Program: RFEM 5, RF-LAMINATE, RF-GLASS, RFEM 6
Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Glass, Laminate, Plate, Solid

Verification Example: 0024 - Three-Layer Sandwich Cantilever

0024 - Three-Layer Sandwich Cantilever

Description

A sandwich cantilever consists of three layers (core and two faces). It is fixed on the left end and loaded by a concentrated force on the right end, see Figure 1. The problem is described by the following set of parameters.

Material	Faces	Modulus of Elasticity	$E_{1}=E_{3}$	10.000	MPa
		Poisson's Ratio	$\nu_{1}=\nu_{3}$	0.000	-
	Core	Modulus of Elasticity	E_{2}	0.020	MPa
		Poisson's Ratio	ν_{2}	0.000	-
Geometry	Common Parameters	Length	L	10.000	m
		Width	w	1.000	m
		Total Thickness	$t=\sum_{i=1}^{3} t_{i}$	0.580	m
	Faces	Thickness	$t_{1}=t_{3}$	0.040	m
	Core	Thickness	t_{2}	0.500	m
Load		Force	F	0.750	kN

Small deformations are considered and the self-weight is neglected in this example. The goal is to determine the maximum deflection of the structure $u_{z, \max }$.

Figure 1: Problem sketch

Figure 2: Real sandwich plate

Analytical Solution

The deflection of a single-layer cantilever loaded by a concentrated force, considering only bending, is described by the Bernoulli-Euler formula

$$
\begin{equation*}
u_{z, \text { bend }}=\frac{F L^{3}}{3 E I_{y}} \tag{24-1}
\end{equation*}
$$

where I_{y} is the quadratic moment of the cross-section to the y-axis. Multi-layer beams are analogously described by the formula

$$
\begin{equation*}
u_{z, \text { bend }}=\frac{F L^{3}}{3 \sum_{k} E_{k} l_{y k}} \tag{24-2}
\end{equation*}
$$

where index k sums over all layers. Note that the quadratic moment of the cross-section of the outer layers has to be transformed by means of Steiner's theorem to the central axis of the cantilever ${ }^{1}$. Quadratic moments of the cross-sections $I_{y k}$ are following:

$$
\begin{align*}
I_{y 1} & =I_{y 3}=\frac{1}{12} w t_{1}^{3}+w t_{1}\left(\frac{t_{1}+t_{2}}{2}\right)^{2} \tag{24-3}\\
I_{y 2} & =\frac{1}{12} w t_{2}^{3} \tag{24-4}\\
\sum_{k=1}^{3} E_{k} I_{y k} & =2 E_{1} I_{y 1}+E_{2} I_{y 2}=2 E_{1}\left[\frac{1}{12} w t_{1}^{3}+w t_{1}\left(\frac{t_{1}+t_{2}}{2}\right)^{2}\right]+E_{2} \frac{1}{12} w t_{2}^{3} \tag{24-5}
\end{align*}
$$

Using (24-2), the deflection caused by bending only is equal to

$$
\begin{equation*}
u_{z, \text { bend }}=4.264 \mathrm{~m} \tag{24-6}
\end{equation*}
$$

It is suitable to take into account the shear effect also due to the remarkable cantilever height. The total deflection of the structure $u_{z, \max }$ is composed of the partial deflections due to the bending

[^0]
Verification Example: 0024 - Three-Layer Sandwich Cantilever

$u_{z, \text { bend }}$ and the shear $u_{z, \text { shear }}$, which is described in Figure 3 where the dash denotes the differentiation with respect to x. The deflection caused by the shear $u_{z, \text { shear }}$ can be calculated according to [1] as follows.

Figure 3: Deformation of an element
The cantilever shear strain γ is related to the shear strain of the sandwich cantilever core γ_{c} through

$$
\begin{equation*}
\gamma_{c}=\frac{t_{2}+t_{1}}{t_{2}} \gamma \tag{24-7}
\end{equation*}
$$

Thus, the shear stress in the core can be calculated

$$
\begin{equation*}
\tau_{c}=G_{2} \gamma_{c}=\frac{t_{2}+t_{1}}{t_{2}} G_{2} \gamma \tag{24-8}
\end{equation*}
$$

where $G_{2}=E_{2} /\left(2\left(1+\nu_{2}\right)\right)$ is the shear modulus of the core. The shear-strain energy stored in the element $\mathrm{d} x$ is defined as follows

$$
\begin{equation*}
\mathrm{d} U=\frac{1}{2} \frac{\tau_{c}^{2} t_{2} W}{G_{2}}=\frac{1}{2} S \gamma^{2} \tag{24-9}
\end{equation*}
$$

where the quantity S defines the shear stiffness

$$
\begin{equation*}
S=\frac{\left(t_{2}+t_{1}\right)^{2} w}{t_{2}} G_{2} \tag{24-10}
\end{equation*}
$$

The shear strain of the cantilever loaded by the force F is then calculated according to the formula

$$
\begin{equation*}
\gamma=\frac{F}{S} \tag{24-11}
\end{equation*}
$$

Figure 4: Deflection due to pure shear
The maximum deflection $u_{z \text {,shear }}$ of the cantilever due to the shear can be calculated according to Figure 4

$$
\begin{equation*}
u_{z, \text { shear }}=\gamma L=\frac{F}{S} L=\frac{F L t_{2}}{\left(t_{2}+t_{1}\right)^{2} w G_{2}}=1.286 \mathrm{~m} \tag{24-12}
\end{equation*}
$$

The total deflection of the structure is finally calculated

$$
\begin{equation*}
u_{z, \max }=u_{z, \text { bend }}+u_{z, \text { shear }}=4.264+1.268=5.550 \mathrm{~m} \tag{24-13}
\end{equation*}
$$

RFEM Settings

- Modeled in RFEM 5.26 and RFEM 6.01
- The element size is $I_{\text {FE }}=0.200 \mathrm{~m}$
- Geometrically linear analysis is considered
- The number of increments is 5
- Isotropic linear elastic material model is used
- Multilayer Surfaces add-on is used in RFEM 6 for plate models

Results

Structure File	Program	Entity	Theory
0024.01	RFEM 5, RFEM 6	Solid	-
0024.02	RF-LAMINATE, RFEM 6	Plate	Kirchhoff
0024.03	RF-GLASS	Plate	Kirchhoff
0024.04	RF-LAMINATE, RFEM 6	Plate	Mindlin
0024.05	RF-GLASS	Plate	Mindlin

Verification Example: 0024 - Three-Layer Sandwich Cantilever

Model	Analytical Solution	RFEM 5	
	$\begin{gathered} u_{z, \max } \\ {[\mathrm{~m}]} \end{gathered}$	$\begin{gathered} u_{z, \max } \\ {[\mathrm{~m}]} \end{gathered}$	Ratio [-]
RFEM 5, RF-LAMINATE (Kirchhoff Theory)	4.264	4.264	1.000
RFEM 5, RF-GLASS (Kirchhoff Theory)		4.264	1.000
RFEM 5, Solid	5.550	5.579	1.005
RFEM 5, RF-LAMINATE (Mindlin Theory)		5.546	0.999
RFEM 5, RF-GLASS (Mindlin Theory)		5.546	0.999

Model	Analytical Solution	RFEM 6	
	$u_{z, \text { max }}$ $[\mathrm{m}]$	$u_{z, \max }$ $[\mathrm{~m}]$	Ratio $[-]$
RFEM 6, Multilayer Surfaces (Kirchhoff Theory)	4.264	4.264	1.000
RFEM 6, Solid	5.579	1.005	
RFEM 6, Multilayer Surfaces (Mindlin Theory)	5.550	5.545	0.999

References

[1] PLANTEMA, F. J. Sandwich construction: the bending and buckling of sandwich beams, plates, and shells. Wiley, 1966.

[^0]: ${ }^{1}$ Steiner's theorem $I_{y 2}=I_{y 1}+A d^{2}$, where A is the cross-section area and $d=y_{2}-y_{1}$ is the perpendicular distance between axis y_{1}, y_{2} to which moments $I_{y 1}, I_{y 2}$ are related.

