Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Dynamics, Contact, Friction, Structural Nonlinearity, Member

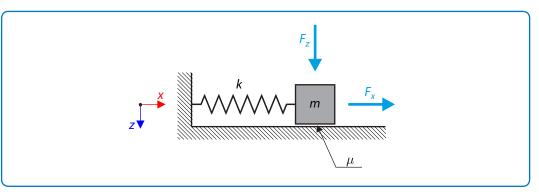
Verification Example: 0116 – Vibrations with Coulomb Friction

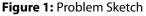
0116 – Vibrations with Coulomb Friction

Description

A simple oscillator consists of mass *m* (considered only in *x*-direction) and linear spring of stiffness *k*. The mass is embedded on a surface with Coulomb friction coefficient μ and is loaded by constant-in-time axial F_x and transversal F_z forces according to **Figure 1**. Calculate the time response of the system. The problem is described by the following set of parameters, see also [1].

System Properties		Mass	т	100.000	kg
		Spring Stiffness	k	5.000	kN/m
		Friction Coefficient	μ	0.100	-
Load	Forces	Axial Force	F _x	1.500	kN
		Transversal Force	Fz	1.000	kN





Determine the deflection u_x at times t = 1 s and t = 2 s, and the residual deflection $u_{x,res}$ when the spring reaches its equilibrium state.

Analytical Solution

The problem is described by the equation of motion – a second-order differential equation, which is non-linear due to the sign function, that ensures the correct orientation of the frictional force depending on the velocity \dot{u}_x , namely

$$m\ddot{u}_x + \mu F_z \operatorname{sgn}(\dot{u}_x) + ku_x = F_x \tag{116-1}$$

The solution of (116 – 1) can be separated into time intervals $[t_{i-1}, t_i], i \in \mathbb{N}, t_0 = 0$, where the velocity \dot{u}_x does not change sign (i.e., movement either to the right, or to the left), namely

Verification Example: 0116 – Vibrations with Coulomb Friction

$$u_{x}(t) := u_{x}^{(i)}(t), \text{ if } t \in [t_{i-1}, t_{i}], \qquad (116-2)$$

where $t_i > 0, i \in \mathbb{N}$, are such that $\dot{u}_x(t_i) = 0$, and $u_x^{(i)}$ is the solution of the second–order ordinary differential equation in (t_{i-1}, t_i)

$$\ddot{u}_{x}^{(i)} + \Omega^{2} u_{x}^{(i)} = \begin{cases} \frac{1}{m} (F_{x} - \mu F_{z}) =: p_{-}, \text{ if } i \text{ odd}, \\ (F_{x} + \mu F_{z}) =: p_{+}, \text{ if } i \text{ even}, \end{cases}$$
(116 - 3)

$$u_x^{(i)}(t_{i-1}) = u_x^{(i-1)}(t_{i-1}), \tag{116-4}$$

$$\dot{u}_{\mathbf{x}}^{(i)}(t_{i-1}) = 0.$$
 (116 - 5)

Note that $\Omega = \sqrt{k/m}$ is the angular frequency and let $u_x^{(0)} \equiv 0$. In the first part, the movement is in the positive *x*-axis direction, the following solution is obtained

1

$$u_x^{(1)} = -\frac{p_-}{\Omega^2}\cos(\Omega t) + \frac{p_-}{\Omega^2},$$
(116-6)

$$t_1 = \frac{\pi}{\Omega}.\tag{116-7}$$

For the second step the solution is

$$u_x^{(2)} = \left(\frac{2p_-}{\Omega^2} - \frac{p_+}{\Omega^2}\right)\cos(\Omega(t-t_1)) + \frac{p_+}{\Omega^2}$$
(116-8)

Further calculations are carried out analogously. The equation (116 - 3) is alternately used until the end of the movement. The movement stops when the spring force is less than the tangential and axial force. Two cases, for the movement to the right (*i* is odd) and to the left (*i* is even), are possible. The phase, when the movement stops, can be determined as follows

$$i \le \min\left\{\frac{\Omega^2}{p_+ - p_-}\left(x_s + \frac{\mu F_z}{k}\right), \frac{\Omega^2}{p_- - p_+}\left(x_s - \frac{\mu F_z}{k} - \frac{p_- + p_+}{\Omega^2}\right)\right\},\tag{116-9}$$

where x_s is the statical displacement caused by the force $F_{x'}$

$$x_s = \frac{F_x - \mu F_z}{k} \approx 280.000 \,\mathrm{m.}$$
 (116 - 10)

In this case, the result of the relation (116 – 9) is i = 7. Please note that $i \in \mathbb{N}$. The movement stops at the end of the seventh phase. Hence, the residual deflection of the mass $u_{x, \text{res}}$ is

$$u_{x,\text{res}} = u_x^{(7)}(4) = \left(-\frac{7p_1}{\Omega^2} + \frac{6p_2}{\Omega^2}\right)\cos(\Omega(7t_1 - 6t_1)) + \frac{p_1}{\Omega^2} \approx 320.000 \text{ mm.}$$
(116 - 11)

Furthermore, the deflections in given test time are calculated.

Verification Example: 0116 – Vibrations with Coulomb Friction

$$u_{x}(1) = \left(-\frac{3p_{-}}{\Omega^{2}} + \frac{2p_{+}}{\Omega^{2}}\right)\cos(\Omega(1-2t_{1})) + \frac{p_{-}}{\Omega^{2}} \approx 138.930 \,\mathrm{mm} \qquad (116-12)$$

$$u_{x}(2) = \left(-\frac{5p_{-}}{\Omega^{2}} + \frac{4p_{+}}{\Omega^{2}}\right)\cos(\Omega(2 - 4t_{1})) + \frac{p_{-}}{\Omega^{2}} \approx 280.596 \,\mathrm{mm} \qquad (116 - 13)$$

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.10.00 and RSTAB 8.10.00
- The element size is $I_{\rm FE} = 0.010$ m
- The number of increments is 10
- Isotropic linear elastic model is used

The comparison of the analytical solution and RFEM 5 / RSTAB 8 solution can be seen in Figure 2.

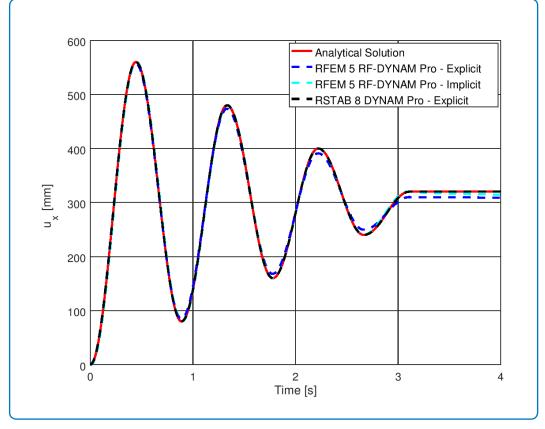


Figure 2: Analytical and RFEM 5 / RSTAB 8 solution

Results

Structure Files	Program	Solution Method
0116.01	RFEM 5 – RF-DYNAM Pro	Explicit analysis
0116.02	RFEM 5 – RF-DYNAM Pro	Nonlinear implicit Newmark analysis
0116.03	RSTAB 8 – DYNAM Pro	Explicit analysis

Verification Example: 0116 – Vibrations with Coulomb Friction

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	<i>u_x</i> (1) [mm]	<i>u_x</i> (1) [mm]	Ratio [-]
RFEM 5, Explicit analysis		143.780	1.035
RFEM 5, Nonlinear implicit Newmark analysis	138.930	134.923	0.971
RSTAB 8, Explicit analysis		138.642	1.000

Model	Analytical Solution RFEM 5 / RSTAB 8		RSTAB 8
	<i>u</i> _x (2) [mm]	<i>u</i> _x (2) [mm]	Ratio [-]
RFEM 5, Explicit analysis		281.484	1.003
RFEM 5, Nonlinear implicit Newmark analysis	280.596	279.921	0.998
RSTAB 8, Explicit analysis		280.097	0.998

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	u _{x,res} (4) [mm]	u _{x,res} (4) [mm]	Ratio [-]
RFEM 5, Explicit analysis		309.011	0.966
RFEM 5, Nonlinear implicit Newmark analysis	320.000	314.470	0.983
RSTAB 8, Explicit analysis		320.000	1.000

References

[1] STEJSKAL, V. and OKROUHLÍK, M. Kmitání s Matlabem. Vydavatelství ČVUT Praha.