

Fassung September 2016

Zusatzmodul

RSKNICK

Knicklängen, Knickfiguren, Verzweigungslastfaktoren

Programmbeschreibung

Alle Rechte, auch das der Übersetzung, vorbehalten. Ohne ausdrückliche Genehmigung der DLUBAL SOFTWARE GMBH ist es nicht gestattet, diese Programmbeschreibung oder Teile daraus auf jedwede Art zu vervielfältigen.

© Dlubal Software GmbH 2016 Am Zellweg 2 D-93464 Tiefenbach Deutschland

Tel.: +49 9673 9203-0 Fax: +49 9673 9203-51 E-mail: info@dlubal.com Web: www.dlubal.de ⊿ Dlubal

Inhalt

(

Inhalt

Seite

1.	Einleitung	2
1.1	Zusatzmodul RSKNICK	2
1.2	Gebrauch des Handbuchs	3
1.3	Aufruf des RSKNICK-Moduls	3
2.	Eingabedaten	5
2.1	Basisangaben	5
2.2	Normalkräfte	9
3.	Berechnung	1
3.1	Kontrolle	1
3.2	Start der Berechnung	1
4.	Ergebnisse	3
4.1	Knicklängen und -lasten	3
4.2	Knickfiguren 1	5
4.3	Verzweigungslastfaktoren 1	6
5.	Ergebnisauswertung 1	8
5.1	Ergebnismasken	8
5.2	Ergebnisse am RSTAB-Modell 1	9
5.3	Filter für Ergebnisse	21
5.4	Nichtlineare RSTAB-Berechnung	22
6.	Ausdruck	24
6.1	Ausdruckprotokoll	24
6.2	Grafikausdruck	24
7.	Allgemeine Funktionen	:6
7.1	RSKNICK-Analysefälle	26
7.2	Einheiten und Dezimalstellen	28
7.3	Export der Ergebnisse	29
8.	Beispiele	;1
8.1	EULER-Fall 1	31
8.2	Rahmen mit K-Verband	\$4
8.3	Rahmen mit Pendelstütze	37
Α.	Literatur	9
В.	Index	0

1 Einleitung

1.1 Zusatzmodul RSKNICK

Das RSTAB-Zusatzmodul RSKNICK führt eine Eigenwertanalyse für Stabtragwerke durch, um die kritischen Lastfaktoren einschließlich Knickfiguren zu bestimmen. Anhand des kritischen Lastfaktors (Verzweigungslastfaktor des Gesamtsystems) kann das Stabilitätsversagen des Systems bewertet werden. Die zugehörige Knickfigur gibt Auskunft über den stabilitätsgefährdeten Bereich im statischen Modell.

Mit RSKNICK lassen sich mehrere Knickfiguren gleichzeitig analysieren. Nach der Berechnung werden – nach dem kritischen Lastfaktor sortiert – die maßgebenden Versagensformen des RSTAB-Modells aufgelistet. Die zugehörigen Knicklängen und Knicklasten werden für weitere Stabilitätsberechnungen benötigt, die in der Regel für druckbeanspruchte Teile zu führen sind.

In der grafischen Darstellung der Knickfiguren lassen sich die stabilitätsgefährdeten Bereiche im Modell lokalisieren. Damit können konstruktive Maßnahmen abgeleitet werden, um den Versagensformen zu begegnen. RSKNICK ist daher ein hilfreiches Werkzeug für die Analyse knickgefährdeter Systeme wie z. B. schlanker Träger oder Raumfachwerke: Zum einen kann anhand des kritischen Lastfaktors beurteilt werden, ob das System generell stabilitätsgefährdet ist (Knicken und Biegedrillknicken). Zum anderen können Imperfektionen unter Berücksichtigung der Knickfiguren angesetzt und für die Berechnung in RSTAB genutzt werden.

RSKNICK zeichnet sich durch folgende Leistungsmerkmale aus:

- Ermittlung mehrerer Knickfiguren in einem Rechenlauf
- Übernahme der Normalkräfte von RSTAB-Lastfällen oder -Kombinationen
- Wahlweise Berücksichtigung von entlastenden Zugkräften
- Optionale Berücksichtigung der Steifigkeitsanpassungen von RSTAB
- Tabellarische Darstellung der kritischen Verzweigungslastfaktoren und zugehörigen Knickfiguren
- Visualisierung der Knickfigur mit Animationsmöglichkeit in der Grafikoberfläche von RSTAB
- Druckausgabe im RSTAB-Ausdruckprotokoll mit automatischer Aktualisierung bei Änderungen
- Aufbereitung der Knickfiguren für die Zusatzmodule RSIMP, KAPPA, STAHL EC3, STAHL AISC, STAHL AS, STAHL BS, STAHL CSA, STAHL GB, STAHL IS, STAHL NTC-DF, STAHL SANS, STAHL SIA, STAHL SP, ALUMINIUM und HOLZ Pro
- Datenexport zu MS Excel, OpenOffice Calc oder als CSV-Datei

Wir wünschen Ihnen viel Freude und Erfolg mit RSKNICK.

Ihr Team von DLUBAL SOFTWARE GMBH

Da die Themenbereiche Installation, Benutzeroberfläche, Ergebnisauswertung und Ausdruck im RSTAB-Handbuch ausführlich erläutert sind, wird hier auf eine Beschreibung verzichtet. Der Schwerpunkt dieses Handbuchs liegt auf den Besonderheiten, die sich im Rahmen der Arbeit mit dem Zusatzmodul RSKNICK ergeben.

Dieses Handbuch orientiert sich an der Reihenfolge und am Aufbau der Eingabe- und Ergebnismasken. Im Text sind die beschriebenen **Schaltflächen** (Buttons) in eckige Klammern gesetzt, z. B. [Neu]. Gleichzeitig sind sie am linken Rand abgebildet. Die **Begriffe**, die in Dialogen, Tabellen und Menüs erscheinen, sind in *Kursivschrift* hervorgehoben, sodass die Erläuterungen gut nachvollzogen werden können.

Am Ende des Handbuchs befindet sich ein Stichwortverzeichnis. Sollten Sie dennoch nicht fündig werden, können Sie die Suchfunktion auf unserer Blog-Website https://www.dlubal.com/blog/de nutzen, um unter den Beiträgen eine Lösung zu finden.

1.3 Aufruf des RSKNICK-Moduls

Es bestehen in RSTAB folgende Möglichkeiten, das Zusatzmodul RSKNICK zu starten.

Menü

2

Sie können das Zusatzmodul aufrufen mit dem RSTAB-Menü

```
Zusatzmodule 
ightarrow Stabilität 
ightarrow RSKNICK.
```


Bild 1.1: Menü: Zusatzmodule \rightarrow Stabilität \rightarrow RSKNICK

Navigator

Alternativ rufen Sie das Zusatzmodul im Daten-Navigator auf durch Anklicken des Eintrags

 $\mathbf{Zusatzmodule}
ightarrow \mathbf{RSKNICK}.$

Bild 1.2: Daten-Navigator: Zusatzmodule \rightarrow RSKNICK

Panel

Wenn im RSTAB-Modell schon Ergebnisse von RSKNICK vorliegen, können Sie das Zusatzmodul auch über das Panel starten:

Stellen Sie den relevanten RSKNICK-Fall in der Lastfallliste der Menüleiste ein. Lassen Sie über die Schaltfläche [Ergebnisse anzeigen] die Knickfigur grafisch darstellen.

Im Panel können Sie nun die Schaltfläche [RSKNICK] zum Aufruf des Moduls benutzen.

Panel	×
Darstellungsfaktoren	
Knickfigur Nr.:	
3 - 3.26 🔻	
Darstellungsfaktor:	
DOWNIOK	
RSKINICK	
<u>a</u>	

Bild 1.3: Panel-Schaltfläche [RSKNICK]

2 Eingabedaten

Nach dem Aufruf des Zusatzmoduls erscheint ein neues Fenster. Links wird ein Navigator angezeigt, der die verfügbaren Masken verwaltet. Darüber befindet sich eine Pulldownliste mit den Stabilitätsfällen (siehe Kapitel 7.1, Seite 26).

Beim ersten Aufruf von RSKNICK werden die angelegten Lastfälle und Kombinationen automatisch eingelesen.

Abbrechen

OK

Eine Maske lässt sich durch Anklicken des Eintrags im Navigator aufrufen. Mit den links dargestellten Schaltflächen wird die vorherige bzw. nächste Maske eingestellt. Das Blättern durch die Masken ist auch mit den Funktionstasten [F2] (vorwärts) und [F3] (rückwärts) möglich.

[OK] sichert die Eingaben. RSKNICK wird beendet und es erfolgt die Rückkehr in das Hauptprogramm. [Abbrechen] beendet das Zusatzmodul, ohne die Daten zu speichern.

2.1 Basisangaben

In Maske 1.1 Basisangaben sind die Parameter für die Stabilitätsuntersuchung festzulegen. In den meisten Fällen lassen sich alle Vorgaben in dieser einen Maske treffen.

RSKNICK - [Lagerhalle]			X
Datei Einstellungen Hilfe			
FA1 - Stabilitätsanalyse 👻	1.1 Basisangaben		
Eingabedaten	Allgemein	Iterationsoptionen	
···· basisangaben	Anzahl der Knickfiguren, die zu ermitteln sind:	Maximale Anzahl der Iterationen:	
	Nomsikräfte, nichtlineare Einwirkungen und Arfangsverformungen übernehmen aus © Lastfal / Kombnation: LK4 - 1.35/LF1 + 1.51/LF2 + 1.051/LF3	Abbruchsschranke: 0.00001 [r] Interne Stabteilung für Stäbe des Typs	
	Normalkräfte manuell in Tabelle definieren	- Balken: 2 - Fachwerk: 1	
	Optionen	Stäbe mit Voute oder Bettung:	
	Ausnutzung des entlastenden Effektes durch Zugkräfte Stefigketsänderungen von RSTAB aktivieren Bei nicht konstantem N-Verlauf in einem Stab ist aus RSTAB zu übernehmen: Mittelwert Ungünstigster Wert	Parameter für Unterraum-Dimension Inkorement (Ehröhung): 10 - Maximale Anzahi der Ehröhungen: 15 -	singer for the second s
	Kommentar	•	
	Berechnung Kontrolle	Grafik	OK Abbrechen

Bild 2.1: Maske 1.1 Basisangaben

Die einzelnen Abschitte der Maske sind auf den folgenden Seiten beschrieben.

2 Eingabedaten

Allgemein

Allgemein
Anzahl der Knickfiguren, die zu ermitteln sind:
Normalkräfte, nichtlineare Einwirkungen und Anfangsverformungen übernehmen aus
Iastfall / Kombination:
LK4 - 1.35*LF1 + 1.5*LF2 + 1.05*LF3
Nomalkräfte manuell in Tabelle definieren

Bild 2.2: Anzahl der Knickfiguren und Ansatz von Normalkräften

Anzahl der Knickfiguren

RSKNICK ermittelt die ungünstigsten Knickfiguren des Modells, deren Anzahl in diesem Eingabefeld festzulegen ist. Die Obergrenze liegt bei den 10 000 niedrigsten Eigenwerten, sofern es die Anzahl der möglichen Modell-Freiheitsgrade und der RAM-Speicher erlauben.

Die Theorie des Berechnungsverfahrens lässt es generell nicht zu, die niedrigen Eigenwerte aus der Analyse auszuschließen und nur höhere Eigenwerte zu ermitteln.

Falls nach der Analyse negative Verzweigungslastfaktoren ausgewiesen werden, sollten die Werte im Abschnitt *Parameter für Unterraum-Dimension* erhöht werden (Beschreibung siehe unten): Bei zu geringen Inkrementen ist es nicht möglich, die negativen Eigenwerte auszublenden, um nur die positiven, realistischen Ergebnisse darzustellen.

Normalkräfte, nichtlineare Einwirkungen und Anfangsverformungen übernehmen

LF1 - Eigengewicht und Aufbau	Ŧ
LF1 - Eigengewicht und Aufbau	
LF2 - Nutzlast gesamt	
LF3 - Nutzlast einseitig links	
LF4 - Nutzlast einseitig rechts	
LF5 - Wind in X	
LF6 - Wind in Y	
LK1 - 1.35*LF1 + 1.5*LF2	
LK2 - 1.35*LF1 + 1.5*LF3	
LK3 - 1.35*LF1 + 1.5*LF4	

Die Liste enthält alle Lastfälle, Last-, Ergebnis- und Superkombinationen, die im aktuellen Modell existieren. Es ist ein Eintrag auszuwählen, dessen Normalkräfte und ggf. Steifigkeiten bei der Ermittlung der Knickfigur berücksichtigt werden sollen. Dieser Lastfall oder diese Kombination sollte in RSTAB nach Theorie I. Ordnung und ohne Steifigkeitsabminderungen (Material, Querschnitt, Stab) berechnet werden.

Wird ein Lastfall oder eine Lastkombination ausgewählt, so werden neben den Normalkräften auch die Steifigkeits-Randbedingungen aus RSTAB übernommen. Damit lassen sich nichtlineare Effekte wie z. B. ausfallende Stäbe, Lager und Gelenke oder Stabnichtlinearitäten in RSKNICK erfassen. Bei Ergebnis- und Superkombinationen hingegen können nur die Normalkräfte berücksichtigt werden. Von den beiden Normalkraft-Extremwerten verwendet RSKNICK dann den Minimalwert *min N* (größte Druckkraft).

Wenn noch keine Ergebnisse für diesen Lastfall oder diese Kombination vorliegen, werden die Schnittgrößen vor der RSKNICK-Analyse automatisch berechnet.

Alternativ lassen sich die *Normalkräfte manuell in einer Tabelle definieren*. Wird diese Option angewählt, so stellt RSKNICK die zusätzliche Eingabemaske *1.2 Normalkräfte* bereit (siehe Kapitel 2.2, Seite 9). Dort können stabweise die Normalkräfte N festgelegt werden, die für die Ermittlung der kritischen Lastfaktoren relevant sind.

Bei der Berechnung der Knickfigur und somit der Knicklängen spielt die Belastung eine entscheidende Rolle: Die Knickwerte hängen nicht nur vom statischen Modell, sondern auch vom Verhältnis der Normalkräfte zur Gesamtverzweigungslast N_{cr} ab. Es ist daher empfehlenswert, einen Lastfall mit voller vertikaler Belastung (ohne Wind) vorzugeben, damit die meisten Stäbe Druckkräfte erhalten – Knicklängen können schließlich nur für Stäbe mit Druckkräften berechnet werden. Auch die Verteilung der Belastung im Gesamtsystem wirkt sich auf die Ermittlung der kritischen Faktoren aus.

Optionen

Optionen
✓ Ausnutzung des entlastenden Effektes durch Zugkräfte
Steifigkeitsänderungen von RSTAB aktivieren
Bei nicht konstantem N-Verlauf in einem Stab ist aus RSTAB zu übernehmen:
Mittelwert
Ungünstigster Wert

Bild 2.3: Optionen

Ausnutzung des entlastenden Effekts durch Zugkräfte

Ist dieses Kontrollfeld aktiviert, werden auch die im Modell wirkenden Zugnormalkräfte bei der Ermittlung der Eigenwerte berücksichtigt. Diese führen in der Regel zu einer Stabilisierung des Modells.

Steifigkeitsänderungen von RSTAB aktivieren

Dieses Kontrollfeld steuert, ob die in RSTAB definierten Anpassungsfaktoren für die Material-, Stab-, Lager-, Gelenk- und Querschnittssteifigkeiten bei der Eigenwertanalyse berücksichtigt werden. Diese Faktoren sind in den entsprechenden Kapiteln des RSTAB-Handbuchs beschrieben. Ist das Häkchen gesetzt, werden bei der Berechnung in RSKNICK alle Steifigkeitsfaktoren des Lastfalls bzw. der Lastkombination unter Berücksichtigung von Ausfallkriterien angesetzt.

RSKNICK bietet somit eine Steuerungsmöglichkeit, die Steifigkeitsänderungen unabhängig von den Einstellungen in RSTAB anzusetzen. Damit lassen sich z. B. die Normalkräfte einer Lastkombination in RSTAB <u>ohne</u> Abminderung berechnen und dann die Verzweigungslasten in RSKNICK <u>mit</u> den reduzierten Material-, Stab- und Querschnittssteifigkeiten bestimmen.

Falls in RSTAB eine Steifigkeitsänderung für den Lastfall oder die Lastkombination aktiviert ist, so ist dieses Kontrollfeld gesperrt: Damit wird sichergestellt, dass die Eigenwerte mit den Modellannahmen übereinstimmen.

Wenn die Eigenwerte als "charakteristische" Eigenschaft des Modells ermittelt werden sollen, brauchen die Steifigkeitsänderungen nicht berücksichtigt werden.

Bei nicht konstantem N-Verlauf aus RSTAB übernehmen

Der Normalkraftverlauf an einem Stab ist nicht immer konstant, beispielsweise wenn eine Einzellast wirkt oder bei einer Stütze das automatische Eigengewicht berücksichtigt ist. Die beiden Auswahlfelder in diesem Abschnitt steuern, ob RSKNICK den *Mittelwert* oder den *Ungünstigsten Wert* der Normalkräfte für die Analyse benutzt. Mit der zweiten Option werden die größten Druckkräfte konstant für den ganzen Stab angesetzt, was zu niedrigeren Eigenwerten führen kann.

Iterationsoptionen

0 🜩
0.00001 [-]

Bild 2.4: Iterationsoptionen

Die Ermittlung der Knickfiguren erfolgt über den Eigenwert des Gesamtsystems. Dabei wird ein iterativer Gleichungslöser benutzt. Bei iterativen Berechnungsverfahren sind generell zwei Abbruchschranken vorzugeben. Die exakte Lösung kann angenähert, jedoch nie ganz erreicht werden. 2 Eingabedaten

Die Maximale Anzahl der Iterationen gibt vor, nach welchem Iterationsschritt der Rechengang abzubrechen ist – gleichgültig, ob das Problem konvergiert und somit eine sinnvolle Lösung vorliegt. Bei divergenten Problemen kann niemals eine Lösung erreicht werden. Die Abbruchschranke legt fest, wann bei konvergenten Berechnungen eine angenäherte Lösung als exakte Lösung anzusehen ist.

Interne Stabteilung

Interne Stabteilung für	
Stäbe des Typs	
- <u>B</u> alken:	2 🜩
- <u>F</u> achwerk:	1
<u>S</u> täbe mit Voute oder Bettung:	6

Bild 2.5: Interne Stabteilung

Für bessere Näherungslösungen kann es erforderlich sein, die Stabteilungen zu verfeinern. Durch Einträge von Werten größer 1 erfolgt eine programminterne Stabteilung. Teilungen lassen sich separat für *Balken-* und *Fachwerk-*Stäbe sowie für *Stäbe mit Voute oder Bettung* definieren. Insbesondere bei Vouten- und Bettungsstäben ist oft eine erhöhte Abbildungsgenauigkeit erforderlich.

Für einen räumlich definierten Einfeldbalken können bei einer Stabteilung von 1 maximal die sechs niedrigsten Eigenwerte berechnet werden. Durch die einfache Teilung des Stabes über den Teilungswert 2 lassen sich bereits die zwölf niedrigsten Eigenwerte ermitteln.

In folgendem DLUBAL-Blog ist ein Beispiel für Stabteilungen vorgestellt: https://www.dlubal.com/blog/12586

Parameter für Unterraum-Dimension

Parameter für Unterraum-Dimension		
Inkrement (Erhöhung):	10 🛫	
Maximale Anzahl der Erhöhungen:	15	

Bild 2.6: Parameter für Unterraum-Dimension

Findet RSKNICK nicht ausreichend positive Eigenwerte unter Berücksichtigung der vorgegebenen Anzahl an Iterationen, so wird die Dimension des Unterraums (d. h. Anzahl der Eigenwerte) automatisch per *Inkrement* erhöht und eine neue Anzahl von Knickfiguren berechnet. Dies wird so lange fortgesetzt, bis entweder die Anzahl der geforderten positiven Eigenwerte oder die *Maximale Anzahl der Erhöhungen* erreicht ist.

Da die Berechnungsmethode gegen die minimalen Absolutwerte der Eigenwerte konvergiert, kann es vorkommen, dass infolge von Zugkräften z. B. nur sechs negative Eigenwerte ermittelt werden, deren Absolutwerte die Minima darstellen. Über die Vergrößerung des Unterraums besteht nun die Möglichkeit, den niedrigsten positiven Eigenwert zu ermitteln.

Kommentar

Dieses Eingabefeld steht für eine benutzerdefinierte Anmerkung zur Verfügung, die beispielsweise den aktuellen Stabilitätsfall beschreibt.

2.2 Normalkräfte

Diese Maske wird angezeigt, wenn in Maske 1.1 Basisangaben eine manuelle Definition der Normalkräfte gewählt wurde. Stabnormalkräfte können hier direkt eingetragen werden.

	A	B	С
		Normalkraft	
	Stäbe Nr. (z.B. 1-5,20)	N [kN]	Kommentar
1		15.956	
2		-24.306	
3		-19.642	
4		12.940	
5		31.558	
6		-59.105	
7		-497.566	
8		-118.908	
9		-7.311	
10)	30.870	
11		28.028	
15	5	16.044	
16	3	13.028	
17	7	-497.430	
18	}	-517.903	
19)	434.458	
20)	8.890	
21		20.355	
22	2	-523.739	
23	}	-545.344	
24	4	17.374	
25	j	-504.685	
26	3	-526.119	
28	}	-451.314	
29)	-69.953	
30)	-6.238	
31		26.161	
32	2	25.307	
33	}	-510.718	
34	ł	437.035	
35	5	-531.660	
36	3	-87.354	
37	7	-484.837	
38	}	-475.282	

Bild 2.7: Maske 1.2 Normalkräfte

Stäbe Nr.

In dieser Spalte sind die Nummern der Stäbe anzugeben, die mit den in Spalte B einzutragenden Normalkräften belegt werden sollen.

Die Stäbe können auch grafisch ausgewählt werden. Diese Funktion steht zur Verfügung, wenn sich der Cursor in einem Eingabefeld dieser Spalte befindet (siehe Bild 2.7). Über die Schaltfläche oder die Funktionstaste [F7] erfolgt ein Sprung in die RSTAB-Oberfläche. Dort können die gewünschten Stäbe nacheinander angeklickt werden.

Mehifachauswahl Stäbe wählen			
Ausgew 21	vählt:		
Lee	ren	ОК	Abbrechen

Bild 2.8: Grafische Stabauswahl in RSTAB

Normalkraft

In dieser Spalte sind stabweise die Normalkräfte einzutragen, die bei der Eigenwertanalyse berücksichtigt werden sollen. Druckkräfte sind mit einem negativen Vorzeichen einzugeben.

2

Die Schaltfläche [Normalkräfte von einem RSTAB-Lastfall übernehmen], die sich am unteren Ende der Tabelle befindet, ermöglicht den Import von Normalkräften. Damit lassen sich alle normalkraftbehafteten Stäbe eines Lastfalls mitsamt Schnittkräften einlesen.

Normalkräfte aus F	STAB übernehmen
Importieren	
Von Lastfall:	
LF2 - Nutzlast ges	mt 👻
Mit Faktor:	1.000
D	OK Abbrechen

Bild 2.9: Dialog Normalkräfte aus RSTAB übernehmen

Für die Übernahme können die Normalkräfte mit einem globalen *Faktor* beaufschlagt werden. Nach [OK] lassen sich die Kräfte in der Tabelle aber auch individuell anpassen.

Kommentar

Diese Spalte steht für benutzerdefinierte Anmerkungen zur Verfügung, um z. B. die Normalkräfte zu beschreiben.

3 Berechnung

3.1 Kontrolle

Kontrolle

Vor der Berechnung sollten die Eingabedaten kurz auf ihre Richtigkeit hin überprüft werden. Die [Kontrolle] lässt sich über einen Klick auf die gleichnamige Schaltfläche ausführen.

Falls eine Unstimmigkeit entdeckt wird, erscheint eine entsprechende Meldung.

RSTAB64 Fehler Nr. 1034
Unzulässige bzw. fehlende Angabe der Stab-Normalkraft.
OK

Bild 3.1: Ergebnis der Kontrolle

3.2 Start der Berechnung

Berechnung

Die [Berechnung] kann über die entsprechende Schaltfläche gestartet werden.

RSKNICK sucht nach den Normalkräften, die bei der Stabilitätsuntersuchung berücksichtigt werden müssen. Falls keine Ergebnisse des Lastfalls bzw. der Last- oder Ergebniskombination vorliegen, startet zunächst die RSTAB-Berechnung zur Ermittlung der Schnittgrößen.

Die Berechnung kann auch in der RSTAB-Oberfläche gestartet werden: Im Dialog Zu berechnen (Menü **Berechnung** \rightarrow **Zu berechnen**) sind die Zusatzmodul-Fälle wie Lastfälle oder Lastkombinationen aufgelistet.

istralle / Nor	nete			Zur Bereche	ung quenewäht	
Nr.	Bezeichnung			Nr.	Bezeichnung	
General LF2 General LF3 General LF3 General LF4 General LF5 General LK1 General LK3 General LK4 EK1 FA1 FA1 FA2	Nutzlast einseitig links Nutzlast einseitig rechts Wind in X Imperfektion in X 1.35°LF1 + 1.5°LF2 + 0.9°LF5 + LF6 1.35°LF1 + 1.5°LF3 + 0.9°LF5 + LF6 1.35°LF1 + 1.5°LF5 + 1.5°LF6 LK1/s oder bis LK4 STAHL - Allgemeine Spannungsanalyse von Stäben STAHL EC3 - Bemessung nach Eurocode 3 RSKNICK - Mit Zugkraftentlastung	E	A A B	FA1	RSKNICK - Ohne Zugkräfte	
Alle	•	Q				

Falls die RSKNICK-Fälle in der Liste *Nicht berechnete* fehlen, ist die Selektion am Ende der Liste auf *Alle* oder *Zusatzmodule* zu ändern.

Bild 3.2: Dialog Zu berechnen

Mit der Schaltfläche leise werden die selektierten RSKNICK-Fälle in die rechte Liste übergeben. [OK] startet dann die Berechnung.

2

Ein Stabilitätsfall kann auch über die Liste der Symbolleiste direkt berechnet werden: Stellen Sie den RSKNICK-Fall ein und klicken dann die Schaltfläche [Ergebnisse anzeigen] an.

Bild 3.3: Direkte Berechnung eines RSKNICK-Stabilitätsfalls in RSTAB

Der Ablauf der Stabilitätsanalyse kann anschließend in einem Dialog verfolgt werden.

Knickfiguren 8 Enlesen der Systemdaten Näherungslösung Initialisieren 10 Optimierung der Bandbreite 1 Aufstellen der Gesamtmatrix 1 Randbedingungen 200 Skalieren der Gesamtmatrix 0.00010	Berechnung	Gesamtablauf RSTAB - Berechnung RSKNICK-Berechnung Einzelschritte		
	RS-SOLV	Knickfiguren Enlesen der Systemdaten Initialisieren Optimierung der Bandbreite Aufstellen der Gesamtmatrix Randbedingungen Skalieren der Gesamtmatrix Cholesky-Zerlegung	Anzahl der Knickfiguren Näherungslösung Fachwerkstab Vouten bzw. elast. Bettung Max. Anzahl der Iterationen Iteration-Abbruchschranke	8 10 1 6 200 0.00010

Bild 3.4: RSKNICK-Berechnung

Bei der Berechnung nach der Unterraum-Methode wird, wie im obigen Bild erkennbar, die so genannte *Cholesky-Zerlegung* durchlaufen. Sie wird bei der iterativen Berechnung zur Lösung des Gleichungssystems benutzt, um neue Annahmen für Eigenwerte und Eigenformen treffen zu können.

Wichtig: Anders als bei der RSTAB-Option *Stufenweise ansteigende Belastung aktivieren* (siehe Kapitel 5.4, Seite 22) erfolgt in RSKNICK derzeit <u>keine</u> nichtlineare Berechnung. Die Knicklängen und Verzweigungslastfaktoren werden am **linearisierten** System ermittelt. Bei Modellen wie z. B. Gerüsten mit nichtlinearen Gelenkeigenschaften in Form von Arbeitsdiagrammen können daher die Steifigkeitsverhältnisse für die Ermittlung des kritischen Lastfaktors und der Knickfiguren nur in sehr vereinfachter Weise berücksichtigt werden.

4 Ergebnisse

Unmittelbar nach der Berechnung erscheint die Maske 2.1 Knicklängen und -lasten.

Die Ergebnisse werden in den Ergebnismasken 2.1 bis 2.3 tabellarisch ausgegeben. Jede Maske lässt sich durch Anklicken des Eintrags im Navigator direkt ansteuern. Mit den links dargestellten Schaltflächen wird die vorherige bzw. nächste Maske eingestellt. Das Blättern durch die Masken ist auch mit den Funktionstasten [F2] und [F3] möglich.

4

OK

₽

[OK] sichert die Ergebnisse. RSKNICK wird beendet und es erfolgt die Rückkehr in das Hauptprogramm.

Dieses Kapitel stellt die Ergebnismasken der Reihe nach vor. Die Auswertung und Überprüfung der Ergebnisse ist im Kapitel 5 ab Seite 18 beschrieben.

4.1 Knicklängen und -lasten

Bild 4.1: Maske 2.1 Knicklängen und -lasten

Die Auflistung der Knicklängen und -lasten erfolgt nach Stäben geordnet. Die Ergebnisse eines bestimmten Stabes lassen sich schnell über den Navigator anzeigen: Klappen Sie die links dargestellte Liste auf und klicken den relevanten *Stab Nr.* an. RSKNICK springt dann zu den tabellarischen Ergebnissen dieses Stabes.

Stab Nr.

Es werden für alle Stäbe des Modells die Ergebnisse der Eigenwertuntersuchung ausgewiesen. Stäbe mit Zugkräften und ausgefallene Stäbe sind entsprechend gekennzeichnet.

Knoten Nr. Anfang / Ende

Jeder Stab ist durch einen Anfangs- und einen Endknoten definiert. Die Nummern werden jeweils in den Spalten A und B angezeigt.

Stablänge L

In Spalte C wird die geometrische Länge eines jeden Stabes angegeben.

Figur Nr.

Die Auflistung der Ergebnisse erfolgt nach Knickfiguren geordnet. Im Kapitel 4.2 sind die Eigenwerte mit den zugehörigen Knickfiguren beschrieben.

Knicklänge L_{cr,y} / L_{cr,z}

Die Knicklänge L_{cr,y} (bzw. L_{cr,u}) beschreibt das Knickverhalten rechtwinklig zur "starken" Stabachse y (bzw. u bei unsymmetrischen Querschnitten), L_{cr,z} bzw. L_{cr,v} entsprechend das Ausweichen rechtwinklig zur "schwachen" Stabachse z bzw. v.

Die Knicklängen L_{cr} basieren auf den in Spalte I ausgewiesenen stabspezifischen Knicklasten, die wiederum auf die Verzweigungslast des Gesamtmodells bezogen sind. Die Knicklängen sind somit auf das Verhältnis der Stabnormalkräfte zur Gesamtverzweigungslast bezogen. Für einfache Fälle sind die Knicklängen als EULER-Fälle 1 bis 4 bekannt.

In manchen Fällen kann die ungünstigste System-Verzweigungslast die kritische Last eines entkoppelten, d. h. gelenkig angeschlossenen Einzelstabs sein (siehe Kapitel 8.3 auf Seite 37). Dies ist in der Grafik der Knickfigur erkennbar, da nur an diesem Stab ein sinusförmiger Ausschlag vorliegt. Hier handelt es sich um eine so genannte lokale Instabilität. Da die Knicklängen aller übrigen Stäbe für diesen Versagensfall unbrauchbar sind, müssen sie einer höheren Knickfigur entnommen werden. Erst dort versagt das Gesamtsystem.

In folgendem DLUBAL-Blog ist die Ermittlung und Verwendung der Knicklängen beschrieben: https://www.dlubal.com/blog/20981

Knicklängenbeiwert k_{cr,y} / k_{cr,z}

Die auf die lokalen Stabachsen y und z bzw. u und v bezogenen Knicklängenbeiwerte beschreiben das Verhältnis zwischen Knick- und Stablänge.

$$k_{cr} = \frac{L_{cr}}{L}$$

(4.1)

Knicklast N_{cr}

In dieser Spalte wird für jeden Stab die kritische Normalkraft N_{cr} ausgewiesen, die in Bezug auf die jeweilige Eigenform vorliegt. Die einzelnen Knicklasten und zugehörigen Knicklängen sind daher stets im Kontext der jeweiligen Gesamtsystem-Verzweigungslast zu betrachten.

2214 115

4.2 Knickfiguren

	A	B	C	D	E	F	G	H	
itab	Knoten	Figur			Normierte Kr	nickfigur [-]			
Nr.	Nr.	Nr.	ux	UY	uz	φx	ΦY	φz	
1	1	1	0.00000	0.00000	0.00000	-0.02763	-0.02763	0.15621	
		2	0.00000	0.00000	0.00000	-0.43894	-0.43894	-0.05137	
		3	0.00000	0.00000	0.00000	-0.00428	0.00428	0.00000	
		4	0.00000	0.00000	0.00000	0.51133	0.51133	0.20205	
	3	1	0.01286	-0.01286	0.00000	-0.05980	-0.05980	0.13783	
		2	-0.00111	0.00111	0.00000	0.03490	0.03490	0.21939	
		3	0.01914	0.01914	0.01145	0.01592	-0.01592	0.00000	
		4	-0.01516	0.01516	0.00000	-0.02517	-0.02517	-0.10453	
2	2	1	0.00000	0.00000	0.00000	0.27587	-0.10216	0.03393	
		2	0.00000	0.00000	0.00000	-0.51260	0.52206	0.10107	
		3	0.00000	0.00000	0.00000	0.48395	-0.44341	-0.19627	
		4	0.00000	0.00000	0.00000	-0.15321	0.14674	0.07056	
	4	1	0.01284	0.82326	0.23136	0.00230	0.00374	0.14235	
		2	-0.00120	0.04495	0.01317	0.04266	-0.04124	-0.21852	
		3	0.01904	0.16549	0.04195	-0.04571	0.03071	0.09053	
		4	-0.01497	-0.01564	-0.00023	0.00948	0.00222	-0.01722	
3	8	1	0.00000	0.00000	0.00000	0.34249	0.34249	-0.08695	
		2	0.00000	0.00000	0.00000	0.51985	0.51985	-0.09095	
		3	0.00000	0.00000	0.00000	0.03614	-0.03614	0.00000	
		4	0.00000	0.00000	0.00000	0.11983	0.11983	-0.04721	
	6	1	-0.82336	0.82336	0.00000	-0.06045	-0.06045	0.14330	
		2	-0.04507	0.04508	0.00000	-0.04540	-0.04540	0.23205	
		3	0.16541	0.16541	-0.09451	0.00093	-0.00093	0.00000	
		4	0.01561	-0.01560	0.00000	-0.01040	-0.01040	0.02720	
4	7	1	0.00000	0.00000	0.00000	-0.10216	0.27587	0.03393	
		2	0.00000	0.00000	0.00000	0.52206	-0.51260	0.10107	
		3	0.00000	0.00000	0.00000	0.44341	-0.48395	0.19627	
		4	0.00000	0.00000	0.00000	0.14674	-0.15321	0.07056	
	5	1	-0.82326	-0.01284	-0.23136	0.00374	0.00230	0.14235	
		2	-0.04495	0.00120	-0.01317	-0.04124	0.04266	-0.21852	
		3	0.16549	0.01904	0.04195	-0.03071	0.04571	-0.09053	
		4	0.01565	0.01497	0.00023	0.00222	0.00948	-0.01722	
5	1	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
		2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	

Bild 4.2: Maske 2.2 Knickfiguren

Für jede Knickfigur werden die Verschiebungen und Verdrehungen der Modellknoten ausgegeben.

Knoten Nr.

Die Knickfiguren werden für alle in der RSTAB-Tabelle *1.1 Knoten* definierten Modellobjekte aufgelistet. Ergebnisse in Stabteilungspunkten liegen tabellarisch nicht vor.

Figur Nr.

Die Verformungen werden für jede berechnete Eigenform aufgelistet.

Normierte Knickfigur u_X / u_Y / u_Z / ϕ_X / ϕ_Y / ϕ_Z

Die in den Spalten C bis E aufgelisteten Verschiebungen *u* sind auf die Achsen des globalen Koordinatensystems bezogen und auf das Extremum *1* der Gesamtverschiebung normiert.

In den Spalten F bis H werden die den normierten Verschiebungen zugehörigen Knotenrotationen ϕ aufgelistet.

Werden ausschließlich Null-Werte bei den normierten Verschiebungen ausgewiesen, ist dies meist auf große Verdrillungen der Stäbe zurückzuführen (siehe Bild 4.3). Diese Effekte wirken sich nicht auf die Verschiebungen der Stabenden aus. Daher sind die ausgewiesenen Knicklängen und Knicklasten für diese Stäbe wenig aussagekräftig.

Bild 4.3: Verdrillung einer dünnwandigen Rechteckstütze

4.3 Verzweigungslastfaktoren

Die letzte Ergebnismaske gibt Aufschluss über die Verzweigungslastfaktoren des Modells.

.3 Verzwe	igungslastfaktoren	
	Α	В
Figur	Verzweigungslastfaktor	Vergrößerungsfaktor
Nr.	f [-]	α.[-]
1	0.832	0.000
2	1.038	27.599
3	1.042	24.943
4	1.226	5.428
5	1.288	4.467
6	1.487	3.052
7	1.633	2.580
8	1.795	2.257
9	1.953	2.049
10	2.000	2.000
11	2.159	1.863
12	2.234	1.810
13	2.274	1.785
14	2.321	1.757
15	2.375	1.727
16	2 456	1.687
17	2.592	1.628
18	2 784	1.561
19	2.871	1.534
20	3.011	1 497
20	3.011	1.437

Bild 4.4: Maske 2.3 Verzweigungslastfaktoren

Figur Nr.

Für jeden Eigenwert werden die Verzweigungslast- und Vergrößerungsfaktoren ausgewiesen. Die Ergebniszeilen sind nach Knickfigur-Nummern geordnet.

Verzweigungslastfaktor f

Für jeden Eigenwert wird der Lastverzweigungsfaktor angegeben.

Bei Faktoren kleiner 1,00 ist das System instabil. Ein Verzweigungsfaktor größer 1,00 bedeutet, dass die Belastung aus den vorgegebenen Normalkräften multipliziert mit diesem Faktor zum Knickversagen des Systems führt.

Verzweigungslastfaktoren kleiner 10 erfordern gemäß EN 1993-1-1 [1], 5.2.1(3) für elastiche Untersuchungen die Berechnung nach Theorie II. Ordnung.

Bei einem negativen Verzweigungslastfaktor tritt wegen der Zugkräfte im Modell kein Stabilitätsversagen auf. Es ist keine Aussage über das zu erwartende Knickverhalten möglich.

Vergrößerungsfaktor α

Der Vergrößerungsfaktor ermittelt sich wie folgt:

$$\alpha = \frac{1}{1 - \frac{1}{f}} \tag{4.2}$$

mit

f: Verzweigungslastfaktor

Der Vergrößerungsfaktor beschreibt die Beziehung zwischen den Momenten nach Theorie I. und II. Ordnung:

$$M^{II} = \alpha \cdot M^{I} \tag{4.3}$$

mit

M^{II}: Moment nach Theorie II. Ordnung

M^I: Moment nach Theorie I. Ordnung, jedoch unter Berücksichtigung der Ersatzbelastung für die Verformung

Gleichung 4.3 gilt nur, wenn die Biegelinie infolge der Belastung ähnlich der Knickfigur und der Verzweigungslastfaktor größer als 1 ist.

5 Ergebnisauswertung

Die Ergebnisse der Eigenwertanalyse lassen sich auf verschiedene Weise auswerten. Für die grafische Evaluation steht das RSTAB-Arbeitsfenster zur Verfügung.

5.1 Ergebnismasken

Zunächst sollten die in Maske 2.3 ausgewiesenen Verzweigungslastfaktoren überprüft werden.

Ein negativer Verzweigungslastfaktor bedeutet, dass infolge der Zugnormalkräfte kein Knickversagen festgestellt werden konnte. Dies kann man sich so vorstellen: Bei einer umgekehrten Wirkrichtung der Belastung (inverse Vorzeichen) würde sich ein Knickversagen einstellen. Abhilfe ist in manchen Fällen durch eine Erhöhung der zu ermittelnden Knickfiguren möglich.

Verzweigungslastfaktoren kleiner als 1 bedeuten, dass das System instabil ist!

3 Verzweigungslastfaktoren							
	A	В					
Figur	Verzweigungslastfaktor	Vergrößerungsfaktor					
Nr.	f [-]	α [-]					
1	0.832	0.000					
2	1.038	27.599					
3	1.042	24.943					
4	1.226	5.428					
5	1.288	4.467					
6	1.487	3.052					

Bild 5.1: Instabiles System

Nur ein positiver Verzweigungsfaktor größer 1,00 lässt die Aussage zu, dass die Belastung infolge der vorgegebenen Normalkräfte multipliziert mit diesem Faktor zum Knickversagen des stabilen Systems führt.

In Maske 2.1 werden für jeden Stab die Knicklängenbeiwerte k_{cr} angegeben, die sich je nach Knickfigur unterscheiden.

2.	.1 Knicklängen und -lasten									
[A	В	С	D	E	F	G	Н	
	Stab	Knote	n Nr.	Stablänge	Figur	Knicklä	nge [m]	Knicklänge	nbeiwert [-]	Knicklast
	Nr.	Anfang	Ende	L [m]	Nr.	L _{or,y}	Lor,z	k or, y	k _{or,z}	N _{cr} [kN]
	1	1	3	7.550	1	27.899	7.548	3.695	1.000	51.657
					2	20.893	5.652	2.767	0.749	92.117
					3	20.761	5.617	2.750	0.744	93.285
					4	20.184	5.461	2.673	0.723	98.700

Bild 5.2: Knicklängenbeiwerte k_{cr}

Bei der Analyse werden die Normalkräfte iterativ so lange erhöht, bis der Verzweigungslastfall eintritt. Aus diesem kritischen Lastfaktor wird die Knicklast ermittelt, die dann wiederum den Rückschluss auf die Knicklängen und Knicklängenbeiwerte ermöglicht.

Möchte man beispielsweise für das Ausweichen rechtwinklig zur starken Stabachse *y* den maßgebenden Knicklängenbeiwert k_{cr,y} ablesen, so müssen in der Regel mehrere Knickfiguren berechnet werden. Für quadratische Querschnitte ergeben sich gleiche Knicklängen und Knicklängenbeiwerte in beide Achsenrichtungen.

B

Die Knicklängenbeiwerte für Stabzüge lassen sich mit RSKNICK nicht direkt ermitteln. Hier besteht nur die Möglichkeit, die Ergebnisse der Einzelstäbe zu bewerten. Als maßgebend für den Stabzug kann dabei der Stab angesehen werden, bei dem die kleinste Knicklast N_{cr} ausgegeben wird. Die k_{cr}-Werte können dann aus der Knicklänge dieses Stabes und der Gesamtlänge des Stabzugs ermittelt werden.

Für die Auswertung kann auch das Arbeitsfenster von RSTAB genutzt werden.

RSTAB-Hintergrundgrafik

Das RSTAB-Arbeitsfenster im Hintergrund ist hilfreich, um die Position eines Stabes im Modell ausfindig zu machen: Der in der Ergebnismaske von RSKNICK selektierte Stab ist in der Hintergrundgrafik mit der Selektionsfarbe markiert. Dieser Stab lässt sich ggf. durch Verschieben des RSKNICK-Fensters lokalisieren.

RSTAB-Arbeitsfenster

Grafik

RSKNICK FA1 - LF1

LF1 - Eigengewicht und Aufbau

LF2 - Nutzlast gesamt LK1 - 1.35*LF1 + 1.5*LF2 Durch die grafische Auswertung der einzelnen Knickfiguren lässt sich das Stabilitätsverhalten des Modells einschätzen: Klicken Sie die Schaltfläche [Grafik] an, um das Modul RSKNICK zu verlassen. Im Arbeitsfenster von RSTAB werden nun die Knickfiguren wie die Verformungen eines Lastfalls am Modell dargestellt.

Der aktuelle RSKNICK-Stabilitätsfall ist voreingestellt. Der *Ergebnisse*-Navigator steuert, welche *Globale Verformungen* der Knickfiguren grafisch angezeigt werden.

Bild 5.3: Ergebnisse-Navigator für normierte Knickfiguren

Neben den Gesamtverformungen *u* lassen sich die Verschiebungs- und Verdrehungsanteile gezielt in jede der globalen Richtungen darstellen.

Analog zur Verformungsanzeige blendet die Schaltfläche [Ergebnisse anzeigen] die Darstellung der Knickfiguren ein oder aus. Die Schaltfläche [Ergebnisse mit Werten anzeigen] rechts davon ist für RSKNICK ohne Bedeutung.

Da Da St

Das Panel ist an das Modul RSKNICK angepasst. Im Kapitel 3.4.6 des RSTAB-Handbuchs sind die Standardfunktionen des Panels beschrieben. Das Register *Farbspektrum* wird angezeigt, wenn die Verformungen mit der Option *Querschnitte farbig* dargestellt werden (siehe Bild 5.5).

A

Im Panel-Register Faktoren können die Knickfiguren ausgewählt werden.

Panel	×
Darstellungsfaktoren	
Knickfigur Nr.:	
3 - 1.46	
1-1.42	
3 - 1.46	
4 - 1.46	
6 - 1.47	
7 - 1.48 8 - 1.48	
9 - 2.62	
10-2.72	
RSKNICK	

Bild 5.4: Auswahl der Knickfigur im Register Faktoren

1

Wenn die knickgefährdeten Stäbe im Modell nur schwer zu finden sind, sollte der *Darstellungsfaktor* der Verformung im Panel-Register *Faktoren* erhöht werden. Hilfreich ist auch die Animation der Verformungen, die sich über die links dargestellte Schaltfläche aktivieren lässt.

Die Ergebnisdarstellung kann im Zeigen-Navigator über den Eintrag **Ergebnisse** \rightarrow **Verformung** \rightarrow **Stäbe** gesteuert werden. Standardmäßig werden die Knickfiguren als *Linien* angezeigt. Die beiden übrigen Optionen helfen zur Veranschaulichung des Knickverhaltens.

Bild 5.5: Zeigen-Navigator: Ergebnisse ightarrow Verformung ightarrow Stäbe ightarrow Querschnitte farbig

Die Grafiken der Knickfiguren können in das Ausdruckprotokoll übergeben werden (siehe Kapitel 6.2, Seite 24).

RSKNICK

Die Rückkehr zum Zusatzmodul ist über die Panel-Schaltfläche [RSKNICK] möglich.

5.3 Filter für Ergebnisse

Die RSKNICK-Ergebnismasken ermöglichen eine Auswahl nach verschiedenen Kriterien. Zusätzlich stehen die im Kapitel 9.7 des RSTAB-Handbuchs beschriebenen Filtermöglichkeiten zur Verfügung, mit denen sich die Ergebnisse der Stabilitätsanalyse grafisch auswerten lassen.

Auch für RSKNICK können die Möglichkeiten der *Sichtbarkeiten* genutzt werden (siehe RSTAB-Handbuch, Kapitel 9.7.1), um die Stäbe für die Auswertung zu filtern.

Filtern von Nachweisen

Grafik

Die normierten Verformungen lassen sich als Filterkriterium im RSTAB-Arbeitsfenster nutzen, das über die Schaltfläche [Grafik] zugänglich ist. Hierfür muss das Panel angezeigt werden. Sollte es nicht aktiv sein, kann es eingeblendet werden über das RSTAB-Menü

$\textbf{Ansicht} \rightarrow \textbf{Steuerpanel}$

1

oder die entsprechende Schaltfläche in der Symbolleiste.

Das Panel ist im Kapitel 3.4.6 des RSTAB-Handbuchs beschrieben. Die Filtereinstellungen für die Ergebnisse sind im ersten Panel-Register (Farbspektrum) vorzunehmen. Da dieses Register bei der Linien- oder Querschnittsdarstellung nicht verfügbar ist, muss im *Zeigen*-Navigator auf die Darstellungsart *Querschnitte farbig* umgeschaltet werden (siehe Bild 5.5).

Im Panel kann beispielsweise eingestellt werden, dass nur normierte Verformungen größer als 0,55 angezeigt werden. Damit lassen sich die knickgefährdeten Bereiche leichter lokalisieren.

Filtern von Stäben

Im Register *Filter* des Steuerpanels können die Nummern ausgewählter Stäbe angegeben werden, um deren Knickfiguren gefiltert anzuzeigen. Diese Funktion ist im Kapitel 9.7.3 des RSTAB-Handbuchs beschrieben. Im Gegensatz zur Ausschnittfunktion wird das Modell mit angezeigt.

Bild 5.6: Stabfilter f
ür Knickfigur eines Hallenriegels

5.4 Nichtlineare RSTAB-Berechnung

Auch im Hauptprogramm RSTAB besteht die Möglichkeit, den Verzweigungslastfaktor eines Lastfalls oder einer Lastkombination zu berechnen. Hierzu ist im RSTAB-Dialog *Lastfälle und Kombinationen bearbeiten* bei den Berechnungsparametern des Lastfalls bzw. der Lastkombination die *Stufenweise ansteigende Belastung* zu aktivieren. Dieses Kontrollfeld ist nur in Verbindung mit nichtlinearen Berechnungsverfahren wirksam, nicht nach Theorie I. Ordnung.

Lastfälle und Kombinationen bearbeiten			×
Lastfälle Lastkombinationen Ergebniskombinationen			
Vorhandene Lastkombinationen	LK-Nr. Lastkombination-Bezeichnung		Zu berechnen
GZT LK1 1.35*LF1		•	
Gezri LK2 1.35*LF1 + 1.5*LF2 Gezri LK3 1.35*LF1 + 1.5*LF2 + 1.05*LF3	Basis Berechnungsparameter		
GZI LK4 1.35*LF1 + 1.5*LF3	Berechnungsart	Ontionen	
GZII LK5 1.35*LF1 + 1.05*LF2 + 1.5*LF3	I. Ordnung (geometrisch linear)	Belastung mit Faktor multiplizie	ren:
	II. Ordnung (P-Delta)	Ergebnisse durch Lastfakto	r zurückdividieren
	🗇 III. Ordnung (große Verformungen) nach Newton-Raphson	Steifigkeitsbeiwerte aktivieren für:	
	Durchschlagpmblem nach modifiziertem Newton-Ranhson	Materialien (Teilsicherheitsbeiw	vert YM)
		Querschnitte (Faktor für IT, Iy,	Iz, A, Ay, Az)
		Stäbe (Definitionstyp)	
		Sondereinstellungen aktivieren im	Registerreiter:
		Steifigkeiten modifizieren	
		Zusatzoptionen	
		Entlastende Wirkung durch Zu berücksichtigen	igkräfte der Stäbe
	Stufenweise ansteigende Belastung	Schnittgrößen auf verformte St beziehen für:	ruktur
		Normalkräfte N	
	Anfangslastfaktor k0: 1.000	Querkräfte V _y and V _z	
	Lastfaktorsteigerung ∆k : 0.100 🚔 [-]	Momente My, Mz und MT	
	Verfeinerung der letzten Laststeigerung:	Separate Anzahl der Laststufer Lastkombination anwenden:	n für diese
	📄 Beendigungsbedingung für: 🛛 u 💛	Ergebnisse der Laststeigerung	en speichem
	Knoten Nr.: V		
	Anfangslast anwenden (nicht steigend):		
Alle (5) - X	×		
			OK Abbrechen

Bild 5.7: Dialog Lastfälle und Kombinationen bearbeiten – Berechnungsparameter einer Lastkombination

Der Anfangslastfaktor k_0 sollte nicht zu hoch gewählt werden, damit die Berechnung die erste Eigenform mit Sicherheit erfasst.

RSTAB ermittelt den Verzweigungslastfaktor nach einem nichtlinearen Berechnungsverfahren. Anstelle einer linearen Eigenwertanalyse wird die Belastung schrittweise um den Wert der *Lastfaktorsteigerung* Δ k erhöht. Bei einer bestimmten Laststufe wird das System instabil. Damit ist der Verzweigungslastfaktor gefunden, der dann mit der Instabilitätsursache in Tabelle 4.0 Ergebnisse - Zusammenfassung ausgewiesen wird (siehe Bild 5.8).

A	B	C	D
Bezeichnung	Wert	Einheit	Kommentar
EI - Eigengewicht	1		1
□ LK1 - 1.35*LF1 + LF4			
Summe Belastung in Richtung X	0.00	kN	
Summe Lagerkräfte in Richtung X	0.00	kN	
Summe Belastung in Richtung Z	162.01	kN	
Summe Lagerkräfte in Richtung Z	162.01	kN	Abweichung: 0.00 %
Maximale Verschiebung in Richtung X	16.8	mm	Stab Nr. 6, x: 3.500 m
Maximale Verschiebung in Richtung Z	100.9	mm	Stab Nr. 3, x: 7.638 m
Maximale Verschiebung vektoriell	101.0	mm	Stab Nr. 3, x: 7.638 m
Maximale Verdrehung um Y-Achse	-14.6	mrad	Stab Nr. 3, x: 1.528 m
Berechnungstheorie	II. Ordnung		Theorie II. Ordnung (nichtlinear)
Schnittgrößen bezogen auf verformtes Modell für	2		N, Vy, Vz, My, Mz, MT
Entlastende Wirkung von Zugkräften der Stäbe berücks	1		
Ergebnisse durch LK-Faktor zurückdividieren			
- Steifigkeitsreduzierung	V		Materialien
Anzahl der Laststufen	1		
Anzahl der Iterationen	3		
🖃 Stufenweise ansteigende Belastung	1		
Anfangslastfaktor	1.000		
Lastfaktorinkrement	0.100		
 Verfeinerung der letzten Laststufe 	10		
Verformungslimit			
 LF/LK hinzufügen (nicht steigend) 			
Maximaler Lastfaktor	17.740		Keine Konvergenz mit nächstem Lastfaktor in 100 Iterationen.
Ergebnisse - Zusammenfassung	-		
Berechnungsstatus	ок		
Maximale Verschiebung in Richtung X	16.8	mm	LK1, Stab Nr. 6, x: 3.500 m
Maximale Verschiebung in Richtung Z	100.9	mm	LK1, Stab Nr. 3, x: 7.638 m
 Maximale Verschiebung vektoriell 	101.0	mm	LK1, Stab Nr. 3, x: 7.638 m
 Maximale Verdrehung um Y-Achse 	-14.6	mrad	LK1, Stab Nr. 3, x: 1.528 m
Anzahl Elemente	6		
Anzahl Knoten	7		
Anzahl Gleichungen	21		
Maximale Anzahl Iterationen	100		
Stabteilungen für Ergebnisse der Stäbe	10		
 Abzahl der Stabteilungen f ür Seil-, Bettungs- und Vouten 	10		
 Stab-Schubsteifigkeiten (A-v, A-z) berücksichtigen 			

Bild 5.8: Maximaler Lastfaktor in RSTAB-Tabelle 4.0 Ergebnisse - Zusammenfassung

Mit diesem Verfahren werden alle nichtlinearen Elemente wie ausfallende Stäbe oder Lager berücksichtigt. Es wird jedoch nur der niedrigste Eigenwert berechnet. Die Rechenzeit ist meist auch länger als bei einer linearen Analyse mit RSKNICK.

Wegen der unterschiedlichen Berechnungsansätze sind Differenzen zwischen den Verzweigungslastfaktoren von RSTAB und RSKNICK möglich. Falls bei einem linearen System der kritische Lastfaktor deutlich von der RSKNICK-Berechnung abweicht, sollte überprüft werden, ob die Berechnungsparameter

- Entlastende Wirkung durch Zugkräfte und
- Reduzierung der Steifigkeiten

in gleicher Weise berücksichtigt sind.

6 Ausdruck

6.1 Ausdruckprotokoll

Für die Daten des Moduls RSKNICK wird – wie in RSTAB – ein Ausdruckprotokoll generiert, das mit Grafiken und Erläuterungen ergänzt werden kann. Die Selektion im Ausdruckprotokoll steuert, welche Daten der Stabilitätsanalyse im Ausdruck erscheinen.

Das Ausdruckprotokoll ist im RSTAB-Handbuch beschrieben. Das Kapitel 10.1.3.5 *Selektion der Zusatzmodul-Daten* erläutert, wie die Ein- und Ausgabedaten von Zusatzmodulen für den Ausdruck aufbereitet werden können.

6.2 Grafikausdruck

In RSTAB kann jedes Bild, das im Arbeitsfenster angezeigt wird, in das Ausdruckprotokoll übergeben oder direkt zum Drucker geleitet werden. Somit lassen sich auch die am RSTAB-Modell gezeigten Knickfiguren für den Ausdruck aufbereiten.

Das Drucken von Grafiken ist im Kapitel 10.2 des RSTAB-Handbuchs beschrieben.

Die aktuelle Knickfigur kann gedruckt werden über das RSTAB-Menü

 $\mathbf{Datei}
ightarrow \mathbf{Drucken}$

-
1
11-2
1

oder die entsprechende Schaltfläche in der Symbolleiste.

🚚 RSTAB 8.00 (64bit) - [Halle]								
:4	<u>D</u> atei	Bearbeite <u>n</u>	<u>A</u> nsicht	E <u>i</u> nfügen	Berechnung			
: 🗋	23	3 🔒 🗎		<u>n</u> 🗠 🖊	7 🔩 🚱 🔁			
9	- %	2 % 🐒	Grafik	drucken	🎮 - 🎢 🖄			

Bild 6.1: Schaltfläche Drucken in RSTAB-Symbolleiste

Es erscheint folgender Dialog.

Grafikausdruck		x	
Basis Optionen Farbskala Faktoren Ränd	ler und Streckfaktoren		
Grafikbild ○ Sofort ausdrucken ◎ In Ausdruckprotokoli: ▲P1 ▼ ○ In Zwischenablage ablegen ○ In 3D-PDF	Welche Fenster Nur das aktive Mehr Seriendruck	Grafikgröße Wie Bildschim-Ansicht Fensterfüllend Im Maßstab 1: 100	•
Grafikbild-Größe und -Drehung ✓ Ober gesamte Seitenbreite ○ Uber gesamte Seitenhöhe ● Höhe: 60 क [7,4] Drehung: 0 x [1]	Optionen Im Ergebnisverlau x-Stelle ausgeben Grafikbild sperren V Ausdruckprotokol	f Werte an gewünschter (ohne Aktualisierung) I nach (OK) anzeigen	
Grafik-Überschrift RSKNICK - Verformungen u, FA1, Isometrie		OK 🗐 🗸 Abb	rechen

Bild 6.2: Dialog Grafikausdruck, Register Basis

Dieser Dialog ist im Kapitel 10.2 des RSTAB-Handbuchs beschrieben. Dort sind auch die übrigen Register des Dialogs erläutert.

6 Ausdruck

Aus Protokoll entfernen Mit neuer Seite beginnen
Selektion
Eigenschaften

Eine Grafik kann im Ausdruckprotokoll wie gewohnt per Drag-and-Drop an eine andere Stelle geschoben werden.

6

Um eine Grafik nachträglich im Ausdruckprotokoll anzupassen, führen Sie einen Rechtsklick auf den entsprechenden Eintrag im Protokoll-Navigator aus. Die Option *Eigenschaften* im Kontextmenü ruft wieder den Dialog *Grafikausdruck* auf, in dem Sie die Anpassungen vornehmen können.

Grafikausdruck				X
Eigenschaften Optionen Farbskala	Faktoren Ränder und	Streckfaktoren		
Schrift	Symbole		Rahmen	
Proportional	Proportional		Ohne Rahmen	
 Konstant 	Konstant		Mit Rahmen	
Faktor: 1 📩	Faktor: 1		Schriftfeld	
Druckqualität		Druckfarbe		
🔘 Standard (max 1000 x 1000 Pixel)		🔘 Graustufen		
Maximal (max 5000 x 5000 Pixel)		 Texte und Linien schwarz 		
Benutzerdefiniert		Alles farbig		
Max. Anzahl Pixel: 1000 📩				
OK V Abbrechen				

Bild 6.3: Dialog Grafikausdruck, Register Optionen

7 Allgemeine Funktionen

Dieses Kapitel beschreibt nützliche Menüfunktionen und stellt Exportmöglichkeiten für die Ergebnisse der Stabilitätsanalyse vor.

7.1 RSKNICK-Analysefälle

Analysefälle ermöglichen es, verschiedene Stabilitätsaspekte zu betrachten. So kann beispielsweise der Normalkrafteinfluss aus unterschiedlichen Lastfällen oder Lastkombinationen mit oder ohne Berücksichtigung von Zugkräften untersucht werden.

Die Analysefälle von RSKNICK sind auch in RSTAB über die Lastfall-Liste der Symbolleiste zugänglich.

Neuen Fall anlegen

Ein Analysefall wird angelegt über das RSKNICK-Menü

Datei ightarrow Neuer Fall.

Es erscheint folgender Dialog.

Neuer RSK	NICK-Fall	×
Nr. 2	Bezeichnung Stabilitätsanalyse	
D		OK Abbrechen

In diesem Dialog ist eine (noch freie) *Nummer* für den neuen Analysefall anzugeben. Eine optionale *Bezeichnung* erleichtert die Auswahl in der Lastfall-Liste.

Nach [OK] erscheint die RSKNICK-Maske 1.1 Basisangaben zur Eingabe der Berechnungsparameter.

Fall umbenennen

Die Bezeichnung eines Analysefalls wird geändert über das RSKNICK-Menü

$Datei \rightarrow Fall \ umbenennen.$

Es erscheint folgender Dialog.

RSKNICK-	Fall umbenennen	x
Nr. 2	Bezeichnung Neue Bezeichnung	
D		OK Abbrechen

Bild 7.2: Dialog RSKNICK-Fall umbenennen

Hier kann nicht nur eine andere *Bezeichnung*, sondern auch eine andere *Nummer* für den Analysefall festgelegt werden.

RSKNICK FA2 - LK1

Bild 7.1: Dialog Neuer RSKNICK-Fall

Fall kopieren

Die Eingabedaten des aktuellen Analysefalls werden kopiert über das RSKNICK-Menü

 $\textbf{Datei} \rightarrow \textbf{Fall kopieren}.$

Es erscheint folgender Dialog.

RSKNICK-	Fall kopieren	X
Kopieren	von Fall	
FA2 - N	eue Bezeichnung	•
Neuer Fa	all	
Nr.:	Bezeichnung:	
3	Kopie von Fall 2	▼
D		OK Abbrechen

Bild 7.3: Dialog RSKNICK-Fall kopieren

Es ist die Nummer und ggf. eine Bezeichnung für den neuen Fall festzulegen.

Fall löschen

Analysefälle lassen sich wieder löschen über das RSKNICK-Menü

 $Datei \rightarrow Fall \, löschen.$

Es erscheint folgender Dialog.

Fall löschen		
Vorhan	dene Fälle	
Nr.	Bezeichnung	
1	Stabilitätsanalyse	
2	Neue Bezeichnung	
3	Kopie von Fall 2	
0	OK Abbrahan	
	Abbrechen	

Bild 7.4: Dialog Fall löschen

Der Analysefall kann in der Liste *Vorhandene Fälle* ausgewählt werden. Mit [OK] erfolgt der Löschvorgang.

7.2 Einheiten und Dezimalstellen

Die Einheiten und Nachkommastellen werden für RSTAB und für die Zusatzmodule gemeinsam verwaltet. In RSKNICK ist der Dialog zum Anpassen der Einheiten zugänglich über das Menü

 $\textbf{Einstellungen} \rightarrow \textbf{Einheiten} \text{ und } \textbf{Dezimalstellen}.$

Es erscheint der aus RSTAB bekannte Dialog. In der Liste *Programm / Modul* ist RSKNICK voreingestellt.

Einheiten und Dezimalstellen				
Einheiten und Dezimalstellen Programm / Modul STAHL SIA STAHL SB STAHL GB STAHL GB STAHL GB ALUMINIUM KAPPA BGDK FE-BGDK EL-PL C-ZU-T FE-BEUL BETNN	n RSKNICK Ein- und Ausgabedaten Längen: m ▼ 3☆ Kräfte: kN ▼ 3☆ Faktoren: m ▼ 3☆ Eigenformen: m ▼ 5☆			
BETON BETON Stützen HOLZ Pro HOLZ Pro DYNAM JOINTS STIRNPL VERBIND RAHMECK Pro DSTV STABD0BEL HOHLPROF FUND Pro FUND Pro FIND Pro FIND Pro RSIKNICK DEFORM RSBEWEG RSIMP				
		OK Abbrechen		

Bild 7.5: Dialog Einheiten und Dezimalstellen

Die Einstellungen können als Benutzerprofil gespeichert und in anderen Modellen wieder verwendet werden. Diese Funktionen sind im Kapitel 11.1.3 des RSTAB-Handbuchs beschrieben.

7.3 Export der Ergebnisse

Die Ergebnisse von RSKNICK lassen sich auch in anderen Programmen verwenden.

Zwischenablage

Markierte Zellen der Ergebnismasken können mit [Strg]+[C] in die Zwischenablage kopiert und dann mit [Strg]+[V] z. B. in ein Textverarbeitungsprogramm eingefügt werden. Die Überschriften der Tabellenspalten bleiben dabei unberücksichtigt.

Ausdruckprotokoll

Die Daten von RSKNICK können in das Ausdruckprotokoll gedruckt (siehe Kapitel 6.1, Seite 24) und dort exportiert werden über das Menü

$\textbf{Datei} \rightarrow \textbf{Export in RTF}.$

Diese Funktion ist im Kapitel 10.1.11 des RSTAB-Handbuchs beschrieben.

Excel / OpenOffice

RSKNICK ermöglicht den direkten Datenexport zu MS Excel, OpenOffice Calc oder in das CSV-Format. Diese Funktion wird aufgerufen über das Menü

 $Datei \rightarrow Tabellen exportieren.$

Es öffnet sich folgender Exportdialog.

Tabellen exportieren	×			
Einstellungen Tabelle	Applikation			
V Mit Tabellenkopf	Microsoft Excel			
Nur markierte Zeilen	OpenOffice.org Calc			
	CSV file format			
Einstellungen				
Tabelle in die aktive Arbeitsmappe exportieren Tabelle in die aktive Tabelle exportieren Existierende Tabelle überschreiben				
Selektierte Tabellen				
Aktuelle Tabelle	Ausgeblendete Spalten			
Alle Tabellen	exportieren			
✓ Eingabetabellen	Details			
Ergebnistabellen				
	OK Abbrechen			

Bild 7.6: Dialog Tabellen exportieren

Wenn die Auswahl feststeht, kann der Export mit [OK] gestartet werden. Excel bzw. OpenOffice werden automatisch aufgerufen, d. h. die Programme brauchen nicht zuvor geöffnet werden.

	9	• (°I • -	Tabelle1 - Microsoft	Excel				x
D	atei S	tart Einfügen Seitenlayout Fo	ormeln Daten Überprüfen	Ansicht Add-	Ins Netviewer	Acrobat 🤇	2 🕜 🗆 á	P 83
	В	$1 \bullet (\circ f_x)$	Verzweigungslastfakto	r				~
	Α	В	С	D	E	F	G	
1	Figur	Verzweigungslastfaktor	Vergrößerungsfaktor					
2	Nr.	f[-]	α[-]					=
3	1	3,194	1,45	6				
4	2	3,194	1,45	6				
5	3	3,261	1,44	2				
6	4	3,261	1,44	2				
7	5	3,280	1,43	9				
8	6	3,281	1,43	8				-
М	Image: A start of the start							
Be	Bereit 100 %							

Bild 7.7: Ergebnis in Excel

RSIMP

Soll eine Stabilitätsfigur im Zusatzmodul RSIMP für die Generierung von Ersatzimperfektionen oder einer vorverformten Ersatzstruktur Verwendung finden, ist kein Export erforderlich. In RSIMP können die gewünschte Knickfigur-*Nr.* und der RSKNICK-*Fall* direkt über die entsprechenden Listen ausgewählt werden.

RSIMP - [Lagerhalle]			X
Datei Einstellungen Hilfe	110		
FA1 ▼ Engabedeten ⊡ Basisangaben ⊡ Imperfektionen	I.I. Basisangaben Imperfektionen generieren aufgrund Verformung aus RSTAB Lastfall, LK bzw. EK. LF1 - ständig Knickfigur aus Modul RSKNICK Eigenschwingung aus Modul DYNAM Nr.: Fall: 2 FA1 - Stabilitätsanalyse	Generierungsart ● Ersatzinperfektionen von Stäben für RSTAB-Tabelle 3.13 ● Vorverformtes Ersatzmodell Mit maximaler Ordinate erset der Vorverformung: erset (mm)	RS-IMP
	Erzeugte Imperfektionen exportieren in LF Nr.: 21 - Lastfall-Bezeichnung: Imperfektion in +X Kommentar Übernahme der Knickfigur Nr. 2 aus RSKNICK	Optionen Imperfektionen generieren in: Lastfall existiert bereits, daher: Beiden lokalen Richtungen Beiden lokalen Richtungen Hinzufügen	Generierung von geometrischen Ersatzimperfektionen und imperfekten Ausgangsstrukturen
	Generieren Details	Grafik	OK Abbrechen

Bild 7.8: Übernahme einer Knickfigur im Modul RSIMP

STAHL EC3 / ALUMINIUM / HOLZ Pro / KAPPA

In den Modulen STAHL EC3/AISC/AS/BS/CSA/GB/IS/NTC-DF/SANS/SIA/SP, ALUMINIUM, HOLZ Pro und KAPPA lassen sich die RSKNICK-Knicklängenbeiwerte für die nachzuweisenden Stäbe nutzen.

Knicklängenbeiwert wählen	×
Knicken um Achse y Chicken um Achse y Engespannt - frei kor, y = 2.0 Gelenkig - gelenkig kor, y = 1.0 Chicken um Achse y y y y z z z	Knicken um Achse z Bingespannt - frei korz = 2.0 Gelenkig - gelenkig korz = 1.0 Pisiassant - solation
 Eingespannt - gelenkig kor, y = 0.7 Eingespannt - eingespannt kor, y = 0.5 Benutzerdefiniert kor, y = 	Bingespannt - eingespannt kor.z = 0.7 Bingespannt - eingespannt kor.z = 0.5 Benutzerdefiniert kor.z =
Aus Zusatzmodul RSKNICK übernehmen (Eigenwert-Analyse) RSKNICK-Fall: FA1 - Stabilitäsanalyse Knickfigur-Nr.: 2	Aus Zusatzmodul RSKNICK übemehmen (Egenwert-Analyse) RSKNICK-Fall: FA1 - Stabilitätsanalyse Knickfigur-Nr.: 1 1 1
Knicklängenbeiwert übergeben ker,y : 1.000 🖕 [-]	Knicklängenbeiwert übergeben kor,z : 1.000 📩 [-]
	OK Abbrechen

Bild 7.9: Auswahl der Knicklängenbeiwerte im Modul STAHL EC3

8 Beispiele

8.1 EULER-Fall 1

Es ist die Knicklast einer eingespannten Stütze zu ermitteln. Durch die Lagerungsbedingung und der Belastung entspricht das Modell dem EULER-Fall 1.

Bild 8.1: Modell EULER-Fall 1

Analytische Lösung

Die kleinste Verzweigungslast N_{cr} wird nach folgender Gleichung bestimmt:

$$N_{cr} = \frac{E \cdot I \cdot \pi^2}{L_{cr}^2} \tag{8.1}$$

Der Querschnitt als Walzprofil HE B 300 weist folgende Trägheitsmomente auf:

 $I_y = 25\,170\,{
m cm}^4$

 $I_z=8\,560\,\mathrm{cm}^4$

Als Werkstoff wird Baustahl S 235 verwendet.

$$E = 21\,000\,\mathrm{kN/cm^2}$$

Für eine einseitig eingespannte Stütze (EULER-Fall 1) gilt der Knicklängenbeiwert $k_{cr} = 2$.

Die kritische Last für das Ausweichen rechtwinklig zu Achse z ermittelt sich damit wie folgt:

$$N_{cr} = \frac{21\,000 \cdot 8\,560 \cdot \pi^2}{\left(2 \cdot 1\,000\right)^2} = 443,54 \text{ kN}$$

Lösung mit RSTAB

Die Stütze legen wir als 3D-Modell an.

Bild 8.2: RSTAB-Modell und Belastung

Wir deaktivieren das automatische Eigengewicht bei den Basisangaben des Lastfalls. Als Belastung setzen wir eine Einzellast von 100 kN im oberen Stützenknoten an.

In der Eingabemaske von RSKNICK nehmen wir folgende Einträge vor:

1.1 Basisangaben		
Allgemein	Iterationsoptionen	
Anzahl der Knickfiguren, die zu ermitteln sind:	Maximale Anzahl der Iterationen: 100	
Normalkräfte, nichtlineare Einwirkungen und Anfangsverformungen übernehmen aus © Lastfall / Kombination: [LF1 - Normalkräft Normalkräfte manuell in Tabelle definieren Optionen	Abbruchsschranke: 0.00001 [-] Interne Stabtellung für Stäbe des Typs - Balken: - Fachwerk: 1 ± Stäbe mit Voute oder Bettung: 6 ±	ž
Ausnutzung des entlastenden Effektes durch Zugkräfte Stefigkeitsänderungen von RSTAB aktivieren	Parameter für Unterraum-Dimension	
Bei nicht konstantem N-Verlauf in einem Stab ist aus RSTAB zu übernehmen:	Maximale Anzahl der Erhöhungen: 15 🚖	
Mittelwert		
Ungünstigster Wert		Knicklängen, -lasten, Verzweigungslast- faktoren und Knickformen
Kommentar		
Eulerfall 1	Ţ	

Bild 8.3: RSKNICK-Maske 1.1 Basisangaben

8

8 Beispiele

Berechnung

Nach der [Berechnung] gibt RSKNICK eine Knicklast von 443,540 kN aus.

2.1 Knicklängen und -lasten

	A	B	С	D	E	F	G	Н	
Stab	Knoten Nr. Stablänge Figur		Figur	Knicklä	inge [m]	Knicklänge	Knicklast		
Nr.	Anfang	Ende	L [m]	Nr.	L _{cr,y}	L _{cr,z}	k _{er,y}	k _{cr,z}	N _{cr} [kN]
1	1	2	10.000	1	34.295	20.000	3.430	2.000	443.540

Bild 8.4: Maske 2.1 Knicklängen und -lasten

Da wir die Stabteilung erhöht haben, stimmt dieser Wert mit der analytischen Lösung vollständig überein.

8

Die folgende Knickfigur wird von RSKNICK ermittelt:

Globale Verformungen u [-] RSKNICK FA1 - Stabilitätsanalyse

8.2 Rahmen mit K-Verband

Anhand des im folgenden Bild dargestellten 2D-Modells werden die Knicklängenbeiwerte der Rahmenstiele ermittelt. Dieses Beispiel ist [2], Seite 395 entnommen.

Bild 8.6: Stahlrahmen-Modell nach [2]

Analytische Lösung

Die analytische Lösung ist in [2], Beispiel 5.47 vorgestellt. Dabei wird von einem Verhältnis der Druckkräfte in den Stielen D2/D1 = 0.8 ausgegangen, d. h. die Normalkraft im Stab 2 beträgt 80 % der Normalkraft von Stab 1.

Für dieses ebene System werden in [2] folgende Knicklängenbeiwerte ermittelt:

Stab	Knicklängenbeiwert k _{cr}
1	2,73
2	3,07

Tabelle 8.1: Knicklängenbeiwerte nach [2], Seite 397

Lösung mit RSTAB

Wir legen ein 2D-Modell an und setzen die Stäbe mit den entsprechenden HE B Querschnitten. Dabei definieren wir die Stiele als Stabtyp *Balkenstab*, die Riegel- und Diagonalstäbe als Stabtyp *Fachwerkstab* (nur N).

Die beiden Fußpunkte lagern wir gelenkig.

Um den gewünschten Normalkraftverlauf in den Stielen zu erhalten, belasten wir die beiden obersten Stielknoten mit Einzellasten von jeweils 100 kN. In den Stielmitten bei den Anschlussknoten der Diagonalen setzen wir weitere Einzellasten von jeweils 25 kN an. Das automatische Eigengewicht soll nicht berücksichtigt werden.

8 Beispiele

Bild 8.7: Normalkraftverlauf am RSTAB-Modell

Die Eingabemaske von RSKNICK füllen wir wie folgt aus:

1.1 Basisangaben		
Allgemein	Iterationsoptionen	
Anzahl der Knickfiguren, die zu ermitteln sind:	Maximale Anzahl der Iterationen:	
Nomalkräfte, nichtlineare Einwirkungen und Anfangsverformungen übernehmen aus © Lastfall / Kombination: LF1 Nomalkräfte manuell in Tabelle definieren Optionen Ausnutzung des entlastenden Effektes durch Zugkräfte Stefigkeitsänderungen von RSTAB aktivieren Bei nicht konstantem N-Verlauf in einem Stab ist aus RSTAB zu übernehmen: Ø Mittelwert Ungünstigster Wert	Abbruchsschranke: 0.00001 [r] Interne Stabtellung für Stäbe des Typs Balken: 6 Fachwerk: 1 Stäbe mit Voute oder Bettung: 6 Parameter für Unterraum-Dimension Inkrement (Erhöhung): 10 Maximale Anzahl der 15	A de la de l
Kommentar Vergleich der Knicklängenbeiwerte mit Petersen		
	~	

Bild 8.8: RSKNICK-Maske 1.1 Basisangaben

8

RSKNICK ermittelt folgende Knicklängenbeiwerte k_{cr}:

2.1 Knicklängen und -lasten

	A	В	С	D	E F		G	Н						
Stab	Knote	en Nr.	Stablänge	Figur	Knicklä	nge [m]	Knicklänge	Knicklast						
Nr.	Anfang	Ende	L [m]	Nr.	L _{cr,y}	L _{cr,z}	k cr,y	k or,z	N _{cr} [kN]					
1	1	2	5.000	1	13.711	0.000	2.742	0.000	2774.860					
2	2	3	5.000	1	15.330	0.000	3.066	0.000	2219.890					
3	4	5	5.000	1	13.711	0.000	2.742	0.000	2774.860					
4	5	6	5.000	1	15.330	0.000	3.066	0.000	2219.890					
5	2	5	4.000	1	0.000	0.000	0.000	0.000	0.000					
6	3	7	2.000	1	Zug im Stab -> keir	ne Ermittlung								
7	7	6	2.000	1	0.000	0.000	0.000	0.000	0.000					
8	2	7	5.385	1	0.000	0.000	0.000	0.000	0.000					
9	5	7	5.385	1	Zug im Stab -> keir	lug im Stab -> keine Emittlung								

8

Bild 8.9: Maske 2.1 Knicklängen und -lasten

Die Ergebnisse stimmen sehr gut mit der analytischen Lösung überein.

Grafik

Die [Grafik] zeigt folgende Knickfigur:

Globale Verformungen u [-] RSKNICK FA1 - Stabilitätsanalyse

Bild 8.10: Knickfigur

8.3 Rahmen mit Pendelstütze

Das Knickverhalten eines ebenen Rahmensystems gemäß Bild 8.11 soll untersucht werden.

Der niedrigste Verzweigungslastfaktor (Eigenwert) ergibt sich in diesem Beispiel an dem entkoppelten Pendelstab Nr. 7. Das bedeutet: Als Erstes knickt hier der Stab 7 lokal aus; erst beim zweiten Eigenwert versagt das Gesamtsystem.

Aufschluss über das Knickverhalten geben die beiden unterschiedlichen Knickfiguren, wie die Bilder auf der folgenden Seite zeigen.

Mit einer internen Teilung von **10** für Balkenstäbe ermittelt RSKNICK für den Stab 7 eine Knicklast N_{cr} von 2 080,94 kN.

2.1	Knic	kläng	Ien	und	-1	asten

	۸	D	C 1	D		-	C					
	A	Б			E			П				
Stab	Knote	en Nr.	Stablange	Figur	Knickla	inge [m]	e [m] Knicklängenbeiwert [-]					
Nr.	Anfang	Ende	L [m]	Nr.	L _{cr,y}	L _{or,z}	k cr.y	k _{or,z}	N _{cr} [kN]			
7	2	5	5.000	1	5.000	0.000	1.000	0.000	2080.940			
				2	4.254	0.000	0.851	0.000	2874.060			

Bild 8.12: Maske 2.1 Knicklängen und -lasten

Eine Berechnung für den EULER-Fall 2 bestätigt diesen Wert:

$$N_{cr} = \frac{E \cdot I \cdot \pi^2}{L_{cr}^2} = \frac{21\,000 \cdot 2\,510 \cdot \pi^2}{500^2} = 2\,080,91\,\text{kN}$$

Bild 8.13: Erste Knickfigur – lokales Versagen

Bild 8.14: Zweite Knickfigur – Versagen des Gesamtsystems

8

Literatur

- [1] EN 1993-1-1: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. Beuth Verlag GmbH, Berlin, 2005.
- [2] Christian Petersen. *Statik und Stabilität der Baukonstruktionen*. Vieweg und Sohn, Braunschweig / Wiesbaden, 2. Auflage, 1982.
- [3] Christian Petersen. Stahlbau. Vieweg & Sohn, Braunschweig-Wiesbaden, 1988.
- [4] Gottfried Hünersen und Ehler Fritzsche. Stahlbau in Beispielen: Berechnungspraxis nach DIN 18 800. Teil 1 bis Teil 3. Werner Verlag, 1998.
- [5] Helmut Rubin und Klaus-Jürgen Schneider. *Baustatik: Theorie I. und II. Ordnung*. Werner Verlag, 1996.
- [6] H. Owczarzak und M. Stracke. Seminarunterlagen zum Dortmunder Praxisseminar DIN 18800 und EC 3., 1994.
- [7] Finite Elemente in der Baustatik. Vieweg & Sohn, Wiesbaden, 3. Auflage, 2008.

⊿ Diubal

Index

A

Abbruchschranke	8
ALUMINIUM	0
Analysefall	7
Anfangsverformungen	6
Anzahl Knickfiguren	6
Ausdruckprotokoll	5

В

Basisangaben	. 5
Beenden von RSKNICK	5
Benutzerprofil	28
Berechnung	11
Berechnung starten	11
Biegeknicklast N _{cr}	14
Blättern in Masken	. 5

С

Cholesky-Zerlegung 1	2
----------------------	---

D

Dezimalstellen															. 2	28
Drucken	• •	•	 •	•		•	• •		•	•	•	•	• •	•		24

Е

Eigenform	5
Einheiten 2	8
Ergebnisauswertung 1	8
Ergebnisdarstellung 2	0
Ergebnismasken	3
Ergebnisse-Navigator 1	9
Euler-Fall 14, 3	1
Excel	9

F

arbspektrum	1
-ilter	1
iltern von Stäben 2	1

G

Grafik	
H Hintergrundgrafik	1
l Inkrement	

B

Κ

КАРРА 3	30
Knickfigur	37
Knicklänge L _{cr}	4
Knicklängenbeiwert k _{cr} 14, 18, 3	34
Knicklast 14, 3	31
Knickversagen 17, 1	8
Kommentar	0
Kontrolle 1	1

М

Mittelwert .				 										7	

Ν

Nachweis farbig	21
Navigator	5
Nichtlineare Berechnung	22
Normalkräfte	10
Normalkraftverlauf	7
Normierte Knickfigur	15

ο

OpenOffice														2	9
Optionen		•													7

Ρ

Panel	4, 19, 21
Programmaufruf	

R

Rendering 2	1
RSIMP	0
RSKNICK-Fall	6
RSTAB-Arbeitsfenster 19, 2	4

S

Sichtbarkeiten
Stab
Stablänge 14
Stabteilung
Stabzug
Starten von RSKNICK
Steifigkeit 23
Steifigkeitsänderung7
Steuerpanel

B Index

Dluk

STAHL EC3
T Theorie II. Ordnung
U Unterraum-Dimension
V Vergrößerungsfaktor

Verzweigungslast
Z
Zeigen-Navigator
Zugkräfte
Zwischenablage

B