Program: RFEM 5, RSTAB 8

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Elastic Foundation, Member

Verification Example: 0003 – Cantilever Beam on an Elastic Pasternak Foundation

0003 – Cantilever Beam on an Elastic Pasternak Foundation

Description

A cantilever beam of length L and rectangular cross-section with height h and width b is lying on a Pasternak foundation with stiffness $C_{2,z}$ and loaded by the distributed loading q_z . The elastic Winkler foundation stiffness $C_{1,z}$ is considered zero. Neglecting self-weight, determine the maximum deflection u_z and maximum bending moment M_y of the beam. Calculate these properties for a plate of the same heigth and width as the cantilever, as well.

Material	lsotropic Linear Elastic	Modulus of Elasticity	E	210.000	GPa
		Shear Modulus	G	105.000	GPa
Geometry	Cantilever	Length	L	4.000	m
		Height	h	0.200	m
		Width	Ь	0.005	m
Member Foundation	Pasternak	Stiffness	<i>C</i> _{2,<i>z</i>}	2000.000	kN
Plate Foundation			$C_{v,xz} = \frac{C_{2,z}}{b}$	400000.000	kN/m
Load	Member	Distributed	q _z	1.000	kN/m
	Plate	Distributed	$q=rac{q_z}{b}$	200.000	kN/m ²

Figure 1: Problem sketch

Analytical Solution

Member Calculation

The governing differential equation of a beam on a Pasternak foundation is given by

$$El_{y}\frac{d^{4}u_{z}}{dx^{4}} - C_{2,z}\frac{d^{2}u_{z}}{dx^{2}} = q_{z}$$
(3 - 1)

Verification Example: 0003 – Cantilever Beam on an Elastic Pasternak Foundation

where the moment of inertia $l_y = \frac{1}{12}bh^3 = 3.\overline{33} \times 10^{-6} \text{ m}^4$, *E* is the Young's modulus of the material and $C_{2,z}$ is the Pasternak foundation stiffness for the beam. Dividing by El_y , (3 – 1) can be rewritten as

$$\frac{d^4 u_z}{dx^4} - \underbrace{\frac{\zeta_{2,z}}{E_y}}_{\alpha} \frac{d^2 u_z}{dx^2} = \underbrace{\frac{q_z}{E_y}}_{A}$$
(3-2)

where new constants $\alpha = \frac{C_{2,z}}{El_y}$ and $A = \frac{q_z}{El_y}$ were defined. The characteristic equation $\lambda^4 - \alpha \lambda^2 = 0$ yields the following fundamental set of solutions of the characteristic equation

$$1, x, e^{\sqrt{\alpha}x}, e^{-\sqrt{\alpha}x}$$
(3 - 3)

A particular solution of (3 - 2) is a quadratic polynomial in the form

$$-\frac{Ax^2}{2\alpha} \tag{3-4}$$

The solution of (3 - 2) is then given by

$$u_{z}(x) = C_{1} + C_{2}x + C_{3}e^{\sqrt{\alpha}x} + C_{4}e^{-\sqrt{\alpha}x} - \frac{Ax^{2}}{2\alpha}$$
(3-5)

Let us comptue the derivatives of (3 - 5)

$$u'_{z}(x) = C_{2} + C_{3}\sqrt{\alpha}e^{\sqrt{\alpha}x} - C_{4}\sqrt{\alpha}e^{-\sqrt{\alpha}x} - \frac{Ax}{\alpha}$$
(3-6)

$$u_{z}''(x) = C_{3}\alpha e^{\sqrt{\alpha}x} + C_{4}\alpha e^{-\sqrt{\alpha}x} - \frac{A}{\alpha}$$
(3-7)

$$u_{z}^{\prime\prime\prime}(x) = C_{3}\alpha^{\frac{3}{2}}e^{\sqrt{\alpha}x} - C_{4}\alpha^{\frac{3}{2}}e^{-\sqrt{\alpha}x}$$
(3-8)

The constants C_1 , C_2 , C_3 , C_4 are determined by four boundary conditions which are required by the differential equation of the fourth order. These boundary conditions are taken as follows

$u_z(0)=0$	(3 – 9)
------------	---------

 $u_{z}'(0) = 0$ (3 - 10)

$$u_{z}''(L) = 0 \quad (\text{zero moment}) \tag{3-11}$$

$$u_{z}^{\prime\prime\prime\prime}(L) - \alpha u_{z}^{\prime}(L) = 0$$
 (zero shear force) (3 - 12)

Verification Example: 0003 – Cantilever Beam on an Elastic Pasternak Foundation

which yields the linear system of equations

$$C_1 + C_3 + C_4 = 0 \tag{3-13}$$

$$C_2 + C_3 \sqrt{\alpha} - C_4 \sqrt{\alpha} = 0 \tag{3-14}$$

$$C_3 e^{\sqrt{\alpha}L} + C_4 e^{-\sqrt{\alpha}L} = \frac{A}{\alpha^2}$$
(3 - 15)

$$C_2 = \frac{AL}{\alpha} \tag{3-16}$$

having the solution

$$C_{1} = -\frac{A}{\alpha^{2}} \left[\frac{1 - \sqrt{\alpha}L e^{-\sqrt{\alpha}L}}{\cosh(\sqrt{\alpha}L)} + \sqrt{\alpha}L \right]$$
(3 - 17)

$$C_2 = \frac{AL}{\alpha} \tag{3-18}$$

$$C_{3} = \frac{A}{\alpha^{2}} \left[\frac{1 - \sqrt{\alpha L} e^{-\sqrt{\alpha L}}}{2 \cosh(\sqrt{\alpha L})} \right]$$
(3 - 19)

$$C_{4} = \frac{A}{\alpha^{2}} \left[\frac{1 - \sqrt{\alpha}L e^{-\sqrt{\alpha}L}}{2\cosh(\sqrt{\alpha}L)} + \sqrt{\alpha}L \right]$$
(3 - 20)

The final solution can then be written as

$$u_{z}(x) = \frac{A}{\alpha} \left(Lx - \frac{x^{2}}{2} \right) + \frac{A}{\alpha^{2}} \left[\frac{1 - \sqrt{\alpha}Le^{-\sqrt{\alpha}L}}{\cosh\sqrt{\alpha}L} (\cosh\sqrt{\alpha}x - 1) + \sqrt{\alpha}L \left(e^{-\sqrt{\alpha}x} - 1 \right) \right] \quad (3 - 21)$$

where $\cosh(x) = \frac{e^{x} + e^{-x}}{2}$. Hence, from equation (3 – 21) the following maximum deflection can be deduced

$$u_{z,\max} = u_z(L) = 2.991 \,\mathrm{mm}$$
 (3 – 22)

while the maximum of the bending moment M_y evaluates to

$$M_{y,\max} = M_y(0) = -EI_y \frac{d^2 u_z}{dx^2}(0) = \frac{A}{\alpha} \left[\frac{1 - \sqrt{\alpha}L e^{-\sqrt{\alpha}L}}{\cosh(\sqrt{\alpha}L)} + \sqrt{\alpha}L - 1 \right] = -2.017 \text{ kNm}$$
(3 - 23)

Plate Calculation

The theory is identical, the parameter describing the Pasternak foundation for plates $C_{2,z}$ equals to

$$C_{v,xz} = \frac{C_{2,z}}{b} = 400000 \text{ kN/m}$$
 (3 - 24)

Verification Example: 0003 – Cantilever Beam on an Elastic Pasternak Foundation

Note that the Poisson ratio is zero in order to approximate the member solution exactly.

RFEM 5 and RSTAB 8 Settings

- Modeled in version RFEM 5.16.01 and RSTAB 8.16.01
- The element size is $I_{\rm FE} = 0.100$ m
- Geometrically linear analysis is considered
- Isotropic linear elastic material model is used
- The Kirchhoff plate theory is used
- Shear stiffness of members is deactivated

Results

Structure File	Entity	Program		
0003.01	Member	RFEM 5		
0003.02	Member	RSTAB 8		
0003.03	Plate	RFEM 5		

As can be seen from the following comparison, excellent agreement between the analytical solutions and the numerical outputs was achieved.

Analytical Solution	RFEM 5 (Member)		RSTAB 8 (Member)		RFEM 5 (Plate)	
u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]	u _{z,max} [mm]	Ratio [-]	u _{z,max} [mm]	Ratio [-]
2.991	2.991	1.000	2.991	1.000	3.005	1.005
Analytical	RFEM 5 (Member)		RSTAB 8 (Member)		RFEM 5 (Plate)	
Solution						
M _{y,max} [kNm]	M _{y,max} [kNm]	Ratio [-]	M _{y,max} [kNm]	Ratio [-]	$m_{x,\max} imes b$ [kNm]	Ratio [-]
-2.017	-2.017	1.000	-2.013	0.998	-1.999	0.991

