Program: RFEM 5, RFEM 6

Category: Geometrically Linear Analysis, Isotropic Nonlinear Elasticity, Isotropic Plasticity, Member, Plate

Verification Example: 0017 – Plastic Bending - Continuous Load

0017 - Plastic Bending - Continuous Load

Description

A thin plate is fully fixed on the left end (x = 0) and subjected to a uniform pressure p according to the **Figure 1**. The problem is described by the following set of parameters.

Material	Elastic-Plastic	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.000	-
		Shear Modulus	G	105000.000	MPa
		Plastic Strength	fy	240.000	MPa
Geometry	Plate	Length	L	1.000	m
		Width	W	0.050	m
		Thickness	t	0.005	m
Load		Pressure	p	2750.000	Ра

Small deformations are considered and the self-weight is neglected in this example. Determine the maximum deflection $u_{z,max}$.

Figure 1: Problem sketch

Analytical Solution

The bending moment *M* for the plate under the continuous load q = pw is defined as

$$M = -\frac{q(L-x)^2}{2}$$
(17-1)

Linear Analysis

Considering linear analysis (only elasticity) the maximum deflection of the structure can be calculated as follows:

Verification Example - 0017 © Dlubal Software 2022

$$u_{z,\max} = \frac{qL^4}{8EI_v} = 157.144 \text{ mm}$$
 (17 - 2)

Nonlinear Analysis

The quantities of the load are discussed at first. The moment M_e when the first yield is occurred and the ultimate moment M_p when the structure becomes plastic hinge are calculated as follows

$$M_{\rm e} = 2 \int_{0}^{t/2} \sigma(z) zw \, dz = 2 \int_{0}^{t/2} \frac{2f_{\rm y}}{t} z^2 w \, dz = \frac{f_{\rm y} w t^2}{6} = 50.000 \, \rm Nm \tag{17-3}$$

$$M_{\rm p} = 2 \int_{0}^{t/2} \sigma(z) zw \, \mathrm{d}z = 2 \int_{0}^{t/2} f_{\rm y} zw \, \mathrm{d}z = \frac{f_{\rm y} w t^2}{4} = 75.000 \,\mathrm{Nm} \tag{17-4}$$

The corresponding pressure $p_{\rm e}$ and $p_{\rm p}$ then results

$$p_{\rm e} = \frac{2M_{\rm e}}{L^2 w} = 2000.000 \,{\rm Pa}$$
 (17 - 5)

$$p_{\rm p} = \frac{2M_{\rm p}}{L^2 w} = 3000.000 \,{\rm Pa}$$
 (17 – 6)

It is obvious that the plate is brought into the elastic-plastic state by the pressure *p* according to the **Figure 1**. The bending stress is defined according to the following formula

$$\sigma_{\mathbf{x}}(\mathbf{x}, \mathbf{z}) = -\kappa(\mathbf{x})\mathbf{E}\mathbf{z} \tag{17-7}$$

where $\kappa(x)$ is the curvature defined as $\kappa(x) = d^2 u_z/dx^2$ [1]. The elastic-plastic zone length is described by the parameter x_p according to the **Figure 1**. The bending stress quantity on the surface (z = -t/2) is equal to the plastic strength f_y at the point $x = x_p$, see the **Figure 2**. The curvature at this point can be calculated according to the formula

К

$$c(x_{\rm p}) = \frac{2f_{\rm y}}{Et} \tag{17-8}$$

Figure 2: Bending stress distribution

The elastic-plastic moment at the point $x = x_p$ is then

$$M_{\rm ep}(x_{\rm p}) = \int_{-t/2}^{t/2} \sigma_x(x_{\rm p}, z) zw \, dz = 2 \int_{0}^{t/2} -\frac{2f_y}{t} z^2 w \, dz = -\frac{f_y t^2 w}{6}$$
(17-9)

The elastic-plastic moment $M_{ep}(x_p)$ (internal force) has to equal to the bending moment $M(x_p)$ (external force).

$$-\frac{f_{y}t^{2}w}{6} = -\frac{q(L-x_{p})^{2}}{2}$$
(17 - 10)

The elastic-plastic zone length x_p results from this equality as follows

$$x_{\rm p} = L - t \sqrt{\frac{f_{\rm y} w}{3q}} = 147.197 \,{\rm mm}$$
 (17 - 11)

The curvature $\kappa_{\rm e}$ in the elastic zone ($x > x_{\rm p}$) is described by the Bernoulli-Euler formula

$$\kappa_{\rm e} = -\frac{M}{El_{\rm v}} = \frac{q(L-x)^2}{2El_{\rm v}}$$
 (17 - 12)

where I_y is the quadratic moment of the cross-section to the *y*-axis¹. The cross-section in the elastic-plastic state is divided into the elastic core and the plastic surface, which is described by the parameter z_p according to the **Figure 2**. This can be calculated using formula (**17 – 7**).

$$z_{\rm p} = \frac{f_{\rm y}}{\kappa_{\rm p}(x)E} \tag{17-13}$$

The elastic-plastic moment M_{ep} of the cross-section in the elastic-plastic state has to equal to the bending moment M.

$$M_{\rm ep}(x) = 2 \int_{0}^{z_{\rm p}} -\kappa_{\rm p}(x) Ez^2 w \, dz + 2 \int_{z_{\rm p}}^{t/2} -f_{\rm y} z w \, dz = -\frac{q(L-x)^2}{2}$$
(17-14)

The curvature κ_p in the elastic-plastic zone ($x < x_p$) results from this equality.

$$\kappa_{\rm p} = \frac{1}{E} \sqrt{\frac{\frac{f_y^3 w}{3}}{-\frac{q(L-x)^2}{2} + \frac{f_y t^2 w}{4}}}$$
(17 - 15)

¹ $I_y = \frac{1}{12}wh^3 = 520.8\bar{3} \text{ mm}^4$

Verification Example - 0017 © Dlubal Software 2022

The total deflection $u_{z,max}$ of the structure is defined as a superposition of the elastic-plastic and the elastic contribution using the Mohr's integral

$$u_{z,\max} = \int_{0}^{x_{p}} \kappa_{p}(L-x)dx + \int_{x_{p}}^{L} \kappa_{e}(L-x)dx = 83.117 + 83.117 = 166.234 \text{ mm} \quad (17 - 16)$$

RFEM Settings

- Modeled in RFEM 5.26 and RFEM 6.01
- The element size is $I_{\rm FE} = 0.020$ m
- In case of solid models mesh refinement across the thickness is used (6 elements per thickness)
- Geometrically linear analysis is considered
- The number of increments is 5
- Shear stiffness of the members is neglected

Results

Structure File	Entity	Material model	Hypothesis	
0017.01	Member	Isotropic Plastic 1D	-	
0017.02	Plate	Isotropic Plastic 2D/3D	von Mises	
0017.03	Plate	Isotropic Nonlinear Elastic 2D/3D	von Mises	
0017.04	Plate	lsotropic Nonlinear Elastic 2D/3D	Tresca	
0017.05	Solid	Isotropic Plastic 2D/3D	von Mises	
0017.06	Solid	lsotropic Nonlinear Elastic 2D/3D	von Mises	
0017.07	Solid	Isotropic Nonlinear Elastic 2D/3D	Tresca	
0017.08	Member	Isotropic Nonlinear Elastic 1D	-	

Model	Theory	RFEM 5		RFEM 5 RFEM		M 6	
	u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]	u _{z,max} [mm]	Ratio [-]		
Isotropic Plas- tic 1D	166.234	166.214	1.000	166.018	0.999		
lsotropic Plas- tic 2D/3D, Plate		162.987	0.980	162.960	0.980		
Isotropic Nonlinear Elastic 2D/3D, Plate, von Mises		165.730	0.997	165.700	0.997		
Isotropic Nonlinear Elastic 2D/3D, Plate, Tresca		166.998	1.005	166.969	1.004		
Isotropic Plas- tic 2D/3D, Solid		160.601	0.966	162.429	0.977		
Isotropic Nonlinear Elastic 2D/3D, Solid, von Mises		163.003	0.981	165.593	0.996		
Isotropic Nonlinear Elastic 2D/3D, Solid, Tresca		168.725	1.015	169.691	1.021		
lsotropic Nonlinear Elastic 1D		166.214	1.000	166.018	0.999		

References

[1] LUBLINER, J. *Plasticity theory*. Berkeley: University of California, 1990.