RF-/STEEL EC3 Add-on Module for RFEM/RSTAB

Product Video: Add-on Module RF-/STEEL EC3

Product Video: How Dlubal Software works for structural analysis and design of steel structures

Dlubal Webinar: Structural Analysis of Steel Structures by Using RFEM 5


Receive regular information about news, useful tips, scheduled events, special offers, and vouchers at least once a month.

Most Suitable Software for Structural Analyses According to Eurocodes

“We decided to work with RFEM by Dlubal Software for the calculation of our three-dimensional steel structures after the analysis of different offers on the market. It is the software which seems to be the most suitable for analyses according to Eurocode standards. With its clear and intuitive interface, the data and the results can be entered visibly and editably in a smooth and efficient way which minimizes the effect of a 'black box'.

The technical support is remarkably patient, competent and responds quickly which confirmed our decision in favor of RFEM. The tutorials, the blog and the detailed user manuals allow a self-study and comprehensive initial training and then a continuous learning of new functions. A further positive aspect is the modular structure which makes it possible to enlarge the offer based on the same main program without important learning phase. Even if we decide tomorrow to focus more in timber, aluminum or glass structures, the calculation will not be a blocking element for us.”

Design of Steel Members and Sets of Members According to EC 3

RF-/STEEL EC3 performs all characteristic designs of the ultimate limit state as well as stability and deformation analyses for steel members according to:

  •  EN 1993‑1‑1:2005 + AC:2009,
  •  EN 1993‑1‑2:2006 + AC:2005 (fire resistance),
  •  EN 1993‑1‑4:2006 (stainless steel),
  •  EN 1993‑1‑5:2006.

  1. Features

    • Import of materials, cross-sections, and internal forces from RFEM/RSTAB
    • Steel design of thin‑walled cross‑sections according to EN 1993‑1‑1:2005 and EN 1993‑1‑5:2006
    • Automatic classification of cross-sections according to EN 1993-1-1:2005 + AC:2009, Cl. 5.5.2, and EN 1993-1-5:2006, Cl. 4.4 (cross-section class 4), with optional determination of effective widths according to Annex E for stresses under fy
    • Integration of parameters for the following National Annexes:
      • United Kingdom BS EN 1993-1-1/NA:2008-12 (United Kingdom)
      •  ÖNORM 1993-1-1:2007-02 (Austria)
      • Belgium NBN EN 1993-1-1/ANB:2010-12 (Belgium)
      • Bulgaria BLG EN 1993-1-1/NA:2008 (Bulgaria)
      • Cyprus CYS EN 1993-1-1/NA:2009-03 (Cyprus)
      •  CSN EN 1993-1-1/NA.ed:2007-05 (Czech Republic)
      •  DS/EN 1993-1-1 DK NA:2015 (Denmark)
      •  SFS EN 1993-1-1:2005 (Finland)
      •  NF EN 1993-1-1/NA:2007-05 (France)
      •  DIN EN 1993-1-1/NA:2015‑08 (Germany)
      • Greece ELOT EN 1993-1-1 (Greece)
      •  UNI EN 1993-1-1/NA:2008 (Italy)
      •  LST EN 1993-1-1/NA:2009-04 (Lithuania)
      •  LU EN 1993‑1‑1:2005/AN‑LU:2011 (Luxembourg)
      •  MS EN 1993-1-1:2010 (Malaysia)
      •  NEN EN 1993-1-1/NA:2011-12 (Netherlands)
      •  NS EN 1993-1-1/NA:2008-02 (Norway)
      •  PN EN 1993-1-1:2006-06 (Poland)
      •  NP EN 1993-1-1/NA:2010-03 (Portugal)
      •  SR EN 1993-1-1:2006/NA:2008-04 (Romania)
      •  SS EN 1993-1-1/NA:2010 (Singapore)
      •  STN EN 1993-1-1/NA:2007-12 (Slovakia)
      •  SIST-EN 1993-1-1/NA:2006-03 (Slovenia)
      •  UNE EN 1993-1-1:2013-02 (Spain)
      •  SS EN 1993-1-1/NA:2011-04 (Sweden)

    In addition to the National Annexes (NA) listed above, you can also define a specific NA, applying user-defined limit values and parameters.

    • Automatic calculation of all required factors for the design value of the flexural buckling resistance Nb,Rd
    • Automatic determination of the ideal elastic critical moment Mcr for each member or set of members on every x-location according to the Eigenvalue Method or by comparing moment diagrams. You only have to define the lateral intermediate supports.
    • Design of tapered members, unsymmetric sections or sets of members according to the General Method as described in EN 1993-1-1, Cl. 6.3.4
    • In the case of the General Method according to Cl. 6.3.4, optional application of 'European lateral-torsional buckling curve' according to Naumes, Strohmann, Ungermann, Sedlacek (Stahlbau 77 (2008), p. 748‑761)
    • Rotational restraints can be taken into account (trapezoidal sheeting and purlins)
    • Optional consideration of shear panels (trapezoidal sheeting and bracing)
    • Module extension RF-/STEEL Warping Torsion (the licence is required) for stability analysis according to the second‑order theory as stress analysis, including consideration of 7th degree of freedom (warping)
    • Module extension RF-/STEEL Plasticity (the licence is required) for plastic analysis of cross‑sections according to Partial Internal Forces Method (PIFM) and Simplex Method for general cross‑sections (in connection with the RF‑/STEEL Warping Torsion module extension, it is possible to perform the plastic design according to the second‑order analysis)
    • ULS design: Selection of fundamental or accidental design situations for each load case, load combination, or result combination
    • SLS design: Selection of characteristic, frequent, or quasi-permanent design situations for each load case, load combination, or result combination
    • Tension analysis with definable net cross-section areas for member start and end
    • Weld designs of welded cross-sections
    • Optional calculation of warp spring for nodal support on sets of members
    • Graphic of design ratios on cross-section and in RFEM/RSTAB model
    • Determination of governing internal forces
    • Filter options for graphical results in RFEM/RSTAB
    • Representation of design ratios and cross‑section classes in the rendered view
    • Color scales in result windows
    • View mode for view adjustment in the work window
    • Automatic cross-section optimization
    • Transfer of optimized cross-sections to RFEM/RSTAB
    • Parts list and quantity surveying
    • Direct data export to MS Excel or OpenOffice.org Calc
    • Verifiable printout report
    • Possibility to include the temperature curve in the report
  2. Selecting cross-sections for design


    RF-/STEEL EC3 imports the cross-sections defined in RFEM/RSTAB automatically. It is possible to design all thin-walled cross-sections. The program automatically selects the most efficient method conforming to standards.

    The ultimate limit state design takes into account several loads and you can select the interaction designs available in the standard.

    An essential part of the analysis according to Eurocode 3 is the classification of designed cross-sections into the Classes 1 to 4. In this way, you can check the limitation of the design and rotational capacity by means of the local buckling of cross-section parts. RF-/STEEL EC3 determines the c/t-ratios of the cross-section parts subjected to compression stress and performs the classification automatically.

    For the stability analysis, you can specify for each member or set of members whether flexural buckling occurs in the y- and/or z-direction. You can also define additional lateral restraints in order to represent the model close to reality.
    RF-/STEEL EC3 add-on module automatically determines the slenderness ratios and elastic critical buckling loads on the basis of boundary conditions. The elastic critical moment for lateral-torsional buckling required for the lateral-torsional buckling analysis can be determined automatically or specified manually. Also the load application point of transverse loads, affecting the torsional resistance, can be considered by setting of details. In addition, you can take into account rotational restraints (for example trapezoidal sheeting and purlins) and shear panels (for example trapeziodal sheeting and bracing).

    In modern construction using more and more slender cross-sections, the serviceability limit state represents an important factor in structural calculations.
    RF-/STEEL EC3 assigns load cases, load combinations, and result combinations to different design situations. The respective limit deformations are preset in National Annex and can be adjusted, if necessary. In addition, it is possible to define reference lengths and precambers for the design.

  3. Graphical display of mode shape of set of members


    When performing design of tension, compression, bending, and shear loading, the module compares design values of the maximum load capacity with the design values of actions.

    If the components are subjected to both bending and compression, the program performs an interaction. RF-/STEEL EC3 provides options for determining interaction formulas by factors of the first method (Annex A) or the second method (Annex B).

    The flexural buckling design, requires neither the slenderness nor the elastic critical buckling load of the governing buckling case. The module automatically determines all required factors for the design value of the bending load and the ideal elastic critical moment for each member on every x-location of the cross-section. If required, you only need to specify lateral intermediate supports of the individual members/sets of members, definable in one of the input windows.

    If members are selected for the fire resistance design in RF-/STEEL EC3, there is another input window available where you can enter additional parameters such as types of coating or covers. Global settings covers required time of fire resistance, temperature curve, and other coefficients. The printout report lists all intermediate results and the final result of the fire resistance design. Furthermore, it is possible to print the temperature curve in the report.

  4. Graphical results evaluation


    The results sorted by load case, cross-section, member, set of members, or x-location are displayed in clearly arranged result windows. By selecting the corresponding table row, detailed information about the performed design is displayed.

    The results include a comprehensible list of all material and cross-section properties, design internal forces, and design factors. Furthermore, it is possible to display distribution of internal forces of each x-location in a separate graphic window.

    Parts lists by member/by set of members for the individual cross-section types complete the detailed and structures result presentation. To print the input and result data, you can use the global RFEM/RSTAB printout report.

    For further processing of various data, it is possible to export all tables to MS Excel.

Contact us


Do you have any questions about our products? Do you need advice for your current project? 
Contact us or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0


Customer Projects

Customer Projects designed by Dlubal Software products

Interesting customer projects designed with the structural analysis programs by Dlubal Software.

Price (VAT excl.)

1,480.00 USD

Price is only valid for the software usage in United States.

RFEM Main Program
RFEM 5.xx

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

RSTAB Main Program
RSTAB 8.xx

Main Program

The structural engineering software for design of frame, beam and truss structures, performing linear and nonlinear calculations of internal forces, deformations, and support reactions

RSTAB Steel and Aluminium Structures
STEEL 8.xx

Add-on Module

Stress analysis of steel members

RFEM Steel and Aluminium Structures

Add-on Module

Stress analysis of steel surfaces and members

RFEM Concrete Structures

Add-on Module

Design of reinforced concrete members and surfaces (plates, walls, planar structures, shells)

RFEM Concrete Structures
EC2 for RFEM 5.xx

Module Extension for RFEM

Extension of the modules for reinforced concrete design by the Eurocode 2 design


Add-on Module

Stability analysis according to the eigenvalue method

RFEM Other

Add-on Module

Stability analysis according to the eigenvalue method

RSTAB Connections

Add-on Module

Design of rigid bolted frame joints according to Eurocode 3 or DIN 18800

RFEM Dynamic Analysis
RF-DYNAM Pro - Natural Vibrations  5.xx

Add-on Module

Dynamic analysis of natural frequencies and mode shapes of member, surface, and solid models

RSTAB Steel and Aluminium Structures
FE-LTB 8.xx

Add-on Module

Lateral-torsional buckling analysis of members according to the second-order analysis (FEM)

RFEM Concrete Structures
RF-CONCRETE Columns 5.xx

Add-on Module

Reinforced concrete design according to the model column method (method based on nominal curvature)