
Ve
ri
fi
ca
ti
o
n

Ex
am

p
le

Program: RFEM 5, RFEM 6

Category: Geometrically Linear Analysis, Isotropic Nonlinear Elasticity, Isotropic Plastic-
ity, Member, Plate

Verification Example: 0017 – Plastic Bending - Continuous Load

Verification Example - 0017 © Dlubal Software 2022

0017 – 1

0017 – Plastic Bending - Continuous Load

Description

A thin plate is fully fixed on the left end (x = 0) and subjected to a uniform pressure p according
to the Figure 1. The problem is described by the following set of parameters.

Material Elastic-Plastic Modulus of
Elasticity

E 210000.000 MPa

Poisson's
Ratio

𝜈 0.000 −

Shear
Modulus

G 105000.000 MPa

Plastic
Strength

fy 240.000 MPa

Geometry Plate Length L 1.000 m

Width w 0.050 m

Thickness t 0.005 m

Load Pressure p 2750.000 Pa

Small deformations are considered and the self-weight is neglected in this example. Determine
the maximum deflection uz,max.
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Figure 1: Problem sketch

Analytical Solution

The bending momentM for the plate under the continuous load q = pw is defined as

M = −
q(L − x)2

2
(17 – 1)

Linear Analysis

Considering linear analysis (only elasticity) the maximum deflection of the structure can be calcu-
lated as follows:
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uz,max =
qL4

8EIy
= 157.144 mm (17 – 2)

Nonlinear Analysis

The quantities of the load are discussed at first. The momentMe when the first yield is occurred
and the ultimate momentMp when the structure becomes plastic hinge are calculated as follows

Me = 2

t/2

∫
0

𝜎(z)zw dz = 2

t/2

∫
0

2fy
t
z2w dz =

fywt2

6
= 50.000 Nm (17 – 3)

Mp = 2

t/2

∫
0

𝜎(z)zw dz = 2

t/2

∫
0

fyzw dz =
fywt2

4
= 75.000 Nm (17 – 4)

The corresponding pressure pe and pp then results

pe =
2Me

L2w
= 2000.000 Pa (17 – 5)

pp =
2Mp

L2w
= 3000.000 Pa (17 – 6)

It is obvious that the plate is brought into the elastic-plastic state by the pressure p according to
the Figure 1. The bending stress is defined according to the following formula

𝜎x(x, z) = −𝜅(x)Ez (17 – 7)

where 𝜅(x) is the curvature defined as 𝜅(x) = d2uz/dx2 [1]. The elastic-plastic zone length is
described by the parameter xp according to the Figure 1. The bending stress quantity on the
surface (z = −t/2) is equal to the plastic strength fy at the point x = xp, see the Figure 2. The
curvature at this point can be calculated according to the formula

𝜅(xp) =
2fy
Et

(17 – 8)
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Figure 2: Bending stress distribution
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The elastic-plastic moment at the point x = xpis then

Mep(xp) =

t/2

∫
−t/2

𝜎x(xp, z)zw dz = 2

t/2

∫
0

−
2fy
t
z2w dz = −

fyt2w

6
(17 – 9)

The elastic-plastic momentMep(xp) (internal force) has to equal to the bending momentM(xp)
(external force).

−
fyt2w

6
= −

q(L − xp)2

2
(17 – 10)

The elastic-plastic zone length xp results from this equality as follows

xp = L − t√
fyw

3q
= 147.197 mm (17 – 11)

The curvature 𝜅e in the elastic zone (x > xp) is described by the Bernoulli-Euler formula

𝜅e = −
M
EIy

=
q(L − x)2

2EIy
(17 – 12)

where Iy is the quadratic moment of the cross-section to the y-axis1. The cross-section in the
elastic-plastic state is divided into the elastic core and the plastic surface, which is described by
the parameter zp according to the Figure 2. This can be calculated using formula (17 – 7).

zp =
fy

𝜅p(x)E
(17 – 13)

The elastic-plastic momentMep of the cross-section in the elastic-plastic state has to equal to the
bending momentM.

Mep(x) = 2

zp

∫
0

−𝜅p(x)Ez2w dz + 2

t/2

∫
zp

−fyzw dz = −
q(L − x)2

2
(17 – 14)

The curvature 𝜅p in the elastic-plastic zone (x < xp) results from this equality.

𝜅p =
1
E

√√√√√

⎷

f3yw
3

−q(L − x)2
2 +

fyt2w
4

(17 – 15)

1 Iy = 1
12wℎ3 = 520.83̄ mm4



Verification Example: 0017 – Plastic Bending - Continuous Load

Verification Example - 0017 © Dlubal Software 2022

0017 – 4

The total deflection uz,max of the structure is defined as a superposition of the elastic-plastic and
the elastic contribution using the Mohr's integral

uz,max =

xp

∫
0

𝜅p(L − x)dx +
L

∫
xp

𝜅e(L − x)dx = 83.117 + 83.117 = 166.234 mm (17 – 16)

RFEM Settings

• Modeled in RFEM 5.26 and RFEM 6.01
• The element size is lFE = 0.020 m
• In case of solidmodelsmesh refinement across the thickness is used (6 elements per thickness)
• Geometrically linear analysis is considered
• The number of increments is 5
• Shear stiffness of the members is neglected

Results

Structure File Entity Material model Hypothesis

0017.01 Member Isotropic Plastic 1D -

0017.02 Plate Isotropic Plastic 2D/3D von Mises

0017.03 Plate
Isotropic Nonlinear

Elastic 2D/3D
von Mises

0017.04 Plate
Isotropic Nonlinear

Elastic 2D/3D
Tresca

0017.05 Solid Isotropic Plastic 2D/3D von Mises

0017.06 Solid
Isotropic Nonlinear

Elastic 2D/3D
von Mises

0017.07 Solid
Isotropic Nonlinear

Elastic 2D/3D
Tresca

0017.08 Member
Isotropic Nonlinear

Elastic 1D
-
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Model Theory RFEM 5 RFEM 6

uz,max

[mm]

uz,max

[mm]

Ratio
[-]

uz,max

[mm]

Ratio
[-]

Isotropic Plas-
tic 1D

166.234

166.214 1.000 166.018 0.999

Isotropic Plas-
tic 2D/3D,
Plate

162.987 0.980 162.960 0.980

Isotropic
Nonlinear
Elastic 2D/3D,
Plate, von
Mises

165.730 0.997 165.700 0.997

Isotropic
Nonlinear
Elastic 2D/3D,
Plate, Tresca

166.998 1.005 166.969 1.004

Isotropic Plas-
tic 2D/3D,
Solid

160.601 0.966 162.429 0.977

Isotropic
Nonlinear
Elastic 2D/3D,
Solid, von
Mises

163.003 0.981 165.593 0.996

Isotropic
Nonlinear
Elastic 2D/3D,
Solid, Tresca

168.725 1.015 169.691 1.021

Isotropic
Nonlinear
Elastic 1D

166.214 1.000 166.018 0.999
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