

Structural Analysis & Design Software

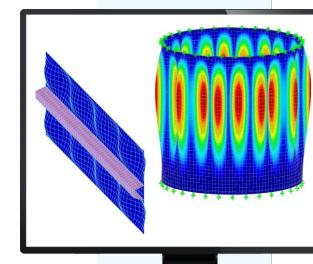




### Dipl.-Ing. (FH) Andreas Hörold Organizer

Marketing & Public Relations
Dlubal Software GmbH

#### Sonja von Bloh, M.Sc. Co-Organizer


Product Engineering & Customer Support Dlubal Software GmbH

### Dipl.-Ing. Thomas Günthel Co-Organizer

Customer Support Dlubal Software GmbH

#### Webinar

# Plate and Shell Buckling Utilizing Dlubal Software





# Questions During the Presentation

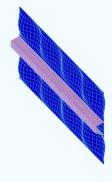


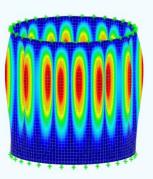
GoToWebinar Control Panel **Desktop** 



E-mail: info@dlubal.com







# **febinar**

## **CONTENT**



O2 Shell buckling design utilizing the global MNA and LBA calculation according to EN 1993-1-6 with RFEM







춨

# Plate Buckling Analyses of Steel Plates According to EN1993-1-5

Method of effective crosssections ([1], Sec. 4-7)

Reduced stress method ([1], Sec. 10)

Analyses using Finite Element Method ([1], Annex C)

#### **PLATE-BUCKLING**

Plate buckling analysis with or without stiffeners

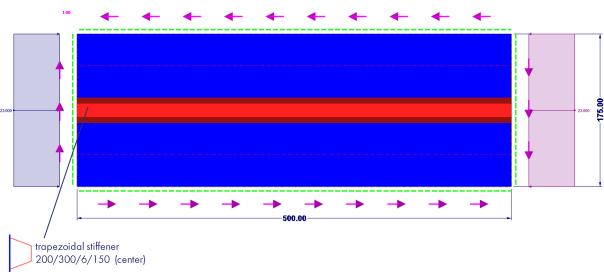


춨

# Example: Buckling Analysis of a Stiffened Plate with PLATE-BUCKLING (Reduced Stress Method)

#### Data

Material: S 355


Plate thickness: t = 14 mm

#### **Stresses**

$$\sigma_1 = \sigma_2 = 23.0 \text{ kN/cm}^2$$
  
 $\tau = 1.0 \text{ kN/cm}^2$ 



#### System



춨

# Plate Buckling Analyses of Steel Shell Structures acc. to EN 1993-1-6

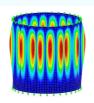


# Stress-based plate buckling analysis

- Simple application for expert engineers
- Low requirements for computer technology (often hand calculation formulas used)
- Economic results difficult to achieve for load situations significantly differing from conventional buckling shapes

#### Plate buckling design by global numerical MNA/LBA analysis

- More background knowledge for shell stability required
- Higher requirements for computer technology (materially nonlinear analysis (MNA), linear elastic bifurcation analysis (LBA))
- Computer technology using FE analysis consequently applied


# Plate buckling design by global numerical GMNIA analysis

- Excellent background knowledge for shell stability required (e.g. correct application of imperfections (preforming) is complex)
- Considerable requirements for computer technology
- Difficult application in real design situations



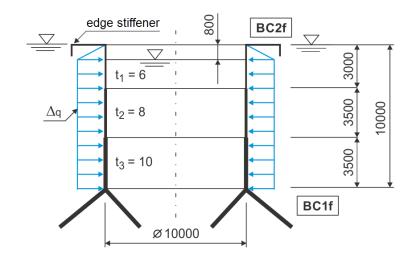


## Example: Plate Buckling Design by Global Numerical MNA/LBA Analysis acc. to [3]



#### **Technical data**

Liquid:  $\gamma = 10 \text{ kN/m}^3$ 


Material: S 235

Manufacturer quality: class A

**Load** (1.0 x differential pressure)

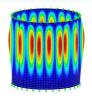
 $\Delta q_d = 8.0 \text{ kN/m}^2$ 

#### **System**





Elastic critical buckling resistance ratio


 $r_{Rcr} = 1.507$  (FE eigenvalue analysis (LBA) in RFEM)

Plastic reference resistance ratio ([2], Eq. 8.24)

$$r_{Rpl} = t \cdot f_{yk} / \sqrt{n_{x,Ed}^2 - n_{x,Ed} n_{\theta,Ed} + n_{\theta,Ed}^2 + 3n_{x\theta,Ed}^2}$$

The lowest value of plastic resistance ratio so calculated should be taken as the estimate of the plastic reference resistance ratio  $r_{Rpl}$ .

NOTE: A safe estimate of  $r_{Rpl}$  can usually be obtained by applying expression (8.24) in turn at the three points in the shell where each of the three buckling-relevant membrane stress resultants attains its highest value, and using the lowest of these three estimates as the relevant value for  $r_{Rpl}$ . [2]





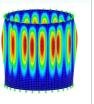
 $r_{Rpl} = 35.6$  (materially non-linear analysis (MNA in RFEM)

Overall relative slenderness ([2], Eq. 8.25)

$$\overline{\lambda}_{\rm ov} = \sqrt{r_{\rm Rpl}/r_{\rm Rcr}}$$

$$\overline{\lambda}_{ov} = \sqrt{35.6/1.507}$$

$$\overline{\lambda}_{ov} = 4.86$$


Circumferential elastic imperfection reduction factor ([2], Tab. D.5)

$$\alpha_{\rm ov} = \alpha_{\rm \theta} = 0.75$$

Plastic range factor ([2], D.26)

$$\beta = 0.60$$





Plastic limit relative slenderness ([2], Eq. 8.16)

$$\overline{\lambda}_p = \sqrt{\alpha/(1-\beta)}$$

$$\overline{\lambda}_p = \sqrt{0.75/0.40)}$$

$$\overline{\lambda}_{\rm p} = 1.37 << 4.86$$
  $\rightarrow$  pure elastic plate buckling

Buckling reduction factor ([2], Eq. 8.15)

$$\chi_{ov} = \alpha / \frac{1}{\lambda^2}$$

$$\chi_{\rm ov} = \frac{0.75}{4.86^2}$$

$$\chi_{\rm ov} = 0.0318$$





Characteristic buckling resistance ratio ([2], Eq. 8.26)

$$r_{Rk} = \chi_{ov} \cdot r_{Rpl}$$

$$r_{Rk} = 0.0318 \cdot 35.6$$

$$r_{Rk} = 1.132$$

Design buckling resistance ratio ([2], Eq. 8.27)

$$r_{Rd} = r_{Rk} / \gamma_{M1}$$

$$r_{Rd} = \frac{1.132}{1.1}$$

$$r_{Rd} = 1.03 > 1 \rightarrow design fulfilled$$



→ Another example available in Knowledge Base





## Bibliography

- [1] Eurocode 3: Design of steel structures Part 1-5: General rules Plated structural elements; EN 1993-1-5:2006 (E)
- [2] Eurocode 3: Design of steel structures Part 1-6: Strength and stability of shell structures, EN 1993-1-6:2007 (E)
- [3] Schmidt H.: Beulsicherheitsnachweise für Schalen nach dem neuen Eurocode EN 1993-1-6 Ein Überblick mit Beispielen aus der Anwendungspraxis, Referat beim 27. Stahlbau-Seminar in Neu-Ulm und Wien, 2005



淤

### **Free Online Services**

#### **Geo-Zone Tool**

Dlubal Software provides an online tool with snow, wind and seismic zone maps.





# **Cross-Section Properties**

With this free online tool, you can select standardized sections from an extensive section library, define parametrized cross-sections and calculate its cross-section properties.





# FAQs & Knowledge Base

Access frequently asked questions commonly submitted to our customer support team and view helpful tips and tricks articles to improve your work.





## Models to Download

Download numerous example files here that will help you to get started and become familiar with the Dlubal programs.







淤

### **Free Online Services**

#### Youtube Channel webinars, videos

Videos and webinars about the structural engineering software.





#### Webshop with prices

Configure your individual program package and get all prices online!





#### **Trial Licenses**

The best way how to learn using our programs is to simply test them for yourself. Download a



We offer free

and chat

support via email



### Get further details about Dlubal



Visit website www.dlubal.com

- Videos and recorded webinars
- → Newsletters
- Events and conferences
- Knowledge Base articles



See Dlubal Software in action in a webinar



Download free trial license





Phone: +49 9673 9203-0 E-mail: info@dlubal.com



www.dlubal.com