Program: RFEM 5, RF-FORM-FINDING

Category: Large Deformation Analysis, Isotropic Linear Elasticity, Shell

Verification Example: 0207 – Catenoid

0207 – Catenoid

Description

A cylindrical membrane is stretched by means of isotropic prestress *n* according to **Figure 1**. Find the final minimal shape of the membrane – catenoid. Determine the maximum radial deflection of the membrane *u*. The add-on module RF-FORM-FINDING is used for this purpose. Elastic deformations are neglected both in RF-FORM-FINDING and in analytical solution, also self-weight is neglected in this example. The problem is described by the following set of parameters.

Material	Polymer	Modulus of Elasticity	Ε	692.000	MPa
		Poisson's Ratio	ν	0.442	-
Geometry		Height	h	1.000	m
		Diameter	d	2.000	m
		Thickness	t	1.000	mm
Load		Prestress	n	1.000	kN/m

Remark: The solution does not depend on the thickness t but it has to be set up in RFEM 5 model.

Figure 1: Problem sketch

Analytical Solution

A catenoid is a minimal surface arising by the revolution of a catenary curve about an axis. Catenary curve is described in Verification example 0079 in detail, [1]. Catenoid is described by means of following set of parametric equations

Verification Example: 0207 – Catenoid

$$x = a \cosh\left(\frac{u}{a}\right) \cos(v), \qquad (207 - 1)$$

$$y = a \cosh\left(\frac{u}{a}\right) \sin(v), \qquad (207 - 2)$$

$$z = u, \tag{207-3}$$

where $v \in [-\pi, \pi)$ and *a* is a non-zero real constant. For the bottom circle it holds that $u = \frac{h}{2}$ and due to the axisymmetry, an arbitrary parameter *v* can be taken, in thic case v = 0. Then the equation (207 – 1) can be written as

$$\frac{d}{2} = a \cosh\left(\frac{h}{2a}\right). \tag{207-4}$$

The constant *a* has to be determined numerically. The constant *a* has the meaning of x- or y-coordinate at z = 0. Thus, the maximum deflection u_x is

$$u = \frac{d}{2} - a \approx 151.662 \text{ mm.}$$
 (207 - 5)

RFEM 5 Settings

- Modeled in RFEM 5.15.01
- The element size is $I_{\rm FE} = 0.100$ m
- Isotropic linear elastic material model is used

Results

Structure Files	Program	Modul	
0207.01	RFEM 5	RF-FORM-FINDING	

Figure 2: Result membrane shape (catenoid) in RFEM 5

Verification Example: 0207 – Catenoid							
Analytical Solution	RFEM 5 – RF-FORM-FINDING						
и [mm]	и [mm]	Ratio [-]					
151.662	151.791	1.001					

References

[1] DLUBAL SOFTWARE GMBH, Verification Example 0079 – Catenary. 2018.

