We provide hints and tips to help you get started with the basic program RFEM.
Home Support & Learning Learning Videos FAQ 003401 | Which material model should be assigned to a timber contact solid?
FAQ 003401 | Which material model should be assigned to a timber contact solid?
Video
First Steps with RFEM
Question
Which material model should be assigned to a timber contact solid?Answer
In the case of timber, the "Orthotropic Elastic/Plastic 3D" material model has to be assigned to the "Material" solid type (Figure 01).
Keywords
Dlubal FAQ Material model Material Timber Contact solid Solids Error message Solid type Isotropic Orthotropic Solid Frequently Asked Question FAQ about Dlubal Question and Answer about Dlubal
Links
Contact us
Do you have any questions about our products or need advice on selecting the products needed for your projects?
Contact us via our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.
Recommended Events
Eurocode 5 | Timber structures according to EN 1995-1-1
Online Training 03/17/2021 8:30 AM - 12:30 PM CET
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 03/18/2021 8:30 AM - 12:30 PM CET
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 05/06/2021 8:30 AM - 12:30 PM
Eurocode 2 | Concrete structures according to DIN EN 1992-1-1
Online Training 05/11/2021 8:30 AM - 12:30 PM
Eurocode 5 | Timber structures according to DIN EN 1995-1-1
Online Training 05/20/2021 8:30 AM - 12:30 PM
RFEM | Structural dynamics and earthquake design according to EC 8
Online Training 06/02/2021 8:30 AM - 12:30 PM
Videos
Models to Download
Knowledge Base Articles

New
Modeling Downstand Beams in Cross-Laminated Timber Constructions with Ribs
This time, we want to look at modeling downstand beams by means of ribs.
Screenshots
Product Features Articles

The cross-section resistance design analyzes tension and compression along the grain, bending, bending and tension/compression as well as the strength in shear due to shear force.
The design of structural components at risk of buckling or lateral-torsional buckling is performed according to the Equivalent Member Method and considers the systematic axial compression, bending with and without compressive force as well as bending and tension. Deflection of inner spans and cantilevers is compared to the maximal allowable deflection.
Separate design cases allow for a flexible and stability analysis of members, sets of members, and loads.
Design-relevant parameters such as the stability analysis type, member slendernesses, and limit deflections can be freely adjusted.
Frequently Asked Questions (FAQ)
- Which Dlubal Software programs can I use to calculate and design timber structures?
- How can I control an overpressed joint in the ridge?
- Which material model should be assigned to a timber contact solid?
- How can I model a support of a member on a bracket with screws?
- How are the signs for the release results of a line release and line hinges interpreted?
- How can I create a curved or arched section?
- After the design with RF‑/TIMBER Pro, I optimized a cross-section. Why is the utilization of the optimized cross-section exceeded now?
- Is it possible to design the support pressure or the compression perpendicular to the grain in RX‑TIMBER?
- Why are the stresses of the 90° orientation not displayed for a layer with the orthotropy direction 90° for σb,90 in RF‑LAMINATE?
- How can I get the member end forces to design the connections?
Customer Projects