Program: RFEM 5, RF-LOAD-HISTORY

Category: Geometrically Linear Analysis, Contact, Friction, Member

Verification Example: 0061 – Cyclically Loaded System with Friction

0061 – Cyclically Loaded System with Friction

Description

Consider a node, restricted to move in the X direction only, held by a spring with friction described by the frictional coefficient μ_X (realized by the nodal frictional support). The node is loaded in two steps: in the first step forces F_Z and $F_X = 3\mu_X F_Z$ are applied, while in the second step force F_X is removed. The aim of this example is to demonstrate irreversible process caused by friction. The end-point ends up, after loading and unloading, in the different position than at the beginning. Determine the movement of the node in the X direction u_X after the first and the second load step.

Support		Friction Coefficient	μ_X	0.300	_
Spring		Spring Stiffness	k	0.600	kN/m
		Initial Length	L	1.000	m
Load	Force	Vertical	F _Z	1.000	kN
		Horizontal	F _X	0.900	kN

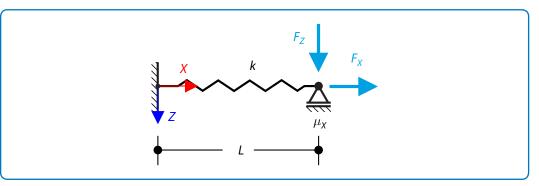


Figure 1: Problem sketch

Analytical Solution

First Load Step

In the first load step, when both forces F_X and F_Z are applied, force equilibrium in the X direction at the considered node can be written as:

$$F_{\chi} - R = k u_{\chi,1}$$
 (61 - 1)

where R is a frictional force, which can be expressed according to the vertical force F_Z as:

$$R = \mu_X F_Z \tag{61-2}$$

Verification Example: 0061 – Cyclically Loaded System with Friction

Combining equations (61 – 1) and (61 – 2) and knowing that $F_X = 3\mu_X F_Z$ formula for displacement u_{X1} can be derived:

$$u_{X,1} = \frac{F_X - R}{k} = \frac{3\mu_X F_Z - \mu_X F_Z}{k} = \frac{2\mu_X F_Z}{k} = 0.100 \,\mathrm{m} \tag{61-3}$$

Second Load Step

In the second load step the horizontal force F_X is removed, the spring starts to shrink and frictional force R acts against its movement. Force equilibrium in the X direction at the considered node can be then expressed as:

$$R = k u_{\chi,2} \tag{61-4}$$

So the movement of the node in the second load step $u_{\chi,2}$ can be evaluated as:

$$u_{X,2} = \frac{R}{k} = \frac{\mu_X F_Z}{k} = 0.050 \,\mathrm{m}$$
 (61 - 5)

RFEM 5 Settings

- Modeled in version RFEM 5.04.0108
- Geometrically linear analysis is considered

Results

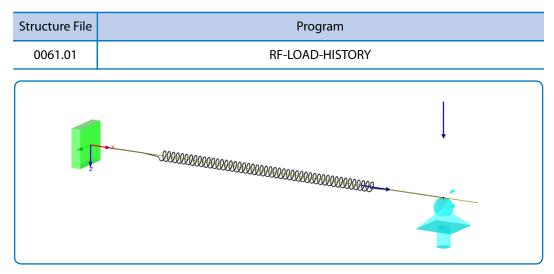


Figure 2: RFEM 5 Model

As can be seen from the following comparisons, an excellent agreement of analytical solution with numerical output was achieved:

Load Step	Analytical Solution	RF-LOAD-HISTORY	
	<i>u_{X,i}</i> [m]	<i>u_{X,i}</i> [m]	Ratio [-]
The First ($i = 1$)	0.100	0.100	1.000
The Second ($i = 2$)	0.050	0.050	1.000

