Product Features

Search






Why Dlubal Software?

Solutions

  • More than 25,000 users in 71 countries
  • One software package for all application areas
  • Short learning time and intuitive handling
  • Service provided by experienced engineers
  • Excellent price/performance ratio
  • Flexible modular concept, extensible according to your needs
  • Scalable license system with single and network licenses
  • Proven software used in many well-known projects

Newsletter

Receive information including news, useful tips, scheduled events, special offers, and vouchers on a regular basis.

  1. RF-/DYNAM Pro - Nonlinear Time History | Features

    • User-defined time diagrams as a function of time, in a tabular form, or as harmonic loads
    • Combination of the time diagrams with RFEM/RSTAB load cases or combinations (enables definition of nodal, member and surface loads as well as free and generated loads varying over time)
    • Combination of several independent excitation functions
    • Nonlinear time history analysis with the implicit Newmark analysis (RFEM only) or the explicit analysis
    • Structural damping using Raleigh damping coefficients or Lehr's damping
    • Direct import of initial deformations from a load case or combination (RFEM only)
    • Stiffness modifications as initial conditions, for example axial force effect, deactivated members (RSTAB only)
    • Graphical display of results in a time course monitor
    • Export of results in user-defined time steps or as an envelope
  2. RF-/DYNAM Pro - Nonlinear Time History | Nonlinearities

    • Nonlinear member types, such as tension and compression members or cables
    • Member nonlinearities, such as failure, tearing, yielding under tension or compression
    • Support nonlinearities, such as failure, friction, diagram, and partial activity
    • Release nonlinearities, such as friction, partial activity, diagram, and fixed if positive or negative internal forces
  3. Selecting the nonlinear analysis in RF-DYNAM Pro - Nonlinear Time History

    RF-/DYNAM Pro - Nonlinear Time History | Calculation

    Calculation in RFEM
    The nonlinear time history analysis is performed with the implicit Newmark analysis or the explicit analysis. Both are the direct time integration methods. The implicit analysis requires small time steps to provide precise results. The explicit analysis determines the required time step automatically to provide the stability to the solution. The explicit analysis is suitable for the analysis of short excitations, such as impulse excitation, or an explosion.

    Calculation in RSTAB
    The nonlinear time history analysis is performed with the explicit analysis. This is a direct time integration method and determines the required time step automatically in order to provide the solution stability.

  4. RF-/STEEL | Features

    • General stress analysis
    • Automatic import of internal forces from RFEM/RSTAB
    • Complete graphical and numerical results of stresses and stress ratios integrated in RFEM/RSTAB
    • Various options to adjust graphical results for evaluation
    • Flexible design in multiple design cases
    • Clearly arranged result tables for quick overview available immediately after design
    • High efficiency due to the minimum of data required for input
    • Flexibility due to detailed settings of parameters and extent of calculation
  5. Cross-Section Optimization

    Features of RF-/STEEL Members

    • Cross-section optimization
    • Transfer of optimized cross-sections to RFEM/RSTAB
    • Design of any thin-walled cross-section from SHAPE-THIN
    • Representation of stress diagram on a cross-section
    • Determination of normal, shear, and equivalent stresses
    • Stress results of individual internal forces types
    • Detailed representation of stresses in all stress points
    • Determination of the maximum Δσ for each stress point (for fatigue design, for example)
    • Colored display of stresses and stress ratios facilitating quick overview of crucial or oversized zones
    • Parts list and quantity surveying
  6. Colored Results in RFEM Graphic - Surfaces

    Features of RF-STEEL Surfaces (available in RFEM only)

    • Determination of principal and basic stresses, membrane and shear stresses as well as equivalent stresses and equivalent membrane stresses
    • Stress analysis for structural parts of almost any shape
    • Equivalent stresses calculated according to different approaches:
      • Shape modification hypothesis (von Mises)
      • Maximum shear stress criterion (Tresca)
      • Maximum principal stress criterion (Rankine)
      • Principal strain criterion (Bach)
    • Optional optimization of surface thicknesses and data transfer to RFEM
    • Serviceability limit state design by checking surface displacements
    • Detailed results of individual stress components and ratios in tables and graphics
    • Filter function for surfaces, lines, and nodes in tables
    • Transversal shear stresses according to Mindlin, Kirchhoff, or user-defined specifications
    • Parts list of designed surfaces
  7. Material Library

    RF-/STEEL | Input

    In order to facilitate the data input, there are surfaces, members, sets of members, materials, surface thicknesses, and cross-sections preset. It is possible to select the elements graphically using the [Select] function. The program provides access to the global material and cross-section libraries.

    Load cases, load combinations, and result combinations can be combined in various design cases.

    Combination of surface and member elements and separate designs allow you to model and analyze only the critical areas such as frame joints by surface elements. The other parts of the model can be designed by member analyses.

  8. Colored Results in RFEM Graphic - Members

    RF-/STEEL | Results

    After the calculation, the module displays the maximum stresses and stress ratios sorted by cross-section, member or surface, set of members, and x-location. In addition to the result values in tables, the corresponding cross-section graphic including stress points, stress diagrams, and values is displayed as well. The stress ratio can refer to any kind of stress type. The current location is highlighted in the RFEM/RSTAB model.

    In addition to the result evaluation in the module, it is possible to represent the stresses and stress ratios graphically in the RFEM/RSTAB work window. It is possible to individually adjust the colors and values.

    Result diagrams of a member or set of members facilitate targeted evaluation. Furthermore, you can open the respective dialog box of each design location to check the design-relevant cross-section properties and stress components of all stress points. It is possible to print the corresponding graphic including all design details.

  9. CSA A23.3 for RFEM/RSTAB | Features

    The material library already includes the Canadian types of concrete and reinforcing steel available for design. However, you can always define other materials for the design according to CSA A23.3.

    The units used for the reinforced concrete design according to CSA A23.3 are adjusted to the metric system by default.

  10. RX-TIMBER Continuous Beam | Features

    • Design of the following geometrical models:
      • Single-span beams with and without cantilevers
      • Continuous beams with and without cantilevers
      • Hinged girder system (Gerber beams) with and without cantilevers
    • For design according to EC 5 (EN 1995), the following National Annexes are currently available:
      • United Kingdom BS EN 1995-1-1/NA:2009-10 (United Kingdom)
      •  ÖNORM B 1995-1-1:2015-06 (Austria)
      • Belgium NBN EN 1995-1-1/ANB:2012-07 (Belgium) 
      •  CSN EN 1995-1-1:2009-07 (Czech Republic)
      •  DK EN 1995-1-1/NA:2011-12 (Denmark)
      •  SFS EN 1995-1-1/NA:2007-11 (Finland)
      •  NF EN 1995-1-1/NA:2010-05 (France)
      •  DIN EN 1995-1-1/NA:2013-08 (Germany)
      •  UNI EN 1995-1-1/NA:2010-09 (Italy)
      •  NEN EN 1995-1-1/NB:2007-11 (Netherlands)
      •  PN EN 1995-1-1/NA:2010-09 (Poland)
      •  STN EN 1995-1-1/NA:2008-12 (Slovakia)
      •  SIST EN 1995-1-1/A101:2006-03 (Slovenia)
      •  SS EN 1995-1-1 (Sweden)
    • Automatic generation of wind and snow loads
    • Multiple optional reductions according to the selected standard
    • Simple geometry input with illustrative graphics
    • Free entry of tapered geometries; free selection of the grain angle allows for a user-defined design of the compressive and tensile areas for bending
    • Comprehensive and extandable material library
    • Determination of design criteria, support forces and deformations
    • Color reference scales in result tables
    • Direct data export to MS Excel
    • DXF interface for preparation production documents in CAD
    • Program languages: English, German, Czech, Italian, Spanish, French, Portuguese, and Russian
    • Verifiable printout report with all required designs available in many languages, for example English, German, French, Italian, Spanish, Russian, Czech, Polish, Portuguese, Dutch
    • Direct import of stp files from various CAD programs

31 - 40 of 424

Contact us

Contact to Dlubal

Do you have any questions or need advice?
Contact us or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

First Steps

First steps

We provide hints and tips to help you get started with the main programs RFEM and RSTAB.

Powerful and Capable Software

“I think the software is so powerful and capable that people will really value its power when they get properly introduced to it.”