Category: Large Deformation Analysis, Dynamics, Member

Verification Example: 0118 - Mathematical Pendulum

0118 - Mathematical Pendulum

Description

The mathematical pendulum consists of a zero-weight rope and a mass point at its end. The pendulum is initially deflected by angle $\varphi(0)=\varphi_{0}$. Determine the angle $\varphi(t)$ of the rope at given test time t. The problem is shown in Figure 1 and it is described by the following set of parameters.

System Properties	Mass	m	50.000	kg
	Cable Length	L	1.414	m
	Initial Angle	φ_{0}	$\pi / 4$	rad
	Gravitational Acceleration	g	9.810	$\mathrm{~ms}^{-2}$

Figure 1: Problem Sketch

Analytical Solution

The problem can be solved by means of the Lagrange equations of the second kind

$$
\begin{equation*}
\frac{\partial}{\partial t} \frac{\partial E_{k}(q, \dot{q}, t)}{\partial \dot{q}}-\frac{\partial E_{k}(q, \dot{q}, t)}{\partial q}=Q \tag{118-1}
\end{equation*}
$$

where $E_{k}=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)$ is the kinetic energy, $q=(x, y)$ is the generalized coordinate, and Q is the sum of the generalized forces. The dot denotes the time derivative. In this case, the kinetic energy is defined for the mass point in the directions x and y. It is convenient to choose the polar angle $\varphi(t)$ for the generalized coordinate q, so there is only one variable. Considering the following relations for the velocities \dot{x} and \dot{y},

$$
\begin{align*}
x=L \sin \varphi & \Rightarrow \quad \dot{x}=L \dot{\varphi} \cos \varphi \tag{118-2}\\
y=L \cos \varphi & \Rightarrow \quad \dot{y}=-L \dot{\varphi} \sin \varphi \tag{118-3}
\end{align*}
$$

the kinetic energy can be expressed as

Verification Example: 0118 - Mathematical Pendulum

$$
\begin{equation*}
E_{k}=\frac{1}{2} m L^{2} \dot{\varphi}^{2} \tag{118-4}
\end{equation*}
$$

The generalized force Q can be determined by the principle of virtual works. The variation δy is defined analogously to the above calculated velocity \dot{y},

$$
\begin{equation*}
\delta y=-L \delta \varphi \sin \varphi \tag{118-5}
\end{equation*}
$$

that is,

$$
\begin{equation*}
Q \delta \varphi=-m g \delta y=-m g L \sin \varphi \delta \varphi \tag{118-6}
\end{equation*}
$$

The generalized force Q is then

$$
\begin{equation*}
Q=-m g L \sin \varphi \tag{118-7}
\end{equation*}
$$

Substituting (118-4) and (118-7) into the Lagrange equation (118-1), the following motion equation is obtained

$$
\begin{equation*}
\ddot{\varphi}=\frac{g}{L} \sin \varphi . \tag{118-8}
\end{equation*}
$$

This is a non-linear second-order differential equation, which is further solved numerically, for example, by the Runge-Kutta method.

For the small deflections, it could be linearized as follows

$$
\begin{equation*}
\sin \varphi \approx \varphi \quad \Rightarrow \quad \ddot{\varphi}=\frac{g}{L} \varphi \tag{118-9}
\end{equation*}
$$

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.17.01 and RSTAB 8.17.01

Results

Structure Files	Program	Solution Method
0118.01	RFEM 5 - RF-DYNAM Pro	Explicit analysis
0118.02	RFEM 5 - RF-DYNAM Pro	Nonlinear implicit Newmark analysis
0118.03	RSTAB 8 - DYNAM Pro	Explicit analysis, Large Deformation Analysis

The comparison of the analytical solution with RFEM 5 and RSTAB 8 solutions can be seen in Figure 2. The results at test time $t_{1}=0.5 \mathrm{~s}$ and $t_{2}=2 \mathrm{~s}$ follows.

Verification Example: 0118 - Mathematical Pendulum

Figure 2: Analytical and RFEM 5 / RSTAB 8 solution

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	$\varphi(0.5)$ $[\mathrm{rad}]$	$\varphi(0.5)$ $[\mathrm{rad}]$	Ratio $[-]$
RFEM 5, Explicit analysis		-0.529	0.967
RFEM 5, Nonlinear implicit Newmark analysis	-0.547	-0.537	0.982
RSTAB 8, Explicit analysis, Large De- formation Analysis		-0.547	1.000

Verification Example: 0118 - Mathematical Pendulum

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	$\varphi(2)$ $[\mathrm{rad}]$	$\varphi(2)$ $[\mathrm{rad}]$	Ratio $[-]$
RFEM 5, Explicit analysis		-0.585	1.147
RFEM 5, Nonlinear implicit Newmark analysis	-0.510	-0.521	1.022
RSTAB 8, Explicit analysis, Large De- formation Analysis		-0.511	1.002

