Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Elastic Foundation,

 Member
Verification Example: 0003 - Cantilever Beam on an Elastic Pasternak Foundation

0003 - Cantilever Beam on an Elastic Pasternak Foundation

Description

A cantilever beam of length L and rectangular cross-section with height h and width b is lying on a Pasternak foundation with stiffness $C_{2, z}$ and loaded by the distributed loading q_{z}. The elastic Winkler foundation stiffness $C_{1, z}$ is considered zero. Neglecting self-weight, determine the maximum deflection u_{z} and maximum bending moment M_{y} of the beam. Calculate these properties for a plate of the same heigth and width as the cantilever, as well.

Material	Isotropic Linear Elastic	Modulus of Elasticity	E	210.000	GPa
		Shear Modulus	G	105.000	GPa
Geometry	Cantilever	Length	L	4.000	m
		Height	h	0.200	m
		Width	b	0.005	m
Member Foundation	Pasternak	Stiffness	$C_{2, z}$	2000.000	kN
Plate Foundation			$C_{\mathrm{v}, x z}=\frac{C_{2, z}}{b}$	400000.000	kN/m
Load	Member	Distributed	q_{z}	1.000	kN/m
	Plate	Distributed	$q=\frac{q_{z}}{b}$	200.000	$\mathrm{kN} / \mathrm{m}^{2}$

$\downarrow \downarrow q_{z}$

Figure 1: Problem sketch

Analytical Solution

Member Calculation

The governing differential equation of a beam on a Pasternak foundation is given by

$$
\begin{equation*}
E I_{y} \frac{\mathrm{~d}^{4} u_{z}}{\mathrm{~d} x^{4}}-C_{2, z} \frac{\mathrm{~d}^{2} u_{z}}{\mathrm{~d} x^{2}}=q_{z} \tag{3-1}
\end{equation*}
$$

Verification Example: 0003 - Cantilever Beam on an Elastic Pasternak Foundation

where the moment of inertia $I_{y}=\frac{1}{12} b h^{3}=3 . \overline{33} \times 10^{-6} \mathrm{~m}^{4}, E$ is the Young's modulus of the material and $C_{2, z}$ is the Pasternak foundation stiffness for the beam. Dividing by $E I_{y}$, (3-1) can be rewritten as

$$
\begin{equation*}
\frac{\mathrm{d}^{4} u_{z}}{\mathrm{~d} x^{4}}-\underbrace{\frac{C_{2, z}}{E_{y}}}_{\alpha} \frac{\mathrm{d}^{2} u_{z}}{\mathrm{~d} x^{2}}=\underbrace{\frac{q_{z}}{E_{y}}}_{A} \tag{3-2}
\end{equation*}
$$

where new constants $\alpha=\frac{C_{2, z}}{E I_{y}}$ and $A=\frac{q_{z}}{E I_{y}}$ were defined. The characteristic equation $\lambda^{4}-\alpha \lambda^{2}=0$ yields the following fundamental set of solutions of the characteristic equation

$$
\begin{equation*}
1, x, \mathrm{e}^{\sqrt{\alpha} x}, \mathrm{e}^{-\sqrt{\alpha} x} \tag{3-3}
\end{equation*}
$$

A particular solution of $(3-2)$ is a quadratic polynomial in the form

$$
\begin{equation*}
-\frac{A x^{2}}{2 \alpha} \tag{3-4}
\end{equation*}
$$

The solution of $(3-2)$ is then given by

$$
\begin{equation*}
u_{z}(x)=C_{1}+C_{2} x+C_{3} \mathrm{e}^{\sqrt{\alpha} x}+C_{4} \mathrm{e}^{-\sqrt{\alpha} x}-\frac{A x^{2}}{2 \alpha} \tag{3-5}
\end{equation*}
$$

Let us comptue the derivatives of (3-5)

$$
\begin{align*}
u_{z}^{\prime}(x) & =C_{2}+C_{3} \sqrt{\alpha} \mathrm{e}^{\sqrt{\alpha} x}-C_{4} \sqrt{\alpha} \mathrm{e}^{-\sqrt{\alpha} x}-\frac{A x}{\alpha} \tag{3-6}\\
u_{z}^{\prime \prime}(x) & =C_{3} \alpha \mathrm{e}^{\sqrt{\alpha} x}+C_{4} \alpha \mathrm{e}^{-\sqrt{\alpha} x}-\frac{A}{\alpha} \tag{3-7}\\
u_{z}^{\prime \prime \prime}(x) & =C_{3} \alpha^{\frac{3}{2}} \mathrm{e}^{\sqrt{\alpha} x}-C_{4} \alpha^{\frac{3}{2}} \mathrm{e}^{-\sqrt{\alpha} x} \tag{3-8}
\end{align*}
$$

The constants $C_{1}, C_{2}, C_{3}, C_{4}$ are determined by four boundary conditions which are required by the differential equation of the fourth order. These boundary conditions are taken as follows

$$
\begin{align*}
& u_{z}(0)=0 \tag{3-9}\\
& u_{z}^{\prime}(0)=0 \tag{3-10}\\
& u_{z}^{\prime \prime}(L)=0 \text { (zero moment) } \tag{3-11}\\
& u_{z}^{\prime \prime \prime}(L)-\alpha u_{z}^{\prime}(L)=0 \text { (zero shear force) } \tag{3-12}
\end{align*}
$$

Verification Example: 0003 - Cantilever Beam on an Elastic Pasternak Foundation

which yields the linear system of equations

$$
\begin{align*}
C_{1}+C_{3}+C_{4} & =0 \tag{3-13}\\
C_{2}+C_{3} \sqrt{\alpha}-C_{4} \sqrt{\alpha} & =0 \tag{3-14}\\
C_{3} \mathrm{e}^{\sqrt{\alpha} L}+C_{4} \mathrm{e}^{-\sqrt{\alpha} L} & =\frac{A}{\alpha^{2}} \tag{3-15}\\
C_{2} & =\frac{A L}{\alpha} \tag{3-16}
\end{align*}
$$

having the solution

$$
\begin{align*}
& C_{1}=-\frac{A}{\alpha^{2}}\left[\frac{1-\sqrt{\alpha} L e^{-\sqrt{\alpha} L}}{\cosh (\sqrt{\alpha} L)}+\sqrt{\alpha} L\right] \tag{3-17}\\
& C_{2}=\frac{A L}{\alpha} \tag{3-18}\\
& C_{3}=\frac{A}{\alpha^{2}}\left[\frac{1-\sqrt{\alpha} L e^{-\sqrt{\alpha} L}}{2 \cosh (\sqrt{\alpha} L)}\right] \tag{3-19}\\
& C_{4}=\frac{A}{\alpha^{2}}\left[\frac{1-\sqrt{\alpha} L e^{-\sqrt{\alpha} L}}{2 \cosh (\sqrt{\alpha} L)}+\sqrt{\alpha} L\right] \tag{3-20}
\end{align*}
$$

The final solution can then be written as
$u_{z}(x)=\frac{A}{\alpha}\left(L x-\frac{x^{2}}{2}\right)+\frac{A}{\alpha^{2}}\left[\frac{1-\sqrt{\alpha} L \mathrm{e}^{-\sqrt{\alpha} L}}{\cosh \sqrt{\alpha} L}(\cosh \sqrt{\alpha} x-1)+\sqrt{\alpha} L\left(\mathrm{e}^{-\sqrt{\alpha} x}-1\right)\right]$
where $\cosh (x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$. Hence, from equation (3-21) the following maximum deflection can be deduced

$$
\begin{equation*}
u_{z, \max }=u_{z}(L)=2.991 \mathrm{~mm} \tag{3-22}
\end{equation*}
$$

while the maximum of the bending moment M_{y} evaluates to

$$
\begin{aligned}
& \quad M_{y, \max }=M_{y}(0)=-E I_{y} \frac{\mathrm{~d}^{2} u_{z}}{\mathrm{~d} x^{2}}(0)=\frac{A}{\alpha}\left[\frac{1-\sqrt{\alpha} L \mathrm{e}^{-\sqrt{\alpha} L}}{\cosh (\sqrt{\alpha} L)}+\sqrt{\alpha} L-1\right]=-2.017 \mathrm{kNm} \\
& (3-23)
\end{aligned}
$$

Plate Calculation

The theory is identical, the parameter describing the Pasternak foundation for plates $C_{2, z}$ equals to

$$
\begin{equation*}
C_{\mathrm{v}, x z}=\frac{C_{2, z}}{b}=400000 \mathrm{kN} / \mathrm{m} \tag{3-24}
\end{equation*}
$$

Verification Example: 0003 - Cantilever Beam on an Elastic Pasternak Foundation

Note that the Poisson ratio is zero in order to approximate the member solution exactly

RFEM 5 and RSTAB 8 Settings

- Modeled in version RFEM 5.16.01 and RSTAB 8.16.01
- The element size is $I_{\text {FE }}=0.100 \mathrm{~m}$
- Geometrically linear analysis is considered
- Isotropic linear elastic material model is used
- The Kirchhoff plate theory is used
- Shear stiffness of members is deactivated

Results

Structure File	Entity	Program
0003.01	Member	RFEM 5
0003.02	Member	RSTAB 8
0003.03	Plate	RFEM 5

Figure 2: RFEM 5 Model
As can be seen from the following comparison, excellent agreement between the analytical solutions and the numerical outputs was achieved.

Analytical Solution	RFEM 5 (Member)		RSTAB 8 (Member)		RFEM 5 (Plate)	
$\begin{aligned} & u_{z, \max } \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{aligned} & u_{z, \max } \\ & {[\mathrm{~mm}]} \end{aligned}$	Ratio [-]	$\begin{aligned} & u_{z, \max } \\ & {[\mathrm{~mm}]} \end{aligned}$	Ratio [-]	$\begin{aligned} & u_{z, \max } \\ & {[\mathrm{~mm}]} \end{aligned}$	Ratio [-]
2.991	2.991	1.000	2.991	1.000	3.005	1.005
Analytical Solution	RFEM 5 (Member)		RSTAB 8 (Member)		RFEM 5 (Plate)	
$M_{y, \text { max }}$ [kNm]	$M_{y, \text { max }}$ [kNm]	Ratio [-]	$M_{y, \text { max }}$ [kNm]	Ratio [-]	$\begin{gathered} m_{x, \max } \times b \\ {[\mathrm{kNm}]} \end{gathered}$	Ratio [-]
-2.017	-2.017	1.000	-2.013	0.998	-1.999	0.991

