Version
January 2019

How to

Evaluate the Capacity Curve for Pushover Analysis

RFEM with RF-DYNAM Pro

All rights, including those of translations, are reserved.
No portion of this book may be reproduced - mechanically, electronically, or by any other means, including photocopying - without written permission of DLUBAL SOFTWARE GMBH.
© Dlubal Software GmbH 2016

Am Zellweg 2

D-93464 Tiefenbach

Germany

Tel.: +49 9673 9203-0
Fax: +49 9673 9203-51
E-mail: info@dlubal.com
Web: www.dlubal.com

Contents

Contents
 Page

1. Introduction ... 2
2. Plastic Hinges .. 4
2.1 IPE 200 Hinges... 4
2.2 IPE 140 Hinges... 6
2.3 HEA 200 Hinges .. 7
3. Load Pattern .. 9

4. Capacity Curve ... 15
A. Literature ... 17

1 Introduction

The Pushover Analysis (POA) is a nonlinear static method for the seismic analysis of structures. A pre-determined lateral load pattern is applied onto the structure and steadily increased to identify yielding and plastic hinge formations and the load at which failure of the various structural components occurs. The Capacity Curve or Pushover Curve represents the nonlinear behavior of the structure and is a load-deformation curve of the base shear force versus the horizontal roof displacement of the building. Pushover analysis transforms a dynamic problem to a static problem.

In accordance to FEMA 356 [1], at least two load patterns should be used in order to envelope the response. The most common load patterns are:

- Load pattern based on the fundamental mode shape or any other modes of interest. Therefore, the use of RF-DYNAM Pro is recommended and shown in the tutorial.
- Uniform load distribution (according to mass distribution)
- FEMA load distribution in accordance to FEMA 356 [1]

The Pushover Curve is connected to the Inelastic Response Spectrum to evaluate a Performance Point which is the maximum displacement the building can cope with. There are different Pushover Analysis methods:

- Capacity Spectrum Method (CSM) applied in ATC 40 [2]
- N2-Method introduced by P.Fajfar [3] and described in EN 1998-1 [4]
- Displacement Coefficients Method (DCM)

Pushover analysis is based on the assumption that the structure has one dominant eigenvalue and mode shape. It is also assumed that this eigenvalue remains the same during the elastic and inelastic response. Detailed theoretical background of these Pushover Methods can be found in various literature (i.e.[5], [6], [3]). Multi-modal pushover analysis methods are described in [7] and [8].

The following tutorial shows how the Capacity Curve of a two-story steel frame can be evaluated with RFEM. The Capacity Curve is the basis for the pushover analysis employing one of the methods listed above. The following steps are performed in this tutorial:

- Definition of Plastic Hinges in accordance to FEMA 356 [1]
- Definition of Lateral Load Pattern based on the fundamental eigenvalue
- Non-linear static calculation with incrementally increasing load
- Evaluation of the Capacity Curve and plastic hinge deformation

The structural system considered in this tutorial is a two-story steel frame. The structure and cross-sections are shown in Figure 1.1. The material used is steel S 235. When applying lateral loads to this system, the largest moments are expected at the joints. Therefore, plastic hinges are defined at the start and end of each beam. The structural system and the position of the plastic hinges represent a strong-column / weak-beam frame building where a beam-sway plastic mechanism is expected.

Figure 1.1: Two-story steel frame used to evaluate the Pushover Curve. The cross-sections and member lengths are labeled accordingly. The plastic hinges are illustrated as member end pins.

Plastic hinges are assigned to several members. Within RFEM, plastic hinges in accordance to the FEMA 356, Chapter 5 [1] are available. The hinge diagram values and acceptance criteria are pre-defined for steel members. The yielding moments and yielding rotations are dependent on the cross-section and the material of the members. RFEM will set the yielding values automatically.

2 Plastic Hinges

It is recommended to create separate plastic hinge types for each member type and members of different lengths. All pre-defined hinge values are defined in the Plastic Hinge dialog box.

2.1 IPE 200 Hinges

1. Edit the first level IPE 200 members, and define new hinges at the start and end of the member.

Figure 2.1: Edit the members with cross-section IPE 200 and add new member hinges at the start and end of the members.
2. Define a moment hinge and choose the nonlinearity Plastic Hinge.

Figure 2.2: Selection of the nonlinearity Plastic Hinge for the moment hinge.
3. When you enter the dialog Nonlinearity - Plastic Hinge - My, the hinge type FEMA 356 Rigid-Plastic Automatic is pre-set. The hinge diagram and the acceptance criteria in accordance to FEMA 356 Table 5.6-Beam Flexure cannot be adjusted. For the cross-section IPE 200, an interpolation between Line a and Line b of FEMA 356 Table 5.6-Beam Flexure is not required
and the values of Line a are used. A selection can be made between the Primary and Secondary acceptance criteria.
The yield limits are calculated in accordance to FEMA 356 Equation 5-1 and 5-6. For the IPE 200 with $S 235$ material the yield moment $M_{y, y i e l d}$ and yield rotation $\varphi_{y, y i e l d}$ of the hinge are determined with the following equations.

$$
\begin{align*}
& M_{y, \text { yield }}=Z_{y} \cdot f_{y i e l d}=220,6 \mathrm{~cm}^{3} \cdot 23,5 \mathrm{kN} / \mathrm{cm}^{2} \\
& M_{y, \text { yield }}=51,84 \mathrm{kNm} \tag{2.1}\\
& \varphi_{y, \text { yield }}=\frac{Z_{y} \cdot f_{\text {yield }} \cdot l_{b}}{6 E I_{y}}=\frac{220,6 \mathrm{~cm}^{3} \cdot 23,5 \mathrm{kN} / \mathrm{cm}^{2} \cdot 600 \mathrm{~cm}}{6 \cdot 21000 \mathrm{kN} / \mathrm{cm}^{2} \cdot 1943 \mathrm{~cm}^{4}} \\
& \varphi_{y, \text { yield }}=0,0127 \mathrm{rad} \tag{2.2}
\end{align*}
$$

The following definitions are used in Equations 2.1 and 2.2.
Z_{y} : Plastic section modulus
$\mathrm{f}_{\text {yield }}$: Yield strength of $S 235$ (EN 10025-2:2004-11)
I_{b} : Length of the beam
E : Modulus of elasticity
I_{y} : Moment of inertia
In this tutorial, all default values are used. However, values can be adjusted in the dialog box to account for various scenarios (i.e. connections, interaction with normal forces, etc.).

Figure 2.3: Plastic Hinge with the default FEMA 356| Rigid-Plastic | Automatic hinge selected. The hinge diagram parameters are set automatically and can be found in FEMA 356 Table 5.6. The yield limits are pre-set for the IPE 200 with $S 235$ material and a member length of $\mathrm{I}_{\mathrm{b}}=6 \mathrm{~m}$.

2.2 IPE 140 Hinges

4. Define the plastic hinges for the upper level beams with IPE 140 cross-sections.

Figure 2.4: Edit the members with cross-section IPE 140 and add new member hinges at the start and at the end of the members.

The automatic plastic hinges are used. The diagram parameters and acceptance criteria are identical to the hinges defined for the IPE 200 members (compare with Figure 2.3). A cross-section interpolation is not required for the IPE 400. The difference to the previously defined hinges include the yield limits calculated in Equations 2.1 and 2.2 using the IPE 140 plastic section modulus $Z_{y}=88,34 \mathrm{~cm}^{3}$ and the moment of inertia $I_{y}=541,20 \mathrm{~cm}^{4}$. The resulting yielding limits are shown in Figure 2.5.

Figure 2.5: Plastic Hinge with the default FEMA 356| Rigid-Plastic | Automatic hinge selected. The hinge diagram parameters are set automatically and can be found in FEMA 356 Table 5.6. The yield limits are pre-set for the IPE 140 with $S 235$ material and a member length of $\mathrm{I}_{\mathrm{b}}=6 \mathrm{~m}$.

2.3 HEA 200 Hinges

5. We define plastic hinges at the bottom of the columns to ensure final collapse of the steel frame.

Figure 2.6: Edit the members with cross-section HEA 200 and add new member hinges at the start of the members.
6. Again, we choose the default automatic plastic hinge option for this cross-section. For the cross-section HEA 200 an interpolation between Line a and Line b of FEMA 356 Table 5.6-Beam Flexure (Columns - Flexure with $P / P_{C L} \ll 0.2$) [1] is required as the flange slenderness condition is not fulfilled for Line a. The plastic hinge dialog is shown in Figure 2.7. The diagram parameters are different to the previously defined hinges for the IPE 200 and IPE 400.

Figure 2.7: Plastic Hinge with the default FEMA 356|Rigid-Plastic | Automatic hinge selected. The hinge diagram parameters are interpolated automatically to match the criteria for flange and web slenderness in accordance to FEMA 356 Table 5.6 (Columns - Flexure with $P / P_{C L} \ll 0.2$). The secondary acceptance criteria is selected. The yield limits are set automatically for the HEA 200 with $S 235$ material and a member length of $I_{b}=3,5 \mathrm{~m}$.

RFEM automatically calculates the slenderness checks and interpolates the correct values for diagram parameters and acceptance criteria as shown below.

$$
\begin{align*}
& \frac{b_{f}}{2 t_{f}} \leq \frac{52}{\sqrt{f_{\text {yield }}}} \tag{2.3}\\
& \frac{b_{f}}{2 t_{f}} \geq \frac{65}{\sqrt{f_{\text {yield }}}} \tag{2.4}
\end{align*}
$$

with
b_{f} : Width of the cross-section, $b_{f}=200 \mathrm{~mm}$
$\mathrm{t}_{\mathrm{f}} \quad$: Thickness of the flange, $\mathrm{t}_{\mathrm{f}}=10 \mathrm{~mm}$
$\mathrm{f}_{\text {yield }}$: S 235 yield strength(EN 10025-2:2004-11), required in ksi, $f_{\text {yield }}=23,5 \mathrm{kN} / \mathrm{cm}^{2}=34,08 \mathrm{ksi}$
For the HEA 200 the flange slenderness conditions are not fulfilled, and the hinge diagram values and acceptance criteria are linearly interpolated between Line a and Line b of FEMA 356 Table 5.6. The interpolated values are shown in Figure 2.7.
Web slenderness is not an issue for the HEA 200. This is checked with the following condition:

$$
\begin{equation*}
\frac{h}{t_{w}} \leq \frac{300}{\sqrt{f_{\text {yield }}}} \tag{2.5}
\end{equation*}
$$

With
$\mathrm{h}:$ Height of the cross-section between the flanges, $\mathrm{h}=170 \mathrm{~mm}$
t_{w} : Thickness of the web, $\mathrm{t}_{\mathrm{w}}=6,5 \mathrm{~mm}$
$\mathrm{f}_{\text {yield }}$: $S 235$ yield strength (EN 10025-2:2004-11), required in ksi,

$$
\mathrm{f}_{\mathrm{yield}}=23,5 \mathrm{kN} / \mathrm{cm}^{2}=34,08 \mathrm{ksi}
$$

This results in $26,15 \leq 51,39$ and no interpolation due to web slenderness needs to be done.

$$
\begin{align*}
\frac{h}{t_{w}} & \leq \frac{418}{\sqrt{f_{\text {yield }}}} \tag{2.6}\\
\frac{h}{t_{w}} & \leq \frac{640}{\sqrt{f_{\text {yield }}}} \tag{2.7}
\end{align*}
$$

3 Load Pattern

Increasing lateral load patterns need to be applied to the structure up to the inelastic state. The goal is to monitor the progressive yielding of the structure. FEMA 356 [1] and the EN 1998-3 [9] recommends applying at least two load patterns in order to envelope the response. In this tutorial only one type of load pattern is shown.

The most common load distribution is in accordance to the structure's dominant mode shape. The eigenvalues and dominant mode shape can easily be determined in RFEM with the add-on module RF-DYNAM Pro. RF-DYNAM Pro-Equivalent Loads, a response spectrum analysis is performed and equivalent loads are exported into Load Cases within RFEM.

RF-DYNAM Pro evaluates eigenvalues, the mass distribution of the structure and the linear response spectrum in accordance to a various choice of building standards. This information is required for the Pushover Analysis when utilizing the N2-Method or the Capacity Spectrum Method.

1. Open the add-on module RF-DYNAM Pro and select the Response spectrum analysis with generation of equivalent loads.

Figure 3.1: Within the General tab of the add-on module RF-DYNAM Pro, the response spectra analysis with generation of equivalent loads is selected.
2. Masses are defined in the Mass Case and Mass Combination tab. Defined masses in this example are the self-weight of the structure and imposed loads. The masses are imported from Load Cases into the module RF-DYNAM Pro and are combined in Mass Combinations. Combination factors can be adjusted.

Figure 3.2: The self-weight and imposed loads imported from LC2 are defined as separate mass cases.

Figure 3.3: The masses from self-weight and imposed loads are combined with a factor of 1,0 .
3. The eigenvalues and mode shapes are calculated based on the defined masses. In this example, only the deformation in the X-direction is of interest. The masses are lumped at the structure's nodes. The settings of the Natural Vibration Case are illustrated in Figure 3.4.

Figure 3.4: The eigenvalues and mode shapes are calculated with the shown settings. The masses are lumped at nodes and act only in the X -direction.
4. The linear elastic response spectrum is defined in accordance to the EN 1998-1 [4]. The chosen parameters are shown in Figure 3.5.

Figure 3.5: Linear elastic response spectrum with applicable parameters in accordance to the EN 1998-1 [4].
The acceleration values of the response spectrum are automatically calculated in accordance to the chosen standard. These tabulated values can be exported to Excel as shown in Figure 3.6. This is useful to convert the linear spectrum into the inelastic spectrum required for the Pushover Analysis.

Figure 3.6: Tabulated values of the linear elastic response spectrum can be exported to Excel.
5. The multi-modal response spectrum analysis can now be performed. The structure is only excited in the X-direction. The generated equivalent loads are exported into Load Cases. The settings for the response spectrum analysis are shown in Figure 3.7.

File Settings Help

Figure 3.7: Settings for the multi-modal response spectrum analysis with the export of equivalent loads.
In this tutorial, only the fundamental mode shape is evaluated. The selection of eigenvalues is shown in Figure 3.8. Other eigenvalues can easily be analyzed by selecting them in the Mode Shapes tab. The equivalent loads of each selected eigenvalue are exported into separate Load Cases.

Figure 3.8: Selection of the fundamental eigenvalue in the Mode Shapes tab.
6. Calculate the RF-DYNAM Pro with the button [OK \& Calculate]. The load case LC3 contains the equivalent loads in accordance to the dominant mode shape. The load distribution is shown in Figure 3.9. Due to the hinge difinition, two FE mesh points exist at each node. Consequently, two loads are exported for each node.

Global Deformations u [mm]
Support Reactions
LC3: DLC1 - Mode shape 1, direction - X

Figure 3.9: Load distribution in accordance to the dominant mode shape of the structure. The equivalent loads are exported from RF-DYNAM Pro.
7. The base shear force for the dominant mode is listed in Table 5.8 as shown in Figure 3.10

Figure 3.10: A list of all generated equivalent loads together with the base shear force is provided in Table 5.8 separate for each mode.

4 Non-Linear Static Calculation with Incrementally Increasing Load

The load case LC3 exported from RF-DYNAM Pro includes the equivalent loads and is directly used for the non-linear static analysis for the Pushover Curve.

1. Open the Calculation Parameters for LC3 and adjust the parameters. The final settings used in this tutorial are shown in Figure 4.1.
2. Perform a Large Deformation Analysis to enable the Incrementally Increasing Loading feature.
3. Modify the load with a factor to scale the equivalent loads exported from RF-DYNAM Pro. To ensure the load steps are small enough, the following factor is recommended:

$$
\begin{equation*}
\frac{1}{\sum F_{i}}=\frac{1}{67,50 \mathrm{kN}}=0,015 \tag{4.1}
\end{equation*}
$$

using the base shear force F_{i} as illustrated in Figure 3.9 and listed in Figure 3.10.
4. Activate the Incrementally Increasing Loading feature. Set the Initial Load Factor to 0,015 for the above discussed reasons. To increase the loads by $\sum \mathrm{F}=0,1 \mathrm{kN}$ in each calculation step, the load factor increment must be set to 0,0015 .
These settings highly depend on the structure and the expected deformation. The smaller the Load Increment value, the longer the calculation time. However, additional data points will be available in the Pushover Curve for a more exact Pushover Analysis. A Load Increment convergence study should be performed to find the ideal balance between data points and calculation time. A stopping condition is not necessarily required.
5. Save the result of all load increments.

Figure 4.1: The calculation parameters of $L C 3$ to perform a non-linear static calculation.
6. Calculate the load case $L C 3$

5 Capacity Curve

Once LC3 is calculated, the Pushover Curve is available. This curve is required to evaluate the Performance Point using the N2-Method or the Capacity Spectrum Method, which is not included in this tutorial.

1. Go to the Global Calculation Parameters and select the Calculation Diagram tab.
2. Define a new Calculation Diagram with the settings shown in Figure 5.1.

Figure 5.1: The definition of the Calculation Diagram to obtain the Pushover Curve. The sum of all lateral loads (base shear) is displayed on the vertical axis. The roof level deformation is displayed on the horizontal axis.
3. Zoom into the Pushover Curve using the button Q. Data values can be exported to Excel using the 图 button. This is useful for the Pushover Analysis.

Figure 5.2: The Pushover Curve for the load pattern according to the dominant mode shape.
4. Each load increment can be viewed graphically. The displayed plastic hinge color depends on the defined acceptance criteria. An overview for these possibilities are shown in Figure 5.3.

Figure 5.3: The internal moments together with colored plastic hinges are shown in the main graphic. Load increments are selected with the drop-down in the Panel. The plastic hinge color legend is in accordance to the acceptance criteria defined.

Literature

[1] FEMA 356. Prestandard and Commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, ASCE American Society of Civil Engineers, 2000.
[2] ATC40. Seismic Evaluation and Retrofit of Concrete Buildings. California Seismic Safety Commission, ATC - Applied Technology Counci, 1996.
[3] P. Fajfar. A nonlinear analysis method for performance based seismic design. Earthquake Spectra, 16(3):573-592, 2000.
[4] EN 1998-1: Design of structures for earthquake resistance Part 1: General rules, seismic actions and rules for buildings. CEN, Brussels, 2004.
[5] S. Themelis. Heriot-Watt University - School of the Built Environment, 2008.
[6] P. Fajfar. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering \& Structural Dynamics, 28(9):979-993, 1999.
[7] A.K. Chopra and R.K. Goel. University of California, Berkeley - School of Engineering, 2003.
[8] K.K. Sasaki, S.A. Freeman and T.F. Paret. Multi-mode pushover procedure (mmp) - a method to identify the effects of higher modes in a pushover analysis. 6th U.S National Conference on Earthquake Engineering, 1996.
[9] EN 1998-3: Design of structures for earthquake resistance Part 3: Assessment and retrofitting of buildings. CEN, Brussels, 2005.
[10] Program Description RFEM 5. Dlubal GmbH, 2013.

