Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Member, Plate, Solid

Verification Example: 0035 - Mixed Dimensional Coupling

0035 - Mixed Dimensional Coupling

Description

Prove that coupling of different dimensional elements doesn't affect the results. A cantilever with a rectangular cross-section is fixed at one end and loaded at the other with forces F_{x} and F_{z}. Neglecting it's self-weight and assuming only small deformations, determine cantilever's maximum deflections u_{x}, u_{z} and $u_{\text {max }}$.

Material	Linear Elastic	Modulus of Elasticity	E	200.000	GPa
		Poisson's ratio	ν	0.000	-
Geometry	Cantilever	Length	L	1.000	m
		b	0.100	m	
		Height	h	0.010	m
Load	Force	x-direction	F_{x}	1000.000	kN
		z-direction	F_{z}	0.100	kN

Figure 1: Problem sketch

Analytical Solution

Total maximum deflection of the cantilever can be obtained as:

$$
\begin{equation*}
u_{\max }=\sqrt{u_{x}^{2}+u_{z}^{2}} \tag{35-1}
\end{equation*}
$$

where u_{x} and u_{z} are maximum deflections at the free end in the given directions. Deflection in the x-direction can be obtained according to the principle of the virtual forces, while considering virtual force δF_{x} acting at the end of the cantilever in the direction of the displacement u_{x} :

$$
\begin{equation*}
\sigma_{x}=\int_{L} \frac{\delta N N}{E A} \mathrm{~d} x \tag{35-2}
\end{equation*}
$$

where $A=b h$ is the cross-section area, δN is the virtual normal force caused by the virtual force δF_{x}. Integrating the equation (35-2), formula for the deflection u_{x} can be given as follows:

Verification Example: 0035 - Mixed Dimensional Coupling

$$
\begin{equation*}
u_{x}=\frac{F_{x} L}{E b h}=5.000 \mathrm{~mm} \tag{35-3}
\end{equation*}
$$

Deflection in the z-direction can be obtained similarly by considering virtual force δF_{z} acting at the end of the cantilever in the direction of the displacement u_{z} :

$$
\begin{equation*}
u_{z}=\int_{L} \frac{\delta M_{z} M_{z}}{E I_{y}}+\beta \frac{\delta Q_{z} Q_{z}}{G A} \mathrm{~d} x \tag{35-4}
\end{equation*}
$$

where $I_{y}=\frac{b h^{3}}{12}$ is the second moment of inertia, $G=\frac{E}{2(1+\nu)}=\frac{E}{2}$ is a shear modulus, β is a parameter dependent on the shape of the cross-section, in the case of the rectangular cross-section it is equal to $\beta=1.2, \delta M$ and δQ are virtual bending moment and shear force respectively caused by the virtual force δF_{z}. Integrating the equation (35-4), formula for the deflection u_{z} can be given as follows:

$$
\begin{equation*}
u_{z}=\frac{4 F_{z} L^{3}}{E b h^{3}}+\beta \frac{2 F_{z} L}{E b h}=20.001 \mathrm{~mm} \tag{35-5}
\end{equation*}
$$

Finally total maximum deflection can be evaluated:

$$
\begin{equation*}
u_{\max }=\sqrt{u_{x}^{2}+u_{z}^{2}}=20.617 \mathrm{~mm} \tag{35-6}
\end{equation*}
$$

RFEM Settings

- Modeled in version RFEM 5.26 and RFEM 6.01
- The element size is $I_{\text {FE }}=0.010 \mathrm{~m}$
- Geometrically linear analysis is considered
- The Mindlin plate theory is used
- Isotropic linear elastic material model is used
- Shear stiffness of members is activated

Results

Structure File	Entities
0035.01	Plate \& Member
0035.02	Solid \& Member
0035.03	Solid \& Plate

Figure 2: Plate \& Member

Figure 3: Solid \& Member

Figure 4: Solid \& Plate
As can be seen from the table below, excellent agreements of analytical solution with numerical simulations were achieved for the coupling of plate and member.

Quantity	Analytical Solution	RFEM 5 Plate \& Member		RFEM 5 Solid \& Member		RFEM 5 Solid \& Plate	
	$[\mathrm{mm}]$	$[\mathrm{mm}]$	Ratio [-]	$[\mathrm{mm}]$	Ratio [-]	$[\mathrm{mm}]$	Ratio [-]
u_{x}	5.000	5.000	1.000	5.018	1.004	5.000	1.000
u_{z}	20.001	20.001	1.000	20.002	1.000	20.002	1.000
u	20.617	20.617	1.000	20.621	1.000	20.617	1.000

Quantity	Analytical Solution	RFEM 6 Plate \& Member		RFEM 6 Solid \& Member		RFEM 6 Solid \& Plate	
	$[\mathrm{mm}]$	$[\mathrm{mm}]$	Ratio [-]	$[\mathrm{mm}]$	Ratio [-]	$[\mathrm{mm}]$	Ratio [-]
u_{x}	5.000	5.000	1.000	5.018	1.004	5.000	1.000
u_{z}	20.001	20.001	1.000	20.002	1.000	20.002	1.000
u	20.617	20.616	1.000	20.622	1.000	20.617	1.000

