

Structural Analysis & Design Software

Daniel Dlubal, M.Sc. Organizer COO

Dlubal Software GmbH

Björn Steinhagen, B.Sc.

Product Engineering Dlubal Software GmbH

Part 3 | Introduction to FEM

RFEM 6 for Students

Questions During the Presentation

GoToWebinar Control Panel **Desktop**

Show or hide		File View Help			
control panel		Audio Sound Chec Organizer audio	™ 18 •■■ ?	-	Adjust audio settings
		O Phone call MITED			
	(Mikrofon (2- Sennheiser USB h	h V		
		()) Lautsprecher (2- Sennheiser U.	~		
		▼ Questions	ប		
Ask questions		[Enter a question for staff]			
			Send		
		Webinar ID: 373-901-987			
		🛞 GoToWebina	nr		

-

Training Series

01	Introduction to Member Design
02	Introduction to Strength of Materials
03	Introduction to FEM / FEA
04	Steel Design
05	Concrete Design
06	Timber Design

Training Series

01	Introduction to Member Design		
02	Introduction to Strength of Materials		
03	Introduction to FEM / FEA		
04	Steel Design		
05	Concrete Design		
06	Timber Design		

CONTENT

- 02 Introductory Example: Continuous slab
- Plate theory 03
- 04 **Nonlinear calculations**
- 05 **Singularities**

Basics of FEA

- Computerprogram s are based on the displacem entmethod
- Analytical solution of structures is hardly possible
 - Realstructure is decomposed into a mesh of finite interconnected elements
 - Properties of the element continuum are described at the nodes
 - The mechanical behavior is described by approximation sets
- Discretization: Decom position of structure into finite elements

Procedure of a FEA calculation

- 1. Determination of the boalelement stiffness relations
- 2. Transform ation of the stiffness relations to the globalCoordinate System
- 3. Composition of the total stiffness relation
- 4. Consideration of Support Conditions
- 5. Solution of Equation System
- 6. Determ ination of Support Forces and Internal Forces

Durchlaufplatte mit Flächenlast

LF1 - Eigengewicht Statische Analyse Stäbe | Momente My [kNm] Flächen | Momente m_x [kNm/m]

Covered Topics

- FE mesh design
- Convergence behavior
- Comparison of beam / surface elements
- FE mesh size

Result Interpretation

- Distribution of internal forces
- Shear stiffnesses
- Result smoothing

Dluba

Plate Theory

Analogy to beam element:

Bernoulli

- Cross-Section remain in plane, Cross-Sections remain perpendicular to the member axis
- No consideration of shear deformations, rigid shear stiffness

Timoshenko

- Cross-Section remain in plane, Cross-Sections don't remain perpendicular to the member axis
- Consideration of shear deformations, shear stiffness is limited, isn't rigid

Plate Theory

Analogy to beam element:

Plate Theory

Transfer to plate elements:

Kirchhoff

- Geometrically linear: small deformations
- Linear elastic material law: Hooke
- The cross-sections remain flat, no warping
- Constant thickness
- No consideration of shear deformations

Reissner/Mindlin

- Geometrically linear: small deformations
- Linear elastic material law: Hooke
- The cross-sections remain flat, no warping
- Constant thickness
- Consideration of shear deformations
- Consideration of transverse/lateral strains

Transverse/Lateral Strain

h

Plate Theory

Transfer to plate elements:

	Kirchhoff	Reissner/Mindlin
	No consideration of shear deformations	 Consideration of shear deformations
	 Theory of thin plates 	 Theory of thick plates
	Pure bending load bearing capacitySimplified approach	 The component of the shear influence is relatively high
		 Error in neglecting shear force would be too high
		 Higher-value approach
		 More accurate shear forces
Dlub	bal	

Nonlinear Calculation

- Disadvantage of all nonlinear calculations: Superposition law is no bngervalid
- Typical application areas in RFEM 6:
 - Geometrically nonlinear calculation, e.B. Second order analysis
 - Nonlinearmaterialbehavior
 - N onlinearbehavior for structuralobjectelem ents such as m em bers, hinges, supports, etc.
- More precise analyzes, but increased calculation effort

怸

Dlubal Software

Coffee

Break

What are singularities? Where do they occur?

- Points of discontinuity in the calculation model
- Nomeaningfulresults
 - M odelproblem , no realocurring physical phenom enon
 - Infinite stresses and internal forces
 - M esh refinem entdoes not in prove the result
- Typical singularity boations
 - Point and line bads, point and line supports
 - O penings, reentrant corners
 - Stiffness changes due to material or thicknesses

Free Online Services

Geo-Zone Tool

Dlubal Software offers an online tool for determining the characteristic load values of the relevant load zone.

Cross-Section Properties

With this free online tool, you can select standardized sections from an extensive section library, define parametrized cross-sections and calculate its cross-section properties.

FAQs & Knowledge Base

Check out the frequently asked questions our customer support team is asked and get helpful tips and tricks with our technical articles to improve your work.

Models to Download

Download numerous example files that help you to get started and become familiar with the Dlubal programs.

Free Online Services

Youtube Channel -Webinars, Videos

Check out our videos and webinars about Dlubal's structural engineering software.

Online Shopping and Prices

WEBSHOP

Customize your program package and get all prices online!

Trial Versions

The best way how to learn our programs is to simply test them yourself. Download the free 90-day free trial version of our structural analysis & design software.

> 90 DAYS TRIAL

Free Support via Email and

Live Chat

Get further information about Dlubal Software

Visit our Website
www.dlubal.com

- Videos and Recorded Webinars
- Newsletter
- Events and Conferences
- Knowledge Base Articles

- Download
- free trial license

Dlubal Software GmbH Am Zellweg 2 93464 Tiefenbach Germany

Phone: +49 9673 9203-0 E-mail: info@dlubal.com

www.dlubal.com