Fillet Weld
Glossary Term
A fillet weld is the most common weld type in steel building construction. There are various arrangements, such as:
- Neck welds
- Side lap welds
- Edge welds
- Corner welds
- Web welds
Keywords
Fillet weld Weld seam Neck weld Web weld Edge weld Longitudinal fillet weld
Links
Recommended Events
Eurocode 5 | Timber structures according to EN 1995-1-1
Online Training 17 March 2021 8:30 AM - 12:30 PM CET
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 18 March 2021 8:30 AM - 12:30 PM CET
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 6 May 2021 8:30 AM - 12:30 PM
Eurocode 2 | Concrete structures according to DIN EN 1992-1-1
Online Training 11 May 2021 8:30 AM - 12:30 PM
Eurocode 5 | Timber structures according to DIN EN 1995-1-1
Online Training 20 May 2021 8:30 AM - 12:30 PM
RFEM | Structural dynamics and earthquake design according to EC 8
Online Training 2 June 2021 8:30 AM - 12:30 PM
Stability Design in Steel Construction with RFEM and RSTAB
Webinar 1 December 2020 2:00 PM - 2:45 PM CET
Videos
Models to Download
Knowledge Base Articles
New
Manual adjustment of the buckling curve according to EN 1993-1-1
The RF-/STEEL EC3 add-on module automatically transfers the buckling line to be used for the flexural buckling analysis for a cross-section from the cross-section properties. In particular for general cross -sections, but also for special cases, the assignment of the buckling line can be adjusted manually in the module input.
Screenshots
The model is constructed by means of parameters for geometry and loads and regenerates when the parameters are changed.
RF-/STEEL Cold-Formed Sections Module Extension | Design of cold-formed sections according to EN 1993-1-3
3D model of the butadiene storage sphere in RFEM (left) and the mode shape from RF-DYNAM Pro (right)
Product Features Articles

SHAPE-THIN | Cold-Formed Sections
SHAPE-THIN determines the effective cross-sections according to EN 1993-1-3 and EN 1993-1-5 for cold-formed sections. You can optionally check the geometric conditions for the applicability of the standard specified in EN 1993‑1‑3, Section 5.2.
The effects of local plate buckling are considered according to the method of reduced widths and the possible buckling of stiffeners (instability) is considered for stiffened sections according to EN 1993-1-3, Section 5.5.
As an option, you can perform an iterative calculation to optimize the effective cross-section.
You can display the effective cross-sections graphically.
Read more about designing cold-formed sections with SHAPE-THIN and RF-/STEEL Cold-Formed Sections in this technical article: Design of a Thin-Walled, Cold-Formed C-Section According to EN 1993-1-3.
Frequently Asked Questions (FAQ)
- Why do I get high differences when designing a longitudinally stiffened buckling panel compared to the German and Austrian National Annexes?
- How can I perform the stability analysis for an edgewise supported flat steel, for example 100/5, in RF-/STEEL EC3? Although the cross-section is rotated by 90 ° in RFEM/RSTAB, it is displayed lying flat in RF-/STEEL EC3.
- How can I create a curved or curved section?
- How are the signs to be interpreted for the release results of the line release and line hinges?
- How is the rotational stiffness of a buckling stiffener determined in FE-BUCKLING?
- How are hot -dip galvanized components considered for fire protection in the Steel EC 3 add -on module?
- In RF-/STEEL EC3, is the "Elastic design (also for cross-section class 1 and 2)" option under "Details → Ultimate Limit State" considered for the stability analysis when activated?
- How can I get the member end forces to design the connections?
- I would like to calculate and design "temporary structures." What do I need for this?
- How can I create a drilled beam in RFEM?
Customer Projects
Associated Products