

 $(1/r)_{tot}^{II} = (1/r)_{cs}^{II} + (1/r)_{M}^{II} = 3,23 \cdot 10^{-3} \cdot 1/m + 0,01041 \cdot 1/m = 0,01364 \cdot 1/m$

9.1.5 Ermittlung der Durchbiegung

Der wahrscheinliche Wert der Verformung kann nach Gleichung (7.18) der EN 1992-1-1 ermittelt werden.

Verteilungsbeiwert

Der Verteilungsbeiwert ζ zwischen Zustand I und II bestimmt sich zu:

 $\zeta = 1 - \beta \cdot (\sigma_{\rm sr} / \sigma_{\rm s})^2$

mit β: 1,0 Kurzzeitbelastung

0,5 Langzeitbelastung oder vielen Zyklen sich wiederholender

Rissmoment M_r

 $M_r = f_{ctm} \cdot W = 2,21MN/m^2 \cdot 7,245 \cdot 10^{-3}m^3 = 0,01601MNm = 16,01kNm$

mit W =
$$\frac{l'}{z_s^l} = \frac{l'}{h - x^l} = \frac{70480 \text{ cm}^4}{20 \text{ cm} - 10.272 \text{ cm}} = 7245 \text{ cm}^3 = 7,245 \cdot 10^{-3} \text{ m}^3$$

Spannung unmittelbar nach Rissbildung

 $\sigma_{sr} = \frac{M_r}{A_{s1} \cdot z} = \frac{0,01601MNm}{4,52 \cdot 10^{-4} \cdot 0,15466m} = 229,02N/mm^2$

 $\sigma_{s1} = 264,64 \text{N/mm}^2$ (siehe oben)

$$\zeta = 1 - \beta \cdot (\sigma_{\rm sr} / \sigma_{\rm s})^2 = 1 - 0.5 \cdot (\frac{229,02N/mm^2}{264,64N/mm^2})^2 = 0.6255$$

Krümmung näherungsweise nach EN 1992-1-1(7.18)

 $(1/r)_{tot} = \zeta \cdot (1/r)_{tot}^{II} + (1-\zeta) \cdot (1/r)_{tot}^{I}$

 $(1/r)_{tot} = 0,6255 \cdot 0,01364 \cdot 1/m + (1 - 0,6255) \cdot 2,828 \cdot 10^{-3} \cdot 1/m = 0,00959 \cdot 1/m$

Verformung

Die Durchbiegung fin Balkenmitte bestimmt sich somit zu:

$$f = \frac{5ql_{eff}^{4}}{384EI} \Leftrightarrow \frac{5}{48} \cdot l_{eff}^{2} \cdot \frac{M}{EI} = \frac{5}{48} \cdot l_{eff}^{2} \cdot \frac{1}{r} = \frac{5}{48} \cdot 4,21^{2}m^{2} \cdot 0,009591/m = 0,0177m = 17,7mm$$

Die Abweichungen zwischen der hier dargestellten Berechnung und den Programmergebnissen sind auf die unterschiedlich verwendeten Spannungs-Dehnungs-Linien für Beton zurückzuführen. Das Programm verwendet das Parabel-Rechteck-Diagramm für den Zustand II.

9.1.6 Ergebnis in BETON

BETON gibt als Verformungswert in Balkenmitte 18,1 mm aus.

Bild 9.2: Maske 4.3 Gebrauchstauglichkeitsnachweis stabweise

Im folgenden Bild sind die Verformungen nach Zustand I und Zustand II gegenübergestellt.

Bild 9.3: Verformungen im Zustand I und Zustand II

9.2 Verformungsberechnung NL im GZG

Dieses Beispiel stellt die grundlegenden Zusammenhänge einer nichtlinearen Berechnung vor. Für die Vergleichsrechnung per Hand wird die Analyse an einem Zweifeldsystem durchgeführt. Bei diesem Beispiel aus [14] erfolgt die Bemessung nach DIN 1045-1:2008-08.

Abschliessend werden der verwendete Ansatz zur Begrenzung der Biegeschlankheit und die angesetzte Zugfestigkeit genauer betrachtet.

9.2.1 Eingabedaten

System und Belastung

LF1 : Ständige Belastung 1.60 kN/m 1.60 kN/m 5,000 4 000 [m] LF2 : Verkehrslast Feld 1 5.00 kN/m LF3 : Verkehrslast Feld 2 5.00 kN/m Bild 9.4: System und Belastung Plattendicke 16 cm Material Beton C20/25 BSt 500 S (A) und BSt 500 M (A) Expositionsklasse XC1 $c_{nom} = 20 \text{ mm}$ Betondeckung

Kombination für Grenzzustand der Tragfähigkeit

In RSTAB wird eine Lastfallkombination angelegt, die für die Bemessung im Grenzzustand der Tragfähigkeit verwendet wird. Diese wird wie folgt definiert:

1,35 * LF1/ständig + 1,5 * LF2 + 1,5 * LF3

Kombination für Grenzzustand der Gebrauchstauglichkeit

Der Kombinationsbeiwert $\psi_{2,1}$ für die quasi-ständige Einwirkungskombination wird mit 0,6 angesetzt. Da eine Überlagerung der Lastfälle bei nichtlinearen Berechnungen nicht möglich ist, werden für die Bemessung im Grenzzustand der Gebrauchstauglichkeit drei Lastfallgruppen mit folgenden Kombinationsbeiwerten definiert:

LG1:	LF1 + 0,6 * LF2 + 0,6 * LF3
LG2:	LF1 + 0,6 * LF2
LG3:	LF1 + 0,6 * LF3

Zusätzlich ist bei den *Berechnungsparametern* jeder Lastfallgruppe die Reduzierung der Steifigkeit zu deaktivieren.

Basis	Berechnungsparameter	
Berec	hnungstheorie	
 ○ I. 0 ○ II. ○ III. ○ Du 	Ordnung (linear) Ordnung (nichtlinear) Ordnung (nichtlinear nach New ırchschlagproblem	ton-Raphson)
Option	nen für nichtlineare Berechnung	
En Zu	itlastende Wirkung durch Igkräfte berücksichtigen	Пеduzierung der Steifigkeit durch Teilsicherheitsfaktor ум
Erg zu	gebnisse durch LG-Faktor rückdividieren	Verzweigungslastfaktor berechnen

Bild 9.5: Deaktivieren der Steifigkeitsreduzierung

9.2.2 Grundeingaben in BETON

Zur Bestimmung der Bewehrung wird nur der Grenzzustand der Tragfähigkeit betrachtet. Hierzu wird in der BETON-Maske 1.1 *Basisangaben* die LK1 zur Bemessung ausgewählt.

Stahlbeto Norm:	onbernessung nach	Nationaler Anhang:		•
Tragfäh	igkeit Gebrauchstauglichkeit Brands	schutz		
Existiere LF1 LF2 LF3	ende Lastfälle Ständige Belastung Verkehrslast Feld 1 Verkehrslast Feld 2	Zu bemessen LK1 Bemessungst	werte für den GZ	U
LF-Grup LG1 LG2 LG3	open und LF-Kombinationen Grenzzustand der Gebrauchst. Grenzzustand der Gebrauchst. Grenzzustand der Gebrauchst.			Stäb
	~		V Stahlbet von Stäb	onbemessur en
Nicł Zusł	htlineare Berechnung E Chriec tand II	:hen/Schwinden cksichtigen		/ >>

Bild 9.6: Maske 1.1 Basisangaben, Register Tragfähigkeit

In Maske 1.2 *Materialien* werden die Werkstoffe *Beton C20/25* und *BSt 500 S (A)* aus der Bibliothek übernommen.

Die Maske 1.3 *Querschnitte* wird bei der Berücksichtigung des Kriechens an anderer Stelle noch näher vorgestellt (siehe Bild 9.14, Seite 129).

Da die Berechnung des Beispiels in [14] unter Berücksichtigung von Momentenumlagerung und -ausrundung erfolgt, sind in Maske 1.5 *Lager* einige Einstellungen vorzunehmen.

1.5 Laș	ger							
	A	В	С	D	E	F	G	
Lager	Knoten	Lagerbreite	Direkte	Monolithische	End-	M-Verhältnis		
Nr.	Nr.	b (mm)	Lagerung	Verbindung	Lager	δ[-]	Kommentar	
1	1	180.0	×		×	1.00		
2	2	240.0	×			0.85 🗹		
3	3	180.0	×		×	1.00		
4								
5								
5								
<u>_</u>								
0								Lunit at
3								b/2 · b/2
								Momentenumlagerung der
								Stützmomente nach 8.3
								Momentenausrundung bzw
								Bemessung für das Anschnittmomen
								bei monolithischer Lagerung nach 7.3
	1							Reduktion der Querkräfte im
	~							Lagerbereich nach 10.3.2

Bild 9.7: Maske 1.5 Lager

Zunächst werden die im Bild dargestellten Lagerbreiten definiert. Anschliessend wird für das Zwischenlager in Spalte F das maximale Stützenmoment auf 85 % des linear elastischen Werts abgemindert. Damit diese Vorgaben in der Bemessung berücksichtigt werden, sind die Kontrollfelder unterhalb der Grafik anzuhaken.

Bei der nichtlinearen Berechnung spielt die Abbildung der vorhandenen Bewehrung eine wichtige Rolle, denn diese stellt eine massgebende Einflussgrösse zur Ermittlung der Krümmungen im gerissenen Zustand dar. Für das Beispiel ist es erforderlich, einen zusätzlichen Bewehrungsdurchmesser von 6 mm zu definieren.

.6 Bewehrung	
Bewehrungssatz	Angewendet auf
Nr.: Bezeichnung:	Stäbe: 1.2 ▲ Ile Stabsätze: ▲ Ile ▲ Ile
Längsbewehrung Bügel Bewehrungsanordnung Mind	destbewehrung DIN 1045-1:2008-08 1 - Rechteck 100/16
Stabstahl Bewehrungslagen	Rechteck 100.0/16.0
Mögliche Max. Anzahl Lagen: 1 ▼ Durchmesser: 6.0 Minimaler lichter Bewehrungsabstand V 8.0 - Erste Lage a: 20.0 1 10.0 - Weitere Lagen b: • • • • • • • • • • • • • • • • • • •	J JE ser bearbeiten ZE Z.B. '8.0 10.0 12.0') DK OK Abbrechen
40.0 Staffelung nach Anzahl	Einstellungen
[mm]	Bewehrungsvorschlag vornehmen

Bild 9.8: Maske 1.6 Bewehrung, Register Längsbewehrung

Im Register *Bewehrungsanordnung* der Maske 1.5 *Bewehrung* werden die Betondeckungen mit 21 mm festgelegt, um das angenommene Achsmass von 25 mm der Bemessung in [14] zu gewährleisten.

8ewehrungssatz		Angewendet auf	
Ir.: Bezeichn 1 🔽	ung:	Stäbe: 1,2 Stabsätze:	Alle
Längsbewehrung	Bügel Bewehrungsanordnung	indestbewehrung DIN 1045-1:2008-08	1 - Rechteck 100/16
Coben : 21.0 Cunten : 21.0 Achsmaß-Deckung Uoben 25.0 Uunten : 25.0	[mm] c settig: 21.0 [mm] [mm] u settig: 25.0 [mm]	[mm]	
Bewehrungsverteil Oben - Unten (opt Bewehrungsanteil	ing imierte Verteilung)	Einstellungen Zu berücksichtigende Schnitt- größen bei der Bemessung:	
A-s,oben / A-s: Bewehrungs- verteilung:	[%] ✓ Gleichmäßig über gesamte Plattenbreite verteilen	$\nabla V_y \qquad \nabla M_y$ $\nabla V_z \qquad \nabla M_z$	Einstellungen

Bild 9.9: Maske 1.6 Bewehrung, Register Längsbewehrung

Damit ist die Eingabe abgeschlossen und die Berechnung kann gestartet werden.

9.2.3 Kontrolle der Bewehrung

Die im Bewehrungsvorschlag ausgewiesene Längsbewehrung stimmt hinsichtlich der effektiven Querschnittsfläche mit [14] überein. Die nicht durchlaufende obere Bewehrung in der Platte weicht zwar von der Bewehrungsskizze des Beispiels ab, jedoch soll hier keine Änderung vorgenommen werden: Die Schwindkrümmungen wirken sich ohnehin mindernd aus.

Bild 9.10: Maske 3.1 Vorhandene Längsbewehrung

9.2.4 Vorgaben für nichtlineare Berechnung

Die nichtlineare Berechnung für den Grenzzustand der Gebrauchstauglichkeit wird im Register *Gebrauchstauglichkeit* der Maske 1.1 *Basisangaben* vorbereitet.

ahibeto	nbemessung nach			
orm:	EDIN 1045-1:2008-08	Vationaler Anhang:		
l ragfäh	igkeit Gebrauchstauglichkeit	Brandschutz		
Existiere	ende Lastfälle	Zu bernes:	sen	711
LF1 LF2 LF3 .F-Grup LK1	Ständige Belastung Verkehrslast Feld 1 Verkehrslast Feld 2 open und LF-Kombinationen Bemessungswerte für den G2	 ▲ LG1 LG2 ▲ LG3 ▲ LG3 ▲ LG3 ▲ LG4 ▲ LG4	Grenzzustand der Gebrauchst.	BETON Stäbe
✓ Nicł Zusł	ntlineare Berechnung	Kriechen/Schwinden berücksichtigen	LF-Faktor: 1.0 V	Stahlbetonbemessu von Stäben
omment	ar			

Bild 9.11: Maske 1.1 Basisangaben, Register Gebrauchstauglichkeit

Es werden die für den Nachweis im Grenzzustand der Gebrauchstauglichkeit definierten Lastfallgruppen zur Bemessung ausgewählt. Zusätzlich werden die beiden Kontrollfelder *Nichtlineare Berechnung* und *Kriechen/Schwinden* aktiviert.

Die Schaltfläche [Einstellungen zur nichtlinearen Berechnung] öffnet den gleichnamigen Dialog. Die Voreinstellungen des Registers *Berechnungsansatz* bleiben unverändert. Im Register *Tension Stiffening* werden folgende Einstellungen getroffen.

Einstellungen für nichtlineare Berech	nung					
Berechnungsansatz Tension Stiffening Kon	vergenzein:	stellungen				
Ansatztyp von Tension Stiffening	Material E	Beton - Berechnungsparam	neter			
Ansatz über eine Beton(rest)zugfestigkeit (Verfahren Quast)	Material Nr.	Beton-Festigkeitsklasse	Standard- werte	Faktorv fc / fct,R	Exponent n	E-Modul E _{ctm} [N/mm ²]
 Ansatz über modifizierte Stahlkennlinie 	1	Beton C20/25	×	12.73	2.05	24900.000
Ohne Ansatz von Tension Stiffening						
	Belastun	gsdauer der zu bemessend	en Lastfälle/	'Lastfallgrup	pen	
		LF/LG-		Ak	s	Faktor 🔺
Tension Stiffening	Nr.	Bezeichnung	1	Daue	rlast	βt =
		Standige Belastung		×	1	0.250
Wirksame∠ugstarke rot,R	LF3	Verkehrslast Feld 2				0.400
C fork 0.05	(TR)					
O fctk,0.95	4					
Anpassungsfaktor der Zugstärke f _{ot,R} : 1.00 📚 × f _{ot}						
🔲 Normalkraft als Initialkraft						
				_		
					OK	Abbrechen

Bild 9.12: Dialog Einstellungen für nichtlineare Berechnung, Register Tension Stiffening

Es wird der Ansatz über die modifizierte Stahlkennlinie gewählt. Der Anpassungsfaktor der Zugstärke soll vorerst auf 1,00 * f_{ct} belassen werden. Damit wird mit der in der DIN 1045-1, Tabelle 9 angegebenen mittleren zentrischen Betonzugfestigkeit gerechnet.

Der Völligkeitsbeiwert β_t wird gewichtet an den Lastfällen der jeweiligen Lastgruppen intern zwischen den Grenzwerten 0,25 und 0,4 berechnet. Vorgaben für die Normalkraft sind für reine Biegung bedeutungslos.

Die Standardwerte des Registers *Konvergenzeinstellungen* können beibehalten werden. Es sind lediglich die Grenzlängen der Stabteilungen auf Werte zwischen 0,05 und 0,10 m zu begrenzen.

Berechnungsansa	tz Tension 9	Stiffening	Konvergenzeinstellunger		
Adaptive Stabteilu	ing			Iterationskennwerte	
Parameter m: n:	20 📚	0		Maximale Anzahl der Iterationen pro Laststufe:	50 🚔
				Dämpfung der Steifigkeitsänderung in einem Ito	erationszyklus
Teilungsfaktor bei Verfeinerung:	1 🚔			Dämpfungsfaktor:	0.300 🚖
				Abbruchschranken	
Grenzlängen der 9	Stabteilungen			$\varepsilon_1 = (1/\gamma)_i + (1/\gamma)_{i-1} $:	0.0010 🚔
Maximal:	0.100	🕄 [m]		$\varepsilon_2 = (El_i - El_{i-1})^2 / (El_i)^2 :$	0.0010 🚭
Minimal:	0.050	🗘 [m]		ε3 = umax,i - umax,i-1 / Dämpfungsfaktor:	1.0000 🚖 (mm
aststufen				100	
Anzani der Laststufen:	3 🕏			90	
Lastaufbringung:	📀 Linear			70	
	🔘 Trilinear:			50	
	Zwischen- schritt	Last- stufe	Aufgebrachter Lastanteil [%]	40 30	
	1	1	50.0	10-	
	2	2	80.0	0	2

Bild 9.13: Dialog Einstellungen für nichtlineare Berechnung, Register Konvergenzeinstellungen

In Maske 1.3 Querschnitte erfolgen abschliessend die Vorgaben zu Kriechen und Schwinden.

1.3 Querschnitte										
	A	В	C	D	E	Rechteck 100.0/16.0				
Querchn.	Material		Opti-		Kriechzahl /					
Nr.	Nr.	Querschnittsbezeichnung	mieren	Anmerkung	Schwinddehnung					
1	2	Rechteck 100/16			3.430/0.000 🚺 🛄					
					<u> </u>					
						•				
						-				
						[cm]				
	8									

Bild 9.14: Maske 1.3 Querschnitte

Die Zellenschaltfläche in Spalte E ruft einen Dialog zur Eingabe der Kriech- und Schwindparameter auf.

∃Art der Ermittlung			
Ermittlung der Kriechzahl		Alter	
Ermittlung des Schwindmaßes		Definieren	
🗆 Eingabedaten			
 Betrachtetes Betonalter (Kriechen) 	t-k	27393	Tage
🖃 Wirksame Bauteildicke			
 Querschnittsfläche 	Ac	0.160	m^2
 Luft ausgesetzter Umfang 	u	2.320	m
 Wirksame Bauteildicke 	h0	0.138	m
Zementart	ZArt	32.5R, 42.5	
 Relative Luftfeuchte 	RH	50	%
🗆 🖾 Betonalter Kriechbeginn		Ermitteln	
 Temperatur berücksichtigen 		Nein	
 Wirksames Alter (Temperatur) 	tT	28.000	Tage
 Zementart berücksichtigen 		Ja	
 Betonalter Kriechbeginn 	tO	28.000	Tage
🗆 Ergebnis			
 Ermittelte Kriechzahl 	phi(t,t0)	3.430	
Definiertes Schwindmaß	ecs(t,ts)	0.000	‰
instellungen zuordnen			
Querschnitt: Rechteck 100/16	~		
🔿 Allen Querschnitten			
Querschnitten Nr.: 1			

Bild 9.15: Dialog Einstellungen für Kriechen und Schwinden

Zum Vergleich: Aus den Diagrammen der DIN 1045-1, Bild 18 wird für trockene Innenräume (RH 50 %) näherungsweise ein Kriechbeiwert von ϕ_{∞} =3,5 ermittelt. Diese Kriechzahl nach DIN 1045-1 ist als reine Endkriechzahl zu verstehen und ist i. Allg. noch nach dem Verhältnis der kriecherzeugenden zur wirkenden Last in eine effektive Kriechzahl umzurechnen.

Das Schwinden wird nicht näher untersucht: Wegen der symmetrischen Bewehrung im Feld 1 und der nur kleinen Bewehrungsdifferenz im Feld 2 tragen die Schwindkrümmungen nur unwesentlichen zur Gesamtverformung bei.

Damit ist die Eingabe für die nichtlineare Berechnung abgeschlossen und die Berechnung kann gestartet werden.

Berechnung				X
	Gesamtablauf			
	RSTAB - Berechnung			
	BETON	FA2		
	Einzelschritte			
	Bemessung nach DIN 1045-1:2008-	08	Anzahl der Stäbe	2
On	- Initialisieren der Daten		Anzahl der Stabsatze Anzahl der Bewehrungssätz	U 1
S	- Berechnung der erforderlichen Be	ewehrung	Anzahl der Lastfälle	Ó
	- Berechnung der vorhandenen Be	wehrung	Anzahl der LF-Gruppen Anzahl der LF-Kombinatione	3
S	- Berechnung der Rissbreiten		Anzahl der Modul-Fälle	1
	- Nichtlineare Berechnung		Nichtlineare Berechnung Laststufe Nr.:	2/3
	-		Lastfaktor:	0.67
			Iteration Nr. Iterationen Total:	2/50
			1/Gamma :	0.150
	Stab Nr. 2 (2/2)		Eps-1 :0.15041 > 0.0010 Eps-2 :0.00000 < 0.0010	[·] [·]
			Eps-3 :0.05025 < 1.0000	[mm]
		Abbrechen		

Bild 9.16: Berechnungsdetails der nichtlinearen Analyse

9.2.5 Ergebnisdarstellung und Auswertung

. 2 Gebrauchstauglichkeit für nichtlineare Berechnung										
Stab	Stelle	Maßgeb.	Globale Verschiebungen	Lokale Verschiebungen	Rissbreite					
Nr.	x [m]	LF/LG	ug (mm)	ц (mm)	wk [mm]					
1	2.140	LG1	22.586	22.586	0.1					
		LG2	25.297	25.297	0.1					
		LG3	7.843	7.843	0.0					
	2.210	LG1	22.591	22.591	0.1					
		LG2	25.339	25.339	0.1					
		LG3	7.837	7.837	0.0					
	2.310	LG1	22.493	22.493	0.1					
		LG2	25.287	25.287	0.1					
		LG3	7.796	7.796	0.0					
	2.400	LG1	22.303	22.303	0.1					
		LG2	25.129	25.129	0.1					
		LG3	7.727	7.727	0.0					

Bild 9.17: Maske 6.2 Gebrauchstauglichkeit für nichtlineare Berechnung

In Maske 6.2 *Gebrauchstauglichkeit für nichtlineare Berechnung* können die Verformungen an jeder x- Stelle abgelesen werden. Die Maximalverformung liegt für die LG 2 (Verkehrslast im Feld 1) an der Stelle **x** = **2,21 m** vor. Die absolute Grösse von u = 25,34 mm entspricht einem Grenzwert von 1/197 * I und liegt somit unter dem empfohlenen Wert von 1/250 * I.

Conney and Dohn	7			
j spannungs- und Dennungsberechnung		17.00	likles.	
Hauptmomente	M	17.66	KINM	
Biegemoment um die y-Achse	My Ma	17.66	KNM	
Biegemoment um die z-Achse	MZ	0.00	KINM	
- Normakratt	N	0.00	KN	
	11	abgeschlossene	Hissbildung	
mittlere Hauptkrummung	1/fm	1.314/E-02	1/m	
- Mittlere Krummung in y-Richtung	17/lym	U.UUUUE+UU	1/m	
Mittlere Krummung in z-Hichtung	1/fZm	1.3872E-02	1/m	
mittere Stanidennung	٤sm	1.068	700	
Beiwert zur Berucksichtigung der Belastungsdauer	β	0.306		
Beiwert zur Berucksichtigung der Fließdehnung	delta	0.400		
- Rissmoment	Mcr	12.93	kNm	
Rissmomente bezuglich der y-Achse	Mcry	12.93	kNm	
Rissmoment bezüglich der z-Achse	Morz	0.00	kNm	
Rissnormalkraft	Nor		kN	
Zustand I				
Querschnittseigenschaften				
 Trägheitsmoment um die y-Achse 	lyı	1.06113E+08	mm^4	
 Trägheitsmoment um die z-Achse 	Izi	3.77977E+09	mm^4	
- Fläche	AL	45385.6	mm^2	
Spannungs- und Dehnungsberechnung				
 Hauptkrümmung 	1/n	6.6820E-03	1/m	
 Krümmung in y-Richtung 	1/ryi	0.0000E+00	1/m	
 Krümmung in z-Richtung 	1/rzi	6.6820E-03	1/m	
 Hauptkrümmungsrichtung 	α)	0.0	*	
 Stahlspannung in der maßgebenden Faser 	Ø\$	74.84	N/mm ²	
 Betonspannung in der maßgebenden Faser 	σci	-3.00	N/mm ²	
 Stahlspannung f ür Rissmoment 	U SI	54.79	N/mm^2	
Stahldehnung für Rissmoment	ESTI	0.274	1/100	
R Zustand II				
Querschnittseigenschaften				
Trägheitsmoment um die v-Achse	lun	48497500.0	mm^4	
Trägheitsmoment um die z-Achse	120	1 33333E+10	mm^4	
Fläche	Δ	22733.2	mm^2	
Spappungs- und Debnungsberechnung		22100.2		
Hauptkrijmmung	1/m	1 46205 02	1/m	
Krijmoung in u Bioktung	1/000	1.4620E-02	1700	
Krijmoung in z-Bichtung	1/m	1.10012-03	1/m	
H augtkrijiger ungerichtung	1712	1.4620E-02	*	
Stablenannung in der maßgebenden Eber		0.0	NV	
Stahlahnung in der Mabgeberluen näser	0511	203.64	_m/mm_∠ ≪	
Potense appung in der maßgeber der Erser	c211	1.268	/*** N./*****^``	
Detendeburg in der mabgebenden Faser	DCII	-4.27	N/MM 2	
Betondennung in der maßgebenden Faser	εcii	-0.720	%	
Stanispannung für Rissmoment	astli	185.61	N/mm ⁺ 2	
- Stanigennung für Hissmoment	ESTI	0.928	700	
Querschnittseigenschaften				
Querschnittssteifigkeiten (Sekantenwerte)				
Globale Knotenverformungen	_			
Lokale Knotenverformungen				
Rissbreite				
Sicherheitsnachweis				
Sicherheitsfaktor	7	2.353		
Ausnutzungsgrad	1/7	0.425		

Bild 9.18: Zwischenergebnisse für Stab 1 an Stelle x =2,21 m, LG 2

Für die Stelle x = 2,21 m werden die Ergebnisse schrittweise nachgerechnet. Primär geht es dabei um die Berechnung der Spannungs- und Dehnungsebene, die als Basis für die Steifigkeitskennwerte entscheidend für die nichtlineare Ermittlung von Verformung und Schnittgrösse ist. Im Rahmen der Handrechnung werden teilweise vereinfachte Ansätze verwendet, die zu kleineren Unterschieden führen können.

9.2.5.1 Materialkennwerte für Verformungsberechnung

Beton C 20/25

 $f_c = f_{cm} = 20 + 8 = 28 \text{ N/mm}^2$

 $E_c = E_{cm} = 24900 \text{ N/mm}^2$

 $\epsilon_{c1} = -2,1 \%$

ε_{c1u}=-3,5 ‰

Verzerrt für Kriechen mit $(1+\phi) = 4,43$:

 $E_c = E_{cm} = 5620,8 \text{ N/mm2}$

 $\epsilon_{c1} = -9,30 \%$

 $\epsilon_{c1u} = -15,51 \%$

Betonstahl BSt 500 S (A)

 $f_{ym} = f_{yk} = 500 = 500,00 \text{ N/mm}^2$

 $f_{tm} = f_{tk} = 550 = 550 \text{ N/mm}^2$

 $E_s = 200000 \text{ N/mm}^2$

 $\epsilon_{su} = 25 \%$

 α_{e} = 200000 / 24900 = 8,03

Verzerrt für Kriechen mit $(1+\phi) = 4,43$:

 $\alpha_e = 200000 / 5620,8 = 35,58$

9.2.5.2 Zustand I

Bei der Ermittlung der Querschnittswerte wird die vorhandene Stahlfläche berücksichtigt. Die Fehlfläche des Betons im Bereich der Bewehrungsstäbe wird vernachlässigt. Eine Neuberechnung des Schwerpunkts des ideellen Querschnitts ist nicht notwendig, da eine symmetrische Bewehrung mit gleichem Randabstand an Ober- und Unterseite vorliegt.

Es ergeben sich folgende Abstände für den Steineranteil direkt:

 $a_c = 0 \text{ cm}$

 $a_{s1} = 8 - 2,5 = 5,5 \text{ cm}$

a_{s2}= 5,5 cm

Trägheitsmoment

$$I_{y,1} = \frac{b \cdot h^3}{12} + 2 \cdot \left(A_{s1/s2} \cdot a_2^2 \cdot \alpha_e\right) = \frac{100 \cdot 16^3}{12} + 2 \cdot \left(5,93 \cdot 5,5^2 \cdot 35,58\right) = 46898 \text{ cm}^4$$

Ideelle Querschnittsfläche

 $A - (I) = A_c + A_s \cdot \alpha_e = 16 \cdot 100 + 11,86 \cdot 35,58 = 2022 \text{ cm}^2$

Rissmoment M_{cr}

Es wird davon ausgegangen, dass bei Erreichen der Zugspannung f_{ctm} in der äussersten Faser der Querschnitt reisst.

$$\sigma = \frac{M_{cr}}{I} \cdot z_{ct} = f_{ctm}$$
$$M_{cr} = \frac{f_{ctm} \cdot I}{z_{ct}} = \frac{0.22 \cdot 46898}{8} = 1289.7 \text{ kNcm} = 12.9 \text{ kNm}$$

Stahlspannung σ_{srl} und Stahldehnung ϵ_{srl} für Rissmoment

$$\sigma_{sr1,l} = f_{ctm} \cdot \frac{5.5}{8} \cdot \alpha_e = 2.2 \cdot \frac{5.5}{8} \cdot 35.53 = 53.74 \text{ N/mm}^2$$
$$\varepsilon_{sr1,l} = \frac{\sigma_{sr}}{E_s} = \frac{53.73}{200000} = 2.687 = 0.2687 \text{ \%}$$

Fiktive Stahl- und Betonspannung für tatsächliches Moment M = 17,66 kNm

$$\sigma_{s1} = \frac{M}{I} \cdot z_{s1} \cdot \alpha_e = \frac{1766}{46898} \cdot 5.5 \cdot 35.58 = 7.4 \text{ kN/cm}^2 = 74 \text{ N/mm}^2$$

$$\sigma_{c} = -\frac{M}{I} \cdot z_{cc} = -\frac{1766}{46898} \cdot 8 = -0301 \,\text{kN/cm}^{2} = -3.01 \,\text{N/mm}^{2}$$

Krümmung im Zustand I $(M = 17,66 \text{ kNm}) - (1/r)_{z,l} = (1/r)_{l}$

$$\left(\frac{1}{r}\right)_{z,l} = \frac{M}{E \cdot l} = \frac{0,01766}{5620 \cdot 4,6898e - 4} = 6,758e - 3$$
 1/m

BETON-Ergebnisse

 Beiwert zur Berücksichtigung der Belastungsdauer 	ß	0.306	
Beiwert zur Berücksichtigung der Fließdehnung	delta	0.400	
- Rissmoment	Mcr	12.93	kNm
 Rissmomente bezüglich der y-Achse 	Mory	12.93	kNm
 Rissmoment bezüglich der z-Achse 	Morz	0.00	kNm
– Rissnormalkraft	Nor		kN
🗆 Zustand I			
🕀 Querschnittseigenschaften			
 Trägheitsmoment um die y-Achse 	lyr	1.06113E+08	mm^4
 Trägheitsmoment um die z-Achse 	Izi	3.77977E+09	mm^4
Fläche	AL	45385.6	mm^2
🗆 🖂 Spannungs- und Dehnungsberechnung			
— Hauptkrümmung	1/ŋ	6.6820E-03	1/m
 Krümmung in y-Richtung 	1/iyi	0.0000E+00	1/m
 Krümmung in z-Richtung 	1/rzj	6.6820E-03	1/m
 Hauptkrümmungsrichtung 	αι	0.0	*
 Stahlspannung in der maßgebenden Faser 	ØS	74.84	N/mm^2
 Betonspannung in der maßgebenden Faser 	ØC	-3.00	N/mm ²
 Stahlspannung f ür Rissmoment 	ភ ទា)	54.79	N/mm^2
Stahldehnung für Rissmoment	ESTI	0.274	%-

Bild 9.19: Detailergebnisse für Zustand I

9.2.5.3 Zustand II

Querschnittswerte im Zustand II

Die Querschnittswerte im Zustand II lassen sich im Gegensatz zu den Querschnittswerten im ungerissenen Zustand nur mühsam per Hand berechnen. Es bereitet bereits ein Problem, die Dehnungsverteilung (allgemeiner Fall: $\varepsilon_0 + (1/r)_y * y + (1/r)_z * z$) für eine bestimmte Einwirkungskonstellation mit den in den Normen festgelegten Spannungs-Dehnungs-Beziehungen für nichtlineare Verfahren zu ermitteln. Zur Ermittlung des Dehnungszustandes wird in der Regel das Tangentenverfahren wie z. B. das Newton-Raphson-Verfahren oder das modifizierte Newton-Raphson-Verfahren (Tangente wird nicht in jedem Lastschritt neu berechnet) verwendet. Für weitere Studien wird auf entsprechende Literatur [11] verwiesen.

Stahlspannung und -dehnung für das Rissmoment (σ_{srll} und ϵ_{srll})

Um die Spannungen und Dehnungen bei Rissbildung zu ermitteln, kann im Regelfall von vereinfachten Annahmen (linear elastischem Werkstoffgesetzen) ausgegangen werden. Zu begründen ist dies damit, dass sich das Verhältnis von Spannung zu Dehnung beim Beton bis zu einer Spannung $\sigma_c \cong 0,4 * f_c$ näherungsweise linear verhält. Für den Betonstahl kann dies ohnehin bis zum Erreichen der Fliessgrenze annähernd vorausgesetzt werden. Liegt also ein Bauteil mit einem Rissmoment im Gebrauchslastniveau vor, können Spannungen und Dehnungen ausreichend genau mit diesen vereinfachten Ansätzen berechnet werden.

Ohne Wirkung einer Normalkraft führt die Lösung bei dreieckförmiger Druckzone auf eine quadratische Gleichung (mit Normalkraft: kubische Gleichung) zur Berechnung der Druckzonenhöhe x. Durch die angenommene Linearität der Spannungen und Dehnungen ergibt sich eine Entkopplung der Druckzonenhöhe von dem angreifenden Moment.

Bild 9.20: Beziehungen zur Berechnung der Spannungen und Dehnungen für Gebrauchslasten

Berechnung der Druckzonenhöhe x

Für den Rechteckquerschnitt ohne Normalkraftbeanspruchung führt die Herleitung aus der quadratischen Gleichung (ohne Abzug der Betonfehlflächen) zu folgender Druckzonenhöhe.

$$0 = \frac{b}{2} \cdot x^{2} + \left(\frac{2}{3} \cdot \alpha_{e} \cdot A_{s2} + \alpha_{e} \cdot A_{s1}\right) \cdot x - \alpha_{e} \cdot A_{s1} \cdot d$$

= $\frac{100}{2} \cdot x^{2} + \left(\frac{2}{3} \cdot 35,58 \cdot 5,93 + 35,58 \cdot 5,93\right) \cdot x - 35,58 \cdot 5,93 \cdot 13,5 = 50 \cdot x^{2} + 351,65 \cdot x - 2848,35$
 $x_{1} = 4,81 \text{ cm}$

 $x_1 = 1,01$ cm $x_2 = -11,84$ cm

Trägheitsmoment

$$\begin{aligned} \mathsf{H}_{\mathsf{y},\mathsf{II}} &= \frac{1}{3}\mathsf{b}\mathsf{x}^3 + \alpha_\mathsf{e}\mathsf{A}_{\mathsf{s}\mathsf{1}}(\mathsf{d}-\mathsf{x})^2 + \alpha_\mathsf{e}\mathsf{A}_{\mathsf{s}\mathsf{2}}(\mathsf{x}-\mathsf{d}_{\mathsf{2}})^2 \\ &= \frac{1}{3}\cdot 100\cdot 4,81^3 + 35,58\cdot 5,93(13,5-4,81)^2 + 35,58\cdot 5,93(4,81-2,5)^2 = 20768 \text{ cm}^4 \end{aligned}$$

Spannungen für Rissschnittgrössen

$$\sigma_{cr,II} = \frac{M}{I_{y,II}} \cdot x = \frac{1290}{20768} \cdot 4,81 \cdot 10 = 2,98 \text{ N/mm}^2$$

$$\sigma_{sr1,II} = \alpha_e \cdot \frac{M}{I_{y,II}} \cdot (d-x) = 35,58 \cdot \frac{1290}{20768} \cdot 8,69 \cdot 10 = 192,05 \text{ N/mm}^2$$

$$\sigma_{sr2,II} = \sigma_{sr2II} \cdot \frac{(x-d_2)}{(d-x)} = 192,05 \cdot \frac{(4,81-2,5)}{(13,5-4,81)} = 51,05 \text{ N/mm}^2$$

Stahldehnung für Rissschnittgrössen

$$\varepsilon_{\text{sr1,II}} = \frac{\sigma_{\text{sr1II}}}{E_{\text{s}}} = \frac{192,05}{200000} \cdot 1000 = 0,96025 \%$$

Stahl- und Betonspannung für tatsächliches Moment

Eine vereinfachte Berechnung der Spannungen und Dehnungen wie für das Rissmoment kann nicht bedenkenlos angewandt werden. Die Ermittlung der Spannungen und Dehnungen für das tatsächliche Moment M = 17,66 kNm, mit denen dann die Krümmungen und Steifigkeiten berechnet werden können, erfolgt in der Vergleichsrechnung mit den genauen Spannungs-Dehnungs-Linien für Beton und Betonstahl nach DIN 1045-1, Bild 22 bzw. 26.

Bild 9.21: Beziehungen zur Berechnung der Spannungen und Dehnungen für Gebrauchslasten nach DIN 1045-1

Zur Auswertung der Arbeitslinie der Betonspannungen und -dehnungen werden der Völligkeitsbeiwert α_v und die Schwerpunktslage mittels $k_a = a/x$ beschrieben. Die iterative Annäherung des Spannungs- und Dehnungszustandes erfolgt mit dem Newton-Raphson-Verfahren. Wegen der einachsigen Beanspruchung reduziert sich die Iteration auf ein zweiparametrisches Problem, d. h. ε_0 und $(1/r)_z$.

Der Völligkeitsbeiwert α_v und die Schwerpunktslage mittels $k_a = a / x$ werden hier nicht explizit angegeben, können aber der Literatur [26] entnommen werden.

Die genaue Berechnung erfolgt mithilfe einer Excel-Anwendung zur Spannungsintegration. Sie soll zum besseren Verständnis für einen Iterationsschritt genauer betrachtet werden.

Folgende Abbildung veranschaulicht die Definition der Dehnung ϵ_0 / Krümmung (1/r)_z und die verwendeten Spannungs-Dehnungs-Linien.

Bild 9.22: Angesetzte Material- und Dehnungsparameter

Startwert zur Berechnung der Dehnungsebene

Zunächst wird ein geeigneter Startwert für die Berechnung gesucht. Für die Wahl eines geeigneten Anfangsdehnungszustandes bestehen kaum Einschränkungen. Grenzdehnungszustände im Fliess- und Bruchbereich sollten jedoch vermieden werden, denn hier können die Koeffizienten der Jakobimatrix ohne einen entsprechenden Eingriff (Dämpfung o. ä.) zu einer schlechten oder gar keiner Konvergenz führen.

Für das Beispiel wird folgender Anfangsdehnungszustand angesetzt:

ε₀,₁ = − 0,3 % ₀	(1/r) _{z,1} = 5,00E-3 1/m
M _y = 7,016 kNm	N=-31,48 kN

Differenzenkoeffizienten der Matrix

Anstelle der **Differential**quotienten werden **Differenzen**quotienten benutzt, die bei ausreichend kleiner Wahl des Inkrements die tangentiale Steifigkeit sehr gut annähern. Der Dehnungszustand soll damit verbessert abgebildet werden.

dN	dN	
de0	$d(1/r)_{7}$	[dε ₀] [dN]
dMy	dM _y	$\left d(1/r)_z \right ^{=} dM_v$
dɛ ₀	$d(1/r)_z$	

Mit $d\epsilon_0 = -0,01$ % (da eps-0 < 0) wird:

$$\frac{dN}{d\epsilon_0} = \frac{(-37,35 - (-31,27))}{-0,01} = 607,86$$
$$\frac{dM_y}{d\epsilon_0} = \frac{(7,198 - 7,016)}{-0,01} = -18,86$$

Mit $d(1/r)_z = 0,01 \% / m$ (da $(1/r)_z > 0$) wird:

$$\frac{dN}{d(1/r)_z} = \frac{(-30,97 - (-31,27))}{0,01} = 30$$
$$\frac{dM_y}{d(1/r)_z} = \frac{(7,0187 - 7,016)}{0,01} = 0,27$$

Damit ergibt sich das zu lösende Gleichungssystem wie folgt:

$$\begin{bmatrix} 607,86 & 30 \\ -18,86 & 0,27 \end{bmatrix} \cdot \begin{bmatrix} d\epsilon_0 \\ d(1/r)_z \end{bmatrix} = \begin{bmatrix} 0 - (-31,27) \\ 17,63 - 7,016 \end{bmatrix}$$
$$\begin{bmatrix} 3,787E - 4 & -4,2231E - 2 \\ 2,5902E - 2 & 8,6374E - 1 \\ 9,97769 \end{bmatrix} \cdot \begin{bmatrix} 31,27 \\ 10,614 \end{bmatrix} = \begin{bmatrix} d\epsilon_0 \\ d(1/r)_z \end{bmatrix} = \begin{bmatrix} -4,364E - 1 \\ 9,97769 \end{bmatrix}$$

Erste Berechnung eines neuen Dehnungszustands:

$$\begin{bmatrix} \varepsilon_0 \\ (1/r)_z \end{bmatrix}_1 = \begin{bmatrix} \varepsilon_0 \\ (1/r)_z \end{bmatrix}_0 + \begin{bmatrix} d\varepsilon_0 \\ d(1/r)_z \end{bmatrix} = \begin{bmatrix} -0,3 \\ 5 \end{bmatrix} + \begin{bmatrix} -0,4363 \\ 9,97769 \end{bmatrix} = \begin{bmatrix} -0,7363 \\ 14,97769 \end{bmatrix}$$

Mit diesem Dehnungszustand ergeben sich folgende Schnittgrössen:

[N]	[0,81]
$\left[M_{y} \right]_{1}^{=}$	18,044

Weitere Verbesserung des Dehnungszustandes

Analog ist der Dehnungszustand weiter zu verbessern. Dabei kann je nach Bedarf die Matrix der Differenzenkoeffizienten beibehalten (modifiziertes Newton-Raphson-Verfahren) oder in jedem Schritt neu berechnet werden. Der rechnerische Vorteil, dass nicht in jedem Schritt eine neue Berechnung der Koeffizienten der Jakobimatrix erfolgen muss, wird beim modifizieren Newton-Raphson-Verfahren durch eine grössere Anzahl an Iterationen "erkauft". Dies zeigt sich auch in den folgenden Darstellungen des weiteren Iterationsverlaufs.

Nr.	Ағ-0 [%0]	∆(1 /r)z [mm/m]	ε-0 [%0]	(1/r)z [mm/m]	N [KN]	My [kNm]	AN [kN]	AMy [kNm]
1	-0,436396	9,9776976	-0,736396	14,977698	0,8137791	18,044738	-0,813779	-0,414738
2	0,0166102	-0,366692	-0,719785	14,611006	-0,03207	17,630852	0,0320702	-0,000852
3	5,542E-05	0,0001007	-0,71973	14,611106	-0,000108	17,630003	0,0001077	-3,01E-06
4	1,922E-07	2,135E-07	-0,71973	14,611107	-3,55E-07	17,63	3,552E-07	1,402E-07
5	-5,56E-09	1,259E-07	-0,71973	14,611107	1,053E-08	17,63	-1,05E-08	-3,34E-07

Bild 9.23: Berechnung nach dem Newton-Raphson Verfahren

Nr.	А ғ-0 [%0]	∆(1 /r)z [mm/m]	ε-0 [%0]	(1/r)z [mm/m]	N [KN]	My [kNm]	AN [kN]	AMy [kNm]
1	-0,436396	9,9776976	-0,736396	14,977698	0,8137791	18,044738	-0,813779	-0,414738
2	0,0172065	-0,379305	-0,719189	14,598393	-0,047881	17,616211	0,0478809	0,013789
3	-0,000564	0,0131503	-0,719753	14,611543	-0,000928	17,630552	0,0009284	-0,000552
4	2,364E-05	-0,000452	-0,71973	14,611091	-0,000302	17,62999	0,000302	9,672E-06
5	-2,94E-07	1,618E-05	-0,71973	14,611107	-3,27E-05	17,630001	3,268E-05	-1,44E-06
6	7,307E-08	-3,95E-07	-0,71973	14,611107	-4,39E-06	17,63	4,391E-06	-1,7E-07

Bild 9.24: Berechnung nach dem modifizierten Newton-Raphson Verfahren

Beim modifizierten Newton-Raphson Verfahren wird die Koeffizientenmatrix nur im ersten Schritt berechnet. Dies erweist sich für das Beispiel als sehr wirtschaftlich, da das Ergebnis nach den ersten Iterationsschritt bereits nahe an der gesuchten Lösung liegt. Zur Erzielung annähernd gleicher Abbruchtoleranzen wird lediglich ein Schritt mehr benötigt. Die Zeitersparnis liegt darin, dass die Koeffizientenmatrix nur einmal berechnet werden muss.

Massgebende Dehnungsebene

 $\varepsilon_z = \varepsilon_0 + (1/r)_z \cdot z = -0,729557 + 14,8042 \cdot z$

Die Stahldehnung ergibt damit zu:

 $\varepsilon_{z,s1} = \varepsilon_0 + (1/r)_z \cdot z_{s1} = -0,729557 + 14,8042 \cdot 0,135 = 1,269$

Bild 9.25: Iterativ ermittelter Dehnungszustand

Berechnung des Bruchmoments

Das Bruchmoment stellt bei einer Berechnung im Grenzzustand der Gebrauchstauglichkeit die Sicherheit unter Ansatz der Mittelwerte der Materialeigenschaften dar. Eine Versagenssicherheit für den Tragzustand ist damit nicht nachgewiesen.

Die Berechnung des Bruchzustandes kann abweichend von der Ermittlung des Dehnungszustandes durch Variation eines Dehnungsparameters erfolgen. Dazu wird getrennt voneinander der Versagenszustand der Betondruckzone und der Stahlfaser untersucht. Beim Ansatz der Grenzdehnungen ist zu beachten, dass diese für die Berücksichtigung des Kriechens verzerrt sind. Es sind deshalb die Grenzdehnungen nach der gestreckten Spannungs-Dehnungs-Linie zu verwenden.

Bei der Berechnung kann nur ein Gleichgewicht für Stahlversagen nachgewiesen werden. Alle Angaben zur Berechnung des Bruchmoments können folgender Abbildung entnommen werden.

Finashe:								
Schätzungen:								
ec2=e0=	-5,513	% o	>=-15.31 %0		der Beto	ondruckspannung		
es1=	25,000	% o	<= 25 %o	<= 25 %0 der Stahlspannung				
Festwerteinga	be:							
Beton C	20/25							
<i>s</i> c1=	-9,300	%。	((•) Dehnung bei l	Erreichen der Sj	pannung t	fc)		
<i>s</i> c1u=	-15,310	%。	((•) Dehnung bei l	Betonversagen)				
fc=	28,00	N/mm2	((+) Höchstwert de	er ertragenen Be	eton druc .	k spannungen)		
Ecm=	5620,76	N/mm2						
b=	100	cm	(Breite)					
h=	16	cm	(Höhe)					
d=	13,5	cm	(statische Höhe)					
BSt	500							
Es=	200000	N/mm2						
As1=	5,94	cm2	As2=	5,94	cm2	(Druckbewehrung)		
fy=	500	N/mm2	d2=	2,5	cm			
ft=	525	N/mm2 (bei e	einer Grenzdehnung	25	%0			

Auswertung:							
k=	2 05358481		1 1 Feary set ife	Spannungs-Dehnungs- Beziehung Boton (DIN 1045-1 nichtlinearer Ansatz			
	2,00000401		-1,TECHIX2ET/IC	Deton (Dirt 1045-1 mentimeter Ansatz			
p=	0,59281242		ac2/ac1	σc<0 30 1 28,00			
α.V=	-0,48168		Völligkeitsbeiwert	25			
Ka=	0,35500		Ka=a/×	20 - 23,50			
x =	2,44	сm	Intern aus Dehnungen ermittelt	15			
a=	0,87	сm		10			
Z=	12,63	ст		5- 5,5132 i5,310			
				0 1 2 3 4 5 6 7 8 910 11 12 1314 1516 17 εс[%i]<0			
σs=	525	N/mm2					
Fs1=	311,72	kN	(resultierend aus Stahldehnung	und Stahlquerschnitt)			
Fs2=	16,32	kN	£s2= 0,137 %o				
Fc=	-328,98	kN	σs2= 27,486 N/mm2				
Fs1+Fs2+Fc=	-0,93	kN	(Bei guter Näherung sollte sich ~ 0 einstellen)				
Mrd=	39,7682	kNm					
(1/r)z=	0.22602337	1/m					

Bild 9.26: Berechnung des Bruchmoments

BETON-Ergebnisse

Zwischenergebnisse - Stab Nr. 1, x: 2.210), LG2			
- ⊡ Zustand II	1			
🕀 Querschnittseigenschaften				
 Trägheitsmoment um die y-Achse 	lyn	48497500.0	mm^4	
 Trägheitsmoment um die z-Achse 	Izu	1.33333E+10	mm^4	
Fläche	Aii	22733.2	mm^2	
Spannungs- und Dehnungsberechnung				
— Hauptkrümmung	1/m	1.4620E-02	1/m	
 Krümmung in y-Richtung 	1/iyii	1.1061E-09	1/m	
 Krümmung in z-Richtung 	1/rzjj	1.4620E-02	1/m	
 Hauptkrümmungsrichtung 	a11	0.0	*	
 Stahlspannung in der maßgebenden Faser 	asli	253.64	N/mm^2	
Stahldehnung	ES	1.268	‰	
 Betonspannung in der maßgebenden Faser 	σcii	-4.27	N/mm^2	
Betondehnung in der maßgebenden Faser	ECH	-0.720	‰	
 Stahlspannung f ür Rissmoment 	QSLII	185.61	N/mm^2	
Stahldehnung für Rissmoment	ESTI	0.928	‰	
🕀 Querschnittseigenschaften				
🗄 Querschnittssteifigkeiten (Sekantenwerte)				
🗄 Globale Knotenverformungen				
🗄 Lokale Knotenverformungen				
🖃 Sicherheitsnachweis				
🖃 Bruchschnittgrößen Ru	Mu	41.54	kNm	
 Bruchmoment um die y-Achse 	Myu	41.54	kNm	
 Bruchmoment um die z-Achse 	Mzu	0.00	kNm	
Bruchnormalkraft	Nu	0.00	kN	
Einwirkende Schnittgrößen R	M	17.66	kNm	

Bild 9.27: Detailergebnisse für Zustand II

9.2.5.4 Mittlere Krümmungen

Aus den Berechnungen für den reinen Zustand I und Zustand II werden die mittleren Krümmungen ermittelt, die sich mit dem gewählten Tension Stiffening Ansatz ergeben.

Das zu Grunde gelegte Tension Stiffening Modell aus Heft 525 [13] berücksichtigt die zugversteifende Wirkung des Betons zwischen den Rissen durch eine Reduzierung der Stahldehnung. Die notwendigen Kennwerte werden wie folgt ermittelt.

Massgebender Zustand der Rissbildung

 $\label{eq:stahlspannung} \begin{array}{ll} \text{Stahlspannung im Zustand II bei Rissbildung:} & \sigma_{\text{sr1,II}} = 192,05 \ \text{N/mm}^2 \\ \\ \text{Stahlspannung im Zustand II:} & \sigma_{\text{s1,II}} = 255,8 \ \text{N/mm}^2 \end{array}$

 $\sigma_{s1,II} = 255,8 \text{ N/mm}^2 \ge 1,3 \cdot \sigma_{s1,II} = 249,67 \text{ N/mm}^2$

Die Betrachtungen sind somit für die abgeschlossene Rissbildung durchzuführen.

Mittlere Stahldehnung

 $\boldsymbol{\epsilon}_{sm} = \boldsymbol{\epsilon}_{s2,II} - \boldsymbol{\beta}_t \big(\boldsymbol{\epsilon}_{srII} - \boldsymbol{\epsilon}_{srI} \big)$

 $\varepsilon_{sm} = 1,279 - 0,306(0,96025 - 0,2687) = 1,067 \%$

mit

ε _{s2,II} = 1,279 ‰	Stahldehnung im Zustand II
$\epsilon_{sr1,II} = 0,96025 \%$	Stahldehnung für Rissschnittgrösse im Zustand II
ε _{sr1,l} = 0,2687 ‰	Stahldehnung für Rissschnittgrösse im Zustand I
$\beta_{t} = 0,306$	Völligkeit der vorhandenen Einwirkung

Mittlere Krümmung

$$\left(\frac{1}{r}\right)_{z.m} = \frac{\left(\epsilon_{sm} - \epsilon_{c}\right)}{d} = \frac{\left(1,067 + 0,735\right)}{0,135} = 13,35 \frac{mm}{m} = 1,335e - 2\frac{1}{m}$$

Mittlere Biegesteifigkeit

Aus der mittleren Krümmung (1/r)_{z,m} ergibt sich mit der Beziehung

$$\left(\frac{1}{r}\right)_{z,m} = \frac{M}{I_{y,m} \cdot E}$$

Μv

die Sekantensteifigkeit in dem entsprechenden Knoten.

$$I_{y,m} \cdot E = \frac{M_y}{(1/r)_{z,m}} = \frac{0.01766}{1.335e - 2} = 1.3228 \text{ MNm}^2 = 1322.80 \text{ kNm}^2$$

mit

Vorhandenes Moment

$$\left(\frac{1}{r}\right)_{r} = 1,335e - 2\frac{1}{m}$$
 Stahldehnung für Rissschnittgrösse im Zustand II

BETON-Ergebnisse

Zwischenergebnisse - Stab Nr. 1, x: 2.210,	LG2			
Spannungs- und Dehnungsberechnung				
- Hauptmomente	M	17.66	kNm	
 Biegemoment um die y-Achse 	My	17.66	kNm	
 Biegemoment um die z-Achse 	Mz	0.00	kNm	
- Normalkraft	N	0.00	kN	
Querschnittszustand		abgeschlossene	Rissbildung	
mittlere Hauptkrümmung	1/rm	1.3147E-02	1/m	
 Mittlere Krümmung in y-Richtung 	1/rym	0.0000E+00	1/m	
 Mittlere Krümmung in z-Richtung 	1/rzm	1.3872E-02	1/m	
— mittlere Stahldehnung	٤sm	1.068	%	
⊕ Berechnungsdetails				
🗄 Querschnittseigenschaften				
🗆 Querschnittssteifigkeiten (Sekantenwerte)				
— Dehnsteifigkeit	Am * E	574.36	MN	
 Mittlere Biegesteifigkeit um die y-Achse 	lym * E	1.34	MNm ²	
 Mittlere Biegesteifigkeit um Achse z 	Izm * E	94.12	MNm ²	
 Schubsteifigkeit in y-Richtung 	Aym * E	1394.40	MN	
 Schubsteifigkeit in Richtung z 	Azm * E	1394.40	MN	
Torsionssteifigkeit	lt * G	3.99	MNm ²	

Bild 9.28: Detailergebnisse der mittleren Krümmnungen

9.2.6 Ergebnisbewertung

Bild 9.29: Verformungen nach linear elastischer Berechnung (oben) und nichtlinearer Berechnung mit Kriechen (unten)

Die Verformung aus der nichtlinearen Berechnung mit Berücksichtigung des Kriecheinflusses fällt deutlich grösser aus als die der rein linear elastischen Berechnung ohne Kriecheinfluss. Wie auf Seite 131 erläutert, überschreitet die errechnete Verformung den empfohlenen Grenzwert von I/250.

Die Verformungen im Zustand II werden durch drei Faktoren massgeblich beeinflusst:

Deckenstärke

Im Beispiel wurde die Deckenstärke durch eine Begrenzung der Biegeschlankheit gemäss DIN 1045-1, 11.3.2 ermittelt. Interessant ist der Vergleich zur DIN V ENV 1992-1-1:1992-06, denn dort ergibt sich bei gleichen Randbedingungen eine Deckenstärke von h \ge 18 cm. Ob dieser Wert unbedingt als zu konservativ zu bezeichnen ist, bleibt fraglich.

Die Erhöhung der Deckenstärke auf h = 18 cm ist eine Möglichkeit, die Verformung deutlich zu reduzieren ($u_{max} \le 16$ mm bei entsprechend geringerer Bewehrung und ϕ_{eff} = 3,40).

Kriechen

Die angenommene Kriechzahl erscheint mit ϕ_{∞} = 3,43 relativ hoch, entspricht aber bei den angenommenen Umweltbedingungen und der Querschnittsgeometrie den Forderungen nach DIN 1045-1, Bild 18.

Über den ψ -Beiwert ($\psi_{2,1}$ = 0,6) zur Berechnung der quasi-ständigen Einwirkungskombination könnte eine gewisse Reduktion von kriecherzeugender zur wirkenden Last erfolgen.

Betonzugfestigkeit

Der Verlauf der Steifigkeiten zeigt, dass ein grosser Bereich des Feldes 1 im Gebrauchszustand gerissen ist.

Max ly-m * E: 2.64, Min ly-m * E: 1.26 MNm^2

Bild 9.30: Steifigkeitsverlauf I_{y,m} * E über die Trägerlänge

Für die Betonzugfestigkeit wurde in der Berechnung der Wert f_{ctm} (zentrische Zugfestigkeit) nach DIN 1045-1, Tabelle 9 angenommen.

Effekte wie die Gradiente der Spannungen haben einen enormen Einfluss auf die tatsächliche Zugfestigkeit des Betons. So erhöht eine grosse Spannungsgradiente die Zugfestigkeit, da die entsprechend hohen Spannungen nur in sehr wenigen Fasern wirken. Nähere Angaben zu den verschiedenen Einflussfaktoren auf die Zugfestigkeit finden sich u. a. in [24].

Für das Beispiel wird die Zugfestigkeit nochmals nach [24], Kapitel 2.1.1 berechnet:

2 / 2

$$\begin{split} f_{ctm} &= 0,45 \cdot 0,818 \cdot 1 \cdot 25^{27/3} = 3,14 \text{ N/mm}^2 \\ \text{mit} \\ f_{cm} &= 20 + 5 = 25 \text{ N/mm}^2 \\ \text{Der Mittelwert wird abweichend zur DIN 1045-1 über den Summanden 5 N/mm^2 berücksichtigt.} \\ C_V &= 0,85 - 0,2 \cdot 0,16 = 0,818 \ge 0,65 \\ \text{Berücksichtigung der Vorschädigung des Bauteils} \\ C_h &= \frac{2,6 + 24 \cdot 0,16}{1,0 + 40 \cdot 0,16} = 0,870 \\ \text{Einfluss der Bauteildicke} \\ C_\eta &= 1 \\ \end{split}$$

Um den Einfluss einer erhöhten Zugfestigkeit zu berücksichtigen, wird das Modell mit dem Anpassungsfaktor 3,14/2,2 = 1,42 berechnet.

Berechnungsansatz Tension Stiffening Kon	ivergenzeins	tellungen					
Ansatztyp von Tension Stiffening	Material E	eton - Berechnungsparam	neter				
Ansatz über eine Beton(rest)zugfestigkeit (Verfahren Quast)	Material Nr.	Beton-Festigkeitsklasse	Standard- werte	Faktorv fc / fct,R	Exponent n	E-Modu E _{ctm} [N/m	m²
Ansatz über modifizierte Stahlkennlinie	1	Beton C20/25	×	8.96	2.05	24900.	00
Ohne Ansatz von Tension Stiffening							
	Belastung	gsdauer der zu bemessend	en Lastfälle/	/Lastfallgrup	ipen		
		LF/LG-		Als	5	Faktor	1
	Nr.	Bezeichnung	,	Daue	rlast	βt	ſ
ension Stiffening	LF1	Ständige Belastung		X		0.250	ľ
Wirksame Zugstärke f _{ot, R}	LF2	Verkehrslast Feld 1			0.400		
fetm	LF3	Verkehrslast Feld 2				0.400	JU
🔵 fctk,0.05	F						
) fctk,0.95							-
Anpassungsfaktor der Zugstärkel f _{ot,R} : 1.42 📚 x f _{ot}							
Normalkraft als Initialkraft							
							_
a (112)				_	014		

Bild 9.31: Dialog Einstellungen für nichtlineare Berechnung, Register Tension Stiffening

Die Berechnung zeigt eine starke Reduzierung der gerissenen Bereiche, die auch zu einer Verringerung der Verformung auf u₁=15,27 mm führt. Dieser Wert liegt deutlich unter dem Anhaltswert von l/250=5/250=20 mm. Die folgende Abbildung verdeutlicht den Zusammenhang zwischen Verformung und Steifigkeitsabminderung. Lediglich im Stützenbereich erfolgt ein lokaler Übergang des Querschnitts in den gerissenen Zustand.

Bild 9.32: Verformung und Biegesteifigkeit bei Berechnung mit erhöhter Betonzugfestigkeit (Spannungsgradiente)

Es zeigt sich, wie empfindlich die nichtlineare Berechnung auf veränderte Berechnungsparameter reagiert. Der Unterschied ist in Bauteilen mit grossen Steifigkeitssprüngen zwischen gerissenem und ungerissenem Zustand besonders ausgeprägt.

9.3 Stabilitätsuntersuchung Kragstütze

9.3.1 Übersicht und Eingabe in RSTAB

Anhand der Stabilitätsuntersuchung einer eingespannten Stütze werden die grundlegenden Unterschiede der beiden Konzepte zur nichtlinearen Berechnung nach EN 1992-1-1, 5.7 und 5.8.6 aufgezeigt.

Das Kragstützenmodell ist in [21] als Beispiel 1 vorgestellt.

System und Belastung

Bild 9.33: System und Belastung

Die Belastung entspricht den Angaben aus [21]. Im Lastfall 1 wird bereits der Designwert $N_{Ed} = 1059,5$ kN berücksichtigt. Wie im Bild oben dargestellt wird die Belastung exzentrisch eingetragen. Die Ausmitte kann durch ein Zusatzmoment $M_{Sd} = 1059,5 * 0,05 = 52,98$ kNm oder geometrisch erfasst werden. Im Beispiel wird die Last exzentrisch über einen kurzen Stab eingeleitet.

Die Schiefstellung des Systems wird im Lastfall 2 als Imperfektion berücksichtigt, wobei sich die Schiefstellung zu $1/\phi = 1/0,003536 = 282,81$ berechnet.

Es werden mehrere Lastfallgruppen definiert, um das Last-Verformungsverhalten schlanker Stahlbetonstützen zu veranschaulichen.

Lastfallgruppen

Bemessungsrelevante Lastkonstellation

LG 1 LF1 + LF2

Zwischenschritte

LG 2	0,90*LF1 + LF2
LG 3	1,05*LF1 +LF2
LG 4	1,10*LF1 +LF2

Bei den LG-Berechnungsparametern wird keine Reduzierung der Steifigkeit durch den Teilsicherheitsfaktor γ_M vorgenommen.

Lastfallgruppe bearbeiten		X
LG Nr. Lastfallgruppe-Bezeichnung		LG-Faktor
1	~	1.00
Basis Berechnungsparameter		
Berechnungstheorie		
O I. Ordnung (linear)		
II. Ordnung (nichtlinear)		
III. Urdnung (nichtlinear nach Newton-Haphson) Durchschlagproblem		
Optionen für nichtlineare Berechnung		
Entlastende Wirkung durch Zugkräfte berücksichtigen Teilsiche	ung der Steifigkeit durch heitsfaktor vw	
Ergebnisse durch LG-Faktor	ungslastfaktor	
zurückdividieren berechne	n 🛸	
		OK Abbrechen

Bild 9.34: Berechnungsparameter der Lastfallgruppen

Ehe die nichtlineare Berechnung der Stütze erfolgt, werden alle Lastfallgruppen mit RSTAB berechnet. Es ergeben sich folgende Schnittgrössen und Verformungen:

LF-Gruppe	Normalkraft	Moment I. Ordnung	Moment II. Ordnung	Kopf- verschiebung
	N [kNm]	M _I [kNm]	M⊫[kNm]	u [mm]
LG 1	-1059,50	82,94	155,45	68,48
LG 2	-953,55		128,99	57,03
LG 3	-1112,47		170,39	74,93
LG 4	-1165,45		186,67	81,94

Tabelle 9.1: Zusammenstellung der Berechnungsergebnisse RSTAB

9.3.2 Nichtlineare Berechnung der Stütze

Die Stütze wird mit den beiden Verfahren nach EN 1992-1-1, 5.7 und 5.8.6 nachgewiesen.

9.3.2.1 Nachweis nach EN 1992-1-1, 5.7

Der erste Bemessungsfall führt den Nachweis nach dem ganzheitlichen Konzept des EC 2.

Eingabe in BETON

Die wesentlichen Eingaben sind in den folgenden Bildern gezeigt.

A1 - EN 1992-1-1, 5.7	🕶 1.1 Basisangaben	
ingabedaten Basisangaben Materialien Querschnitte Bewehrung 1	Stahlbetonbemessung nach Norm: ■EN 1992-1-1:2004 Nationaler Anhang: ■CEN ● Tragfähigkeit Gebrauchstauglichkeit Details Brandschutz Existierende Lastfälle Zu bemessen ■EI ■EI ■EI LF1 Normakraft mit Exzentrizität 0,1 ■ ■ ■ ■ LF2 Schiefstellung 1/phi = 282,81 ■	BETON BETON BETON Stalipetonpemessur
	Wichtlineare Berechnung Image: Chiechen/Schwinden berücksichtigen Zustand II Berücksichtigen Kommentar Nachweis nach EN 1992-1-1, 5.7	

Bild 9.35: Basisangaben zur nichtlinearen Berechnung nach EN 1992-1-1, 5.7

 Berechnungsansatz - Formänderungen und Schnittgrößen ♦ Verfahren mit Durchschnittswerten der Material- eigenschaften und globalem Teilsicherheitsfaktor (EN 1932-1-1, 5.7) Globaler Teilsicherheitsbeiwert auf der Traglastseite 	Delecting gansatz [rension stationing] Konvergenzenstei	
 Verfahren mit Durchschnittswerten der Material- eigenschaften und globalem Teilsicherheitsfaktor (EN 1992-1-1, 5.7) Globaler Teilsicherheitsbeiwert auf der Traglastseite y_R: 1.30 Allgemeines Bemessungsverfahren bei Stäben mit Druck nach Theorie II. Ordnung (EN 1992-1-1, 58.6) Einschließlich Bewehrungsoptimierung Ausnutzung des Fließbereiches zulassen 	Berechnungsansatz - Formänderungen und Schnittgrößen	Berechnungsansatz - Schub- und Torsionssteifigkeit
	 Verfahren mit Durchschnittswerten der Material- eigenschaften und globalem Teilsicherheitsfaktor (EN 1992-1-1, 5.7) Globaler Teilsicherheitsbeiwert auf der Traglastseite y_R : 1.30 Allgemeines Bemessungsverfahren bei Stäben mit Druck nach Theorie II. Ordnung (EN 1992-1-1, 5.8.6) Einschließlich Bewehrungsoptimierung Ausnutzung des Fließbereiches zulassen 	Schubsteifigkeit: Ansetzen der linear-elastischen Schubsteifig Abminderung der Schubsteifigkeit affin zur Biegesteifigkeit Torsionssteifigkeit: Berechnung nach Ansatz von Leonhardt Pauschale Abminderung der Torsionssteifigkeit bezogen auf den ungerissenen Zustand:

Bild 9.36: Berechnungsansatz nach EN 1992-1-1, 5.7

Berechnungsansatz Tension Stiffening	Konvergenzeins	tellungen				
Ansatztyp von Tension Stiffening	Material E	eton - Berechnungsparam	neter			
 Ansatz über eine Beton(rest)zugfestig (Verfahren Quast) 	keit Material Nr.	Beton-Festigkeitsklasse	Standard- werte	Faktorv fc / fct,R	Exponent n	E-Modul E _{ctm} [N/mm ²
🔿 Ansatz über modifizierte Stahlkennlini	e 1	Beton C20/25		18.89	3.24	26225.10
Ohne Ansatz von Tension Stiffening						
	Belastung	gsdauer der zu bemessend	en Lastfälle/	/Lastfallgrup	ipen	
		LF/LG-			Als	Faktor
	Nr.	Bezeichnu	ng	D	auerlast	β2
ension Stiffening	LF1	Normalkraft mit Exzentrizi	tät 0,05 m		×	0.40
Wirksame Zugstärke f _{ot,R}	LF2	Schiefstellung 1/phi = 28	12,81			0.60
🕽 fetm	LGI					0.50
fctk,0.05						
🔘 fctk,0.95						
Anpassungsfaktor der						
Zugstarke fct,R: 0.60 🐷 X fct						
Nernellizeft els luitiellizeft						
_ Normalkraft als Initialkraft						

Bild 9.37: Wirksame Betonzugspannung für Tension Stiffening

Um vergleichbare Ergebnisse zur Berechnung in [21] zu erhalten, ist das *Tension Stiffening* Modell nach QUAST wie oben dargestellt abzuändern: Da bei der Berechnung der zulässigen Druckspannung f_{cR} von einem unteren Quantilwert ausgegangen wird, wird auch zur Ermittlung der zulässigen Betonzugspannung $f_{ctk,0.05}$ verwendet.

Berechnungsansatz Tension Stiffening	Konvergenzeinstellungen	
Adaptive Stabteilung		Iterationskennwerte
Parameter m: 20 💭 👔		Maximale Anzahl der Iterationen pro Laststufe: 50 牵
Teilungsfaktor bei Verfeinerung: 1 😂		Dämpfung der Steifigkeitsänderung in einem Iterationszyklus Dämpfungsfaktor: 1.000 🜪
		Abbruchschranken
Grenzlängen der Stabteilungen		ε1 = (1/γ); - (1/γ);-1 : 0.0001 🚔
Maximal: 0.200 🚍 [m]		so = 1 (El: - El: +)2 / (El:)2 1 · 0.0001 🛋
tini 🖉 lui		cz = [[Li] · Li]-[] / [Li]]= [. 0.0001 💌
Minimal: 0.200 🐑 [m]		ε2 = 1 μmax, i - umax, i - 1 / Dämpfungsfaktor. 1.0000 ♥ [mi
Minimal: 0.200 (m) Laststufen Anzahl der Laststufen: 1 (m)		100 1 00000 € [mm 100 0 0 [mm 0 0
Minimal: 0.200 (m) Laststufen Anzahl der Laststufen: 1 (m) Lastaufbringung: () Linear Trilinear:		22 + (Li) + (Li) + (Li) + (Li) + (Li) 0.000 (♥) c3 = u _{max,i} - u _{max,i} - / Dämpfungsfaktor: 1.0000 (♥) 100 1.0000 (♥)
Minimal: 0.200 (m) Laststufen Anzahl der Lastaufbringung: O Linear Trilnear: Zwischen-Last- schritt	Aufgebrachter Lastanteil [%]	100 1 0.0000 € [mr 100 1 0.0000 € [mr

Bild 9.38: Grenzlängen der adaptiven Stabteilung und Abbruchschranken

Da ein statisch bestimmtes System vorliegt, kann der Dämpfungsfaktor auf 1,0 belassen werden. Um den Verlauf der Steifigkeiten entsprechend genau abbilden zu können, wird die maximale Stablänge auf 0,20 m begrenzt.

Für die nichtlineare Berechnung stabilitätsgefährdeter Strukturen ist die Wahl geeigneter Abbruchschranken ϵ_1 und ϵ_2 : Konvergiert eine Berechnung nach Theorie I. Ordnung stetig, so

kann es bei Druckgliedern zu einem "Wendepunkt" kommen, ab dem die Abweichungen ε wieder zunehmen. Der beschriebene Effekt tritt auf, wenn die Vergrösserung der Schnittkräfte durch Zunahme der Verformung nach Theorie II. Ordnung vom System durch die abfallenden Steifigkeiten nicht mehr kompensiert bzw. aufgenommen werden kann. Im Beispiel wird $\varepsilon_1 = \varepsilon_2 = 0,0001$ vorgegeben.

In [21] wird mit dem ähnlichen Nachweisverfahren nach DIN 1045-1, 8.5 eine erforderliche Bewehrung von A_{s,tot}=66,10 cm² ermittelt. Um diese Ergebnisse mit der BETON-Berechnung gemäss EN 1992-1-1, 5.7 vergleichen zu können, sind noch weitere Einstellungen zu treffen.

Der Nachweis wird mit einer tatsächlich vorhandenen Bewehrung geführt. Somit sind in Maske 1.6 *Bewehrung* noch einige Vorgaben zu Durchmesser, Betondeckung und Bewehrungsmenge erforderlich. Im Register *Längsbewehrung* wird der Durchmesser mit 25 mm festgelegt.

1.6 Bewehrung			
Bewehrungssatz		Angewendet auf	
Nr.: Bezeich 1 V Stütze	inung:	Stäbe: 1 Stabsätze:	Alle
Längsbewehrung	Bügel Bewehrungsanordnung Mind	lestbewehrung EN 1992-1-1	1 - Rechteck 40/40
Stabstahl	Bewehrungslagen		Rechteck 40.0/40.0
Mögliche Durchmesser: 7,0 8,0 10,0 12,0 14,0 16,0 20,0 ♥ 25,0 28,0 28,0 30,0 36,0	Max. Anzahl Lagen: 1 Minimaler lichter Bewehrungsabstand -Erste Lage a: 20.0 (mm) -Weitere Lagen b:	<u>۹۱۴</u>	
40.0	O Staffelung nach Anzahl Boroichen Boroicher 3		Einstellungen
- [mm]	Staffelung nach Bewehrungsstäben Stäbe:	×	Bewehrungsvorschlag vornehmen

Bild 9.39: Vorgabe des Stabstahldurchmessers

Die Betondeckung wird mit c_{nom} = 27,5 mm gewählt, sodass sich ein Achsabstand von 40 mm ergibt.

Bild 9.40: Vorgabe der Betondeckung

Um den Nachweis mit der vorgegebenen Bewehrung aus [21] führen zu können, wird eine Mindestbewehrung von $A_{s,oben} = A_{s,unten} = 32 \text{ cm}^2$ definiert.

Längsbewehrung Bügel Bewehrungsanordr	ung Mindestbewehrung EN 1992-1-1
Mindestbewehrung	Rissbreitenbegrenzung
Min A _{s,oben} : 32.00 🚖 [cm ²]	Grenzwert der Rissbreite nach 7.3.1(5) (NA
Min A _{st} unten : 32.00 🗶 [cm ²]	Wmax : [mm]
Mindestlängsbewehrung nach Norm	As, min Zwangsbeanspruchung
Mindestschubbewehrung nach Norm	Reine Zugbeanspruchung
	Rissbildung innerhalb der ersten 28 Tage
Konstruktive Bewehrung	Abminderungsfaktor der Betonzugfestigkeit:
Max. Bewehrungs- abstand:	A _{s,min} Zuordnung zur Fläche: Oben/Ur 🗸
☐ Identischer Durchmesser wie bei Längsbewehrung	Auslegung der Längsbewehrung für 🛛 🖉
ds: 7.0 🗸 [mm]	
Konstruktive Eckbewehrung hinzufügen	

Bild 9.41: Vorgabe der Mindestbewehrung

Damit ist die Eingabe abgeschlossen und die [Berechnung] wird gestartet.

Ergebnis der nichtlinearen Berechnung

FA1 - EN 1992-1-1, 5.7 🛛 🖌 🖌	6.1 Tra	gfähigkeit	für nicht	lineare Berechnu	ing				
Eingabedaten	Stab	Stelle	Maßgeb.	Sicherheits-	Ausnutzung				
Basisangaben	Nr.	x [m]	LF/LG	Faktor γ [-]	1/γ[·]			Anmerkung	
Materialien	1	0.000	LG1	2.135	0.46	3			
Querschnitte		0.200	LG1	2.141	0.46	7			
Lager		0.400	LG1	2.147	0.46	6			
Bewehrung		0.600	LG1	2.155	0.46	4			
1 - Stütze		0.800	LG1	2.164	0.46	2			
Ergebnisse		1.000	LG1	2.174	0.46)			
Erforderliche Bewehrung		1.200	LG1	2.186	0.45	3			
guerschnittsweise		1.400	LG1	2.198	0.45	5			
🗉 stabweise		1.600	LG1	2.212	0.45	2			
 x-stellenweise 		1.800	LG1	2.227	0.44	3			
Vorhandene Bewehrung		2.000	LG1	2.243	0.44	6			
 Längsbewehrung 		2.200	LG1	2.261	0.44	2			
Bügelbewehrung	Zurianh			h h h h h h h h h h h h h h h h h h h	0.1.01				
Bewehrung x-stellenweise	ZWISCI	energebnis	ise - sta	DINF. 1, X: 0.00	0, LG1			1	
Stahlliste	🗆 Bruci	nschnittgröf	Ben Ru						
Nichtlineare Berechnung	Bru	chmoment um	i die y∙Achse	•	Myu	-515.90	kNm		
Tragfähigkeit	Bru	chmoment um	i die z-Achse	1	Mzu	0.00	kNm		
Berechnungsdetails	Bru	chnormalkraft			Nu	-2940.27	kN		
-		annungs- ui	nd Dehnur	gsberechnung					
	🗆 Einwi	rkende Sch	nittgrößen	R (γ _R - 1.30)					
	- Bie	gemoment um	die y-Achse		My	-241.64	kNm		
	Bie	gemoment um	die z-Achse		Mz	0.00	kNm		
	- Nor	malkraft			N	-1377.21	kN		
	Que	erkraft in z-Ric	:htung		Vz	4.87	kN		
	Que	erkraft in y-Ric	:htung		Vy	0.00	kN		
	- Tor	sionsmoment			T	0.00	kNm		
		annunge, u	nd Dehnur	gsberechnung					
	🗆 🕀 Sp	unnangs a							

Bild 9.42: Maske 6.1 Tragfähigkeit für nichtlineare Berechnung

Die Interpretation der Ergebnisse wurde im Kapitel 9.2.5 ab Seite 131 ausführlich erläutert.

Für dieses Beispiel soll vielmehr gezeigt werden, dass eine weitere Lasterhöhung zu einer Systeminstabilität führt. Hierzu wird die LG 4, die bei einer Berechnung nach physikalisch linearer Theorie II. Ordnung stabil ist, in Maske 1.1 *Basisangaben* zur Bemessung gewählt.

A1 - EN 1992-1-1, 5.7	▼ 1.1 Basisangaben
ingabedaten Basisangaben Materialien Querschnitte Lager B- Bewehrung	Stahlbetonbemessung nach Norm: EN 1992-1-1:2004 Nationaler Anhang: CEN Reference CEN Tragfähigkeit Gebrauchstauglichkeit Details Brandschutz Existierende Lastfälle
∟ 1 - Stutze	LF1 *LF2 Normalkraft mit Exzentrizitä 0.1 *LF2 Normalkraft mit Exzentrizitä 0.1 *LF2 Normalkraft mit Exzentrizitä 0.1 *LF4 LF4 LF4 LF4 LF4 LF4 LF4 LF4 LF4 LF4
	Kiechen/Schwinden Stahlbetonbemess Zustand II berücksichtigen Kommentar Nachweis nach EN 1992-1-1, 5.7

Bild 9.43: Abbruch der Berechnung für die LG 4 wegen Instabilität

Die Berechnung wird mit der Meldung abgebrochen, dass bei einer Lasterhöhung um 10 % kein ausreichender Systemwiderstand mit der gewählten Bewehrung nachgewiesen werden kann.

Die folgende Berechnung der Stütze nach EN 1992-1-1, 5.8.6 zeigt, dass die Stütze vor dem Erreichen der Querschnittstragfähigkeit versagt.

9.3.2.2 Nachweis nach EN 1992-1-1, 5.6.8

Der zweite Bemessungsfall führt den Nachweis nach dem allgemeinen Bemessungsverfahren des EC 2 für Druckstäbe nach Theorie II. Ordnung.

Eingabe in BETON

Um die Ergebnisse vergleichen zu können, wird ein neuer Betonfall für EN 1992-1-1, 5.6.8 angelegt. Da nur wenige Eingabedaten geändert werden brauchen, wird der erste Bemessungsfall einfach kopiert über das BETON-Menü

Datei \rightarrow Fall kopieren.

BETON	-Fall kopieren 🛛 🔀
Kopiere	n von Fall
FA1 - E	EN 1992-1-1, 5.7 💌
Neuer F	all
Nr.: 2	Bezeichnung: EN 1992-1-1, 5.8.6
Ø	OK Abbrechen

Bild 9.44: Kopieren des ersten Bemessungsfalls

In Maske 1.1 Basisangaben wird der Kommentar entsprechend angepasst.

Über die Schaltfläche [Bearbeiten] wird der Dialog *Einstellung für nichtlineare Berechnung* aufgerufen und die Randparameter wie folgt angepasst.

Als Berechnungsansatz wird das allgemeine Verfahren für Stäbe mit Druck nach Theorie II. Ordnung gewählt. Fliessgelenke (plastische Krümmungen) sind wieder ausgeschlossen.

ingen
Berechnungsansatz - Schub- und Torsionssteifigkeit Schubsteifigkeit: Image: Ansetzen der linear-elastischen Schubsteifigkeit O Abminderung der Schubsteifigkeit affin zur Biegesteifigkeit
Torsionssteifigkeit:

Der nichtlineare Nachweis der Tragfähigkeit für Druckglieder nach EN 1992-1-1, 5.8.6 basiert auf einem geteilten Sicherheitskonzept (siehe Kapitel 2.3.7.2, Seite 40). Deshalb ist also auch für den Ansatz des Tension Stiffening mit den Mittelwerten der Materialparameter zu rechnen. Der Teilsicherheitsbeiwert γ_c fliesst direkt in die angesetzten Zugfestigkeit ein: $f_{ct,R} = f_{ct} / \gamma_c$. Dies gilt auch für den E-Modul des Betons.

Einstellungen für nichtlineare Berechn	ung					
Berechnungsansatz Tension Stiffening Konv	rergenzeins	tellungen				
Ansatztyp von Tension Stiffening	Material E	eton - Berechnungsparam	neter			
 Ansatz über eine Beton(rest)zugfestigkeit (Verfahren Quast) 	Material Nr.	Beton-Festigkeitsklasse	Standard- werte	Faktorv fc / fct,R	Exponent n	E-Modul E _{ctm} [N/mm ²]
O Ansatz über modifizierte Stahlkennlinie	1	Beton C20/25		21.21	2.25	20000.000
Ohne Ansatz von Tension Stiffening						
	Belastung	gsdauer der zu bemessend	en Lastfälle/	/Lastfallgrup	pen	
		LF/LG-			Als	Faktor
Topping Olivering	Nr.	Bezeichnu	ng	D	auerlast	β2
Tension Stiffening	LF1	Normalkraft mit Exzentrizi	tät 0,05 m		<u>×</u>	0.400
Wirksame Zugstärke f _{ot, R}	LF2	Schiefstellung 1/phi = 28	2,81			0.600
● fetm	LGI					0.500
O fctk,0.05						
fctk,0.95						
Anpassungsfaktor der Zugstärke fot,R: 0.60 🐑 x fot						
Normalkraft als Initialkraft						
	_					
					OK	Abbrechen

Bild 9.46: Wirksame Betonzugspannung für Tension Stiffening

Die Parameter des Registers Konvergenzeinstellungen bleiben unverändert.

Bild 9.45: Berechnungsansatz nach EN 1992-1-1, 5.8.6

In [21] wird mit dem ähnlichen Nachweisverfahren gemäss DIN 1045-1, 8.6.1 eine erforderliche Bewehrung von $A_{s,tot} = 40,0 \text{ cm}^2$ ermittelt. Um diese Ergebnisse mit der BETON-Berechnung nach EN 1992-1-1, 5.8.6 vergleichen zu können, wird im Register *Mindestbewehrung* der Maske 1.6 *Bewehrung* eine Mindestbewehrung von $A_{s,oben} = A_{s,unten} = 20 \text{ cm}^2$ definiert.

.6 Bewehrung		
Bewehrungssatz	Angewendet auf	
Nr.: Bezeichnung: 1 Stütze	Stäbe: 1 Stabsätze:	Alle
Längsbewehrung Bügel Bewehrungsanord	nung Mindestbewehrung EN 1992-1-1	1 · Rechteck 40/40
Mindestbewehrung	Rissbreitenbegrenzung	Rechteck 40.0/40.0
Min A s,oben: 20.00 [cm ²] Min A s,unten : 20.00 [cm ²] Mindestlängsbewehrung nach Norm Mindestschubbewehrung nach Norm	Grenzwert der Rissbreite nach 7.3.1(5) (NA wmax : [mm] As, min Zwangsbeanspruchung v Reine Zugbeanspruchung issbildung innerhalb der ersten 28 Tage Abreinden unsefakt for	
Konstruktive Bewehrung Max. Bewehrungs- abstand: Identischer Durchmesser wie bei Längsbewehrung	der Betonzugfestigkeit:	* _ (cm)
ds: 7.0 ∨ [mm]		Einstellungen
Konstruktive Eckbewehrung hinzufügen		Bewehrungsvorschlag vornehmen

Bild 9.47: Änderung der Mindestbewehrung

Damit sind die Änderungen abgeschlossen und die [Berechnung] wird gestartet.

Ergebnis der nichtlinearen Berechnung

BETON - [Beispiel-3]	Lilfa								
Date Dearbeiten Einstellungen			611	Karran Daraha					
FA2 - EN 1992-1-1, 5.8.6	6.1 Tra	granigkeit	tur nicht	uneare Berechn	ung				
Eingabedaten	Stab Na	Stelle	Maisgeb.	Sicherneits-	Ausnutzu	ng		A	
Basisangaben	1	x [m]	LF/LG	raκtorγ[-]	1/7[0]	C4C		Anmerkung	
Materialien		0.000	LGI	1.34	1 0.	646 C44			
		0.200	LG1	1.00	2 U. 7 O.	644 642			
		0.400	LG1	1.55	2 0.	642			
_ Dewenlung		0.000	LG1	1.50	1 0	637			
Fraebnisse		1 000	LG1	1.57	3 0	634			
Ergebnisse		1.000	1.61	1.58	3 0	630			
		1.400	LG1	1.59	3 0.	626			
statweise		1.600	LG1	1.60	9 0.	621			
		1.800	LG1	1.62	2 0.	616			
- Vorhandene Bewehrung		2.000	LG1	1.63	6 0.	611			
Längsbewehrung		2.200	LG1	1.65	l 0.1	606			~
Bügelbewehrung	Zuricche	norochni		⊾N⊨ 1 . ∞.0.0	00 1.01				
⊕ Bewehrung x-stellenweise	Zwische	nergebni	sse - sta	DINF. I, X: U.U	UU, LGT	1	1		11
Stahlliste	Bruch	schnittgrol	Sen Hu						^
Nichtlineare Berechnung	Bruc	hmoment um	n die y-Achse	9	Myu	-362.38	kNm		
Tragfähigkeit	Bruchmoment um die z-Achse			MZu	0.00	kNm			
Berechnungsdetails	Bruc	Bruchnormalkraft			Nu	-1640.90	KN		
	Eisui	innungs- u kondo Cok	nu Dennur mittariößer						
	Piec	Renue our	inittyrober	i n	Mu	222.00	lebler.		
	Biec	emoment un	i die z.Achse	, ,	My Ma	-233.36	KNIII khim		
	Nor	nalkraft	r die zmenae	•	N	.1059.29	LN		
	- Que	rkraft in z-Bir	htuna		V.	3.75	LN LN		
	Que	rkraft in v-Ric	:htuna		Vx	0.00	kN		
	- Tors	ionsmoment			T	0.00	kNm		
	🖃 Spa	nnungs- u	nd Dehnur	gsberechnung		1			
	— m	ittlere Hauptl	krümmung		1/rm	5.6765E-03	1/m		~
			(Meldungen		Grafik		ОК	Abbrechen

Bild 9.48: Maske 6.1 Tragfähigkeit für nichtlineare Berechnung

Mit der gewählten Bewehrung ergibt sich für die Einspannstelle ein Sicherheitsfaktor γ von 1.549 (zum Vergleich: γ = 2,135 für die Bemessung nach EN 1992-1-1, 5.7).

- = X ⊿⊳ Beispiel-3, LG1 ⊿⊳ Beispiel-3 - = X ⊿⊳ Beispiel-3 - - X LG1 : LF1 + LF2 BETON FA1 - EN 1992-1-1, 5.7 BETON FA2 - EN 1992-1-1, 5.8.6 Belastung [-], [kN] 1059.500 Verformungen u [mm] -68.86 52.97 97.2 142.6 Panel 68.5 1/Phi= 282.81 BETON Му u-g× BETON 📑 🙉 🚿 241.64 233.96 Max u-g,X: 97.2, Min u-g,X: 0.0 mm Max My: -68.86, Min My: -241.64 kNm Max u-g,X: 142.6, Min u-g,X: 0.0 mm Max My: -52.97, Min My: -233.96 kNm Max u: 68.5, Min u: 0.0 mm

Im folgenden Bild sind die Verformungen nach Theorie II. Ordnung und nach den beiden nichtlinearen Berechnungsvarianten gegenübergestellt.

Bild 9.49: Gegenüberstellung der Ergebnisse nach Theorie II. Ordnung und nach nichtlinearer Berechnung

Bei dem schlanken Druckglied weicht die Berechnung nach Theorie II. Ordnung bereits bei einem geringen Lastniveau von der Berechnung nach Theorie I. Ordnung ab. Die physikalische Nichtlinearität macht sich erst bei einem höheren Lastniveau bemerkbar, schreitet dann allerdings sehr schnell voran. Durch die dabei auftretende starke Steifigkeitsminderung versagt die Stütze letztendlich infolge Stabilitätsverlustes.

Wird die materialbedingte Nichtlinearität nicht berücksichtigt, liefert die reine Querschnittsbemessung der LG1-Schnittgrössen nach Theorie II. Ordnung (physikalisch linear) eine erforderliche Bewehrung von $A_{s,tot} = 2 * 4,10 = 8,20 \text{ cm}^2$.

2.1 Erforde	rliche B	ewehrung	quersc	hnittsweise		
A	В	С	D	E	F	G
	Stab	Stelle	LF / LG	Bewehrungs-		Fehlermeldung
Bewehrung	Nr.	x [m]	LK	fläche	Einheit	bzw. Hinweis
Querschnitt N	. 1 - Rech	teck 40/40				
As,oben	1	0.000	LG1	4.10	cm ²	
As,unten	1	0.000	LG1	4.10	cm ²	

Bild 9.50: Erforderliche Bewehrung für physikalisch lineare Bemessung

Damit wird die tatsächlich erforderliche Bewehrung deutlich unterschätzt. Aber auch die Bemessung auf Moment und Normalkraft aus der physikalisch nichtlinearen Berechnung würde zu einer Unterbemessung führen. In diesem Fall ergäbe sich für M_y=233,96 kNm und N=-1059,39 kN eine erforderliche Bewehrung von A_{s,tot}=2*10,1=**20,2 cm**². Der Grund liegt darin, dass die Schnittgrössen in Abhängigkeit von der vorhandenen Bewehrung berechnet werden. Die Stütze versagt jedoch vor dem Erreichen der Grenztragfähigkeit des Querschnitts. Im Beispiel wäre dies ein Moment von ~ 362 kN, was in Interaktion mit der Normalkraft zu einer erforderlichen Bewehrung von A_{s,tot}=2*10,7=**39,4 cm**² führt.

A Literatur

Normen / Anwendungen

- [1] DIN 1045-1 (Juli 2001) Tragwerke aus Beton, Stahlbeton und Spannbeton Teil 1: Bemessung und Konstruktion, Beuth Verlag, Berlin Wien Zürich 2001
- [2] DIN 1045-1 (Juli 2001, 2. Auflage) Tragwerke aus Beton, Stahlbeton und Spannbeton, Teil 1 Bemessung und Konstruktion, Kommentierte Kurzfassung, Beuth Verlag, Berlin Wien Zürich 2005
- [3] DIN 1045-1 (Juni 2008) Tragwerke aus Beton, Stahlbeton und Spannbeton Teil 1: Bemessung und Konstruktion, Beuth Verlag, Berlin Wien Zürich 2008
- [4] DIN 1045-88 Tragwerke aus Beton, Stahlbeton und Spannbeton, Teil 1 Bemessung und Konstruktion, Beuth Verlag, Berlin Wien Zürich 1988
- [5] DIN V ENV 1992-1-1:1992: Planung von Stahlbeton- und Spannbetontragwerken Teil
 1: Grundlagen und Anwendungsregeln f
 ür den Hochbau. Juni 1992.
- [6] DIN EN 1992-1-1:2005: Planung von Stahlbeton- und Spannbetontragwerken Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. Februar 2010.
- [7] DIN EN 1992-1-2:2005: Planung von Stahlbeton- und Spannbetontragwerken Teil 1-2: Allgemeine Regeln – Tragwerksbemessung für den Brandfall. Oktober 2006.
- [8] ÖNORM B 4700 (Juni 2001): "Stahlbetontragwerke EUROCODE-nahe Berechnung, Bemessung und konstruktive Durchbildung", Österreichisches Normungsinstitut, Wien
- [9] Heft 220 DAfStb. "Bemessung von Beton- und Stahlbetonbauteilen nach DIN 1045 Biegung mit Längskraft, Schub, Torsion", Beuth Verlag, Berlin Wien Zürich, 2. Auflage 1978
- [10] Heft 240 DAfStb. "Hilfstmittel zur Berechnung der Schnittgrössen und Formänderungen von Stahlbetontragwerken nach DIN 1045-88", Beuth Verlag, Berlin Wien Zürich, 3. Auflage 1991
- [11] Heft 415 DAfStb., BUSJÄGER, D., QUAST, U.: "Programmgesteuerte Berechnung beliebiger Massivbauquerschnitte unter zweiachsiger Biegung mit Längskraft", Beuth Verlag, Berlin Wien Zürich 1990
- [12] Heft 425 DAfStb., KORDINA, K. et. al.: "Bemessungshilfsmittel zu Eurocode 2 Teil 1 Planung von Stahlbeton- und Spannbetontragwerken", Beuth Verlag, Berlin Wien Zürich 1992
- [13] Heft 525 DAfStb. "Erläuterungen zu DIN 1045-1", Beuth Verlag, Berlin Wien Zürich 2003
- [14] Deutscher Beton- und Bautechnik-Verein E.V.: "Beispiel zur Bemessung nach DIN 1045-1, Band 1: Hochbau", Ernst & Sohn Verlag 2005, 2. Auflage
- [15] Deutscher Beton- und Bautechnik-Verein E.V.: "Beispiel zur Bemessung nach DIN 1045-1, Band 2: Ingenieurbau", Ernst & Sohn Verlag 2003, 1. Auflage
- [16] SIA Einführung in die Norm SIA 262 Betonbau, Dokumentation D 0182

Allgemein

- [17] AVAK, R.: Stahlbetonbau in Beispielen, DIN 1045, Teil 1, Grundlagen der Stahlbeton-Bemessung - Bemessung von Stabtragwerken", Werner Verlag, 5. Auflage 2007
- [18] CURBACH, M. et. al.: "Nichtlineare Berechnung alter Bogenbrücken auf Grundlage neuer Vorschriften", Beton- und Stahlbetonbau 99 (04/2004)
- [19] HEYDEL G., KRINGS W., HERRMANN H.: "Stahlbeton im Hochbau nach EC 2", Ernst und Sohn Verlag 1995
- [20] HOSSER, D. und RICHTER, E.: Überführung von EN 1992-1-2 in EN-Norm und Bestimmung der national festzulegenden Parameter (NDP) im Nationalen Anhang zu EN 1992-1-2. Schlussbericht, Stuttgart, Fraunhofer IRB 2007
- [21] KLEINSCHMITT, J.: "Die Berechnung von Stahlbetonstützen nach DIN 1045-1 mit nichtlinearen Verfahren", Beton- und Stahlbetonbau 02/2005
- [22] KORDINA, K. und QUAST, U.: "Bemessung von schlanken Bauteilen für den durch Tragwerksverformung beeinflussten Grenzzustand der Tragfähigkeit – Stabilitätsnachweis", Betonkalender 2002/Teil 1, Ernst & Sohn Verlag 2002
- [23] LEONHARDT, F.: "Vorlesungen über Massivbau", Teil 1 bis 4, Springer Verlag, 3. Auflage 1984
- [24] NOAKOWSKI, P. und Schäfer, H. G.: "Steifigkeitsorientierte Statik im Stahlbetonbau", Ernst & Sohn, 2003
- [25] NOAKOWSKI, P. und SCHÄFER, H. G.: "Die Schnittgrössen in Stahlbetontragwerken einfach richtig berechnen", Beton- und Stahlbetonbau 96 (06/2001)
- [26] PFEIFFER, U.: "Die nichtlineare Berechnung ebener Rahmen aus Stahl- oder Spannbeton mit Berücksichtigung der durch das Aufreissen bedingten Achsdehnung", Dissertation an der TU Hamburg-Harburg 2004, Cuvillier Verlag Göttingen
- [27] PFEIFFER, U. und QUAST, U.: "Some advantages of 1D- instead of 2D- or 3D- modelling for non-linear analysis of reinforced concrete frames", Proceedings of the EURO-C Conference 2003, St. Johann im Pongau, 17-20 March 2003, 805-815. Lisse, Abingdon, Exton (PA), Tokyo: A. A. Balkema Publishers, 2003 Download unter <u>http://www.mb.tu-harburg.de</u> möglich
- [28] PFEIFFER, U. und QUAST, U.: "Nichtlineares Berechnen stabförmiger Bauteile", Beton- und Stahlbetonbau 98 (09/2003)
- [29] QUAST, U.: "Zur Kritik an der Stützenbemessung", Beton- und Stahlbetonbau 95 (05/2000)
- [30] QUAST, U.: "Zum nichtlinearen Berechnen im Stahlbeton- und Spannbetonbau", Beton- und Stahlbetonbau 89 (09/1994)
- [31] QUAST, U.: "Nichtlineare Verfahren, normungsreif oder nicht?", Betonbau Forschung, Entwicklung und Anwendung, 223-232. Braunschweig: Institut für Baustoffe, Massivbau und Brandschutz Download unter <u>http://www.mb.tu-harburg.de</u> möglich
- [32] QUAST, U.: "Versagen Stahlbetonstützen anders als Stahlstützen?", Veröffentlicht auf der Homepage der TU Hamburg-Harburg Download unter <u>http://www.mb.tu-harburg.de</u> möglich
- [33] VATER, C.: "Rechnerisch-theoretische Untersuchungen zur Schnittgrössenumlagerung in verschieblichen und unverschieblichen Stahlbetonrahmen", Dissertation an der TU Hamburg-Harburg 1999
- [34] ZILCH, K. und ROGGE, A.: "Bemessung der Stahlbeton- und Spannbetonbauteile nach DIN 1045-1", Betonkalender 2002/Teil 1 und 2004/Teil 2, Ernst & Sohn 2002 bzw. 2004

3

B Index

3D-Rendering 103, 111
Α
Abbruchkriterien101
Abbruchschranke73
Achsmass
Adaptive Stabteilung 17, 43, 72
Allgemeines Bemessungsverfahren
Anmerkung 51, 98
Anpassungsfaktor71
Ausdruckprotokoll 110, 116
Auslegung der Längsbewehrung62
Ausnutzung
Ausschnitt109
В
Basisangaben44
Baustofffestigkeit
Beenden von BETON
Belastungsdauer71
Bemessungsdetails
Bemessungsfall
Berechnung68, 74
Berechnungsansatz
Berechnungsdetails101
Betonalter
Betondeckung60
Betondruckstrebe 12, 65
Betondruckzone64
BETON-Fall74, 112
Beton-Festigkeitsklasse
Betonspannung94
Betonstahl
Betonzugfestigkeit 22, 62, 70, 94
Bewehrung55
Bewehrungsabstand
Bewehrungsanordnung59
Bewehrungsfläche76, 78
Bewehrungsgrad64, 91, 114
Bewehrungslage
Bewehrungsoptimierung69
Bewehrungssatz
Bewehrungsskizze102

Bewehrungsstab
Bewehrungsstaffelung57
Bewehrungsverteilung 60
Bewehrungsvorschlag 56, 82, 86, 89, 102
Biegerollendurchmesser
Biegung9
Blättern in Masken44
Brandschutznachweis
Bügel 58
Bügelabmessungen 88
Bügelabstand 59, 88
Bügelbereich
Bügelbewehrung
Bügelparameter
D
Dämpfung
Dauerlast
Dehnung
Dezimalstellen
Direkte Lagerung 53
Druckbewehrung 10.64
Drucken
Druckalied
Druckkraft 10
Druckstrebenneigung A 65
Duktilität 24
Durchbiegung 16, 63, 94, 121
Durchmesser 57
Durchschnittwerte Material 69
ECKe
Einheiten
Endlager
Erforderliche Bewehrung
Ergebnisauswertung
Ergebnismasken
Ergebnisse-Navigator
Ergebnisverläufe
Ergebniswerte106
Eurocode
Excel

Export Querschnitte114
F
Fehlermeldung78, 81
Filter109
Filtern von Stäben109
Fliessbereich69
G
Gebrauchstauglichkeit 13, 40, 47, 63, 82, 93, 99, 106
Gewicht
Globaler Teilsicherheitsbeiwert
Grafik106
Grafik drucken111
Grenzlänge72
Grenzzustand Gebrauchstauglichkeit13, 40, 56, 62, 93, 99
Grenzzustand Tragfähigkeit
Grundbewehrung
н
Haken
Hintergrundgrafik
Hinweis 78
Höchsthewehrungsgrad 64
1
Indirekte Lagerung
Initialkraft71
Installation6
Iteration
Iterationskennwert73
к
Kommentar46
Konstruktive Bewehrung61
Konvergenz42, 72, 101
Konvergenzeinstellungen101
Kriechen
Kriechzahl
Krümmung16, 19, 37, 40, 120, 140
L
Lage
lager
l agerbreite 53
Lange 04
Lange
1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =
Längsbewehrung

Lasteinwirkungsdauer	71
Lastfall	46, 47, 98, 99
Lastfallgruppe	46, 47
Lastfallkombination	46, 47
Laststufe	43, 73
Μ	
Masken	
Material	
Materialbezeichnung	
Materialbibliothek	
Materialkennwerte	
Meldung	85, 88, 95, 98
Mindestbewehrung	13, 61, 94
Modifizierte Stahlkennlinie	
Momentenumlagerung	54
Monolithische Verbindung	53
M-Verhältnis δ	54
Ν	
Nationaler Anhang	
Navigator	
Neigung	58, 83
Nennmass	60
Niehtlingene Deve ehreuner 46.4	
124	7, 68, 82, 97, 99, 107,
Nichtlineare Berechnung 46, 4 124 Norm	
Nichtlineare Berechnung 40, 4 124 Norm	5, 45, 64
Norm	, 68, 82, 97, 99, 107, 5, 45, 64
Obere Bewehrung	, 68, 82, 97, 99, 107, 5, 45, 64
Norm	, 68, 82, 97, 99, 107, 5, 45, 64
Norm	, 68, 82, 97, 99, 107, 5, 45, 64
Norm	, 68, 82, 97, 99, 107, 5, 45, 64
Norm	, 68, 82, 97, 99, 107, 5, 45, 64
Norm 124 Norm 0 Obere Bewehrung 0 Oberfläche 0 OpenOffice 0 Optimierung 0 P Panel Plastisches Gelenk 0	, 68, 82, 97, 99, 107, 5, 45, 64
Norm 124 Norm 0 Obere Bewehrung 0 Oberfläche 0 OpenOffice 0 Optimierung 0 Panel 10 Plastisches Gelenk 10 Plattenbreite 10	, 68, 82, 97, 99, 107, 5, 45, 64 77
Norm 124 Norm 0 Obere Bewehrung 0 Oberfläche 0 OpenOffice 0 Optimierung 0 P Panel Plastisches Gelenk 1 Plausibilitätskontrolle 1	7, 68, 82, 97, 99, 107, 5, 45, 64
Norm 124 Norm 0 Obere Bewehrung 0 Oberfläche 0 OpenOffice 0 Optimierung 0 Panel 10 Plastisches Gelenk 10 Plausibilitätskontrolle 10	, 68, 82, 97, 99, 107, 5, 45, 64 77 92
Norm 124 Norm 0 Obere Bewehrung 0 Oberfläche 0 OpenOffice 0 Optimierung 0 P Panel Plastisches Gelenk 0 Plattenbreite 0 Position 0	7, 68, 82, 97, 99, 107, 5, 45, 64
Norm 124 Norm 0 Obere Bewehrung 0 Oberfläche 0 OpenOffice 0 Optimierung 0 Panel 10 Plastisches Gelenk 10 Plausibilitätskontrolle 10 Positionsbügel 10 Positionsstab 10	7, 68, 82, 97, 99, 107, 5, 45, 64 77 92
Norm 124 Norm 0 Obere Bewehrung 0 Oberfläche 0 OpenOffice 0 Optimierung 0 P Panel Plastisches Gelenk 0 Plausibilitätskontrolle 0 Position 0 Positionsbügel 0 Programmaufruf 0	7, 68, 82, 97, 99, 107, 5, 45, 64
Norm 124 Norm 0 Obere Bewehrung 0 Oberfläche 0 OpenOffice 0 Optimierung 0 P Panel Plastisches Gelenk 10 Plattenbreite 10 Position 10 Positionsbügel 10 Programmaufruf 10	7, 68, 82, 97, 99, 107, 5, 45, 64 77 92
Norm 124 Norm 0 Obere Bewehrung 0 Oberfläche 0 OpenOffice 0 Optimierung 0 P Panel Plastisches Gelenk 10 Plausibilitätskontrolle 10 Position 10 Positionsbügel 10 Pogrammaufruf 10 Q Querkraft	7, 68, 82, 97, 99, 107, 5, 45, 64
Norm 124 Norm 0 Obere Bewehrung 0 Oberfläche 0 OpenOffice 0 Optimierung 0 P Panel Plastisches Gelenk 10 Plausibilitätskontrolle 10 Position 10 Positionsbügel 10 Querkraft 10 Querkraft 10	7, 68, 82, 97, 99, 107, 5, 45, 64
Norm 40, 4 124 Norm O Obere Bewehrung Oberfläche OpenOffice OpenOffice OpenOffice Optimierung P Panel Plastisches Gelenk Platsisches Gelenk Position Position Positionsbügel Positionsstab Pogrammaufruf Querkraft Querkraftbewehrung Querkrafttragfähigkeit Ouerkrafttragfähigkeit	7, 68, 82, 97, 99, 107, 5, 45, 64
Norm 40,4 124 Norm O Obere Bewehrung Oberfläche OpenOffice OpenOffice OpenOffice Optimierung P Panel Plastisches Gelenk Plattenbreite Plausibilitätskontrolle Position Positionsbügel Programmaufruf Q Querkraft Querkrafttragfähigkeit Querschnitt Querschnitt	7, 68, 82, 97, 99, 107, 5, 45, 64
Norm 40, 4 124 Norm O Obere Bewehrung Oberfläche OpenOffice OpenOffice OpenOffice Optimierung P Panel P Plastisches Gelenk Plattenbreite Position Positionsbügel Positionsstab Positionsstab Programmaufruf Querkraft Querkraftbewehrung Querkrafttragfähigkeit Querschnitt Querschnittsbezeichnung	7, 68, 82, 97, 99, 107, 5, 45, 64

Lastaufbringung73

Querschnittsbibliothek
Querschnittsoptimierung114
R
Randmass60
Relative Luftfeuchte
Relaxation
Rissbildung24
Rissbreite14, 62, 94, 100
Rissbreitenbegrenzung62
Rissbreitennachweis63
RSTAB-Arbeitsfenster105
S
Schaltflächen104
Schnitt
Schnittgrössen114
Schubbewehrung
Schubsteifigkeit
Schwinddehnung51
Schwinden
Schwindmass
Sekantensteifigkeit20
Selektion Ausdruck110
Sicherheit
Sicherheitsfaktor γ98
Skalierung107
Spannungsnachweis63
Stab 55, 79, 96
Stababstand 15, 94
Stabdurchmesser
Stabilitätsverlust69
Stabsatz 55, 66, 79, 95
Stabstahl
Stabteilung43, 72
Staffelung57
Stahlliste91
Stahloberfläche57
Stahlspannung94
Starten von BETON 7
Steifigkeit26, 39, 73, 101
Stelle x78, 80, 83, 84, 88, 90, 93, 97, 99
Superkombination46

Т

Tangentensteifigkeit 20
Teilsicherheitsbeiwert Beton 65
Teilsicherheitsbeiwert Betonstahl
Tension Stiffening21, 70, 71
Torsion77
Torsionssteifigkeit 69
Tragfähigkeit9, 38, 46, 97, 106
U
Umlaufende Bewehrung60
Unbemessbarkeit
Untere Bewehrung77
v
Verankerung 57, 84
Verankerungsart57, 58, 84
Verankerungslänge 57, 58
Verankerungstyp
Verformung 16, 40, 63, 73, 94, 99, 101, 118, 124, 141
Verjüngung67
Versatzmass
Verschiebung
Visualisierung103, 106
Völligkeitsbeiwert71
Vorhandene Bewehrung82
Vorspannung71
Voute
w
Winkelhaken
Wirksame Zugstärke f _{ct.R}
х
x-Stelle
Z
Zementart
Zugbeanspruchung 62
Zugkraft9
Zugversteifung21
Zustand II16, 41, 46, 47, 70, 97, 99, 134
Zwang 62, 63
Zwischenergebnisse