Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro

Category: Large Deformation Analysis, Dynamics, Member

Verification Example: 0118 – Mathematical Pendulum

0118 – Mathematical Pendulum

Description

The mathematical pendulum consists of a zero-weight rope and a mass point at its end. The pendulum is initially deflected by angle $\varphi(0) = \varphi_0$. Determine the angle $\varphi(t)$ of the rope at given test time t. The problem is shown in **Figure 1** and it is described by the following set of parameters.

System Properties	Mass	т	50.000	kg
	Cable Length	L	1.414	m
	Initial Angle	φ_{0}	$\pi/4$	rad
	Gravitational Acceleration	g	9.810	ms ⁻²

Figure 1: Problem Sketch

Analytical Solution

The problem can be solved by means of the Lagrange equations of the second kind

$$\frac{\partial}{\partial t} \frac{\partial E_k(q, \dot{q}, t)}{\partial \dot{q}} - \frac{\partial E_k(q, \dot{q}, t)}{\partial q} = Q, \qquad (118 - 1)$$

where $E_k = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2)$ is the kinetic energy, q = (x, y) is the generalized coordinate, and Q is the sum of the generalized forces. The dot denotes the time derivative. In this case, the kinetic energy is defined for the mass point in the directions x and y. It is convenient to choose the polar angle $\varphi(t)$ for the generalized coordinate q, so there is only one variable. Considering the following relations for the velocities \dot{x} and \dot{y} ,

$$\begin{aligned} x &= L\sin\varphi \quad \Rightarrow \quad \dot{x} = L\dot{\varphi}\cos\varphi, \\ y &= L\cos\varphi \quad \Rightarrow \quad \dot{y} = -L\dot{\varphi}\sin\varphi, \end{aligned} \tag{118-2}$$

the kinetic energy can be expressed as

Verification Example: 0118 – Mathematical Pendulum

$$E_k = \frac{1}{2}mL^2\dot{\varphi}^2.$$
 (118 - 4)

The generalized force Q can be determined by the principle of virtual works. The variation δy is defined analogously to the above calculated velocity \dot{y} ,

$$\delta y = -L\delta\varphi\sin\varphi, \qquad (118-5)$$

that is,

$$Q\delta\varphi = -mg\delta y = -mgL\sin\varphi\delta\varphi.$$
(118 - 6)

The generalized force Q is then

$$Q = -mgL\sin\varphi. \tag{118-7}$$

Substituting (118 – 4) and (118 – 7) into the Lagrange equation (118 – 1), the following motion equation is obtained

$$\ddot{\varphi} = \frac{g}{L}\sin\varphi. \tag{118-8}$$

This is a non–linear second–order differential equation, which is further solved numerically, for example, by the Runge–Kutta method.

For the small deflections, it could be linearized as follows

$$\sin \varphi \approx \varphi \quad \Rightarrow \quad \ddot{\varphi} = \frac{g}{L} \varphi.$$
 (118 - 9)

RFEM 5 and RSTAB 8 Settings

• Modeled in RFEM 5.17.01 and RSTAB 8.17.01

Results

Structure Files	Program	Solution Method	
0118.01	RFEM 5 – RF-DYNAM Pro	Explicit analysis	
0118.02	RFEM 5 – RF-DYNAM Pro	Nonlinear implicit Newmark analysis	
0118.03 RSTAB 8 – DYNAM Pro		Explicit analysis, Large Deformation Analysis	

The comparison of the analytical solution with RFEM 5 and RSTAB 8 solutions can be seen in **Figure 2**. The results at test time $t_1 = 0.5$ s and $t_2 = 2$ s follows.

Verification Example: 0118 – Mathematical Pendulum

Figure 2: Analytical and RFEM 5 / RSTAB 8 solution

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	$arphi({f 0.5})$ [rad]	$arphi({f 0.5})$ [rad]	Ratio [-]
RFEM 5, Explicit analysis		-0.529	0.967
RFEM 5, Nonlinear implicit Newmark analysis	-0.547	—0.537	0.982
RSTAB 8, Explicit analysis, Large De- formation Analysis		—0.547	1.000

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	arphi(2) [rad]	arphi(2) [rad]	Ratio [-]
RFEM 5, Explicit analysis	-0.510	-0.585	1.147
RFEM 5, Nonlinear implicit Newmark analysis		-0.521	1.022
RSTAB 8, Explicit analysis , Large De- formation Analysis		-0.511	1.002