Verification Examples

Verify that a beam of different cross-sections made of Alloy 6061-T6 is adequate for the required load, in accord with the Aluminium Design Manual.

A symmetrical shallow structure is made of eight equal truss members, which are embedded into hinge supports. The structure is loaded by the concentrated force and alternatively by the imposed nodal deformation over the critical limit point when the snap-through occurs. Imposed nodal deformation is used in RFEM 5 and RSTAB 8 to obtain full equilibrium path of the snap-through. The self-weight is neglected in this example. Determine the relationship between the actual loading force and the deflection considering large deformation analysis. Evaluate the load factor at given deflections.

A cable is loaded by means of the uniform load. This causes the deformed shape in the form of the circular segment. Determine the equilibrium force of the cable to obtain the given sag of the cable. The add-on module RF-FORM-FINDING is used for this purpose. Elastic deformations are neglected both in RF-FORM-FINDING and in analytical solution, also self-weight is neglected in this example.

A spherical balloon membrane is filled with gas with atmospheric pressure and defined volume (these values are used for FE model definition only). Determine the overpressure inside the balloon due to the given isotropic membrane prestress. The add-on module RF-FORM-FINDING is used for this purpose. Elastic deformations are neglected both in RF-FORM-FINDING and in analytical solution, self-weight is also neglected in this example.

A structure is made of four truss members, which are embedded into hinge supports. The structure is loaded by a concentrated force and alternatively by imposed nodal deformation over the critical limit point, when snap-through occurs. Imposed nodal deformation is used in RFEM 5 and RSTAB 8 to obtain full equilibrium path of the snap-through. The self-weight is neglected in this example. Determine the relationship between the actual loading force and the deflection considering large deformation analysis. Evaluate the load factor at given deflections.

A pipe with the tubular cross-section is loaded by means of internal pressure. The internal pressure causes axial deformation of the pipe, what is called Bourdon effect. Determine the axial deformation of the pipe endpoint.

An ASTM A992 14×132 W-shape column is loaded with the axial compression forces given. The column is pinned top and bottom in both axes. Determine whether the column is adequate to support the loading shown in Figure 1 based on LRFD and ASD.

An ASTM A992 W-shape member is selected to carry a dead load of 30.000 kips and a live load of 90.000 kips in tension. Verify the member strength by both LRFD and ASD.

Consider an ASTM A992 W 18×50 beam forspan and uniform dead and live loads as shown in Figure 1. The member is limited to a maximum nominal depth of 18 in. The live load deflection is limited to L/360. The beam is simply supported and continuously braced. Verify the available flexural strength of the beam selected based on LRFD and ASD.

An ASTM A992 W 24×62 beam with end shears of 48.000 and 145.000 kips from dead and live load is shown in Figure 1. Verify the available shear strength of the beam selected based on LRFD and ASD.

11 - 20 of 127

Search Example


Program / Add-on Module


Material Model


Calculation Method


Model Entity


Special Feature

Newsletter

Receive information including news, useful tips, scheduled events, special offers, and vouchers on a regular basis.

Customer Support 24/7

Knowledge Base

In addition to our technical support (e.g. via chat), you’ll find resources on our website that may help you with your design using Dlubal Software.