Find a variety of structural analysis models of piping systems to download, which you can use for training purposes or for your projects.
Structural and Stress Analysis Software for Pipelines
Structural FEM Analysis and Design
The structural analysis software RFEM 6 is the basis of a modular program family. The basic program RFEM is used to define structures, materials, and loads for planar and spatial structural systems consisting of plates, walls, shells, and members. The program also allows you to create combined structures as well as model solid and contact elements.
Wind Simulation and Wind Load Generation
The RWIND 2 stand-alone program is recommended for complex structures. This program simulates wind flows around any structures by means of a digital wind tunnel.
The generated wind loads acting on these objects can be imported to RFEM or RSTAB.
Modeling of Pipelines
RF-PIPING for RFEM 5 is used to model pipelines and to define the loads conforming to relevant standards.
It is possible to define specific piping components such as valves, reducers, fittings, flanges, tees, expansion joints, and others, and consider them together with the supporting structure.
Design of Pipelines
The RF‑PIPING Design add-on module for RFEM 5 compares the existing pipe stresses with the allowable stresses according to ASME B31.1, ASME B31.3, and EN 13480‑3.
Dynamic Frequency Analysis and Seismic Design
For dynamic analysis of piping systems, there are add-ons available for the determination of natural frequencies and mode shapes, vibration analysis, and the generation of equivalent earthquake loads.
Interfaces for Data Exchange
The structural analysis software provided by Dlubal Software can be integrated seamlessly into the Building Information Modeling (BIM) process. The large number of interfaces ensures the data exchange of digital building models with RFEM or RSTAB.
The web service (programmable interface) can be used to read or write data from/to RFEM and RSTAB.
Support and Learning
Customer service is a fundamental pillar of the Dlubal Software company philosophy. We provide any necessary support you need to complete your daily work.
Contact Us
Do you have any questions about our products or which are best suited for your design projects? Contact us via phone, email, or chat or find suggested solutions and useful tips on our FAQ page available 24/7.
Further Information
Models to Download


After activating the RF‑PIPING add‑on module, a new toolbar is available in RFEM and the project navigator and tables are extended. Piping modeling is performed in a similar way as members. Pipe bends are defined by using tangents (straight pipe sections) and bend radius at the same time. Thus, it is easy to subsequently change bend parameters.
It is also possible to extend the piping subsequently by defining special components (expansion joints, valves, and others). The implemented libraries of structural components facilitate the definition.
Continuous pipe sections are defined as sets of piping systems. For piping loads, member loads are assigned to the respective load cases. The combination of loads is included in piping load combinations and result combinations. After the calculation, you can display deformations, member internal forces and support forces graphically or in tables.
Pipe stress analysis according to standards can then be performed in the RF‑PIPING Design add‑on module. You only need to select the relevant sets of piping systems and load situations.
- How do I change the default settings for the units so they are preset in every new file?
- How can I quickly delete the unused elements (for example, cross-sections) from my model with one click?
-
In the case of stairs with a complicated geometry, it is often difficult to design welds by using the analytical methods. How can I do this with RFEM?
- How do I activate pipeline modeling?
- I have calculated a box girder. Which surface results or surface stresses can I use to evaluate the buckling behavior of the web plates?
- Is it possible to analyze and design piping systems in RFEM?
- How is it possible to consider the real cross-section geometry of member elements in RWIND Simulation?
- I would like to create a ring pipeline consisting of several parts. How do I prevent the transitions from being connected?
- Is it possible to use RFEM for modeling a channel that is distorted from a rectangular cross-section to a pipe cross-section?
- Why is not possible to load the OPE combinations in the RF‑PIPING Design add-on module?
Recommended for Piping Systems