Program: RFEM 5, RFEM 6

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Member, Plate, Solid

Verification Example: 0035 – Mixed Dimensional Coupling

0035 – Mixed Dimensional Coupling

Description

Prove that coupling of different dimensional elements doesn't affect the results. A cantilever with a rectangular cross-section is fixed at one end and loaded at the other with forces F_x and F_z . Neglecting it's self-weight and assuming only small deformations, determine cantilever's maximum deflections u_x , u_z and u_{max} .

Material	Linear Elastic	Modulus of Elasticity	Ε	200.000	GPa
		Poisson's ratio	ν	0.000	_
Geometry	Cantilever	Length	L	1.000	m
		Width	b	0.100	m
		Height	h	0.010	m
Load	Force	<i>x</i> -direction	F _x	1000.000	kN
		z-direction	F _z	0.100	kN

Figure 1: Problem sketch

Analytical Solution

Total maximum deflection of the cantilever can be obtained as:

$$u_{\max} = \sqrt{u_x^2 + u_z^2}$$
 (35 - 1)

where u_x and u_z are maximum deflections at the free end in the given directions. Deflection in the *x*-direction can be obtained according to the principle of the virtual forces, while considering virtual force δF_x acting at the end of the cantilever in the direction of the displacement u_x :

$$\sigma_x = \int_{I} \frac{\delta NN}{EA} dx \qquad (35-2)$$

where A = bh is the cross-section area, δN is the virtual normal force caused by the virtual force δF_x . Integrating the equation (35 – 2), formula for the deflection u_x can be given as follows:

Verification Example: 0035 – Mixed Dimensional Coupling

$$u_x = \frac{F_x L}{Ebh} = 5.000 \text{ mm}$$
 (35 - 3)

Deflection in the *z*-direction can be obtained similarly by considering virtual force δF_z acting at the end of the cantilever in the direction of the displacement u_z :

$$u_z = \int_{I} \frac{\delta M_z M_z}{E l_y} + \beta \frac{\delta Q_z Q_z}{G A} dx \qquad (35-4)$$

where $I_y = \frac{bh^3}{12}$ is the second moment of inertia, $G = \frac{E}{2(1+\nu)} = \frac{E}{2}$ is a shear modulus, β is a parameter dependent on the shape of the cross-section, in the case of the rectangular cross-section it is equal to $\beta = 1.2$, δM and δQ are virtual bending moment and shear force respectively caused by the virtual force δF_z . Integrating the equation (**35** – **4**), formula for the deflection u_z can be given as follows:

$$u_z = \frac{4F_z L^3}{Ebh^3} + \beta \frac{2F_z L}{Ebh} = 20.001 \text{ mm}$$
(35 - 5)

Finally total maximum deflection can be evaluated:

$$u_{\rm max} = \sqrt{u_x^2 + u_z^2} = 20.617 \text{ mm}$$
 (35 - 6)

RFEM Settings

- Modeled in version RFEM 5.26 and RFEM 6.01
- The element size is $I_{\rm FE} = 0.010$ m
- Geometrically linear analysis is considered
- The Mindlin plate theory is used
- Isotropic linear elastic material model is used
- Shear stiffness of members is activated

Results

Structure File	Entities
0035.01	Plate & Member
0035.02	Solid & Member
0035.03	Solid & Plate

Verification Example - 0035 © Dlubal Software 2022

As can be seen from the table below, excellent agreements of analytical solution with numerical simulations were achieved for the coupling of plate and member.

Quantity	Analytical Solution	RFEM 5 Plate & Member		RFEM 5 Solid & Member		RFEM 5 Solid & Plate	
	[mm]	[mm]	Ratio [-]	[mm]	Ratio [-]	[mm]	Ratio [-]
u _x	5.000	5.000	1.000	5.018	1.004	5.000	1.000
u _z	20.001	20.001	1.000	20.002	1.000	20.002	1.000
u	20.617	20.617	1.000	20.621	1.000	20.617	1.000

Quantity	Analytical Solution	RFEM 6 Plate & Member		RFEM 6 Solid & Member		RFEM 6 Solid & Plate	
	[mm]	[mm]	Ratio [-]	[mm]	Ratio [-]	[mm]	Ratio [-]
u _x	5.000	5.000	1.000	5.018	1.004	5.000	1.000
u _z	20.001	20.001	1.000	20.002	1.000	20.002	1.000
u	20.617	20.616	1.000	20.622	1.000	20.617	1.000

