RF-/STEEL Plasticity Module Extension

Further Information

Newsletter

Receive regular information about news, useful tips, scheduled events, special offers, and vouchers at least once a month.

Plastic Design of Cross-Sections

RF-/STEEL Plasticity is an extension of the RF‑/STEEL EC3 add‑on module.

In RF‑/STEEL Plasticity, the following design methods are available:

  • Cross-sections consisting of two or three sheets (I-, C-, Z-, L‑sections, channels, tees), flat steel, pipes, and hollow sections according to the Partial Internal Forces Method (PIF method) with redistribution by Kindmann / Frickel
  • Elliptical cross‑sections with analytical nonlinear optimization procedure
  • Methods for general cross‑sections:
    • Partial Internal Forces Method without redistribution by Kindmann / Frickel
    • Simplex Method

  1. Features

    • Full integration in the RF-/STEEL EC3 add‑on module
    • Design of cross-sections for tension, compression, bending, torsion, shear, and combined internal forces
    • Plastic design of members according to the second‑order analysis with 7 degrees of freedom, including warping torsion (requires module extension RF‑/STEEL Warping Torsion).
  2. Activating RF-/STEEL Plasticity add-on module in RF-/STEEL EC3

    Input

    The RF-/STEEL Plasticity module extension is fully integrated in RF‑/STEEL EC3. You can enter the data in the same way as in the case of usual design in RF‑/STEEL EC3. However, it is necessary to activate the plastic design of cross-sections in detail settings (see the figure).

  3. Steel design in RFEM without (left) and with (right) RF-STEEL Plasticity

    Design and Results

    The cross-section resistance design considers all internal force combinations.

    If cross-sections are designed according to the PIF method, the internal forces of the cross-section, which are acting in the system of the principal axes related to the centroid or the shear center, are transformed into a local system of coordinates that rests in the web center and is oriented in the web direction.

    The individual internal forces are distributed on the top and bottom flange as well as on the web and the limit internal forces of the cross‑section parts are determined. Provided that the shear stresses and the flange moments can be absorbed, the axial load bearing capacity and the ultimate load capacity for bending of the cross‑section are determined by means of the remaining internal forces and compared with the existing force and moment. If the shear stress or the flange resistance is exceeded, the design cannot be performed.

    The Simplex Method determines the plastic enlargement factor with the relevant internal force combination using the SHAPE‑THIN calculation. The reciprocal value of the enlargement factor represents the design ratio of the cross‑section.

    Elliptical cross-sections are analyzed for their plastic load‑bearing capacity on the basis of an analytical nonlinear optimization procedure which is similar to the Simplex Method. Separate design cases allow for flexible analysis of selected members, sets of members, and actions as well as of individual cross‑sections.

    You can adjust design-relevant parameters such as calculation of all cross‑sections according to the Simplex Method.

    The results of the plastic design are displayed in RF‑/STEEL EC3 as usual. The respective result tables include internal forces, cross‑section classes, overall design, and other result data.

Contact us

Contattaci

Do you have any questions about our products? Do you need advice for your current project? 
Contact us or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

PRICE for RFEM (VAT excluded)

  • RF-STEEL Plasticity 5.xx

    850.00 USD

  • Next License

    382.50 USD

PRICE for RSTAB (VAT excluded)

  • STEEL Plasticity 8.xx

    850.00 USD

  • Next License

    382.50 USD

Screenshots