RF-CONCRETE Members – Online Manual Version 5

Online manuals, introductory examples, tutorials, and other documentation.

RF-CONCRETE Members – Online Manual Version 5

Switch to Fullscreen Mode Exit Fullscreen Mode

9.1.4 Curvature for Cracked Sections (State II)

Curvature for Cracked Sections (State II)

Curvature due to loading

When characteristic loads are applied, concrete shows linear elastic behavior. The concrete stress distributed over the compression zone is assumed to be triangular.

The depth of the concrete compression area can be determined as follows:

x = ρ · αe · d · -1 + 1 + 2ρ · αe =     = 0.0026 · 20.0 ·17 cm · -1 + 1 + 20.0026 · 20.0 = 4.68 cm

The tension stress in the reinforcement is determined with MEd = 18.50 kNm as follows:

σs = MAs · d - x3 = 18.5 · 10-34.45 · 10-4 · 0.17 - 0.04683  = 269.60 N/mm2 

The curvature in the final crack state is determined as follows:

1rM,II  = εsd - x = 1.346 · 10-3170 - 46.8 = 0.010931 m-1 

where

εs = σsEs = 269.26200 000 = 1.346 · 10-3 

Curvature due to shrinkage

In manual calculations, the curvature for cracked sections (state II) is determined by means of a table from [12] (see Figure 9.2).

ω1 = αe · Asb · d = 20.0 · 4.45 cm2100 cm · 17 cm = 0.052       β = 1.10 

1rcs,II = εcs · αe ·SIIIII = εcs · β ·1d = 0.0005 · 1.10 · 10.17 m = 0.00324 m-1 

Total curvature

1rtot,II = 1rM,II = 1rcs,II = 0.01093 + 0.00324 = 0.01417 m-1 

Figure 9.2 Calculation table for cracked sections only (state II) from [12]
Literatur
[12] Heydel, Günter, Krings, Wolfgang u. Hermann, Horst. Stahlbeton im Hochbau nach EC2: Einführung und Anwendungsbeispiele. Ernst & Sohn Verlag, 1995

Quick Overview of this Section

Quick Overview of this Section