Load Increment
Glossary Term
For example, if there are two load increments specified, a half of the load is applied in the first step. It is iterated until the equilibrium is found. In the second step, the full load is then applied to the already deformed system and iterated again until the equilibrium is found.
Load increments have a negative effect on the computing time.
Keywords
Load increment Instability Load application Large deformations Iterative calculation
Links
Recommended Events
Eurocode 5 | Timber structures according to EN 1995-1-1
Online Training 03/17/2021 8:30 AM - 12:30 PM CET
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 03/18/2021 8:30 AM - 12:30 PM CET
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 05/06/2021 8:30 AM - 12:30 PM
Eurocode 2 | Concrete structures according to DIN EN 1992-1-1
Online Training 05/11/2021 8:30 AM - 12:30 PM
Eurocode 5 | Timber structures according to DIN EN 1995-1-1
Online Training 05/20/2021 8:30 AM - 12:30 PM
RFEM | Structural dynamics and earthquake design according to EC 8
Online Training 06/02/2021 8:30 AM - 12:30 PM
Videos
KB000610 | Automatically Dimensioning the Foundation Slab Geometry with RF-/FOUNDATION Pro
Length 0:40 min
KB 000674 | Defining Mandrel Diameter for Foundation Reinforcement in RF-/FOUNDATION Pro
Length 0:36 min
KB 000585 | Calculation of warping springs for consideration in lateral -torsional buckling analy...
Length 1:30 min
Models to Download
Knowledge Base Articles
New
Manual adjustment of the buckling curve according to EN 1993-1-1
The RF-/STEEL EC3 add-on module automatically transfers the buckling line to be used for the flexural buckling analysis for a cross-section from the cross-section properties. In particular for general cross -sections, but also for special cases, the assignment of the buckling line can be adjusted manually in the module input.
Screenshots
Product Features Articles

Material Model Orthotropic Masonry 2D
The material model Orthotropic Masonry 2D is an elastoplastic model that additionally allows softening of the material, which can be different in the local x- and y-direction of a surface. The material model is suitable for (unreinforced) masonry walls with in-plane loads.
Frequently Asked Questions (FAQ)
- Why do I get high differences when designing a longitudinally stiffened buckling panel compared to the German and Austrian National Annexes?
- How can I perform the stability analysis for an edgewise supported flat steel, for example 100/5, in RF-/STEEL EC3? Although the cross-section is rotated by 90 ° in RFEM/RSTAB, it is displayed lying flat in RF-/STEEL EC3.
- How can I create a curved or curved section?
- How are the signs to be interpreted for the release results of the line release and line hinges?
- How is the rotational stiffness of a buckling stiffener determined in FE-BUCKLING?
- How are hot -dip galvanized components considered for fire protection in the Steel EC 3 add -on module?
- Is it possible to manually specify a longitudinal reinforcement for the design in RF-PUNCH Pro?
- After the design with RF-/TIMBER Pro, I had a cross-section optimized. Why is the utilization of the optimized cross -section now exceeded?
- Is it possible to design the support pressure or the sleeper pressure in RX-TIMBER?
- Can I simulate the cracked state of a concrete cross -section for a bending beam with the "Isotropic Nonlinear Elastic 1D" material model?
Customer Projects
Associated Products