RSTAB - Structural Frame Analysis Program

Automatic Generation of Combinations

RSTAB provides automatic generation of load and result combinations according to American, Canadian, and other International standards in compliance with the corresponding combination expressions. In a clearly arranged window, you can copy, add, or renumber load cases, for example. Load cases and combinations are specified in Tables 2.1 to 2.6.

  1. Defining the standard in the general data of the model


    The General Data dialog box includes a wide range of standards and the option to create combinations automatically.  The following standards are available:

    • European Union EN 1990: 2002
    • European Union EN 1990 + EN 1995: 2004 (timber)
    • European Union EN 1990 + EN 1991-2; Road bridges
    • European Union EN 1990 + EN 1991-3; Cranes
    • European Union EN 1990 + EN 1997
    • Germany DIN 1055-100: 2001-03
    • Germany DIN 1055-100 + DIN 1052: 2004-08 (timber)
    • Germany DIN 1055-100 + DIN 18008 (glass)
    • Germany DIN 1052 (simplified) (timber)
    • Germany DIN 18800: 1990
    • United States of America ASCE 7-10
    • United States of America ASCE 7-10 NDS (timber)
    • United States of America ACI 318-14
    • United States of America IBC 2015
    • Canada CAN/CSA S 16.1-94: 1994
    • Canada NBCC: 2005
    •  NBR 8681
    • India IS 800: 2007
    • Switzerland SIA 260: 2003
    • Switzerland SIA 260 + SIA 265: 2003 (timber)
    •  BS 5950-1: 2000
    • China GB 50009-2012
    •  CTE DB-SE

    For the European standards (EC), the following National Annexes are available:

    • Deutschland DIN EN 1990/NA: 2009-05 (Germany)
    •  NBN EN 1990 - ANB: 2005 (Belgium)
    • Bulgaria BDS EN 1990: 2003/NA: 2008 (Bulgaria)
    •  DK EN 1990/NA: 2007-07 (Denmark)
    •  SFS EN 1990/NA: 2005 (Finland)
    •  NF EN 1990/NA: 2005/12 (France)
    • Griechenland ELOT EN 1990: 2009 (Greece)
    •  UNI EN 1990/NA: 2007-07 (Italy)
    • Ireland IS EN 1990: 2002 + NA: 2010 (Ireland)
    •  LVS EN 1990: 2003/NA: 2010 (Latvia)
    • Lithuania LST EN 1990/NA: 2010-11 (Lithuania)
    •  LU EN 1990/NA: 2011-09 (Luxembourg)
    •  MS EN 1990: 2010 (Malaysia)
    •  NEN EN 1990/NA: 2006 (Netherlands)
    • Norway NS EN 1990/NA: 2008 (Norway)
    •  ÖNORM EN 1990: 2007-02 (Austria)
    •  NP EN 1990: 2009 (Portugal)
    •  PN EN 1990/NA: 2004 (Poland)
    • Romania SR EN 1990/NA: 2006-10 (Romania)
    •  SIST EN 1990: 2004/A1: 2005 (Slovenia)
    •  SS EN 1990: 2008 (Singapore)
    •  SS EN 1990/FSO 2010: 28 (Sweden)
    •  STN EN 1990/NA: 2009-08 (Slovakia)
    •  UNE EN 1990 2003 (Spain)
    •  CSN EN 1990/NA: 2004-03 (Czech Republic)
    •  BS EN 1990/NA: 2004-12 (United Kingdom)
    • Weißrussland CPM EN 1990/NA: 2011 (Belarus)
    • Cyprus CYS EN 1990: 2002 (Cyprus)
  2. Load Cases / Action Types

    In the "Edit Load Cases and Combinations" dialog box, you can create and edit load cases as well as generate action, load and result combinations. It is possible to assign various action types to the individual load cases in accordance with the selected standard. If several loads have been assigned to one action type, they can act simultaneously or alternatively (for example wind from the left or right).

  3. Assigning design situations to combination rules

    Combination Expressions

    For the combination of actions in the ultimate and the serviceability limit state, you can select various design situations according to the standard (for example ULS (STR/GEO) - permanent/transient, SLS - quasi-permanent, and others). Furthermore, there is the option to integrate imperfections in the combination and to determine load cases that should not be combined with other load cases (for example construction load for roof not combined with snow load).

  4. Accidental Design Situation

    The "Accidental" design situation automatically considers accidental actions such as earthquake, explosion loads, collisions, and others. When using German standards, you can select the "Accidental - Snow" design situation to consider the North German Plain automatically as well.

  5. Reduction of Automatically Generated Combinations

    There are three options to reduce the number of combinations. The first two procedures are only available for the generation of load combinations but not for result combinations.

    The first option allows for automatic analysis of all load case results (internal forces, deformations, etc.) of selected elements. Then, the program will generate only those combinations which include the load cases producing a maximum or minimum. In addition, you can define a maximum number of relevant load cases, or neglect load cases with a very small contribution to the maximum and minimum values.

    The second option allows for automatic evaluation of generated temporary or user-defined result combinations. Then, only the governing load combinations are created.

    The third option to reduce the number of generated combinations is to classify only selected actions as leading actions.

  6. Action Combinations

    The actions are automatically superimposed in accordance with combination expressions and then displayed as so-called "action combinations". It is possible to define which action combinations will be eventually used for the generation of load or result combinations. Based on the created action combinations, you can estimate how the combination expressions affect the number of combinations.

  7. Load Combinations

    The load cases included in load combinations are added together and then calculated in consideration of the corresponding factors (partial safety and combination factors, coefficients regarding consequence classes, and others). The load combinations can be created automatically in compliance with the combination expressions of the standard. It is possible to perform the calculation according to the linear static analysis, second-order analysis or large deformation analysis as well as for postcritical failure. Optionally, you can define whether the internal forces are relative to a deformed or non-deformed structure.

  8. Result Combinations

    The load cases included in result combinations are calculated first. Then, the results are superimposed by taking into account the corresponding factors. In the result combinations, you can superimpose the results of load cases and load combinations as well as other result combinations. Internal forces are added together by default. However, there is the option of a square addition, which is relevant for dynamic analysis.

  9. Modifying Stiffness / Considering Initial Deformations

    In the individual load cases or combinations, there is the option to modify the stiffness of materials, cross-sections, nodal, line and surface supports, as well as member end releases and line hinges for all or the selected members. Furthermore, it is possible to consider initial deformations from other load cases or load combinations.

Contact us

Do you have any questions about our products or need advice on selecting the products needed for your projects?
Contact us via our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

(267) 702-2815