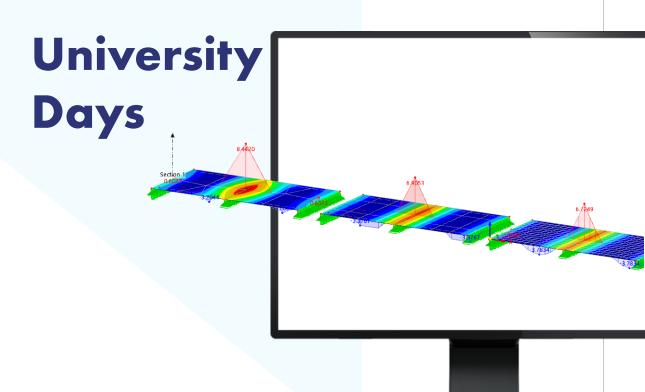


Structural Analysis & Design Software

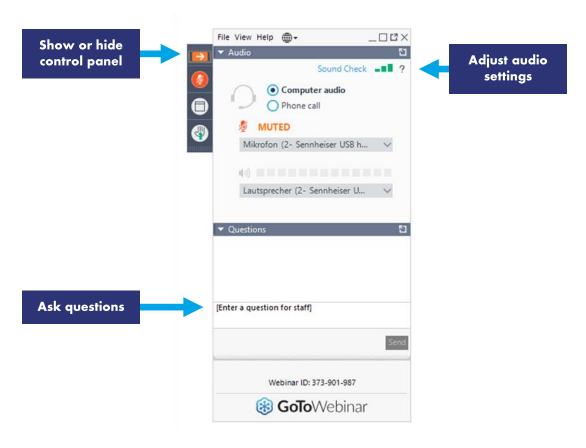
Amy Heilig, PE Presenter/Moderator CEO - USA Office

Alex Bacon, EIT

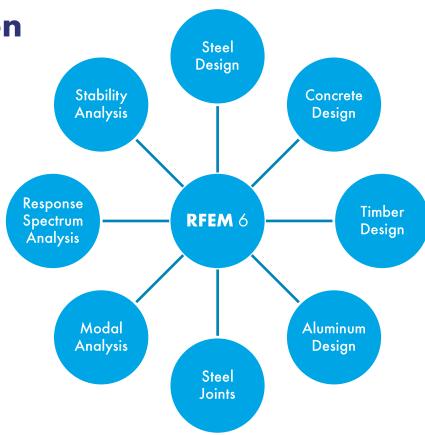

Technical Support Engineer

Cisca Tjoa, PE Moderator

Technical Support Engineer



QuestionsDuring thePresentation

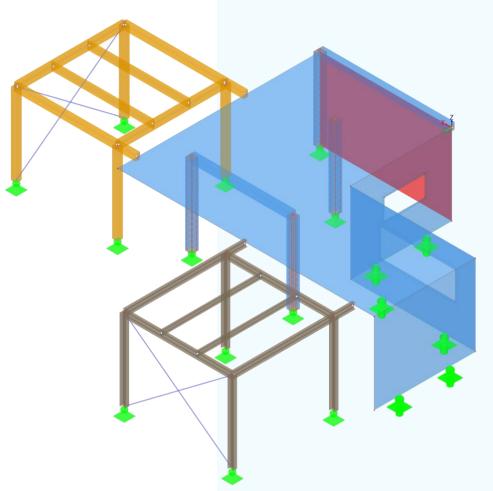


RFEM 6 Configuration

- RFEM 6 (base program)
 - BIM integration
 - Modeling
 - Loading
 - Analysis
- Add-ons
 - Additional analysis
 - Dynamic analysis
 - Special solutions
 - Design
 - Connections

Universities, Professors, and Students

- Access to free, full RFEM 6 licenses
- Teaching or learning purposes
- Personal, school, or lab computers
- Valid for 1 year with renewal opportunity
- Access to program updates
- Free email technical support
- Request through <u>www.dlubal.com</u>


Online Training

CONTENT

O2 Continuous slab Example

O3 Design Addon Example

Dlubal Software

Coffee Break

Do you plan on modeling along?

Yes

No

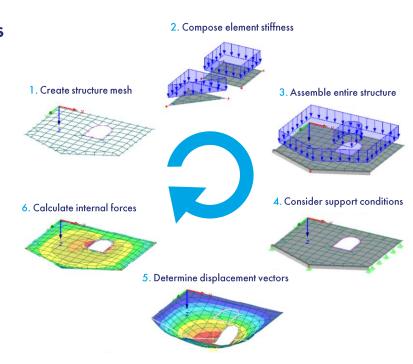
Have you learned about FEA yet?

Yes

No

춨

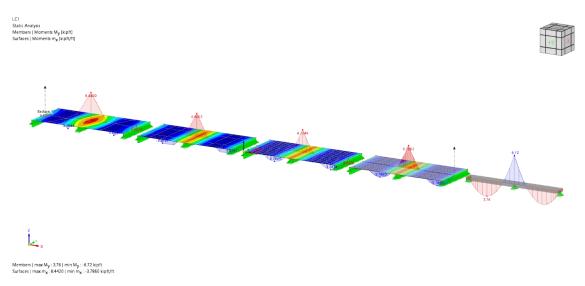
Basics of FEA


- Computer software is based on the displacement method
- Analytical solutions are difficult when it comes to large complicated structures
 - Structures are then modeled and converted into a finite interconnected element mesh
 - Material and cross-section properties are given at each FE node
 - Mechanical behavior is transferred between elements
- Discretization: Structures being submeshed into finite elements

춨

FEA Calculation Workflow

- 1. Determine local element stiffness properties
- Transfer stiffness properties to Global coordinate system
- 3. Assemble entire structure
- 4. Implement support conditions
- 5. Determine displacement vectors
- Determine support forces and internal forces


What is Discretization?

- a) A structure that is converted into finite elements
- b) The calculation of a structure according to the FEA method
- c) Sub-meshing finite elements into smaller elements

Continuous Plate Example

Covered Topics

- FE mesh design
- Convergence behavior
- Comparison of beam / surface elements
- FF mesh size

Result Interpretation

- Distribution of internal forces
- Shear stiffnesses
- Result smoothing

FE mesh size should be...

- a) as fine as necessary and as course as possible.
- b) as course as necessary and as fine as possible.
- c) as precise as possible and as course as necessary.

Dlubal Software

Coffee Break

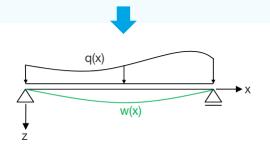
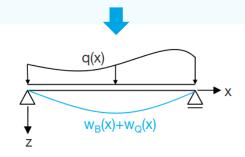

炭

Plate Theory

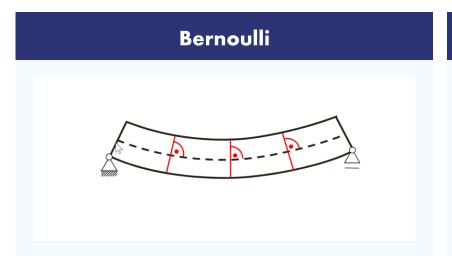
Analogy using beam elements:

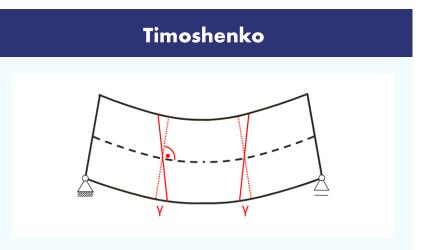

Bernoulli

- Cross-sections remain in-plane and perpendicular to the member axis
- No consideration of shear deformations
- Completely rigid shear stiffness

Timoshenko

- Cross-sections remain in-plane but don't remain perpendicular to the member axis
- Shear deformations are taken into consideration
- Shear stiffness is <u>limited</u> and <u>isn't</u> completely rigid





 $\overset{\sim}{\sim}$

Plate Theory

Analogy using beam elements:

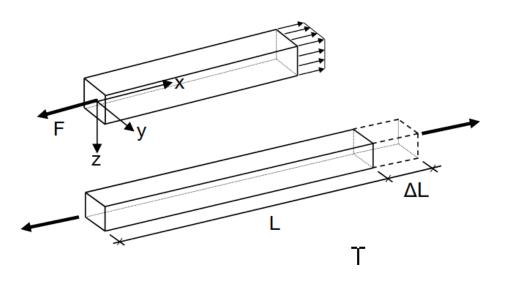
춨

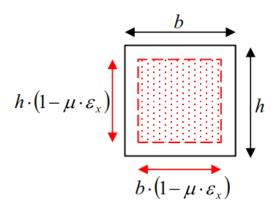
Plate Theory

Equivalent analogy for plate elements:

Kirchhoff

- Geometrically linear: small deformations
- Linear elastic material: Hooke's law
- Cross-sections remain flat, no warping
- Constant thickness
- No consideration of shear deformations


Reissner/Mindlin


- Geometrically linear: small deformations
- Linear elastic material: Hooke's law
- Cross-sections remain flat, no warping
- Constant thickness
- Consideration of shear deformations
- Consideration of transverse/lateral strains

 $\overset{\sim}{\sim}$

Transverse/Lateral Strain

춨

Plate Theory

Transfer to plate elements:

Kirchhoff-Theory

- No consideration of shear deformations
- Theory of thin plates
- Pure bending and load bearing capacity
- Simplified approach

Reissner/Mindlin-Theory

- Consideration of shear deformations
- Theory of thick plates
- Shear influence component is relatively high
- Significant error when neglecting shear force
- Higher-value approach
- More accurate shear forces

The plate theory of Kirchoff does not consider any shear deformation.

Where are member and surface modifications such a I_{cr} (concrete cracked moment of inertia) set?

- a) Load Cases/Combinations dialog Stiffness Modifications
- b) Navigating to File Insert
- c) Member/Surface Edit dialog

Member unbraced lengths are set under which of the following?

- a) Navigating to File Insert
- b) Member Edit dialog Effective Lengths tab
- c) Steel Design Serviceability Configurations

It's possible to edit an existing image in the printout report instead of deleting and creating a new image.

- a) True
- b) False

Visit website www.dlubal.com


- Videos and recorded webinars
- → Newsletters
- Events and conferences
- Knowledge Base articles

See Dlubal Software in action in a webinar

Request free student license

Dlubal Software, Inc.

The Graham Building, 30 South 15th Street, 15th Floor, Philadephia, PA 19102

Phone: (267) 702-2815 E-mail: info-us@dlubal.com

www.dlubal.com