POLITECHNIKA KOSZALIŃSKA

WYDZIAŁ INŻYNIERII LĄDOWEJ, ŚRODOWISKA I GEODEZJI

Budownictwo specjalność: Konstrukcje budowlane i inżynierskie

inż. Daniel Tabaka

Nr albumu

U-10641

Przekrycie strukturalne parkingu przy galerii handlowej

Space frame roof of the car park at shopping mall

Praca magisterska wykonana pod kierunkiem

dr inż. Michał Piątkowski

Koszalin 2023

Ośv	wiadcz	zenie		5
Stre	eszcze	nie prac	cy dyplomowej	6
Dip	oloma	thesis a	bstract	7
1.	WPF	ROWAI	DZENIE	8
2.	CHA	RAKT	ERYSTYKA PROJEKTU WYJŚCIOWEGO	9
	2.1.	Zagosj	podarowanie terenu	9
	2.2.	Archit	ektura	12
	2.3.	Eleme	nty konstrukcyjne	14
		2.3.1.	Słupy nośne	14
		2.3.2.	Podpory gałęziowe	17
		2.3.3.	Siatka prętów	18
		2.3.4.	Kształtowanie i geometria siatki górnej	19
		2.3.5.	Kształtowanie i geometria siatki dolnej	20
		2.3.6.	Skratowanie ustroju	21
3.	UST	ALENI	E ODDZIAŁYWAŃ	22
	3.1.	Obciąz	żenia stałe	22
		3.1.1.	Ciężar własny	22
		3.1.2.	Konstrukcja wsporcza	22
		3.1.3.	Pokrycie	23
		3.1.4.	Sposób obciążenia konstrukcji – przypadek PO2	26
	3.2.	Obciąz	żenia zmienne	27
		3.2.1.	Obciążenie śniegiem	27
			3.2.1.1. Oddziaływania wg. dachów dwupołaciowych	28
			3.2.1.2. Oddziaływania z uwzględnieniem zasp śnieżnych	31
			3.2.1.3. Oddziaływania powiązane z kierunkiem wiatru.	32
		3.2.2.	Obciążenie wiatrem	35
			3.2.2.1. Parametry tunelu aerodynamicznego	36
			3.2.2.2. Ciśnienie powierzchniowe	37
			3.2.2.3. Pole przepływu – przedstawienie graficzne wpływu wiatru na strefy	39
			3.2.2.4. Wizualna interpretacja wyników	40
4.	WYN	MIARO	WANIE KONSTRUKCJI	42
	4.1.	Analiz	za statyczna	42
		4.1.1.	Kombinacje obciążeń	42
		4.1.2.	Wyniki analizy stanu granicznego użytkowalności	45

Spis treści

		4.1.3. St	tan graniczny nośności	. 47
		4.	1.3.1. Wyniki dla siatki górnej	. 47
		4.	1.3.2. Wyniki dla siatki dolnej	. 50
		4.	1.3.3. Wyniki pręty skratowania	. 53
		4.	1.3.4. Wyniki dla trzonu słupa	. 55
		4.	1.3.5. Wyniki dla gałęzi	. 58
	4.2.	Analiza s	stateczności	. 61
		4.2.1. W	/spółczynnik obciążenia krytycznego	. 61
		4.2.2. D	ługości efektywne i obciążenia krytyczne według postaci własnych	. 62
		4.2.3. A	naliza naprężeniowo – odkształceniowa	. 63
		4.	2.3.1. Naprężenia – siatka górna	. 64
		4.	2.3.2. Naprężenia – siatka dolna	. 65
		4.	2.3.3. Naprężenia – skratowanie	. 65
		4.	2.3.4. Naprężenia – słup	. 66
		4.2.4. W	/yboczenie ścianek elementów	. 67
		4.	2.4.1. Postać wyboczenia – słup	. 67
		4.	2.4.2. Postać wyboczenia – przekrój rurowy	. 68
	4.3.	Wymiaro	wanie elementów	. 69
5.	KON	ISTRUOW	VANIE WĘZŁÓW	. 73
	5.1.	Podstawa	a słupa	. 73
		5.1.1. O	bciążenia podstawy słupa	. 74
		5.1.2. W	/yniki analizy	. 74
	5.2.	Węzeł słu	upa z gałęziami podporowymi	. 76
	5.3.	Węzeł sia	atka górna – wariant z profilem zamkniętym	. 80
		5.3.1. O	bliczanie łączników	. 81
		5.3.2. S ₁	poiny	. 83
	5.4.	Węzeł sia	atka górna – wariant z blachą usztywniającą	. 85
	5.5.	Zestawie	nie materiałów – porównanie połączeń	. 88
6.	ANA	LIZA SY	TUACJI WYJĄTKOWEJ	. 89
	6.1.	Pożar		. 89
	6.2.	Uderzeni	e pojazdu	. 89
	6.3.	Uszkodze	enie podstawy	. 91
7.	POS	UMOWAI	NIE	. 93
Bił	oliogra	fia		. 96
Spi	is rysu	nków		. 97
Spi	s tabe	li		100

Oświadczenie

O Ś W I A D C Z E N I E (STUDENTA)

Daniel Tabaka U-10641

Oświadczam, że moja praca pt.: Przekrycie strukturalne parkingu przy galerii handlowej:

- 1. została przygotowana przeze mnie samodzielnie*,
- nie narusza praw autorskich w rozumieniu ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (j.t. Dz. U. z 2006 r. Nr 90, poz. 631 z późn. zm.) oraz dóbr osobistych chronionych prawem;
- 3. nie zawiera danych i informacji, które uzyskałem w sposób niedozwolony;
- 4. nie była podstawą nadania dyplomu uczelni wyższej lub tytułu zawodowego ani mnie, ani innej osobie.

Ponadto oświadczam, że treść pracy przedstawionej przez mnie do obrony, zawarta na przekazywanym nośniku elektronicznym, jest identyczna z jej wersją drukowaną.

.....

.....

data

Podpis studenta

*Uwzględniając merytoryczny wkład promotora (w ramach prowadzonego seminarium dyplomowego

Streszczenie pracy dyplomowej

POLITECHNIKA KOSZALIŃSKA WYDZIAŁ INŻYNIERII LĄDOWEJ, ŚRODOWISKA I GEODEZJI Katedra Konstrukcji Metalowych

Tytuł: Przekrycie strukturalne parkingu przy galerii handlowej Autor: inż. Daniel Tabaka Promotor: dr inż. Michał Piątkowski

Przedmiotem opracowania jest projekt konstrukcji stalowej przekrycia strukturalnego parkingu przy galerii handlowej, z przewidywaną lokalizacją na terenie miasta Szczecinek – w I strefie obciążenia wiatrem i II strefie obciążenia śniegiem.

Obiekt, usytuowany na planie prostokąta o powierzchni 26355 m², konstrukcja posadowiona na 22 słupach, poszycie dachowe stanowi blacha trapezowa, w części przeszklone osadzone na podkonstrukcji. Głównym elementem nośnym są słupy o przekroju rurowym, wielokątnym, formowanym na zimno oraz siatka górna z RO 219,1 x 6,3 i dolna z RO 193,7 x 6,3, natomiast krzyżulce z RO 168,3 x 6,3.

Cała konstrukcja została zaprojektowana ze stali S355J0. Wszystkie elementy konstrukcyjne stanowią pojedyncze elementy wysyłkowe, ze względu na swoje duże gabaryty, na budowie przewidziano wykonanie połączeń montażowych śrubowych wraz z montażem poszczególnych sekcji.

Zakres opracowania obejmuje: opracowanie geometrii przekrycia w programie REVIT, zestawienie obciążeń, symulację przepływu wiatru wykonaną za pomocą programu RWIND Simulation, obliczenia statyczne i wymiarowanie elementów w programie RFEM, sprawdzenie nośności wybranych połączeń przy użyciu programu IDEA Statica wraz z dokładnymi obliczeniami niektórych części składowych, uwzględnienie sytuacji awaryjnej poprzez uszkodzenie słupa.

Słowa kluczowe: przekrycie strukturalne, tunel aerodynamiczny, węzły, konstrukcja stalowa,

Diploma thesis abstract

KOSZALIN UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering, Environment and Geodesy Department of Metal Structures

Title: TESIS TITLE IN ENGLISH Author: inż.. Daniel Tabaka Supervisor: dr inż. Michał Piątkowski

The subject of the study is the design of a steel structure for the structural roofing of the car park at the shopping mall, with the expected location in the city of Szczecinek -in wind load zone I and snow load zone II.

The building, situated on a rectangular plan, with an area of 26,355 m², the structure is founded on 22 pillars, the roof is made of trapezoidal sheet, partly glazed, set on a substructure. The main load-bearing element is the columns of cold-formed polygonal tubular cross-sections and the upper mesh made of RO 219.1 x 6.3 and the lower mesh made of RO 193.7 x 6.3, while the diagonals made of RO 168.3 x 6.3.

The entire structure was designed from S355J0 steel. All structural elements are single shipping elements, due to their large dimensions, bolted assembly connections are provided on the construction site along with the assembly of individual sections.

The scope of the study includes: development of the cover geometry in the REVIT program, a list of loads, simulation of the wind flow made using the RWIND Simulation program, static calculations and dimensioning of elements in the RFEM program, checking the load capacity of selected connections using the IDEA Statica program along with careful calculations of some components, taking into account the emergency situation by pole failure.

Keywords: canopy space frame, wind tunnel, nodes, steel structure,

1. WPROWADZENIE

Opracowanie projektu konstrukcji stalowej przekrycia strukturalnego parkingu podzielono na kilka osobnych zagadnień inżynierskich. Pierwszym z nich jest określenie geometrii przekrycia poprzedzonej projektem zagospodarowania terenu galerii handlowej.

Ze względu na znaczną powierzchnię do zadaszenia, dążono do uzyskania nietuzinkowego kształtu inspirowanego naturalnymi formami. Dodatkowo dyskowaty pofalowany kształt na wzór morskiej płaszczki stawia mniejszy opór powietrza.

Drugim zagadnieniem jest określenie na podstawie norm europejskich oddziaływań stałych, klimatycznych i użytkowych. Ze względu na kształt konstrukcji, którego nie uwzględniają zawarte w normach metody, przeprowadzono symulację przepływu wiatru w programie RWIND, a obciążenia śniegiem oprócz przypadków normowych rozwinięto o możliwe zaspy śnieżne związane z ukształtowaniem dachu oraz działaniem wiatru. Sposób określenia obciążenia śniegiem interpolowano z przypadków normowych.

Kolejnym zagadnieniem było modelowanie i wymiarowanie konstrukcji, którego dokonano w programie RFEM, przeprowadzone w nim obliczenia służyły do optymalizacji elementów konstrukcji, umiejscowienia słupów nośnych, a także ustalenia i weryfikacji nośności profili.

Do modelowania i obliczania węzłów, łączących dużą liczbę prętów dochodzących pod różnymi kątami, zastosowano program IDEA Statica. Wybrano po jednym newralgicznym połączeniu w siatce górnej, dolnej i w miejscu podparcia przez gałąź słupa.

2. CHARAKTERYSTYKA PROJEKTU WYJŚCIOWEGO

Projektem wyjściowym jest teren przy galerii handlowej, opracowany na potrzeby pracy dyplomowej, oparty na podkładzie geodezyjnym. Obiekt zaprojektowano w Szczecinku, woj. Zachodniopomorskie na terenie zurbanizowanym, powierzchnia opracowania zajmuje 7,6 ha.

Powierzchnia zadaszenia wynosi 26355 m2, parking przewidziano na 688 miejsc, z czego 44 miejsca dla osób niepełnosprawnych. Zaprojektowano drogi wewnętrzne, chodniki i tereny zielone. Wewnątrz znajdują się także przystanki komunikacji miejskiej, a także wyznaczone miejsca parkingowe dla rowerzystów.

2.1. Zagospodarowanie terenu

Galeria handlowa wraz z przyległym terenem skomunikowano wewnętrznymi drogami dojazdowymi, wraz z dojściami pieszymi z parkingu do budynków handlowych. Rysunek 1 przedstawia budynki obiektu handlowego oznaczone kolorem niebieskim, zarys przekrycia pokazano kolorem czerwonym.

Rys. 1. Plan zagospodarowania terenu

Rys. 2. Plan zagospodarowania

Kolorem czerwonym zaznaczono obrys projektowanego zadaszenia.

Rys. 3. Projekt parkingu- lokalizacja słupów

2.2. Architektura

Bryłę zadaszenia, uwypuklenia i kształt zamodelowano w programie Autodesk Revit, rysunek 4 pokazuje rzuty na które została nałożona siatka punktów, a następnie pokazana na rysunku 6 konstrukcja przestrzenna tworząca siatkę prętów.

Rys. 4. Rzuty bryły konstrukcji a) z boku, b) z góry, c) aksonometria

Opracowanie kształtu rozpoczęto od zdefiniowania obszaru zadaszenia, następnie należało określić sekcje wklęsłe i wypukłe poprzez zastosowanie siatki podziału. Zastosowane modelowanie NURBS czyli określanie krzywych za pomocą punktów kontrolnych tworzących wielobok kontrolny, korzysta z automatycznego wygładzenia obiektów. Siatka NURBS przedstawiona na rysunku 5, nie posiada krawędzi, wierzchołków oraz boków, powierzchnie tych elementów są same w sobie gładkie. Utworzone krzywe są ustawiane za pomocą wierzchołków, które są przesuwane po konturach elementu tworząc kształt, a przestrzeń pomiędzy jest interpolowana.

Rys. 5. Punkty kontrolne struktury - Design, Analysis and Construction of Space Structures; Herbert Klimke ,Jaime Sanchez

Element wypełniający zawiera pręty pasa górnego, elementy kratownicowe i pręty pasa dolnego.

Rys. 6. Element konstrukcyjny

Konstrukcja została zaprojektowana tak aby można było dostosować materiał poszycia do lokalnych potrzeb. Zastosowano dodatkową podkonstrukcję (rysunek 7), ramę, do której jest możliwość zamontowania modułów fotowoltaicznych, przeszklenia części konstrukcji jako doświetlenia, a także zastosowania blachy perforowanej.

Rys. 7. Podkonstrukcja - przekroje

W niniejszym opracowaniu zastosowano pokrycie blachą trapezową, a w środkowej części, przy słupach elementy przeszklone. Rysunek 8 przedstawia lokalizację świetlików.

Rys. 8. Lokalizacja świetlików - pokrycie szklane - pola kolor zielony

2.3. Elementy konstrukcyjne

2.3.1. Słupy nośne

Słupy nośne po obrysie obiektu zlokalizowano w narożach, a także w najniższym punkcie pofalowania bryły. Dodatkowo w części przedniej i tylnej, szczytowej umieszczono słupy w rozstawie umożliwiającym poprowadzenie drogi wewnętrznej. Rysunek 9 przedstawia lokalizację słupów po przeprowadzeniu analizy konstrukcji, miejsca posadowienia słupów wewnętrznych przyjęto po przeprowadzeniu wstępnej analizy statycznej.

Rys. 9. Siatka slupów

Rozstaw słupów nawy bocznej, pokazany na rysunku 10, o rozpiętości od 61 metrów, aż do 94 metrów przedstawia możliwości jakie posiadają przekrycia strukturalne. Zestawienie wymiarów poprzecznego rozstawu słupów wewnętrznych przedstawiono na rysunku 10.

Rys. 10. Widok nawy bocznej wraz z rozstawem słupów

Należy zauważyć znaczne rozpiętości wewnątrz konstrukcji, zastosowana technologia pozwala uzyskać niezakłóconą przestrzeń rzędu 40-50 metrów.

Rys. 11. Rozstaw słupów wewnętrznych [m]

Słupy nośne zaprojektowano z przekroi rurowych wielokątnych formowanych na zimno. Trzon słupa wykonany o stałym, zamkniętym, przekroju poprzecznym na długości. Zgodnie z podanym w literaturze założeniu przekrój ośmiokątny kształtowany na zimno ze szwem podłużnym charakteryzują się dużą sztywnością skrętną, a aspekt wyboczenia i zwichrzenia można pominąć, aczkolwiek miejscowe deformacje ścian należy uwzględnić przy połączeniach. [dr inż. Sławomir Labocha Stalowe słupy powłokowe, PWN 2017, str. 2.]

Charakterystyka przekroju słupa Polygon 8/1000/12, a także gałęzi przedstawiono poniżej na rysunku 12.

Charakterystyki przekroju	Symbol	Gałąź	Słup	Jednostka
Średnica okręgu opisanego na obrysie zewnętrznym	D	400,00	1000,00	mm
Grubość ściany	t	12,00	22,00	mm
Wysokość	h	369,60	923,90	mm
Pole przekroju	А	142,01	362,44	cm ²
Pole przekroju czynnego przy ścinaniu	Ay	67,69	172,41	cm ²
Moment bezwładności	ly	24017,0	398316,0	cm⁴
Ciężar	g	111,5	284,5	kg/m
Powierzchnia	Ap	1,225	3,061	m²/m

Tab. 1. Charakterystyka przekroju słup i gałąź (RFEM)

Rys. 12. Geometria przekroju słupa i gałęzi (RFEM)

2.3.2. Podpory gałęziowe

Konstrukcja dachowa została podparta na "rozgałęzieniach" rozpoczynających się na ³/₄ wysokości słupa. Słupy narożne i skrajne wyposażono w trzy gałęzie, a słupy wewnętrzne w cztery. Przyjęto zasadę odsunięcia dodatkowych punktów podparcia o jedno pole, schemat przedstawiono na rysunku 13.

Na rysunku 14 przedstawiono użyte sposoby podparcia konstrukcji, rozróżniono cztery rodzaje podparć uzależnione od ilości gałęzi, a także od kąta zamocowania podpory w stosunku do trzonu słupa.

Rys. 13. Rozmieszczenie podpór gałęziowych

Rys. 14. Zastosowane sposoby podparcia konstrukcji.

a) słup skrajny boczny; b) słup wewnętrzny; c) słup narożny; d) słup skrajny o czterech rozwartych gałęziach

2.3.3. Siatka prętów

Przestrzenny ustrój prętowy zaprojektowano na bazie pochodnej formy czworościanu foremnego przedstawionego na rysunku 15 poz. d, punktem wyjścia zastosowanej konfiguracji jest podstawa bryły, której pręty tworzą ortogonalną siatkę warstwy górnej, siatka dolna przesunięta jest w stosunku do górnej tak aby możliwe było sprzęgnięcie za pomocą skratowania.

Rys. 15. Proces modelowania modułu

a) Siatka górna; b) skratowanie; c) siatka dolna; d) moduł geometryczny;

Specyfiką konfiguracji warstw na płaszczyźnie są przecinające się rzuty prostokątne w nieskończonej liczbie punktów, co odróżnia takie przekrycie od rusztu kratowego ze szczątkowymi stężeniami. Skratowanie siatki górnej z dolną wykonano poprzez połączenie węzłów siatki górnej z węzłem siatki dolnej, rozwiązanie przedstawiono na rysunku 15. Następnie konstrukcja jednego modułu naniesiona na płaszczyznę z określonymi węzłami górnej siatki tworzy kratownicę przestrzenną. Układ przestrzenny ortogonalny siatki górnej i dolnej przedstawiono na rysunku 16, wraz z przekrojem poprzecznym przez konstrukcję przekrycia. Na rysunku zaznaczono linią żółtą poszczególne konfiguracje warstw.

Wysokość modułu określono na podstawie zależności odległości pomiędzy podporami, a wysokością piramidki wg. Lan T. T. (2005). Space FrameStructures. In W.-F. Chen & E. M. Lui (Eds.), Handbook of Structural Engineering (2nd ed.). CRC Press. (chodor-projekt.net)

$$i = \frac{L}{H} = 12,5 \div 25$$
$$i = \frac{61,39}{4,7} = 13,06$$

Rys. 16. Przekrój z układem przestrzennym

a) Siatka dolna; b) skratowanie; c)siatka górna; d) schemat struktury przestrzennej;

2.3.4. Kształtowanie i geometria siatki górnej

Siatka górna określa powierzchnię czynną przekrycia, kształt krzywizn i geometrię płaszczyzny określono w programie Autodesk Revit,. Prace architektoniczne nad planowaną powierzchnią 36800 m² o wymiarach 230 m na 160 m, doprowadziły do utworzenia zadaszenia o nieregularnym kształcie, ciekawym pod względem architektonicznym o powierzchni prawie 27 tysięcy metrów kwadratowych (2,7 ha), co odpowiada 4 boiskom piłkarskim.

Płaszczyznę podzielono na siatkę o wymiarze oczek kwadratowych wynoszących 5,2 x 5,2 m. Nadanie kształtu poprzez wyciągnięcie ku górze części środkowej, a także ukształtowanie spadków odprowadzających wody opadowe wprowadziło ostateczne wymiary każdego pola. Najmniejsze z pól zawiera się w wyjściowym wymiarze, przy minimalnej długości pręta wynoszącej 4,8 m, największe pole ma wymiary 5 x 8 m, zlokalizowane jest w najwyższym punkcie konstrukcji, w frontowej części. Siatkę górną o wymiarach całkowitych 228 x 156 m przedstawiono na rysunku 15 poz. a).

Zastosowano przekrój z rury otwartej o parametrach przedstawionych w tabeli 2.

Tab. 2. Charakterystyka przekroju siatki górnej i dolnej

Chamlitan at li analasia	Pas dolny	Pas górny	La du a atlua
Charakterystyki przekroju	RO 193,7x6,3	RO 219,1x6,3	Jednostka
Średnica zewnętrzna	193,700	219,100	mm
Grubość ściany	6,300	6,300	mm
Pole przekroju	37,100	42,100	cm ²
Moment bezwładności	1630,000	2386,000	cm ⁴
Ciężar	29,100	33,000	kg/m
Powierzchnia	0,609	0,688	m²/m

2.3.5. Kształtowanie i geometria siatki dolnej

Siatka dolna została wygenerowana na podstawie geometrii siatki górnej, a także geometrii pojedynczego modułu przestrzennego. Ukształtowanie brzegu przekrycia dachowego w formie gzymsu pozwoliło na zaprojektowanie siatki dolnej w regularnym kształcie, uzyskując przez to zróżnicowany na długości krawędzi okap. Siatka dolna przedstawiona na rysunku 17 poz. b, jest przesunięta do wnętrza w stosunku do siatki górnej o około 5,5 metra.

Rys. 17. Konfiguracja prętów warstwowych

a) Siatka górna; b) siatka dolna; c) skratowanie;

2.3.6. Skratowanie ustroju

Dwuwarstwowa konstrukcja sprzęgnięta została za pomocą skratowania tak aby utworzyć mikrostrukturę przestrzenną. Siatkę skratowania przedstawiono na rysunku 15 poz. c), miejsca newralgiczne przy słupach wykonano z wzmocnionego przekroju, zgodnie z tabelą 3 poz. b. Zabieg ten pozwala na przeniesienie części obciążeń na trzon słupa nośnego.

Charakterystyka przekroju skratowania przedstawiono w tabeli 3.

	Skrato		
Charakterystyki przekroju	RO 168,3x6,3	RO 177,8x8,0	Jednostka
Średnica zewnętrzna	168,300	177,800	mm
Grubość ściany	6,300	8,000	mm
Pole przekroju	32,100	42,700	cm ²
Moment bezwładności	1053,000	1541,000	cm ⁴
Ciężar	25,200	33,500	kg/m
Powierzchnia	0,529	0,559	m²/m

Tab. 3. Charakterystyka skratowania

3. USTALENIE ODDZIAŁYWAŃ

Obliczenia statyczne wykonano przy pomocy oprogramowania firmy Dlubal. Analizę statyczną przeprowadzono programem RFEM, a symulację obciążeń wiatrowych programem RWIND.

3.1. Obciążenia stałe

3.1.1. Ciężar własny

Ciężar własny elementów konstrukcyjnych określono w programie obliczeniowym. W tabeli 4 zestawiono ciężar poszczególnych elementów konstrukcji z podziałem na użyte przekroje. Ciężar całkowity konstrukcji wynosi 1368,6 tony, zużycie stali 51,9 kg/m² przy pokryciu 26394,5 m².

Nozwo	Drzalaná	Masa	Długość	Ilość
INdzwa	Przekroj	[t]	[m]	[szt.]
Pas górny	CHS 193.7x6.3	305,8	10500	1906
Pas dolny	CHS 219.1x6.3	318,6	9641	1772
Skratowanie	CHS 168.3x6.3	509,2	20208	3613
Skratowanie wzmocnione	CHS 177.8x8.0	12,5	370	64
Trzon słupa	PHS 8/1000/20	139,3	489	22
Gałąź	PHS 8/400/12	83,2	746	78
Razem:		1368,6	41954	7455

Tab. 4. Zestawienie ilościowe materiału

3.1.2. Konstrukcja wsporcza

Zaprojektowano dodatkową konstrukcję wsporczą spełniającą rolę płatwi montażowych elementów poszycia dachu przedstawioną na rysunku 18, zastosowano profile zamknięte rury kwadratowej, do dalszych obliczeń przyjęto moduł o wielkości 5,2 x 5,2 m. Ze względu na krzywizny, faktyczna wielkość siatki zawiera się w przedziale od 5,0 do 5,3 m. Konstrukcję zabezpieczono cynkowaniem ogniowym i malowaniem proszkowym.

Rys. 18. Konstrukcja wsporcza

3.1.3. Pokrycie

Przeprowadzono analizę wraz z wyznaczeniem sił obciążających węzły konstrukcji nośnej pokrycia konstrukcji blachą trapezową i panelami szkła laminowanego.

Analiza zastosowania blachy trapezowej systemu łukowego firmy Arceroll Mittal, przeprowadzona została dla blach na bazie profilu TS40, zastosowano materiał wsadowy stali w gatunku FeE 320 G, ciężar i grubość przedstawiono na rysunku 19.

Rys. 19. Blacha trapezowa (Arcelor Mittal Construction Polska Sp. z o. o.)

Zastosowano doświetlenie wnętrza poprzez obszary wykonane ze szkła laminowanego VSG, szkło bezpieczne warstwowe. Analizowane grubości wraz z mapą odkształceń od ciężaru własnego i obciążenia śniegiem zestawiono na rysunku 20.

Rys. 20. Typoszereg materiału pokrycia

Przeprowadzono analizę od ciężaru własnego pokrycia wraz z obciążeniem śniegiem o wartości 0,72 kN/m², co pozwoliło wybrać optymalny wariant do dalszych obliczeń. Wzięto pod uwagę ugięcia profilu konstrukcji, ugięcia zastosowanych paneli, a także wartość oddziaływań na główną konstrukcję nośną w postaci obciążenia skupionego przyłożonego do węzła. Wartość ugięć przedstawiono na rysunku 20, a w tabeli 5 zawarto zestawienie zależności sił węzłowych w stosunku do ugięcia.

Do dalszych rozważań wykorzystano wartości obciążeń skupionych z tabeli 5 przypadek 5 i 9, oznaczone kolorem żółtym, ze względu na zbliżoną wartość ugięć pozwalającą na równomierne rozłożenie naprężenia w badanej konstrukcji.

			_		Reakcje
	Przypadek	Grubość	Pręty	Powłoka	węzłowe
		[mm]	[mm]	[mm]	[kN]
a	1	0,65	38,9	38,7	1,80
MO	2	0,75	37,4	37,2	1,95
pez	3	0,88	36,1	35,9	2,12
tra	4	1,00	35,2	35,0	2,28
cha	5	1,25	33,7	33,5	2,60
Bla	6	1,50	32,7	32,5	2,91
e	7	4,38	29,9	155,0	2,80
van	8	6,38	31,1	52,4	3,42
vou	9	8,38	32,1	33,9	4,04
ami	10	9,52	32,5	30,5	4,31
to la	11	10,38	32,8	33,1	4,66
Szk	12	12,38	33,2	33,2	5,28

Tab. 5. Zestawienie reakcji węzłowych w stosunku do przemieszczeń

Wykres przedstawiony na rysunku 21 przedstawia wpływ grubości wykorzystanego materiału na wartość przemieszczeń. Można zaobserwować, że zwiększenie grubości materiału blachy trapezowej powoduje liniowe zmniejszenie przemieszczeń, w odróżnieniu do pokrycia szklanego, analiza wykazała że zwiększanie grubości powoduje znaczny przyrost obciążenia, a także zwiększanie się ugięcia konstrukcji pod ciężarem własnym.

Rys. 21. Przemieszczenia w konstrukcji wsporczej

3.1.4. Sposób obciążenia konstrukcji – przypadek PO2

Na rysunku 22 i 23 przedstawiono sposób przyłożenia obciążenia skupionego do węzła konstrukcji, przedstawiono także pola, oznaczone kolorem żółtym, w których przyłożono obciążenie skupione o wartości 4,04 kN, jaką generuje pokrycie szklane, pozostałe węzły obciążono siłą 2,60 kN od konstrukcji pokrytej blachą trapezową.

Rys. 22. Obciążenie stałe PO2

Rys. 23. Obciążenie PO2

3.2. Obciążenia zmienne

Wielkopowierzchniowe przekrycia strukturalne narażone są na szereg niesprzyjających czynników zewnętrznych. Konstrukcja obciążona śniegiem w sposób niekontrolowany może ulec awarii, niezwykle ważnym aspektem jest opracowanie właściwych stref dodatkowego dociążenia konstrukcji w postaci worków i nawisów śnieżnych. Istotnym czynnikiem w rozważanej konstrukcji jest sposób w jaki wiatr wpływa na elementy tworzące połać dachową. Do zobrazowania i określenia wartości ciśnienia użyto tunelu aerodynamicznego RWIND firmy Dlubal.

3.2.1. Obciążenie śniegiem

Oddziaływanie na konstrukcję obciążeniem śniegiem wyznaczono na podstawie normy PN-EN 1991-1-3 Eurokod 1 Oddziaływania na konstrukcję Część 1-3: Oddziaływania ogólne – Obciążenia śniegiem. Wartość charakterystyczną obciążenia śniegiem gruntu (s_k) uwzględniono przy pomocy programu RFEM, Geo-Zone Tool, rysunek 24.

Rys. 24. Strefa obciążenia śniegiem

Obliczeniowa wartość obciążenia śniegiem:

$$s = \mu_i * C_e * C_t * s_k$$

Charakterystyczna wartość obciążenia śniegiem dla strefy II (Szczecinek):

$$s_k = 0.9 \, \frac{kN}{m^2}$$

Współczynnik termiczny:

$$C_t = 1,0$$

Współczynnik ekspozycji:

 $C_{e} = 1,0$

Uwzględniono współczynnik normalny ze względu na usytuowanie na obszarze, bez występowania przenoszenia śniegu przez wiatr na budowlę, ani przez ukształtowanie terenu, a także z sąsiednich budynków.

Współczynnik kształtu dachu

 $\mu_1 = 0.8$ dla dachu dwu spadowego o kącie pochylenia $\alpha = 0^\circ < 3^\circ do \ 10^\circ < 30^\circ$,

Obciążenie charakterystyczne

$$S_1^k = 0.8 * 1.0 * 1.0 * 0.9 = 0.72 \text{ kN}/m^2$$

Wyznaczono obciążenie węzłowe przenoszone przez podkonstrukcję na punkty podparcia konstrukcji głównej na podstawie modelu przedstawionego na rysunku 26.

Skomplikowanie i złożona forma dachu wymagała indywidualnego rozpatrzenia obciążeń. Obciążenia śniegiem wprowadzono poprzez modyfikację przyjętych w normie EC 1991-1-3 współczynników odnoszących się do kształtu dachu, poprzez indywidualne określenie stref, tak aby na poszczególnych obszarach zastosować częściowo założenia normowe. Interpolacja współczynników normowych uwzględnia możliwe przewymiarowania konstrukcji w kierunku zwiększenia bezpieczeństwa projektowanego obiektu.

3.2.1.1. Oddziaływania wg. dachów dwupołaciowych

Zastosowano obciążenie zgodne z punktem 5.3.3 Dachy dwupołaciowe normy EN 1991-1-3, rysunek 25, przypadek równomiernego obciążenia, a także obciążenie lewej i prawej połaci zgodnie z rysunkiem 27.

Rys. 25. Współczynnik kształtu dachu- dachy dwupołaciowe EN-1991-1-3; Rysunek 5.3

• Obciążenie charakterystyczne

 $\mathrm{S_{100\%}=0.8*1.0*1.0*0.9=0.72}\ \mathrm{kN/_{m^2}}$

Obciążono powierzchniowo model składający się z 4 pól konstrukcji wsporczej, wynik analizy pozwolił przyjąć jako wartość wyjściową, oddziaływanie na podporę wewnętrzną o wartości 8,5 KN.

Rys. 26. Wyznaczenie wartości obciążenia węzłowego

$$P = 8,5 \ kN$$

S_{50%} = 0,5(0,8 * 1,0 * 1,0 * 0,9) = 0,36 \ kN/m² P_{50%} = 4,25 \ kN

Rys. 27. Obciążenie śniegiem wg. EN 1911-1-3, punkt 5.3.3.

- a) równomiernie PO3;
- b) lewa strona PO4 100%; PO12 50%;
- c) prawa strona PO5 100%; PO13 50%;

Rysunek 28 przedstawia obszary obciążenia połaci dachowej, podział na lewą i prawą stronę wraz z wartością oddziaływania.

Rys. 28. Przypadki obciążenia śniegiem - lokalizacja obciążeń

3.2.1.2. Oddziaływania z uwzględnieniem zasp śnieżnych -

Kształt dachu umożliwia tworzenie się zasp śnieżnych, a także zsuwaniu się śniegu w niższe partie. W związku z tym zastosowano dodatkowe obciążenia w postaci miejscowego dociążenia konstrukcji, wytypowano 4 obszary występowania zasp w przypadku opadu przy stosunkowo małym wietrze, obszary te zaznaczono na rysunku 29 kolorem żółtym.

Rys. 29. Przypadki obciążenia śniegiem - lokalizacja zasp

Dla części środkowej, szczytowej, przyjęto współczynnik kształtu dachu według punktu 5.3.5 EN 1991-1-3, zgodnie z rysunkiem normowym, rys. 30, w części szczytowej współczynnik wynosi 0,8, nie uwzględniono przypadku 2 ze względu na małą wyniosłość łuku względem rozpiętości. Ze względu na małą wypukłość części szczytowej (łagodne przejścia pomiędzy strefami) przyjęto obciążenie pośrednie o wartości 75% wyjściowego, tj. 6,8 kN. Rysunek 29 przedstawia opisaną sytuację kolorem zielonym.

Przypadek

Rys. 30. Współczynnik kształtu dachu dla dachów walcowych

Przyjęte wartości węzłowych obciążeń śniegowych:

- 100 % 8,5 kN
- 50% 4,25 kN
- 75% 6,8 kN
- 25% 2,13 kN

3.2.1.3. Oddziaływania powiązane z kierunkiem wiatru.

Oddziaływania siłami wiatru na konstrukcje zostały przeprowadzone po dogłębnej analizie konstrukcji w tunelu aerodynamicznym Rwind, szereg prób pozwolił wypracować metodykę obciążania konstrukcji zaspami śnieżnymi, a także określić pola na których śnieg nie powinien zalegać. Określając obciążenie śniegiem powiązane z kierunkiem działania wiatru uwzględniono przypadki obciążenia dla dachów dwupołaciowych, walcowych a także część kształtu dla dachów wielopołaciowych. Analiza trójwymiarowa uwzględnia stopnienie i zwianie części śniegu, pokazana na rysunku 31 sytuacja nawiewania z przeciwległej połaci śniegu i obciążania w sposób niekorzystny zagłębień w konstrukcji pozwala na dokładniejszą kontrolę nad procesem projektowania.

Rys. 31. Przypadki obciążenia śniegiem - lokalizacja obciążeń dla wiatru prostopadłego

Kształt dachu powoduje możliwość odkładania się zasp w zagłębieniach, a dodatkowo niejednakowa geometrycznie kalenica może działać jako przeszkoda utrudniająca swobodny ruch śniegu i ma wpływ na ilość śniegu w części zawietrznej. Na kolejnych rysunkach pokazano możliwość współpracy sił wywołanych wiatrem w stosunku do obciążenia śniegiem. Rysunek 32 przedstawia siły na kierunku poprzecznym, a rysunek 33 na kierunku wzdłużnym. Symulacja obciążeń wiatrowych uwydatniła dodatkowe dociążenie obszarów narażonych na przyjmuje że część śniegu tworzenie się zasp, się, nie zostanie zwiana, a pozostała ulegnie zlodowaceniu, stąd kombinacje obciążeń uwzględniają obciążenie śniegiem w ilości 50% na połaci nawietrznej.

Rys. 32. Interakcja poprzecznych obciążeń wiatrowych z śniegowymi

Rys. 33. Interakcja podłużna obciążeń wiatrowych z śniegowymi (RFEM)

3.2.2. Obciążenie wiatrem

Oddziaływanie na konstrukcję obciążeniem wiatrowym wyznaczono na podstawie normy PN-EN 1991-1-4 Eurokod 1 Oddziaływania na konstrukcję Część 1-4: Oddziaływania ogólne – Oddziaływania wiatru. Wartość charakterystyczną obciążenia śniegiem gruntu (*s_k*) uwzględniono przy pomocy programu RFEM, Geo-Zone Tool, rysunek 34. Mając na uwadze skomplikowaną bryłę obiektu, której wprost nie przewidują procedury normowe skorzystano z oprogramowania oferującego symulację przepływu wiatru w tunelu aerodynamicznym RWIND. Specyfika obiektu narzuca uwzględnienie czterech charakterystycznych kierunków działania wiatru, dłuższa część poprzecznie do kierunku wiatru, nawiewana szczytowa przednia i tylna część konstrukcji.

Rys. 34. Strefa obciążenia wiatrem

Przeprowadzenie symulacji przyjęto w tunelu określonym przez program, rozmiar został dostosowany automatycznie.

Przyjęto parametry zgodne strefą 1 przedstawione wraz z profilem wiatru przedstawionym na rysunku 35, prędkość wiatru przedstawiono w tabeli 6.

Tab. 6. Parametry profilu wiatru

Strefa obciążenia		1,00		
Kategoria terenu		0		
Wysokość n.p.m		А	133	m
Wysokość konstrukcji		h	34,169	m
Gęstość powietrza	р	1,25	kg/m³	
Podstawowa prędkość wiatru	V _{b,0}	22	m/s	
Współczynnik kierunkowy	C _{dir}	1.0		
Współczynnik sezonowy	C _{season}	1.0		
Współczynnik chropowatości	Cr	1,75		
Współczynnik ekspozycji	Ce	4,75		
Bazowe ciśnienie prędkości	q _b	0,3	kN/m ²	

Rys. 35. Profil wiatru – prędkość wiatru, intensywność turbulencji

3.2.2.1. Parametry tunelu aerodynamicznego

Przeprowadzono analizę obciążeń wiatrowych dla czterech kierunków, każdy przypadek analizowano przy zbliżonej wielkości tunelu, zaobserwowano niewielkie różnice w wielkości.

Rys. 36. Wymiary tunelu - w zależności od kierunku wiatru (RWIND)

3.2.2.2. Ciśnienie powierzchniowe

Wyznaczono wartości ciśnienia zewnętrznego wiatru na obudowę konstrukcji, na rysunku 38 przedstawiono wyniki analizy wraz wartościami w punktach charakterystycznych. Punkty charakterystyczne ustalono w wyniesieniach, zagłębieniach i krawędzi natarcia siły wiatrowej. Badano także wpływ wiatru na słupy wewnętrzne (poz. 18), wyniki badań zestawiono w tabeli 7.

Rys. 37. Lokalizacja punktów pomiarowych - do tabeli

Rys. 38. Mapa ciśnienia powierzchniowego (RWIND)

Tab.	7.	Wartość	ciśnieni	a zewnetrzneg	o z współ	czvnnikiem	Cp w	punktach	kontrolm	vch
I ao.	<i>'</i> •		ensinenn	a ze mięazneg	o z nopor	22,511111111111111111111111111111111111	~p	Panneaon	nonnoni	<i>, .</i>

	Punkt	LC 14- wia	tr z lewej	LC 15- w	viatr od frontu	LC 17- v	viatr z tyłu	45°- wiatr pod kątem	
	FUIKL	p[Pa]	Ср	p[Pa]	Ср	p[Pa]	Ср	p[Pa]	Ср
	1	134.9	0.121	-302.2	-0.271	-380.5	-0.341	-61.0	-0.055
	2	-1179.9	-1.056	-506.9	-0.454	-120.8	-0.108	-738.9	-0.661
	3	-94.3	-0.084	-192.4	-0.172	-289.5	-0.259	-282.0	-0.252
	4	-229.4	-0.205	-26.0	-0.023	146.7	0.131	85.2	0.076
	5	-1044.3	-0.935	-167.8	-0.150	-110.7	-0.099	-549.5	-0.492
⊋	6	-209.9	-0.188	131.2	0.117	137.3	0.123	-291.4	-0.261
ACF	7	-325.7	-0.292	-87.8	-0.079	-167.8	-0.150	-358.9	-0.321
Ć D,	8	-496.2	-0.444	-67.4	-0.060	-113.7	-0.102	-319.0	-0.286
OŁĄ	9	-85.9	-0.077	-164.9	-0.148	-166.9	-0.149	-73.5	-0.066
PC	10	-179.8	-0.161	120.8	0.108	170.7	0.153	-33.6	-0.030
	11	-894.9	-0.801	120.4	0.108	134.6	0.121	-238.1	-0.213
	12	-631.0	-0.565	92.3	0.083	181.4	0.162	-223.4	-0.200
	13	-236.9	-0.212	-197.1	-0.176	-118.8	-0.106	-527.3	-0.472
	14	-91.4	-0.082	-201.5	-0.180	-379.4	-0.340	-230.4	-0.206
	15	-169.4	-0.152	-264.7	-0.237	-150.8	-0.135	-145.8	-0.131
5	16	343.5	0.308	941.9	0.843	-570.4	-0.511	1130.8	1.012
NO ^N	17	-159.9	-0.143	1292.9	1.157	-248.4	-0.222	944.9	0.846
Ë	18	-113.7	-0.102	322.0	0.288	-208.8	-0.187	317.8	0.284
SŁUP	19	-174.2	-0.156	633.4	0.567	-775.3	-0.694	-13.5	-0.012
	20	-110.2	-0.099	-247.3	-0.221	1112.0	0.995	-195.0	-0.175
TYŁ	21	-30.6	-0.027	-373.1	-0.334	1234.0	1.105	-385.7	-0.345
	22	-641.3	-0.574	-247.4	-0.221	364.5	0.326	-705.9	-0.632

Wyznaczono wartość współczynników Cp, rysunek 36, powierzchni który przy pomocy zintegrowanego narzędzia RFEM przeniesiono do analizy statycznej. Złożoność konstrukcji uniemożliwia standardowe podejście, norma oddziaływania wiatrem EN 1991-1-4 nie uwzględnia krzywizn zawartych w niniejszym rozważaniu. Stosownym byłoby użycie zmodyfikowanej części dotyczącej wiat dwuspadowych odnośnie kierunku poprzecznego konstrukcji, w kierunku wzdłużnym należało by zastosować współczynniki redukcyjne dla wiat wielospadowych. Takie uproszczone podejście mogło by zostać obarczone znacznym błędem, wyniki nie były by wystarczająco miarodajne do kontynuowania analizy. Należałoby zwiększyć współczynnik bezpieczeństwa, co powoduje nieekonomiczne podejście.

Rys. 39. Współczynnik Cp powierzchni (RWIND)

3.2.2.3. Pole przepływu – przedstawienie graficzne wpływu wiatru na strefy

Analiza komputerowa modelu w tunelu aerodynamicznym pozwala na precyzyjne określenie stref w których mogą pojawiać się dodatkowe wpływy sił zewnętrznych na konstrukcję. Przeprowadzono stopniową analizę przepływu mas powietrza wokół badanej bryły, zaobserwowano zależność kierunku wiatru do możliwości powstawania zasp śnieżnych. Pozwoliło to na doprecyzowanie obciążeń śniegowych, wprowadzono obszary na których mogą pojawiać się znaczne obciążenia. Rysunek 39 pokazuje sposób przeprowadzenia badania, na

każdym z kierunków analizowano płaszczyznę poziomą przecinającą połać dachu, płaszczyznę określono za pomocą wysokości wyrażonej w metrach od poziomu zero i przedstawiono po lewej stronie rysunku.

Rys. 40. Pola przepływu (RWIND)

3.2.2.4. Wizualna interpretacja wyników

Przeprowadzenie symulacji komputerowej oddziaływania wiatrem pozwala także na zaobserwowanie przepływu cząstek, elementy wystające, gzymsy itp. powodują dodatkowe zawirowania mogące być przyczyną niepożądanym dźwięków. Konstrukcję zoptymalizowano pod względem oporu powietrza, kształt podparcia i krawędź zewnętrzna została uformowana na podstawie analizy linii prądu, rysunek 38 i 39 przedstawia opływanie konstrukcji wraz z ograniczonymi do minimum turbulencjami.

Rys. 41. Linie prądu – prędkość wiatru wokół i za konstrukcją (RWIND)

Rys. 42. Linie prądu – detale (RWIND)

4. WYMIAROWANIE KONSTRUKCJI

4.1. Analiza statyczna

Obliczenia statyczne przeprowadzono na modelu 3D zdefiniowanym w programie RFEM, umożliwiło to obliczenie sił wewnętrznych w każdym elemencie konstrukcji.

Dla połączeń belkowych przyjęto połączenia sztywne, konstrukcja węzła umożliwia takie rozwiązanie, dodatkowo wprowadzono połączenie sztywne "przepona" w górnej siatce, pozwala to na współpracę sąsiednich węzłów połączonych dodatkową konstrukcją wsporczą. W konstrukcji nie zastosowano dodatkowych stężeń. Oparcie na fundamencie słupów przyjęto jako przegubowe.

Model 3d konstrukcji uwzględniający typy prętów przedstawiono na rysunku 40, słupy, pas górny i dolny zamodelowano jako belka, pozostałe elementy pracują jako elementy kratownicowe, przenoszą siły normalne.

Rys. 43. Model 3D konstrukcji w programie RFEM

4.1.1. Kombinacje obciążeń

Na podstawie wartości poszczególnych obciążeń oddziaływujących na konstrukcję uzyskano 17 przypadków, zestawionych w tabeli 8. Uwzględniając normę PN-EN 1990:2004 Eurokod: Podstawy projektowania konstrukcji, wygenerowano ręcznie kombinacje zawierające oddziaływania śniegiem w stosunku do oddziaływań wiatrowych, łącznie przeanalizowano 32 kombinacje obliczeniowe przedstawione w tabeli 10.

				EN 1990 PN 2010-09
Przypadek		Rysunek	Тур	Kategoria
obciążenia	Nazwa		analizy	oddziaływania
PO1	Ciężar własny			Stałe
PO2	Pokrycie (blacha, szkło)			Stałe/użytkowe
PO3	Śnieg równomiernie rozłożony	28		
PO4	Śnieg lewa strona 100%	28		I
PO5	Śnieg prawa strona 100%	28	па	Е
	Śnieg równomiernie z uwzględnieniem zasp		,ycz	labo
PO6	dwustronnie	29	stat	o/c
	Śnieg równomiernie z uwzględnieniem zasp lewa		za s	iem 000
PO7	strona	29	iler	ieg = 1(
PO9	Śnieg z uwzględnieniem zasp prawa strona	29	Ar	e śn H <∶
PO10	Śnieg z uwzględnieniem zasp śnieżnych lewa	31		zeni
PO11	Śnieg z uwzględnieniem zasp śnieżnych prawa	31		ocią
PO12	Śnieg lewa 50%	28		ŏ
PO13	Śnieg prawa 50%	28		
PO14	SW1: 0.00 deg		a.	Wiatr
PO15	SW1: 90.00 deg		ulacj itru	Wiatr
PO16	SW1: 180.00 deg		ymu wia	Wiatr
PO17	SW1: 270.00 deg		S	Wiatr

Tab. 8. Przypadki obliczeniowe

Zastosowano cztery sytuacje obliczeniowe, SO1 do projektowania konstrukcji stalowych, SO2 do analizy naprężeniowo – odkształceniowej i projektowania konstrukcji w stanie granicznym użytkowalności, SO3 do analizy naprężeniowo- odkształceniowej w stanie granicznym nośności i SO4 do projektowania połączenia stalowego.

Svt.	EN 1990 PN 2010-09
oblicz.	Typ sytuacji obliczeniowej
SO1	SGN (STR/GEO) - Trwała i przejściowa - Równ. 6.10a i 6.10b
SO2	SGU - Charakterystyczna
SO3	SGN (STR/GEO) - Trwała i przejściowa - Równ. 6.10a i 6.10b
SO4	SGN (STR/GEO) - Trwała i przejściowa - Równ. 6.10a i 6.10b

Analizę statyczną przeprowadzono metodą liniową, a analizę stateczności metodą wartości własnych Lanczos. Wygenerowano 10 przypadków wartości własnych.

Tab. 10. Kombinacje obciążeniowe

			Oddz	iałyv	vanias	stałe	Oddziaływania zmienne					
Komb.		Sytuacja	Cięż	ar			Wio	dace	Pier	wsze	Drugie	
obciążeń		wa	włas	ny ukcii	POK	усте	zmienne		towarzyszące		towarzyszące	
			Wsp.	Nr	Wsp.	Nr	Wsp.	Nr	Wsp.	Nr	Wsp.	Nr
KO1	snieg równomiernie	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO3	1,00			
КО2	snieg z lewej	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO4	1,00			
КОЗ	snieg z prawej	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO5	1,00			
KO4	snieg z prawej 50%	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO4	1,50	PO13	1,00	
KO5	snieg z lewej 50%	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO5	1,50	PO12	1,00	
KO6	snieg po6	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO6	1,00			
КО7	snieg po7	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO7	1,00			
KO8	snieg po9	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO9	1,00			
КО9	snieg po10	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO10	1,00			
KO10	snieg po11	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO11	1,00			
KO11	snieg z prawej wiatr z lewej po14	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO5	1,50	PO14	1,00	
KO12	snieg z lewej 50% wiatr z lewej po14	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO5	1,50	PO12	1,50	PO14
KO13	snieg po9 wiatr z lewej po14	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO9	1,50	PO14	1,00	
KO14	snieg po10 wiatr z lewej po14	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO10	1,50	PO14	1,00	
KO15	snieg rowno wiatr od frontu po15	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO3	1,50	PO15	1,00	
KO16	snieg po6 + wiatr od frontu po15	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO6	1,50	PO15	1,00	
KO17	snieg rowno + wiatr tyl po17	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO3	1,50	PO17	1,00	
KO18	snieg po6 + wiatr tyl po17	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO6	1,50	PO17	1,00	
KO19	snieg po7 + wiatr tyl po17	SO1 - SGN	1,35	PO1	1,35	PO2	1,50	PO7	1,50	PO17	1,00	
КО20	snieg po9 + wiatr tyl po17	SO1 - SGN	1,35	P01	1,35	PO2	1,50	PO9	1,50	PO17	1,00	
KO21	PO1 + PO2 + PO9 + PO14	SO2 - SGU	1,00	P01	1,00	PO2	1,00	PO9	1,00	PO14	1,00	
КО22	naprezenia snieg po9 wiatr z lewej po14	SO3 - SGN	1,35	P01	1,35	PO2	1,50	PO9	1,50	PO14	1,00	
КО23	snieg z prawej wiatr z lewej po14	SO4 - SGN	1,35	PO1	1,35	PO2	1,50	PO5	1,50	PO14	1,00	
КО24	snieg z lewej 50% wiatr z lewej po14	SO4 - SGN	1,35	PO1	1,35	PO2	1,50	PO5	1,50	PO12	1,50	PO14
KO25	snieg po9 wiatr z lewej po14	SO4 - SGN	1,35	PO1	1,35	PO2	1,50	PO9	1,50	PO14	1,00	
KO26	snieg po10 wiatr z lewej po14	SO4 - SGN	1,35	PO1	1,35	PO2	1,50	PO10	1,50	PO14	1,00	
КО27	snieg rowno wiatr od frontu po15	SO4 - SGN	1,35	PO1	1,35	PO2	1,50	PO3	1,50	PO15	1,00	
КО28	snieg po6 + wiatr od frontu po15	SO4 - SGN	1,35	PO1	1,35	PO2	1,50	PO6	1,50	PO15	1,00	
КО29	snieg rowno + wiatr tyl po17	SO4 - SGN	1,35	PO1	1,35	PO2	1,50	PO3	1,50	PO17	1,00	
КОЗО	snieg po6 + wiatr tyl po17	SO4 - SGN	1,35	PO1	1,35	PO2	1,50	PO6	1,50	PO17	1,00	
KO31	snieg po7 + wiatr tyl po17	SO4 - SGN	1,35	PO1	1,35	PO2	1,50	PO7	1,50	PO17	1,00	
KO32	snieg po9 + wiatr tyl po17	SO4 - SGN	1,35	PO1	1,35	PO2	1,50	PO9	1,50	PO17	1,00	

4.1.2. Wyniki analizy stanu granicznego użytkowalności

Ugięcia przekrycia strukturalnego pod całkowitym obciążeniem maksymalnym w środkowej jego części w przypadku konstrukcji dachowej nie powinny przekraczać l/200 rozpiętości krótszego boku...

Ugięcia przekrycia strukturalnego pod całkowitym obciążeniem maksymalnym między słupami podporowymi w przypadku dachów nie powinny przekraczać l/300 rozpiętości krótszego boku ...

Źródło: Bródka J. Przekrycia strukturalne, Arkady Warszawa, 1985 [1]

Analizę stanu granicznego użytkowalności przeprowadzono po ustaleniu najmniej korzystnej kombinacji SGN, dla kombinacja SGU wg. Załącznika A1 normy EN 1990:2002 przyjmuje się współczynniki częściowe dla oddziaływań równe 1.

Na rysunku 44 przedstawiono stan konstrukcji odkształconej wg. Kombinacji obliczeniowej KO21, maksymalne odkształcenie wynosi 92.5 mm.

Rys. 44. Odkształcenia globalne KO21

Obliczono dopuszczalne ugięcie konstrukcji wg. Założeń prof. J. Bródki [1], po przeanalizowaniu pełnego odcinka pasa dolnego między słupami. Analizę przeprowadzono na wykresach odkształceń lokalnych i globalnych (rysunek 46), lokalizację badanego elementu wydzielonego z siatki dolnej, przedstawiono na rysunku 45.

Rys. 45. Pas dolny – SGU

Rys. 46. Odkształcenia SGU pasa dolnego

Ugięcie pasa dolnego między podporami

max=2,85 cm
$$<\frac{6998}{300}$$
 = 23,33 cm

Odkształcenie całej konstrukcji

max=9,25 cm
$$<\frac{6998}{200}$$
 = 11,66 cm

Założenie projektowe zostało spełnione

Ze względu na zastosowanie dodatkowych elementów przekrycia, elementów szklanych, badana konstrukcja powinna spełniać dodatkowe wymogi odnośnie przemieszczeń. Stan graniczny użytkowalności wymaga zwiększonych przekrojów co ogranicza przemieszczenia węzłowe punktów mocowania wsporników. Współpraca pasów górnych i dolnych ze skratowaniem przyczynia się do ograniczenia deformacji wywołanych obciążeniami zewnętrznymi, wykazano, że odpowiednie krzywoliniowe ukształtowanie zbiorów prętów wpływa korzystnie na sztywność konstrukcji. Konstrukcje oparte na łukach posiadają duże walory architektoniczne oraz korzystne właściwości wytrzymałościowe.

Na podstawie śledzenia wartości przemieszczeń przeprowadzono wstępną analizę sztywności, zmieniano przekroje iteracyjnie aż do osiągnięcia względnej równowagi przemieszczeń w każdym elemencie. Wypracowano konstrukcję charakteryzującą się małymi odkształceniami lokalnymi.

4.1.3. Stan graniczny nośności

Wyniki analizy statycznej ze względu na ilość węzłów i prętów przestawiono w zestawieniu tabelarycznym, a także na wykresach. Dane dotyczące prętów zgrupowano w odniesieniu do funkcji pełnionej w konstrukcji.

4.1.3.1. Wyniki dla siatki górnej

Rysunek 47 przedstawia obwiednię siły ściskającej i rozciągającej elementy siatki górnej z kombinacji oddziaływań wszystkich wyników.

Rys. 47. Ściskanie i rozciąganie – siatka górna

Koncentracja największych sił w pasie siatki górnej, występuje w obszarach obniżenia, nawisów po obwodzie konstrukcji, tabela 11 przedstawia ekstremalne wartości z wybranych prętów. Z uwagi na określenie prętów pasa górnego jako elementu belkowego występują nieznaczne siły tnące, a także momenty. Siły normalne przedstawione na rysunku 48 w większości zawierają się w przedziale -250 kN do 150 kN, około 10 % wyników znajduje się w zakresie -440 kN do -250 kN i od 150 kN do 230 kN.

Siły tnące i momenty zawierają się w wąskim zakresie, uwzględnienie ich w wymiarowaniu nie ma dużego znaczenia. Wyniki tych sił przedstawiono na kolejnych rysunkach 49 i 50.

Przekrój	Przekrój nr 9: RO 193.7x6.3 ; EN 10210-2:2006												
Pręt	Węzeł	Położenie		Siły [kN]			Mome	nty [kNn	n]				
nr	nr	x [m]		N	Vy	Vz	Μτ	My	Mz	Odpowiednie przypadki obciążeń			
10344	12114	9,680	MAX N	226,13	-0,57	-0,85	0,05	-1,40	1,40	КО 16			
10588	11402	0,000	MIN N	-436,81	0,41	1,21	0,00	-2,38	0,71	KO 18			
9804	11618	7,141	MAX Vy	99,27	1,81	-1,17	-0,32	-0,10	-2,86	KO 13			
9575		1,507	MIN Vy	-298,28	-1,84	1,18	-0,47	-0,10	-0,10	KO 18			
411	579	0,000	MAX Vz	-138,59	0,00	2,28	0,09	-4,03	0,01	КО 16			
10177	8054	7,158	MIN Vz	-129,42	-0,26	-2,58	-0,13	-3,15	0,70	KO 12			
9803		2,782	MAX MT	-294,10	-1,23	0,06	0,48	1,15	2,28	КО 19			
9575		3,245	MIN M _T	-298,10	1,23	-0,12	-0,47	1,21	2,32	ко 20			
10177		2,863	MAX My	-121,46	-0,15	0,03	-0,11	2,31	-0,32	KO 11			
10201	8530	7,553		-115,62	0,51	-2,26	0,13	-4,03	-2,21	ко 19			
10721	12447	0,000	MAX Mz	50,44	1,27	0,95	0,23	-0,53	3,60	КО 16			
9949	11740	0,000	MIN Mz	53,78	-1,26	0,94	-0,22	-0,56	-3,56	КО 16			

Tab. 11. Zestawienie maksymalnych sił w siatce górnej

Rys. 49. Wykres koncentracji wyników - siły tnące

Zgodnie z założeniami konstrukcji łukowych można zauważyć małe, a w dużej części zerowe wartości momentów zginających. Odpowiednio wymodelowana geometria siatki prętów górnych spowodowała występowanie ważnych przy wymiarowaniu sił ściskających.

Rys. 50. Wykres koncentracji wyników - momenty

4.1.3.2. Wyniki dla siatki dolnej

W pasie dolnym występują zdecydowanie większe siły normalne, a rozkład tych sił przedstawiony na rysunku 52, jest bardziej zrównoważony, większość wyników zawiera się w przedziale -300 kN do 260 kN, nieznaczna ilość prętów zlokalizowana przy słupach jest ściskana większą siła. Zgodnie z rysunkiem 51 w pasie dolnym wyraźnie odznacza się granica pomiędzy prętami ściskanymi, a rozciąganymi. W przypadku rozkładu sił tnących, na rysunku 53 można zauważyć wyraźne rozwarstwienie wyników pomiędzy wartościami dodatnimi i ujemnymi, a także zbliżonymi do zerowych, spowodowane jest to równomiernym obciążeniem pasa dolnego związaną z redystrybucją sił z prętów kratowych. Także momenty oddziaływujące na pas dolny przedstawiają duże skupienie (rysunek 54), minimalne wartości wynikają z przeprowadzenia analizy pasa jako element belkowy.

maks. N : 248.15 | min. N : -529.80 kN

Rys. 51. Ściskanie i rozciąganie – siatka dolna

Przekrój	Przekrój nr 10: RO 219.1x6.3 ; EN 10210-2:2006												
Pręt	Węzeł	Położenie x [m]		Siły [kN]	Vy	Vz	Momenty [kNm]			Odpowiednie przypadki obciążeń			
11320	12756	4,766	MAX N	259,81	-0,19	-1,18	-0,09	-0,47	0,15	KO 13			
11249	11970	0,000	MIN N	-535,51	0,08	2,10	1,19	-5,29	0,99	KO 16			
1418		1,975	MAX V _y	-124,94	2,06	0,97	0,53	1,54	-0,34	KO 13			
11193		6,836	MIN Vy	-38,89	-1,77	-0,92	0,17	-0,39	0,32	KO 15			
11313		0,972	MAX Vz	-308,38	-1,26	3,02	2,32	-6,81	-2,92	KO 16			
11248		3,888	MIN Vz	-374,84	0,47	-3,37	-1,29	-5,65	-0,73	КО 19			
11313	12690	4,860	MAX MT	-308,32	-1,46	1,68	2,32	3,16	2,92	KO 16			
11248	11981	0,000	MIN M _T	-316,20	1,61	-1,41	-2,35	2,78	3,19	KO 16			
10728	12470	0,000	MAX My	-84,27	0,57	-1,56	0,15	5,65	1,39	КО 13			
11248	11970	4,860	MIN My	-316,28	0,98	-3,07	-2,34	-9,74	-4,03	KO 16			
149	8293	0,000	MAX Mz	-220,18	1,44	1,21	0,76	-0,92	4,36	KO 16			
1357	578	0,000	MIN Mz	-220,03	-1,43	1,44	-0,76	-0,94	-4,17	KO 16			

Tab. 12. Zestawienie maksymalnych sił w elementach siatki dolnej

Rys. 52. Wykres koncentracji wyników - siły normalne

Rys. 53. Wykres koncentracji wyników - siły tnące

Rys. 54. Wykres koncentracji wyników – momenty

4.1.3.3. Wyniki pręty skratowania

Skratowanie przenosi siły z siatki górnej na dolną w sposób równomierny, a nieznaczna część prętów przenosi siły o wartości ponad 200 kN. Wykres obwiedni sił na rysunku 55 pokazuje równomierność oddziaływania, potwierdzoną wykresem na rysunku 56. Największe wartości w tabeli 13 występują w prętach skratowania przenoszących siły na szczyt słupa, w związku z tym zastosowano lokalnie zwiększone przekroje RO 177,8 x 8,0.

Rys. 55. Ściskanie i rozciąganie - skratowanie

Rys. 56. Siły normalne – skratowanie

Tab.	13.	Wyniki	dla	skratowania
------	-----	--------	-----	-------------

Przekrój nr 11: RO 168.3x6.3 ; EN 10210-2:2006											
Pręt	Węzeł	Położenie		Siły [kN]			Mome	enty [kN	m]		
nr	nr	x [m]		N	Vy	Vz	MT	My	Mz	Odpowiednie przypadki obciążeń	
10715	218	0,000	MAX N	364,75	0,00	0,00	0,00	0,00	0,00	KO 16	
10185	11970	6,092	MIN N	-425,02	0,00	0,00	0,00	0,00	0,00	KO 16	
9150		3,374	MAX Vy	-68,90	0,00	0,00	0,00	0,00	0,00	KO 18	
10303	10910	0,000	MIN Vy	72,89	0,00	0,00	0,00	0,00	0,00	ко 13	
9150	10672	0,000	MAX Vz	-58,39	0,00	0,00	0,00	0,00	0,00	KO 13	
10303	12080	6,314	MIN Vz	71,55	0,00	0,00	0,00	0,00	0,00	KO 13	
8706	10393	6,140	MAX MT	-43,74	0,00	0,00	0,00	0,00	0,00	KO 13	
10303	10910	0,000	MIN MT	72,89	0,00	0,00	0,00	0,00	0,00	КО 13	
10303		3,400	MAX My	42,21	0,00	0,00	0,00	0,00	0,00	KO 11	
9150	10672	0,000	MIN My	-58,39	0,00	0,00	0,00	0,00	0,00	КО 13	
10303	12080	6,314	MAX Mz	71,55	0,00	0,00	0,00	0,00	0,00	КО 13	
10303	10910	0,000	MIN Mz	72,89	0,00	0,00	0,00	0,00	0,00	KO 13	

4.1.3.4. Wyniki dla trzonu słupa

Przekró	j nr 6: Po	lygon 8/1000	/1000/12								
Pręt	Węzeł	Położenie		Siły [kN]			Momen	ty [kNm]			
nr	nr	x [m]		N	Vy	Vz	MT	My	Mz	Odpowiednie przypadki obciążeń	
11147	12860	23,982	MIN N	-2697,57	-1,07	-4,04	0,61	0,00	0,00	КО 6	
11111	11616	0,000	MAX V _y	-460,81	214,64	25,32	-3,21	-6,93	7,48	КО 16	
11107	11401	19,768	MIN Vy	-483,85	-202,98	-34,03	3,67	-7,64	6,21	KO 16	
11128	12831	0,000	MAX Vz	-1415,11	-12,66	129,79	1,39	0,00	-0,02	КО 13	
11128	12470	18,176	MIN Vz	-684,00	33,21	-319,15	-2,08	-8,40	2,59	KO 13	
11111	12822	19,767	MAX M _T	-810,46	-23,68	68,52	20,91	0,04	-0,24	KO 13	
11128	12831	0,000	MIN M _T	-1312,67	51,60	37,85	-16,55	0,14	0,04	KO 16	
11128		13,632	MAX My	-1364,42	-8,97	95,12	2,08	1578,23	155,21	KO 13	
11119		5,000	MIN My	-708,52	19,26	70,13	-4,07	-1165,03	334,89	KO 13	
11128		13,632	MAX Mz	-1263,38	-59,09	24,35	13,04	439,81	1032,45	ко 18	
11111		4,942	MIN Mz	-837,07	-69,22	-9,00	10,65	149,91	-1177,60	КО 16	

Tab. 14. Wyniki dla słupów

Zgodnie z założeniami projektowymi, wykorzystującymi zalety przekryć strukturalnych, poprzez zastosowanie jak najmniejszej ilości podpór, słupy przenoszą siły ściskające, ze względu na masę konstrukcji w żadnym przypadku nie występują siły rozciągające. Na rysunku 59 można wyodrębnić grupy oddziaływań, największe o wartości ponad 2000 kN występują w słupach wewnętrznych, średnie z przedziału 2000÷1000 kN występują w bocznej części, a poniżej 1000 kN od frontu i od tyłu. Słupy wewnętrzne zaprojektowano w celu zmniejszenia ugięć, a także równomiernemu rozkładowi obciążeń, Wynik analizy pokazał zasadność ich zastosowania. W węźle konstrukcyjnym łączącym słupy z gałęziami występują znaczne momenty zginające. Wartości powyżej 1000 kNm przedstawione na rysunku 61, występują w słupach bocznych, w przypadkach oddziaływania wiatru z boku konstrukcji, są to wartości na słupach od zawietrznej strony. Analogiczna sytuacja występuje w przypadku sił tnących na rysunku 60. Największe siły tnące w zdecydowanej większości występują powyżej węzła gałęziowego, słup w tej części jest obciążony od sił przenoszonych z gałęzi podporowych, a także od sił prętów opartych na szczycie słupa.

Rysunki 57 oraz 58 pokazują rozkład sił w słupach wewnętrznych i skrajnych, przedstawiają miejsca węzłowe w górnej części, wyraźną pracę górnej części słupa.

Rys. 58. Słup wewnętrzny-11147

Rys. 59. Siły normalne- słup (elementy skończone)

Rys. 60. Siły tnące - słup

Rys. 61. Momenty – słup

4.1.3.5. Wyniki dla gałęzi

Tab. 15. Wyniki dla gałęzi

Przekrój nr 8: Polygon 8/400/12												
Pręt nr	Węzeł	Położenie x [m]		Siły [kN] N	Vy	Vz	Mome MT	nty [kNm] My	Mz	Odpowiednie przypadki obciążeń		
11125	4009	7,781	MAX N	369,83	-1,27	-8,27	-1,90	-0,20	-1,16	ко 13		
11225	12884	0,000	MIN N	-879,31	-0,37	7,63	1,44	-32,07	6,12	KO 18		
11129		6,492	MAX Vy	-459,26	5,96	4,33	1,24	-3,09	0,58	КО 13		
11130		8,239	MIN Vy	-248,49	-5,72	0,23	-4,18	2,95	0,86	KO 13		
11117	12827	0,000	MAX Vz	4,20	2,48	12,01	-3,07	-28,33	-4,11	КО 16		
11180	11517	7,945	MIN Vz	-175,95	-1,06	-9,56	-2,17	-8,74	0,07	KO 13		
11126	12828	0,000	MAX M _T	-428,26	-1,11	8,80	7,62	-39,04	7,27	КО 18		
11135	12834	0,000	MIN MT	-177,98	0,75	9,26	-9,26	-13,86	-9,86	КО 13		
11125	12828	0,000	ΜΑΧ Μγ	360,30	-0,95	-1,02	-1,88	35,46	-10,40	KO 13		
11131	12832	0,000	MIN My	-157,85	-1,85	11,54	-2,87	-60,21	-14,52	КО 13		
11125	12828	0,000	MAX Mz	151,55	5,14	4,18	5,97	2,19	31,37	КО 18		
11131	12832	0,000	MIN Mz	112,38	-5,19	5,23	-6,26	-5,12	-32,76	КО 18		

Rys. 62. Siły normalne - gałąź

Pręty gałęziowe przy słupach wewnętrznych są ściskane znacznymi siłami, po obwodzie są rozciągane lub ściskane w zakresie – 400 kN ÷ 400 kN, zależnie od przypadku obciążenia. Występuje na nich równomierny rozkład sił tnących (rysunek 63), analogicznie do słupów po stronie zawietrznej konstrukcji występują nieznacznie wyższe wartości momentów zginających (rysunku 64).

Rys. 63. Siły tnące - gałąź

Rys. 64. Momenty – gałąź

4.2. Analiza stateczności

4.2.1. Współczynnik obciążenia krytycznego

Przeprowadzono analizę stateczności modelu w dwóch dostępnych wersjach programu RFEM. Wystąpiły nieznaczne różnice w wynikach pokazane w tabeli 16, w wersji RFEM 5 miarodajny wynik dała już 2 postać własna, a także 3. W nowszej wersji programu RFEM 6 miarodajny wartością współczynnika obciążenia krytycznego wyznacza także postać 2 i 3, wyniki analizy przedstawia rysunek 65.

	RFEI	VI 5	RFEM 6			
Postać nr	Współczynnik obciążenia krytycznego	Współczynnik zwiększający	Współczynnik obciążenia krytycznego	Współczynnik zwiększający		
	f [-]	α[-]	f [-]	α[-]		
1	4,519	1,284	4,781	1,264		
2	5,257	1,235	5,836	1,207		
3	5,417	1,226	6,494	1,182		
4	5,545	1,220	7,156	1,162		
5	5,941	1,202	7,165	1,162		
6	6,785	1,173	7,216	1,161		
7	7,086	1,164	7,856	1,146		
8	7,265	1,160	7,980	1,143		
9	7,533	1,153	8,088	1,141		
10	7,709	1,149	8,124	1,140		

Tab. 16. Współczynniki obciążenia krytycznego

Analiza graficzna przedstawiona na rysunku 62 pozwoliła na określenie poprawnych wartości współczynnika krytycznego. Postacie drgań własnych uwzględniające miejscowe przemieszczenia nie spełniają założeń obliczeniowych. Wartości współczynnika przy globalnej niestateczności można wykorzystać do dalszych prac nad konstrukcją.

Rys. 65. Postacie drgań własnych

- a) nr 2 5,84; b) nr 3 6,49 (RFEM 6)
- b) c) nr 2 5,26; d) nr 3 5,42; e) nr 8 7,28; (RFEM 5)

4.2.2. Długości efektywne i obciążenia krytyczne według postaci własnych

Na podstawie współczynnika obciążenia krytycznego wyznaczonego z 2 postaci własnej przeprowadzono korektę długości prętów, wyznaczono współczynnik długości efektywnej i obciążenie krytyczne, w tabeli 17 przedstawiono wyniki dla najbardziej wytężonych prętów, po jednym z każdego przekroju. Program obliczeniowy uwzględnia wyznaczone długości efektywne w dalszych obliczeniach.

	Pręt	Węzeł nr		Długość	Długość efektywna [m]		Współczynnik długości efektywnej		Obciążenie krytyczne
	nr	początek	koniec	L [m]	L _{cr,u}	L _{cr,v}	k _{cr,u}	k _{cr,v}	N _{cr} [kN]
Pas górny	10588	11402	12337	5.972	3.743	3.743	0.627	0.627	2411.26
Pas dolny	11249	11970	11959	4.868	4.658	4.658	0.957	0.957	2279.47
Skratowanie	10185	11960	11970	6.092	3.451	3.451	0.566	0.566	1832.23
Słup	11147	8839	12860	23.982	31.647	31.647	1.320	1.320	13390.70
Gałąź	11225	12884	2399	9.882	10.721	10.721	1.085	1.085	4336.02

Tab. 17. Długości efektywne i obciążenia krytyczne

4.2.3. Analiza naprężeniowo – odkształceniowa

Analiza naprężeniowa wykazała bezpieczny stosunek wartości naprężenia do wartości granicznej, nie przekraczającym 50% wartości granicznej. W tabeli 18 zestawiono najwyższe wartości naprężenia w każdym z zastosowanych przekroi. Rysunek 66 przedstawia rozkład naprężenia przy skrajnym słupie, należy zauważyć, że największe naprężenia występują w połączeniu słupa z gałęziami, a także w prętach skratowania bezpośrednio przy gałęziach.

	Pręt	Położenie	Obciążenie	Тур	Naprężenie	[N/mm ²]	Stosunek
Przekrój							naprężeń η [-
	nr	x [m]	nr	naprężenia	Istniejące	Wartość graniczna	-]
	Słup	I				Γ	1
PHS	11136	14,023	KO22	σ _{x,tot}	-167,326	345,000	0,485
8/1000/20	11128	18,176	KO22	τ _{tot}	-13,103	199,186	0,066
	11136	14,023	KO22	$\sigma_{eqv,vonMises}$	167,358	345,000	0,485
	Gałąź						
PHS	11211	0,000	KO22	σ _{x,tot}	-86,504	355,000	0,244
8/400/12	11135	0,000	KO22	τ_{tot}	-4,764	204,959	0,023
	11211	0,000	KO22	$\sigma_{eqv,vonMises}$	86,574	355,000	0,244
	Pas górny	/					
CHS	10972	0,000	KO22	σ _{x,tot}	-120,309	355,000	0,339
193.7x6.3	9804	0,000	KO22	τ _{tot}	-2,386	204,959	0,012
	10972	0,000	KO22	$\sigma_{eqv,vonMises}$	120,318	355,000	0,339
	Pas dolny	/					
CHS	11249	0,000	KO22	σ _{x,tot}	-145,309	355,000	0,409
219.1x6.3	11248	3,402	KO22	$ au_{tot}$	-5,336	204,959	0,026
	11249	0,000	KO22	$\sigma_{eqv,vonMises}$	145,350	355,000	0,409
	Skratowa	nie					
СНЅ	10953	6,092	KO22	σ _{x,tot}	-121,182	355,000	0,341
168.3x6.3	10303	6,314	KO22	τ _{tot}	-1,616	204,959	0,008
	10953	6,092	KO22	$\sigma_{eqv,vonMises}$	121,182	355,000	0,341
	Skratowr	nie przy słupac	ch				
CHS	9800	6,759	KO22	σ _{x,tot}	-152,507	355,000	0,430
177.8x8.0	11234	4,986	KO22	τ_{tot}	2,414	204,959	0,012
	9800	6,759	KO22	$\sigma_{eqv,vonMises}$	152,512	355,000	0,430

Tab. 18. Naprężenia na prętach według przekrojów

Rys. 66. Naprężenia od siły normalnej i momentów zginających

4.2.3.1. Naprężenia – siatka górna

Analiza naprężenia normalnego od siły normalnej i momentów zginających przedstawiona na rysunku 67, wykazuje nie przekroczone dopuszczalne wartości naprężenia. Stal S355 charakteryzuje się wartością 35,5 kN/cm², 80% wynosi 28,4 kN/cm², pręty pasa górnego w znikomym zakresie przekraczają wartość 12,76 kN/cm².

Rys. 67. Naprężenia – pas górny

4.2.3.2. Naprężenia – siatka dolna

Naprężenia w prętach pasa dolnego przedstawione na rysunku 68 także przedstawiają wyraźne obszary oddziaływań, naprężenia w przekrojach pasa dolnego nie przekraczają wartości dopuszczalnych. Za wartość graniczną przyjęto 80 % wartości użytej stali.

Rys. 68. Naprężenia – pas dolny

4.2.3.3. Naprężenia – skratowanie

Naprężenia w prętach skratowania nie przekraczają dopuszczalnych wartości, a w większej części mają równomierny rozkład, jak można zaobserwować na rysunku 69 większe wartości występują przy podporach i w miejscach nawisów dolnych, po obwodzie. Należy przyjąć, że znaczna część konstrukcji współpracuje we właściwy, założony projektowo sposób.

Rys. 69. Naprężenia -skratowanie

4.2.3.4. Naprężenia – słup

Naprężenia w elementach powłokowych także nie przekraczają wartości granicznych, w dalszej części opracowania zastosowano wzmocnienie miejscowe, celem eliminacji lokalnej deformacji blachy tworzącej przekrój. Na rysunku 70 przedstawiono słup skrajny pozycja a) i wewnętrzny pozycja b).

Rys. 70. Naprężenia w słupach

4.2.4. Wyboczenie ścianek elementów

Przeprowadzono analizę wyboczeniową każdego z elementów. Rysunki 71 oraz 72 przedstawiają deformację elementów wraz z odpowiadającymi im wykresami.

4.2.4.1. Postać wyboczenia – słup

Rys. 71. Postacie wyboczeniowe - przekrój wielokątny

Na wykresach można zaobserwować analogiczne postacie wyboczenia, profil wielokątny wykazuje się wyraźniejszą, bardziej wyostrzoną odpowiedzią na zadane obciążenia. Mapę lokalnego wyboczenia przedstawiono w dalszej części dotyczącej podstawy słupa.

4.2.4.2. Postać wyboczenia – przekrój rurowy

Rys. 72. Postacie wyboczenia - przekrój rurowy

4.3. Wymiarowanie elementów

Rozszerzenie Steel Design dostępne w programie RFEM 6 do wymiarowania konstrukcji stalowych przeprowadza szczegółową klasyfikację przekrojów w każdym miejscu obliczeń przed przeprowadzeniem obliczeń. Klasyfikacja przekrojów określa procedury obliczeniowe zgodnie z normą PN-EN 1993 dla każdego z obliczeń, pręty dzieli się na odpowiednie klasy i narzuca się normowe wymagania wymiarowania.

Przekrój	'n	Pręt nr	Położe nie x [m]	Obcią żenie nr	Stopień wykorzystania warunku projektowego η []	Warunek projektowy	Opis			
				PHS 8/	/1000/20 3 - \$355		Słup			
		11204	22,642	KO18	0,135	SP1200.00	Ściskanie wg 6.2.4			
		11128	18,176	KO13	0,053	SP3100.02	Ścinanie w osi z wg 6.2.6(2) Projektowanie plastyczne			
		11111	0,000	KO16	0,035	SP3200.02	Ścinanie w osi y wg 6.2.6(2) Projektowanie plastyczne			
		11128	13,632	KO13	0,302	SP4100.03	Zginanie względem osi y wg 6.2.5 Projektowanie plastyczne			
	11111	4,942	KO16	0,217	SP5100.03	Zginanie względem osi z wg 6.2.5 Projektowanie plastyczne				
	11136	14,023	KO13	0,430	SP6300.01	Zginanie dwukierunkowe, siła osiowa i ścinanie wg 6.2.1(7) Projektowanie plastyczne				
6		11209	5,660	KO12	0,295	SP6300.02	Zginanie względem osi y, siła osiowa i ścinanie wg 6.2.1(7) Projektowanie plastyczne			
		11229	21,494	KO15	0,138	SP6300.03	Zginanie względem osi z, siła osiowa i ścinanie wg 6.2.1(7) Projektowanie plastyczne			
		11147	23,982	KO6	0,232	ST1100.00	Stateczność Wyboczenie giętne względem głównej osi y wg 6.3.1			
		11147	23,982	KO6	0,232	ST1300.00	Stateczność Wyboczenie giętne względem głównej osi z wg 6.3.1			
		11136	0,000	K013	0,462	ST3100.00	Stateczność Zginanie i wyboczenie względem głównych osi wg 6.3.3			
		11107	0,000	KO21	0,000	SE0100.00	Użytkowalność Pomijalne ugięcia			
		11136	10,517	KO21	0,402	SE1100.00	Użytkowalność Ugięcia w kierunku z			
		11107	10,873	KO21	0,160	SE1200.00	Użytkowalność Ugięcia w kierunku y			

Tab.	19.	Wymiar	owanie -	słup
I uo.	1/.	,, yman	Jwanne	brup

Słupy zakwalifikowano do klasy 1. Dlatego też przeprowadzono obliczenia nośności w stanie plastycznym. W tabeli 19 zestawiono wyniki, decydującym warunkiem jest interakcja zginania i wyboczenia względem głównych osi. Prace przy projektowaniu połączenia wykazały także potrzebę przeanalizowania stateczności miejscowej ścianek płaskich, zastosowano dodatkowe nakładki aby ograniczyć wystąpienie niestateczności miejscowej.

Pręty gałęzi także zakwalifikowano do klasy 1, analogicznie do słupów decydującym warunkiem jest warunek stateczności. Elementy zaprojektowano ze stosunkowo dużym zapasem nośności ze względu na walory architektoniczne, a także możliwość montażowe elementów. Słupy powłokowe jako ustroje cienkościenne narażone są na deformację powłoki przy nieostrożnym montażu. W przypadku gałęzi występują dodatkowe siły rozciągające, wartość tej siły wg. tabeli 20 nie ma wpływu na nośność elementu.

Przekrój nr	Pręt nr	Położe nie x [m]	Obcią żenie nr	Stopień wykorzystania warunku projektowego η []	Warunek projektowy	Opis
			PHS 8	/400/12 3 - \$355		Gałąź
	11125	7,781	KO13	0,071	SP1100.00	Rozciąganie wg 6.2.3
	11225	0,000	KO18	0,174	SP1200.00	Ściskanie wg 6.2.4
	11143	0,000	KO15	0,007	SP3100.02	Ścinanie w osi z wg 6.2.6(2) Projektowanie plastyczne
	11130	8,239	KO13	0,003	SP3200.02	Ścinanie w osi y wg 6.2.6(2) Projektowanie plastyczne
-	11131	0,000	KO13	0,082	SP4100.03	Zginanie względem osi y wg 6.2.5 Projektowanie plastyczne
	11131	0,000	KO18	0,044	SP5100.03	Zginanie względem osi z wg 6.2.5 Projektowanie plastyczne
	11135	0,000	KO16	0,187	SP6100.00	Naprężenie osiowe i styczne wg 6.2.1(5) Projektowanie sprężyste
	11231	0,000	KO13	0,232	SP6300.01	Zginanie dwukierunkowe, siła osiowa i ścinanie wg 6.2.1(7) Projektowanie plastyczne
8	11231	0,000	KO18	0,221	SP6300.02	Zginanie względem osi y, siła osiowa i ścinanie wg 6.2.1(7) Projektowanie plastyczne
	11151	4,894	KO18	0,179	SP6300.03	Zginanie względem osi z, siła osiowa i ścinanie wg 6.2.1(7) Projektowanie plastyczne
	11109	0,000	KO14	0,072	SP6300.04	Zginanie dwukierunkowe i ścinanie wg 6.2.1(7) Projektowanie plastyczne
	11151	0,000	KO18	0,366	ST1100.00	Stateczność Wyboczenie giętne względem głównej osi y wg 6.3.1
	11151	0,000	KO18	0,366	ST1300.00	Stateczność Wyboczenie giętne względem głównej osi z wg 6.3.1
	11151	0,000	KO18	0,410	ST3100.00	Stateczność Zginanie i wyboczenie względem głównych osi wg 6.3.3
	11108	0,000	KO21	0,000	SE0100.00	Użytkowalność Pomijalne ugięcia
	11117	5,417	KO21	0,097	SE1100.00	Użytkowalność Ugięcia w kierunku z
	11130	3,877	KO21	0,049	SE1200.00	Użytkowalność Ugięcia w kierunku y
	11114	0,000	KO12	-	WA5001.00	Skręcanie jest pomijane dla warunków projektowych stateczności

Tab. 20. Wymiarowanie - gałąź

Pas górny sklasyfikowano do klasy 1. Do przeprowadzenia analizy elementy określono jako belkowe, wymiarowanie plastyczne wykazało znaczny zapas nośności. Analiza stateczności w tabeli 21, wynosząca wartość 0,607 okazała się decydująca.

Badanie naprężenia krytycznego rur obciążonych osiowo w punkcie 4.2.3.1 wykazało bezpieczny zapas nośności pasa górnego.

Przekrój	E Prę	Poło nie x [n	te Ol že	bcią enie nr	Stopień wykorzystania warunku projektowego η []	Warunek projektowy	Opis		
			C	CHS 19	93.7x6.3 3 - \$355		Pas górny		
	34	0,9	52 K	(016	0,000	SP0100.00	Pomijalne siły wewnętrzne		
	1034	4 9,6	30 K	016	0,161	SP1100.00	Rozciąganie wg 6.2.3		
	981	5 0,0	ю к	018	0,317	SP1200.00	Ściskanie wg 6.2.4		
	1021	3 7,4	93 K	(013	0,005	SP3100.02	Ścinanie w osi z wg 6.2.6(2) Projektowanie plastyczne		
	980	4 5,3	56 K	(013	0,004	SP3200.02	Ścinanie w osi y wg 6.2.6(2) Projektowanie plastyczne		
	1017	7 7,1	58 K	(013	0,006	SP3300.02	Wypadkowe ścinanie wg 6.2.6(2) Projektowanie plastyczne		
-	411	0,0	ю к	016	0,052	SP4100.03	Zginanie względem osi y wg 6.2.5 Projektowanie plastyczne		
	980	1 0,0	ю к	018	0,048	SP5100.03	Zginanie względem osi z wg 6.2.5 Projektowanie plastyczne		
9	1020	1 7,5	53 K	018	0,003	SP6500.01	Zginanie dwukierunkowe, siła osiowa i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne		
	1058	8 1,4	93 К	018	0,149	SP6500.02	Zginanie względem osi y, siła osiowa i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne		
	1058	8 2,3	89 K	018	0,147	SP6500.03	Zginanie względem osi z, siła osiowa i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne		
	1036	0 8,8	LO K((019	0,002	SP6500.04	Zginanie dwukierunkowe i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne		
	981	5 0,0	ю к	018	0,584	ST1100.00	Stateczność Wyboczenie giętne względem głównej osi y wg 6.3.1		
	981	5 0,0	ю к	(018	0,584	ST1300.00	Stateczność Wyboczenie giętne względem głównej osi z wg 6.3.1		
	981	5 0,0	ю к	018	0,607	ST3100.00	Stateczność Zginanie i wyboczenie względem głównych osi wg 6.3.3		
	21	0,0	ю к	(021	0,000	SE0100.00	Użytkowalność Pomijalne ugięcia		
ľ	1033	3 4,2	59 K	021	0,102	SE1100.00	Użytkowalność Ugięcia w kierunku z		
	980	1 2,8	57 K	(021	0,036	SE1200.00	Użytkowalność Ugięcia w kierunku y		

Tab. 21. Wymiarowanie --pas górny

Pas dolny w klasie 2 analizowano metodami plastycznymi i sprężystymi. W tabeli 22 należy zwrócić uwagę na wyniki dla ściskania elementu, a także wynik obliczenia dla naprężenia osiowego i stycznego w stanie sprężystym. Decydującym wynikiem jest stateczność elementu i wyższa wartość naprężenia wykazana w punkcie 4.2.3.2.

Przekrój	Pręt nr	Położe nie x [m]	Obcią żenie nr	Stopień wykorzystania warunku projektowego η []	Warunek projektowy	Opis
			CHS 2	19.1x6.3 3 - \$355		Pas dolny
	76	0,950	KO12	0,000	SP0100.00	Pomijalne siły wewnętrzne
	1111	5,034	KO1	0,166	SP1100.00	Rozciąganie wg 6.2.3
	11312	4,868	KO16	0,354	SP1200.00	Ściskanie wg 6.2.4
	11313	4,860	KO16	0,024	SP2100.00	Skręcanie wg 6.2.7
	11248	4,374	KO19	0,006	SP3100.01	Ścinanie w osi z i skręcanie wg 6.2.7(9) Projektowanie plastyczne
	2954	0,000	KO16	0,005	SP3100.02	Ścinanie w osi z wg 6.2.6(2) Projektowanie plastyczne
	11313	4,374	KO12	0,003	SP3200.01	Ścinanie w osi y i skręcanie wg 6.2.7(9) Projektowanie plastyczne
-	11334	7,646	KO15	0,004	SP3200.02	Ścinanie w osi y wg 6.2.6(2) Projektowanie plastyczne
	11313	2,430	KO16	0,006	SP3300.01	Wypadkowe ścinanie i skręcanie wg 6.2.7(9) Projektowanie plastyczne
	2924	0,000	KO15	0,005	SP3300.02	Wypadkowe ścinanie wg 6.2.6(2) Projektowanie plastyczne
	11248	4,860	KO13	0,099	SP4100.03	Zginanie względem osi y wg 6.2.5 Projektowanie plastyczne
10	1699	4,864	KO13	0,035	SP5100.03	Zginanie względem osi z wg 6.2.5 Projektowanie plastyczne
	11249	0,000	KO16	0,412	SP6100.00	Naprężenie osiowe i styczne wg 6.2.1(5) Projektowanie sprężyste
	11248	4,860	KO13	0,013	SP6500.01	Zginanie dwukierunkowe, siła osiowa i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne
	11312	1,460	KO16	0,180	SP6500.02	Zginanie względem osi y, siła osiowa i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne
	11312	0,974	KO13	0,151	SP6500.03	Zginanie względem osi z, siła osiowa i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne
	2579	6,481	KO15	0,002	SP6500.04	Zginanie dwukierunkowe i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne
	11312	4,868	KO16	0,461	ST1100.00	Stateczność Wyboczenie giętne względem głównej osi y wg 6.3.1
	11312	4,868	KO16	0,461	ST1300.00	Stateczność Wyboczenie giętne względem głównej osi z wg 6.3.1
	11312	4,868	KO16	0,488	ST3100.00	Stateczność Zginanie i wyboczenie względem głównych osi wg 6.3.3
	5	0,000	KO21	0,000	SE0100.00	Użytkowalność Pomijalne ugięcia
	544	5,204	KO21	0,091	SE1100.00	Użytkowalność Ugięcia w kierunku z
	2869	7,590	KO21	0,036	SE1200.00	Użytkowalność Ugięcia w kierunku y
	115	0,000	KO18	-	WA5001.00	Skręcanie jest pomijane dla warunków projektowych stateczności

Tab. 22. Wymiarowanie – pas dolny

Elementy skratowania określone w programie jako pręty kratowe z siłą normlaną, obliczono w klasie 1. Ocenę naprężeń i nośności przeprowadzono w stanie plastycznym. Decydującym warunkiem jest wyboczenie giętne, warunek ściskania i rozciągania znajduje się blisko równowagi. W tabeli 23 i 24 należy zwrócić uwagę na warunek stateczności, wartości w okolicy 0,9 wymagają szczególnej uwagi, analiza naprężeniowa w punkcie 4.2.3.3 pokazuje równomierny rozkład na całej konstrukcji.

Elementy skratowania oparte o słup należało zaprojektować z większego przekroju. Stateczność tego elementu względem zginania i wyboczenia jest ograniczona ze względu na przenoszenie części obciążeń na trzon słupa.

Naprężenia w tych elementach dochodzą do wartości 145,73 N/mm².

Przekrój nr	Pręt nr	Położe nie x [m]	Obcią żenie nr	Stopień wykorzystania warunku projektowego η []	Warunek projektowy	Opis			
			CHS 1	68.3x6.3 3 - \$355		Skratowanie			
	28	0,000	KO2	0,000	SP0100.00	Pomijalne siły wewnętrzne			
	10194	0,000	KO19	0,310	SP1100.00	Rozciąganie wg 6.2.3			
	10185	6,092	KO16	0,381	SP1200.00	Ściskanie wg 6.2.4			
-	10303	6,314	KO13	0,003	SP3100.02	Ścinanie w osi z wg 6.2.6(2) Projektowanie plastyczne			
	9150	0,000	KO13	0,023	SP4100.03	Zginanie względem osi y wg 6.2.5 Projektowanie plastyczne			
	10303	6,314	KO13	0,018	SP5100.03	Zginanie względem osi z wg 6.2.5 Projektowanie plastyczne			
	9150	0,000	KO13	0,001	SP6500.01	Zginanie dwukierunkowe, siła osiowa i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne			
11	9150	0,000	KO12	0,026	SP6500.02	Zginanie względem osi y, siła osiowa i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne			
	10303	5,683	KO13	0,025	SP6500.03	Zginanie względem osi z, siła osiowa i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne			
	8500	0,000	KO11	0,000	SP6500.04	Zginanie dwukierunkowe i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne			
	10185	6,092	KO16	0,904	ST1100.00	Stateczność Wyboczenie giętne względem głównej osi y wg 6.3.1			
	10185	6,092	KO16	0,904	ST1300.00	Stateczność Wyboczenie giętne względem głównej osi z wg 6.3.1			
	8934	6,161	KO6	0,160	ST3100.00	Stateczność Zginanie i wyboczenie względem głównych osi wg 6.3.3			
	1	0,000	KO21	0,000	SE0100.00	Użytkowalność Pomijalne ugięcia			
	10303	3,400	KO21	0,061	SE1100.00	Użytkowalność Ugięcia w kierunku z			
	10303	4,371	KO21	0,023	SE1200.00	Użytkowalność Ugięcia w kierunku y			

Tab. 23. Wymiarowanie - skratowanie

Tab. 24. Wymiarowanie - skratowanie przy słupach

Przekrój nr	Pręt nr	Położe nie x [m]	Obcią żenie nr	Stopień wykorzystania warunku projektowego η []	Warunek projektowy	Opis
			CHS 1	77.8x8.0 3 - \$355		Skratowanie przy słupach
	9702	0,000	KO16	0,012	SP1100.00	Rozciąganie wg 6.2.3
	10183	6,147	KO19	0,410	SP1200.00	Ściskanie wg 6.2.4
	10568	6,648	KO17	0,004	SP3100.02	Ścinanie w osi z wg 6.2.6(2) Projektowanie plastyczne
	9800	1,690	KO13	0,004	SP3200.02	Ścinanie w osi y wg 6.2.6(2) Projektowanie plastyczne
-	9800	4,828	KO19	0,006	SP3300.02	Wypadkowe ścinanie wg 6.2.6(2) Projektowanie plastyczne
	9800	6,759	KO13	0,073	SP4100.03	Zginanie względem osi y wg 6.2.5 Projektowanie plastyczne
	9800	6,759	KO19	0,063	SP5100.03	Zginanie względem osi z wg 6.2.5 Projektowanie plastyczne
12	9800	6,759	KO19	0,010	SP6500.01	Zginanie dwukierunkowe, siła osiowa i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne
	9800	6,759	KO12	0,169	SP6500.02	Zginanie względem osi y, siła osiowa i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne
	9800	3,380	KO19	0,189	SP6500.03	Zginanie względem osi z, siła osiowa i ścinanie wg 6.2.9.1 i 6.2.10 Projektowanie plastyczne
	10183	6,147	KO19	0,914	ST1100.00	Stateczność Wyboczenie giętne względem głównej osi y wg 6.3.1
	10183	6,147	KO19	0,914	ST1300.00	Stateczność Wyboczenie giętne względem głównej osi z wg 6.3.1
	9800	6,759	KO2	0,941	ST3100.00	Stateczność Zginanie i wyboczenie względem głównych osi wg 6.3.3
	2067	0,000	KO21	0,000	SE0100.00	Użytkowalność Pomijalne ugięcia
	9800	5,311	KO21	0,045	SE1100.00	Użytkowalność Ugięcia w kierunku z
	9800	4,731	KO21	0,045	SE1200.00	Użytkowalność Ugięcia w kierunku y

Każdy zastosowany element konstrukcji spełnia normowe wymagania nośności, naprężenia w elementach są poniżej 80 % wartości nominalnej stali, decydującymi wartościami dla całego ustroju są wyniki analizy stateczności.
5. KONSTRUOWANIE WĘZŁÓW

5.1. Podstawa słupa

Podstawę słupa nośnego opracowano w programie IDEA Statica. Słup ściskany osiowo przenosi siłę podłużną na fundament za pomocą poziomej blachy podstawy o grubości 14 mm, siła poprzeczna przenoszona jest poprzez kotwy. Na rysunku 70 przedstawiono rozmieszczenie dodatkowego użebrowania, zastosowano żebra o grubości 8 mm.

Rys. 73. Podstawa słupa

Zastosowano 8 kotew M20 o klasie 8.8 i długości 600 mm.

5.1.1. Obciążenia podstawy słupa

Największe obciążenia podstawy słupa określa 16 kombinacja obliczeniowa, śnieg i wiatr wiejący od frontu, dane wyeksportowano z programu RFEM do IdeaStatica, wartości przedstawiono w tabeli 25.

Nazwa	Element	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
LC NL 16 snieg po6 + wiatr od frontu po15(4)	11147 / Początek	2675,5	-48	-13,1	-1,8	0	0

Tab. 25. Obciążenia podstawy słupa

5.1.2. Wyniki analizy

Naprężenia w płytach nie przekraczają 50 %, największa wartość wg. tabeli 26 występuje w podstawie. Na rysunku 74 poz. b przedstawiono wyniki analizy wyboczeniowej, wyznaczono współczynnik obciążenia krytycznego o wartości 10,73. Ze względu na zastosowanie użebrowania odsunięto od podstawy możliwość występowania lokalnej niestateczności w blachach tworzących trzon słupa.

Tab. 26. Naprężenia w płytach – podstawa słupa

Płyta	tp [mm]	σEd [MPa]	σ c,Ed [MPa]	fy [MPa]
Słup	12	95,5	0	>355
Podstawa	14	146,9	0	>355
Żebro	8	122,3	0	>355

W tabeli 27 przedstawiono wyniki analizy zakotwienia jako elementu przenoszącego siły poprzeczne. Analiza ścinania w płaszczyźnie styku poprzez tarcie wykazała bardziej korzystne rozwiązanie. Z uwagi na możliwe imperfekcje montażowe należy uznać, że część z kotew będzie przenosiła obciążenia wraz z siłami tarcia. Nośność obliczeniowa na ścinanie wynosi 683,1 kN, wykorzystane zostanie 7,3 % nośności bez uwzględnienia kotew.

Kotwa	NEd	VEd	VRd,s	VRd,c	VRd,cp	Utt	Uts	Utts
Notwa	[kN]	[kN]	[kN]	[kN]	[kN]	[%]	[%]	[%]
A5	0	6,6	22,5	52,6	472,7	0	91,8	88,0
A6	0	6,9	22,5	52,6	472,7	0	91,8	88,0

Tab. 27. Wyniki - kotwy

Zastosowano spoiny pachwinowe o szerokości 4 mm pomiędzy trzonem i podstawą, a także 3 mm w przypadku żeber. W tabeli 28 zestawiono decydujące wyniki analizy spoin.

Spoina	Tw [mm]	L [mm]	σ w,Ed [MPa]	σ ⊥ [MPa]	t [MPa]	t ⊥ [MPa]	Ut [%]	Utc [%]
Podstawa - żebro	3,0	120	157,1	-73	37,5	-71	34,7	21,9
Słup – żebro	3,0	499	110,7	-45,1	44	-38,3	24,4	6,2
Podstawa – słup	4,0	3025	371,3	-137	16,4	-199	81,9	61,4

Rys. 74. Wyniki analizy – podstawa słupa

- a) Równoważne naprężenia
- b) Pierwszy kształt postaci wyboczeniowej
- c) Naprężenia w betonie

5.2. Węzeł słupa z gałęziami podporowymi

Węzeł zaprojektowano w programie RFEM 6, w module połączenia stalowe. Płaszczyznę blachy słupa wzmocniono poprzez zastosowania dodatkowych blach nakładkowych, celem wyeliminowania niestateczności lokalnej projektowanego połączenia. Blacha węzłowa połączona spawem przenosi obciążenia poprzez połączenie śrubowe na podwójną blachę nakładkową. Przekrój gałęzi zakończono blachą czołową z przyspawanymi blachami nakładkowymi. Każdą z gałęzi połączono czterema łącznikami śrubowymi M27 10.9. Na rysunku 75 przedstawiono połączenie wraz z siatką obliczeniową i siłami.

Rys. 75. Węzeł - słup

Maksymalne przemieszczenia w projektowanym węźle wynoszą 9,2 mm, węzeł przemieszcza się wraz z połączeniami, jak można zaobserwować na rysunku 73 poz. b). Zastosowano blachy nakładkowe pozwalają pominąć wpływ sił węzłowych na ściany słupa. Rysunek 76 poz. a) przedstawia postać wyboczenia poszczególnych blach słupa, jest to analogiczna sytuacja jak w przypadku podstawy słupa.

Decydującym parametrem wytrzymałościowym jest nośność spoin pachwinowych. Poniżej przedstawiono wyciąg z obliczeń najbardziej wytężonej spoiny.

Warunek projektowy UL1200 | EN 1993 | PN | 2015-08

Stan graniczny nośności Sprawdzenie spoiny pachwinowej

Rys. 76. Wyniki analizy – węzeł słup

Poniżej przedstawiono wyciąg z obliczeń łączników zastosowanych w połączeniu, zastosowanie dwuciętego połączenia pozwoliło zapewnić nośność. Program prowadzi obliczenia i sprawdzenie warunków niezależnie od zastosowanych rozwiązań, część obliczeń takich jak: nośność na rozciąganie łącznika, przeciąganie, można pominąć ze względu na znikome wartości sił występujące w połączeniach, a także z uwagi na sposób wykonania połączenia. W tabeli 29 zestawiono wyniki obliczeń z uwzględnieniem lokalizacji najbardziej wytężonych elementów.

Warunek projektowy UL1100 | EN 1993 | PN | 2015-08

Stan grantczy nodości śruby
Sprawczenie śruby
EX 1993-1-8, 3.6.1, tab. 3.4
Nodrość na śchanie:
EX 1993-1-8, 3.6.1, tab. 3.4
F_{0.64} =
$$\frac{6}{\sqrt{1-6}} \cdot \frac{4}{\sqrt{100}}$$

 $= \frac{6}{\sqrt{1-6}} \cdot \frac{4}{\sqrt{1-6}} \cdot \frac{4}{\sqrt{1-6}}$
 $= \frac{330.48 \text{ kN}}{1.25}$
 $= \frac{330.48 \text{ kN}}{1.25}$
 $= \frac{51.60 \text{ kN}}{1.33.50 \text{ kN}}$
 $= 0.281$
Nodrość na Borzie, Edganie:
EX 1993-1-8, 3.6.1, tab. 3.4
 $= \frac{6}{\sqrt{1-6}} \cdot \frac{4}{\sqrt{1-6}} \cdot \frac{$

Rys. 77. Mapa naprężeniowa – połączenie słup

Mapa naprężeniowa na rysunku 77 pokazuje wartości w spoinach, wartość graniczna na rozciąganie projektowanej spoiny wynosi 510,0 N/mm².

Węzeł nr	Część skłac Typ	dowa Nazwa	Obciążenie nr	Stopień wykorzystania warunku projektowego η []	Warunek projektowy	Opis
12855	Płyta	Pręt 3 Inne 5 Blacha łącząca 2	КО30	0,023	UL1000.00	Stan graniczny nośności Sprawdzenie płyty
		Łączniki Śruba 1,				Stan graniczny nośności
12855	Łącznik	2	КО25	0,788	UL1100.00	Sprawdzenie śruby
12855	Blacha łącząca 2 Tongueplate 1 PlateCut 1 Spoina Spoina 1		KO25	0.978	UI 1200.00	Stan graniczny nośności Sprawdzenie spoiny pachwinowei

Tob C	0 1	Wwniki	opolizy	wazał	ahun
1 a. 2		w ymki	ananzy –	· węzci	siup

5.3. Węzeł siatka górna – wariant z profilem zamkniętym

Zaprojektowano połączenie węzłowe w pasie górnym poprzez zastosowanie dodatkowego elementu w postaci profilu zamkniętego o wymiarach 250 x 250 x 16. Dodatkowy element przedstawiony na rysunku 78, umożliwia montaż podkonstrukcji wsporczej pokrycia. Proponowane rozwiązanie masą własną, pracochłonnością jest najbardziej optymalne, aczkolwiek obarczone możliwymi błędami wykonawczymi. Pojedyncza blacha, zamiast widelca umożliwia montaż elementu z błędnej strony, taka sama sytuacja dotyczy zastosowania pojedynczych łączników śrubowych.

Rys. 78. Połączenie profil

W tabeli 30 zestawiono obciążenia występujące w węźle, nieznaczne wartości momentów zginających spowodowane są sposobem modelowania prętów pasa górnego, wraz z ograniczoną możliwością modelowania graficznego w oprogramowaniu.

Kombinacja obciążeń	Element	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
	7359 / koniec	39,7	0	0	0	0	0
	7372 / koniec	-308,0	0	0	0	0	0
	7380 / koniec	-1,0	0	-1,0	0	1,4	0,1
LC NL 18 śnieg	7566 / koniec	116,0	0	0	0	0	0
po0 + wiati tyi po17(3)	7569 / Początek	-126,5	-0,1	-1,4	0	-1,7	0,3
	7577 / koniec	30,5	0	0	0	0	0
	7581 / koniec	93,8	0,1	-1,1	0	1,4	0,4
	7584 / Początek	15,3	0	-1,2	0	-1,7	0,1

Tab. 30. Obciążenie w węźle - wariant 1

Naprężenia w płytach nie zostały przekroczone, stal S355 charakteryzuje się wytrzymałością na rozciąganie $f_u = 510$ MPa. Wg. tabeli 31 maksymalne wykorzystanie stali nie przekracza 70 %.

Flement	tp	σEd	εΡΙ	σc,Ed	Status
Liemon	[mm]	[MPa]	[%]	[MPa]	Olaluo
Środnik- rura	16	356,0	0,5	0	OK
kwadratowa					OK
Blacha węzłowa	20	299,1	0	24,1	OK
Blacha łącząca	20	355,2	0,1	66,2	ОК
Blacha czołowa	20	150,7	0	0	ОК

Tab. 31. Naprężenia w płytach - węzeł typ 1

5.3.1. Obliczanie łączników

Tab. 32. Łącznik – węzeł typ 1

Pozycja	Gatunek	Ft,Ed	Fv,Ed	Fb,Rd	Utt	Uts	Utts	Status
		[kN]	[kN]	[kN]	[%]	[%]	[%]	Status
B6	M42 8.8	83,9	308	444,3	13	71,6	80,8	OK

Sposób obliczania łączników na przykładzie najbardziej wytężonego elementu przedstawiono poniżej, wykorzystano nośność w granicach 80 %.

Szczegółowe wyniki dla B6

Sprawdzenie wytrzymałości na rozciąganie (EN 1993-1-8 - Tabela 3.4)

 $F_{t,Rd} = \frac{k_2 f_{ub} A_s}{\gamma_{M2}} = 645,7 \text{ kN} \ge F_{t,Ed} = 83,9 \text{ kN}$

Gdzie:

 $\begin{array}{ll} k_2 = 0,90 & - \mbox{Współczynnik} \\ f_{ub} = 800,0 \mbox{ MPa} & - \mbox{Wytrzymałość śruby na rozciąganie} \\ A_s = 1121 \mbox{ mm}^2 & - \mbox{Pole przekroju czynnego śruby} \\ \gamma_{M2} = 1,25 & - \mbox{Współczynnik bezpieczeństwa} \end{array}$

Sprawdzenie nośności na przeciąganie (EN 1993-1-8 - Tabela 3.4)

$$B_{p,Rd} = \frac{0.6 \, \pi \, d_m \, t_p \, f_u}{\gamma_{M2}} = \quad 1048.2 \quad \text{kN} \; \geq \; F_{t,Ed} = \quad 83.9 \quad \text{kN}$$

Gdzie:

 $d_m = 68 \text{ mm}$ – Średnia ze średnic wpisanej i opisanej na łbie śruby lub nakrętce (przyjmuje się mniejszą wartość średnią)

 $t_p = 20 \text{ mm}$ – Grubość płyty $f_u = 510,0 \text{ MPa}$ – Wytrzymałość na rozciąganie $\gamma_{M2} = 1,25$ – Współczynnik bezpieczeństwa Sprawdzenie nośności ścinania (EN 1993-1-8 - Tabela 3.4)

$$F_{v,Rd} = rac{eta_p \ lpha_v f_{ub} A}{\gamma_{M2}} =$$
 430,5 kN \geq $F_{v,Ed} =$ 308,0 kN

$eta_p=$ 1,00	 Współczynnik redukcyjny dla przekładek
$\alpha_v =$ 0,60	 Współczynnik redukcyjny dla naprężeń ścinających
$f_{ub}=$ 800,0 MPa	 Wytrzymałość śruby na rozciąganie
$A=\rm 1121\;mm^2$	 Powierzchnia brutto przekroju śruby
$\gamma_{M2} = 1,25$	 Współczynnik bezpieczeństwa

Nośność śruby na docisk (EN 1993-1-8 - Tabela 3.4)

0 21

$$F_{b,Rd} = \frac{\kappa_1 \, \alpha_b \, f_u \, dt}{\alpha_{vu}} = 444,3 \text{ kN} \geq F_{b,Ed} = 308,0 \text{ kN}$$

$$k_{1} = \min(2.8\frac{e_{2}}{d_{0}} - 1.7, 1.4\frac{p_{2}}{d_{0}} - 1.7, 2.5) = 2.50$$

$$\alpha_{b} = \min(\frac{e_{1}}{3d_{0}}, \frac{p_{1}}{3d_{0}} - \frac{1}{4}, \frac{f_{ub}}{f_{u}}, 1) = 0.52$$

$$e_{2} = 85 \text{ mm}$$

$$p_{2} = \infty \text{ mm}$$

$$d_{0} = 45 \text{ mm}$$

$$e_{1} = 70 \text{ mm}$$

$$p_{1} = \infty \text{ mm}$$

$$f_{ub} = 800.0 \text{ MPa}$$

$$f_u = 510,0 \text{ MPa}$$

d = 42 mm

t = 20 mm $\gamma_{M2} = 1,25$ Współczynnik odległości krawędzi i rozstawu śrub prostopadłej do kierunku przenoszenia obciążenia - EN 1993-1-8 - Tabela 3.4

 Współczynnik odległości końcowej i rozstawu śrub w kierunku działania obciążenia

 Odległość do krawędzi blachy prostopadła do kierunku siły ścinającej

 Odległość między śrubami prostopadle do kierunku siły ścinającej

- Średnica otworu na śrubę
- Odległość do krawędzi blachy w kierunku siły ścinającej
- Odległość między śrubami w kierunku siły ścinającej
- Wytrzymałość śruby na rozciąganie
- Maksymalna wytrzymałość płyty
- Nominalna średnica łącznika
- Grubość blachy
- Współczynnik bezpieczeństwa

Wykorzystanie w rozciąganiu

$$\frac{F_{i,Ed}}{\min(F_{i,Rd};B_{n,Rd})} = 0.13 \le 1.0$$

Gdzie:

 $F_{t,Ed} = 83,9 \text{ kN}$ – Sila rozciągająca $F_{t,Rd} = 645,7 \text{ kN}$ – Nośność na rozciąganie $B_{p,Rd} = 1048,2 \text{ kN}$ – Nośność na przeciąganie

Wykorzystanie ścinania

 $\max(\frac{F_{v,Ed}}{F_{v,Rd}}; \frac{F_{b,Ed}}{F_{b,Rd}}) = 0.72 \le 1.0$

Gdzie:

 $F_{v,Ed} = 308,0 \text{ kN} - \text{Siła ścinająca (w decydującej płaszczyźnie ścinania)}$ $F_{v,Rd} = 430,5 \text{ kN} - \text{Nośność na ścinanie}$ $F_{b,Ed} = 308,0 \text{ kN} - \text{Siła docisku (dla płyty decydującej)}$ $F_{b,Rd} = 444,3 \text{ kN} - \text{Nośność na docisk}$ Interakcja rozciągania i ścinania (EN 1993-1-8 - Tabela 3.4)

 $\begin{array}{l} \frac{F_{v,Rd}}{F_{v,Rd}}+\frac{F_{i,Ed}}{1,4\,F_{i,Rd}}=&0.81~\leq~1.0\\ \end{array}$ Gdzie: $F_{v,Ed}=308,0~{\rm kN}~-{\rm Sila~scinająca~(w~decydującej~plaszczyźnie~scinania)}\\ F_{v,Rd}=430,5~{\rm kN}~-{\rm Nośność~na~scinanie}\\ F_{t,Ed}=83,9~{\rm kN}~-{\rm Sila~rozciągająca}\\ F_{t,Rd}=645,7~{\rm kN}~-{\rm Nośność~na~rozciąganie}\\ \end{array}$

5.3.2. Spoiny

Przeprowadzone obliczenia spoin wykazały maksymalne wykorzystanie nośności U_t , sposób modelowania połączenia powoduje duże obciążenie dla spoin, należałoby rozważyć zastosowanie połączenia na widelec, w tabeli 33 zestawiono wyniki obliczeń.

Szczegółowe wyniki dla M649-w 3 / CPL6a Sprawdzenie nośności spoiny (EN 1993-1-8 – Cl. 4.5.3.2) $\sigma_{w,Rd} = f_u/(\beta_w \gamma_{M2}) = 453,3$ MPa $\geq \sigma_{w,Ed} = [\sigma_{\perp}^2 + 3(\tau_{\perp}^2 + \tau_{\parallel}^2)]^{0.5} = 447,8$ MPa $\sigma_{\perp,Rd} = 0,9 f_u / \gamma_{M2} = 367,2$ MPa $\geq |\sigma_{\perp}| = 172,1$ MPa gdzie: $f_u = 510,0$ MPa – Wytrzymałość na rozciąganie

 $\beta_w = 0.90$ – Współczynnik korelacji EN 1993-1-8 – Tabela 4.1 $\gamma_{M2} = 1.25$ – Współczynnik bezpieczeństwa

Wykorzystane naprężenie

$$U_t = \max(\frac{\sigma_{w, Ed}}{\sigma_{w, Rd}}; \frac{|\sigma_{\perp}|}{\sigma_{\perp, Rd}}) = 0.99 \le 1.0$$

Gdzie:

$\sigma_{w,Ed}=$ 447,8 MPa	- Maksymalne naprężenie normalne poprzeczne do osi spoiny
$\sigma_{w,Rd}$ = 453,3 MPa	 – Ekwiwalentna wytrzymałość naprężeniowa
$ \sigma_{\perp} $ = -172,1 MPa	 Naprężenie normalne prostopadłe do przekroju spoiny
$\sigma_{\perp,Rd}=$ 367,2 MPa	 Prostopadła wytrzymałość naprężeniowa

Element	Element Krawędź	Tw	L	σw,Ed	٤PI	σ⊥	т	T⊥	Ut	Utc	Status	
Liement		[mm]	[mm]	[MPa]	[%]	[MPa]	[MPa]	[MPa]	[%]	[%]	Status	
Środnik	Środnik Blacha węzłowa	8 00	198	444,7	0,2	-218,4	-191,0	-116,4	99,0	35,7	ОК	
STOUTIK		8,00	199	447,8	1,9	-172,1	158,6	178,4	98,8	65,6	ОК	
Blacha	Blacha łącząca	Blacha	10.00	168	269,3	0	-119,8	82,5	-112,2	59,4	27,7	ОК
czołowa		ząca 10,00	168	436,6	0	-209,8	105,2	194,4	96,3	55,5	ОК	

Tab. 33. Spoiny - węzeł typ 1

Oprogramowanie Idea Statica ujmuje w obliczeniach pełen zakres sił wewnętrznych modelowanie opiera się na metodzie CBFEM (Component Based Finite Element Model), utworzony model numeryczny przedstawiono na rysunku 79 poz. a). Największe wytężenie w połączeniu występuje w pręcie obciążonym siłą 308 kN, naprężenia w okolicy tego pręta można zaobserwować w pozycji c), Analiza stateczności przedstawiona na rysunku 79 poz. d) pierwszy kształt wyboczenia w pozycji d) wykazała współczynnik obciążenia krytycznego na poziomie 25,27.

Rys. 79. Wyniki analizy połączenia z profilem

- a) siatka elementów skończonych;
- b) sprawdzenie ogólne;
- c) równoważne naprężenia;
- d) kształt lokalnego wyboczenia;

5.4. Węzeł siatka górna – wariant z blachą usztywniającą

Drugi wariant połączenia węzłowego zaprojektowano poprzez wprowadzenie dodatkowej blachy węzłowej do której zamocowano przy pomocy spoin blachy montażowe dla każdego pręta. Jest to modyfikacja zainspirowana systemem NASKA Prof. dr hab. inż. Jerzego K. Szlendaka. Z uwagi na kształt przekrycia każdy z węzłów należałoby zaprojektować indywidualnie. Pręty zakończono blachą czołową z podwójną blachą zamocowaną dwoma łącznikami śrubowymi. Proponowane rozwiązanie jest pracochłonne, wymaga użycia większej ilości materiałów, ale eliminuje część możliwych błędów montażowych.

Rys. 80. Połączenie blacha węzłowa

W tabeli 34 zestawiono siły węzłowe, nieznaczne różnice w stosunku do 1 wariantu wynikają z analizy sąsiedniego węzła.

Kombinacja obciążeń	Element	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
	7371 / koniec	-305,4	0,0	0,0	0,0	0,0	0,0
	7384 / koniec	25,1	0,0	0,0	0,0	0,0	0,0
	7392 / koniec	4,8	0,0	-0,9	0,0	1,3	0,0
snieg po9 +	7578 / koniec	151,3	0,0	0,0	0,0	0,0	0,0
wiatr tyl	7581 / Początek	-94,8	-0,2	-1,2	0,0	-1,6	0,5
po17(1)	7589 / koniec	82,0	0,0	0,0	0,0	0,0	0,0
	7593 / koniec	-1,7	0,1	-1,2	0,0	1,5	0,5
	7596 / Początek	-38,2	0,1	-1,3	0,0	-1,8	-0,1

Tab. 34. Obciążenia w węźle - wariant 2

Przedstawiony sposób modelowania węzła wyróżnia się większymi naprężeniami w płytach, w tabeli 35 należy zauważyć, że płyta o grubości 8 mm osiąga wartość 4,2 % odkształcenia plastycznego, ale nie przekracza dopuszczalnych 5 %.

Nazwa	tp [mm]	σEd [MPa]	εΡΙ [%]	σc,Ed [MPa]	Status
Rura okrągła	8	363,8	4,2	0	ОК
Blacha węzłowa	20	355,2	0,1	0	ОК
Żebro	20	356,8	0,8	141,9	ОК
Blacha łącząca	20	356,1	0,5	173,0	OK
Blacha czołowa	20	118,9	0	225,7	ОК

Tab. 35. Naprężenia w płytach – węzeł typ 2

Na łączniki działają zdecydowanie mniejsze siły tnące co pozwala na zastosowanie mniejszych rozmiarów, w tabeli 36 zawarto wartości nośności na rozciąganie i ścinanie wg. normy EN 1993-1-8.

Tab. 36. Łączniki – węzeł typ 2

Pozycja	Gatunek	Ft,Ed [kN]	Fv,Ed [kN]	Fb,Rd [kN]	Utt [%]	Uts [%]	Utts [%]	Ft,Rd [kN]	F _v ,Rd [kN
B12	M27 8.8	66,5	84,3	429,5	25,1	47,9	65,8	264,4	176,3
B5	M36 8.8	44,9	107,3	420,1	9,5	36,0	41,0	470,6	313,7
B7	M42 8.8	41,1	162,4	427,1	6,4	38,0	42,3	645,7	430,5

Przedstawione rozwiązanie wykazuje mniejsze wykorzystanie nośności spoin, w tabeli 37 przedstawiono wyniki nie przekraczające 46 %.

Tab. 37. Spoiny –węzeł typ 2

Pozycja	Krowodź	Tw	L	σw,Ed	٤PI	σ⊥	т	T⊥	Ut	Utc	Status
	nawęuz	[mm]	[mm]	[MPa]	[%]	[MPa]	[MPa]	[MPa]	[%]	[%]	Sidius
Blacha	Rura			254.6	0	170.6	11 6	1746	70.0	22.0	OK
czołowa	okrągła	4,0	588	334,0	0	170,0	41,0	-174,0	10,2	23,0	UK
Blacha	Blacha	6.0		110.0	26	66.2	12.7	256.0	00.1	45 7	OK
czołowa	łącząca	0,0	212	449,0	2,0	00,3	13,7	250,0	99,1	45,7	UK
Blacha węzłowa	Żebro	10,0	219	444,3	0	248,6	158,6	141,7	98,0	45,5	ОК

Rys. 81. Wyniki analizy połączenia z blachą

- a) siatka elementów skończonych;
- b) sprawdzenie ogólne;
- c) równoważne naprężenia;
- d) kształt lokalnego wyboczenia;

5.5. Zestawienie materiałów – porównanie połączeń

W celach badawczych projektowano i badano dwa typy połączeń, ekonomiczne oraz inspirowane opatentowanym systemem. Obliczono nośności, a także porównano koszty wykonania wraz z oszacowaniem masy każdego z połączeń.

Detactonio	Stal	Zestaw śrub		Spoiny	,	Suma
Polączenie	[kg]	[kg]	[mm]	[kg]	Suma	[kg]
			8	2,08		
	116,08	23,03	6,3	1,21	5,43	144,54
			10	2,14		
			4	0,3		
			6	0,49	8,98 2	
	2/1 11	26.02	6,3	0,48		267,94
		20,05	8	0,27		
W			10	2,83		
			20	4,61		

Tab. 38. Masa połączeń

Na podstawie obliczeń z tabeli 38 należy stwierdzić, że zastosowanie uproszczonego rozwiązania przynosi 50 % korzyści w masie całkowitej badanego połączenia, także pracochłonność jest zdecydowanie mniejsza, ilość blach, spoin i otworów jest zdecydowanie mniejsza. Wersja z blachą montażową jest dwukrotnie cięższa, ale umożliwia bardziej kontrolowany rozkład sił w węźle i poszczególnych elementach.

6. ANALIZA SYTUACJI WYJĄTKOWEJ

6.1. Pożar

Konstrukcja oparta jest na słupach o wysokości od 20 do 27 metrów nad poziomem gruntu. W związku z wysokością konstrukcja nośna nie jest narażona na znaczne obciążenie temperaturą na skutek pożaru. Wg. badań przedstawionych w literaturze [18] pożar samochodu elektrycznego osiąga temperaturę 843° C, a wysokość płomieni przedstawiona na rysunku 82 sięga 3 metrów. Nie ma także potrzeby stosowania systemów przewietrzania, ewakuację w razie pożaru można przeprowadzić w każdym kierunku, a ukształtowanie konstrukcji pozwala na odprowadzenie zadymienia na zewnątrz.

E 66 min 28 s **F** 68 min 11 s **G** 70 min 34 s **H** 72 min 41 s

Rys. 82.Fazy pożaru samochodu elektrycznego wg. YanCui, BeihuaCongCharacteristics and Hazards of Plug-In HybridElectricVehicleFiresCaused by Lithium-Ion Battery Packs With ThermalRunaway

6.2. Uderzenie pojazdu

Przeprowadzono analizę sytuacji wyjątkowej w postaci uderzenia pojazdu w słup skrajny, a także w słup pośredni. Uderzenie samochodem osobowym z siłą 25 kN na wysokości 0,6 m i uderzenie autobusem o sile 50 kN przedstawiono na rysunku 80. Ze względu na średnicę i profil słupa, analizowane przypadki spowodowały dodatkowe przemieszczenia o wartości około 16-20 mm, konstrukcja wykazuje odporność na awarię spowodowaną dodatkowym obciążeniem poziomym w dolnej części.

Rys. 83. Uderzenie pojazdu – lokalizacja

Na rysunku 84 przedstawiono odkształcenia spowodowane uderzeniem, w górnym rzędzie stan przed kolizją, a dolny odkształcenia w wyniku kolizji pojazdu. Do kombinacji obciążeniowej nr 13 wprowadzono dodatkowy przypadek PO18 z rysunku 83.

KO27 : impact 1 Odkształcenia lokalne u-y

Rys. 84. Uderzenie pojazdu – odkształcenia słupa

6.3. Uszkodzenie podstawy

Analizowano przypadek całkowitego uszkodzenia podstawy, podstawy wraz z częścią drugiego słupa, a także niestateczność 4 wewnętrznych słupów. Stan normalny konstrukcji wykazuje możliwe całkowite odkształcenie na poziomie 136,6 mm, konstrukcja przedstawiona na rysunku 82 pozycja a, w całości równomiernie ulega odkształceniu.

Po usunięciu podpory wewnętrznego słupa nr 11211 widocznego na rysunku 82 pozycja b), konstrukcja ulega stosunkowo niedużemu odkształceniu, wartość odkształcenia zwiększa się do 155,9 mm w obrębie uszkodzonego elementu, należy zauważyć, że znaczny obszar połaci przy słupie ulega zapadnięciu, konstrukcja w dalszym ciągu zachowuje nośność, nie dochodzi do katastrofy budowlanej.

Drugi przypadek przedstawiony na rysunku c) przedstawia uszkodzenie podstawy słupa wewnętrznego nr 11211 wraz z częściowym uszkodzeniem sąsiedniego słupa nr 11221. Stan po uszkodzeniu przedstawia znaczne ugięcie konstrukcji, odkształcenie o wartości 651 mm nie powoduje zniszczenia konstrukcji, aczkolwiek elementy poszycia wraz z podkonstrukcją uległy by częściowemu zniszczeniu.

Trzeci przypadek na rysunku pozycja d) przedstawia uszkodzenie 4 kolejnych słupów. Konstrukcja obciążona śniegiem wykazuje się wystarczającą nośnością, wprowadzenie do obliczeń obciążeń wiatrowych powoduje utratę stateczności całej konstrukcji.

- a) układ nieuszkodzony
- b) uszkodzona podstawa jednego słupa
- c) uszkodzona podstawa słupa wraz z częściowym zniszczeniem sąsiedniego słupa,
- d) uszkodzone 4 słupy

7. POSUMOWANIE

Zaprojektowanie przedstawionej w pracy konstrukcji o nietuzinkowym kształcie wiążę się z wieloma aspektami branży budowlanej. Poprzez zastosowanie rozwiązania w postaci przekryć strukturalnych pozwalających na zadaszenie znacznych obszarów przy zastosowaniu stosunkowo małej ilości podpór zaprojektowano wstępny ustrój nośny, który modyfikowano tak aby uzyskać kształt współgrający z siłami natury. Przeprowadzono wielokryterialne analizy optymalizujące elementy konstrukcji pod względem architektonicznym, funkcjonalnym, wytrzymałościowym a także kosztowym. Celem pracy było przedstawienie procesu projektowego wraz z analityczną optymalizacją poprzez zastosowanie zaawansowanych narzędzi obliczeniowych.

W ramach przeprowadzonego procesu projektowego poszukiwano optymalnej formy architektonicznej poprzez modyfikację kształtu na podstawie analiz oddziaływań śniegowych i wiatrowych. Metodą iteracyjną wprowadzano uwypuklenia i wypłaszczenia w celu osiągnięcia pożądanej formy. Przeprowadzono analizę geometryczną pojedynczego elementu wypełnienia eliminując doprowadzanie prętów pod zbyt dużymi kątami. Słupy nośne zlokalizowano po obwodzie konstrukcji, analizowano układ słupów wewnętrznych poprzez zmianę ilości i lokalizacji, optymalne i naturalne miejsca podpór określono w zagłębieniach połaci dachowej.

Przeprowadzono analizę obciążeń śniegowych na podstawie obowiązujących norm, a także dostępnej literatury, należy zauważyć że normowe rozwiązanie wprowadza daleko idące uproszczenia w przypadku badanej konstrukcji. Przeprowadzono szczegółową analizę kształtu a następnie bazując na normowych rozwiązaniach zmodyfikowano współczynniki obciążeń wraz z wyznaczeniem poszczególnych obszarów. Analizę przeprowadzono wraz z szczegółowym badaniem konstrukcji w tunelu aerodynamicznym. Badano sposób pracy konstrukcji poprzez obserwację przepływu cząsteczek w newralgicznych obszarach, pozwoliło to na określenie poszczególnych stref obciążeń śniegiem wraz z obszarami występowania zasp, a także miejscami bez utrzymującego się śniegu.

Przeprowadzona analiza obciążeń w tunelu aerodynamicznym pozwoliła na wprowadzenie właściwych obciążeń skupionych w węzłach badanej konstrukcji, model obciążono jako powłokę tak aby wyeliminować przepływy pomiędzy poszczególnymi elementami konstrukcji. Analiza pozwoliła na pełną optymalizację kształtu stref okapowych a także określiła obciążenia jakimi poddawane są słupy nośne.

Na podstawie analizy statyczno-wytrzymałościowej stwierdzono, że konstrukcja przenosi obciążenia równomiernie na całej powierzchni, do współpracy włączone są wszystkie elementy połaci, zróżnicowanie przekrojów poszczególnych pasów pozwala na łatwiejszą identyfikację przy montażu, a także ujednolica stopień wytężenia elementów. Analiza wykazała, że w miejscu dodatkowych podparć w postaci gałęzi występują większe obciążenia elementów, co skutkowało zwiększeniem przekroi w obrębie tych węzłów. Słupy przenoszą znaczne siły na fundament, ale kluczowym kryterium w doborze przekroju były względy architektoniczne a także ograniczenie występowania imperfekcji w obrębie podstawy i węzła gałęziowego. Na podstawie literatury określono dopuszczalne odkształcenia w stanie granicznym użytkowalności, zastosowane przekroje powodują stosunkowo małe przemieszczenia węzłowe, a także małe ugięcia poszczególnych elementów.

W konstruowaniu węzłów charakteryzujących się znacznym stopniem skomplikowania posłużono się dedykowanym oprogramowaniem. Płyty trzonu słupa usztywniono dodatkowymi żebrami, które wykazały się znaczną wytrzymałością naprężeniową. Poprzez wprowadzenie dodatkowych elementów uniknięto miejscowych deformacji na styku z podstawą. Przeprowadzona analiza połączenia słupa z gałęzią podporową wykazała potrzebę zastosowania wzmocnienia trzonu słupa w obrębie węzła, zastosowanie nakładek rozkłada naprężenia na większym obszarze i ogranicza lokalne deformacje.

Przeprowadzono badanie dwóch rozwiązań połączeń węzłowych pasa górnego, poprzez zastosowanie ekonomicznego i lekkiego rozwiązania, a także zmodyfikowanego rozwiązania systemowego. Pierwsze z proponowanych rozwiązań spełnia założenia wytrzymałościowe, jednakże siły w poszczególnych elementach wywołują znaczne naprężenia, rozwiązanie może w dłuższej perspektywie sprawiać problemy natury zmęczeniowej. Drugie z proponowanych rozwiązań przenosi siły w sposób bardziej zrównoważony, mnogość blach, spoin i łączników pozwala na rozkład naprężenia na większej powierzchni. Analiza pracochłonności i użytych materiałów pozwoliła stwierdzić, że podejście uproszczone jest bardziej ekonomiczne, lecz wady tego rozwiązania eliminują możliwość jego zastosowania.

Przeprowadzono analizę zniszczenia elementów konstrukcji poprzez oddziaływanie wysokiej temperatury, uderzenia pojazdem w słup a także uszkodzeniem słupa np. w wyniku aktu terrorystycznego. Analiza możliwości zniszczenia przez pożar pojazdu elektrycznego wykazała wg. dostępnych opracowań, że ze względu na wysokość konstrukcji nad poziomem gruntu można wyeliminować zagrożenie pożarowe. Analiza uderzenia pojazdem w słup wykazała znaczną odporność elementu ze względu na zastosowanie dużego przekroju. Uszkodzenie jednego ze słupów nie spowoduje znacznych szkód w nośności całego obiektu,

w wyniku przeprowadzonych analiz wprowadzono wewnętrzne słupy aby ograniczyć ryzyko awarii.

Nawiązując do postawionych założeń projektowych można stwierdzić, że spełnienie szeregu norm i warunków wymaga szerokiego spojrzenia na projektowany ustrój, założenia zostały pozytywnie zweryfikowane badaniami i analizą numeryczną. Przeprowadzone prace badawcze wykazały potrzebę stosowania nowoczesnych metod analitycznych. Przy wykonywaniu konstrukcji tego typu należało by przeprowadzić odrębne analizy wraz z uwzględnieniem wszystkich występujących połączeń.

Bibliografia

- 1. PN-EN 1990. Eurokod: Podstawy projektowania konstrukcji
- PN-EN 1991-1-1:2004 Eurokod 1: Oddziaływania na konstrukcje. Część 1-1: Ciężar objętościowy, ciężar własny, obciążenia użytkowe w budynkach
- PN-EN 1991-1-3:2005 Eurokod 1: Oddziaływania na konstrukcje. Część 1-3: Obciążenie śniegiem
- PN-EN 1991-1-4:2009 Eurokod 1: Oddziaływania na konstrukcje. Część 1-4: Oddziaływania wiatru
- PN-EN 1993-1-1: Eurokod 3: Projektowanie konstrukcji stalowych. Część 1-1: Reguły ogólne i reguły dla budynków
- 6. Bródka J. Przekrycia strukturalne, Arkady Warszawa, 1985
- 7. Bródka J. Łubiński M. Lekkie konstrukcje stalowe. Wyd. II. Arkady Warszawa 1971
- 8. Bródka J. Rurowe konstrukcje stalowe. Wyd. I. Arkady 1968
- Pałkowski Sz.: Konstrukcje stalowe. Wybrane zagadnienia obliczania i projektowania Wyd. II. PWN Warszawa 2010r.
- 10. Kurzawa Z. Stalowe konstrukcje prętowe. Część 2. Struktury przestrzenne przekrycia cięgnowe maszty i wieże. Wydawnictwo Politechniki Poznańskiej, 2011
- 11. Bródka J. Konstrukcje stalowe z kształtowników zamkniętych. Tom 1. PWT, 2016
- 12. Bródka J. Kozłowski A. Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 1 i 2, Wyd. II PWT 2013r.
- Jankowska-Sandberg J. Wybrane zagadnienia stateczności dźwigarów łukowych i kratowych. Wydawnictwo uczelniane Politechniki Koszalińskiej, 2018
- 14. Labocha S. Paluszyński J. Stalowe słupy powłokowe. PWN, 2017
- 15. Majewski M. Przekrycia powłokowe. Geometryczne kształtowanie w projektowaniu architektonicznym, Wydawnictwo Uczelnianie Politechniki Szczecińskiej, 1997
- Łubiński M. Filipowicz A. Żółtowski W. Konstrukcje metalowe. Część I i II. Arkady, Wyd. 2 zm. 2003
- 17. Szlendak J. Innowacyjne węzły konstrukcji stalowych. Wyd I. PWN, 2019
- YanCui, Beihua Cong Characteristics and Hazardsof Plug-In Hybrid Electric Vehicle Fires Caused by Lithium-Ion Battery Packs With Thermal Runaway, 2022

Spis rysunków

Rys. 1.	Plan zagospodarowania terenu	9
Rys. 2.	Plan zagospodarowania	.10
Rys. 3.	Projekt parkingu– lokalizacja słupów	.11
Rys. 4.	Rzuty bryły konstrukcji	.12
Rys. 5.	Punkty kontrolne struktury	.12
Rys. 6.	Element konstrukcyjny	.13
Rys. 7.	Podkonstrukcja - przekroje	.13
Rys. 8.	Lokalizacja świetlików	.14
Rys. 9.	Siatka slupów	.14
Rys. 10.	Widok nawy bocznej wraz z rozstawem słupów	.15
Rys. 11.	Rozstaw słupów wewnętrznych [m]	.15
Rys. 12.	Geometria przekroju słupa i gałęzi (RFEM)	.16
Rys. 13.	Rozmieszczenie podpór gałęziowych	.17
Rys. 14.	Zastosowane sposoby podparcia konstrukcji	.17
Rys. 15.	Proces modelowania modułu	.18
Rys. 16.	Przekrój z układem przestrzennym	.19
Rys. 17.	Konfiguracja prętów warstwowych	.20
Rys. 18.	Konstrukcja wsporcza	.23
Rys. 19.	Blacha trapezowa (Arcelor Mittal Construction Polska Sp. z o. o.)	.23
Rys. 20.	Typoszereg materiału pokrycia	.24
Rys. 21.	Przemieszczenia w konstrukcji wsporczej	.25
Rys. 22.	Obciążenie stałe PO2	.26
Rys. 23.	Obciążenie PO2	.26
Rys. 24.	Strefa obciążenia śniegiem	.27
Rys. 25.	Współczynnik kształtu dachu- dachy dwupołaciowe EN-1991-1-3; Rysunek 5.3	.29
Rys. 26.	Wyznaczenie wartości obciążenia węzłowego	.29
Rys. 27.	Obciążenie śniegiem wg. EN 1911-1-3, punkt 5.3.3	.30
Rys. 28.	Przypadki obciążenia śniegiem – lokalizacja obciążeń	.30
Rys. 29.	Przypadki obciążenia śniegiem – lokalizacja zasp	.31
Rys. 30.	Współczynnik kształtu dachu dla dachów walcowych	.32
Rys. 31.	Przypadki obciążenia śniegiem – lokalizacja obciążeń dla wiatru prostopadłego	.33
Rys. 32.	Interakcja poprzecznych obciążeń wiatrowych z śniegowymi	.34
Rys. 33.	Interakcja podłużna obciążeń wiatrowych z śniegowymi (RFEM)	.34
Rys. 34.	Strefa obciążenia wiatrem	.35
Rys. 35.	Profil wiatru – prędkość wiatru, intensywność turbulencji	.36

Rys. 36. Wymiary tunelu - w zależności od kierunku wiatru (RWIND)	37
Rys. 37. Lokalizacja punktów pomiarowych – do tabeli	37
Rys. 38. Mapa ciśnienia powierzchniowego (RWIND)	38
Rys. 39. Współczynnik Cp powierzchni (RWIND)	39
Rys. 40. Pola przepływu (RWIND)	40
Rys. 41. Linie prądu – prędkość wiatru wokół i za konstrukcją (RWIND)	41
Rys. 42. Linie prądu – detale (RWIND)	41
Rys. 43. Model 3D konstrukcji w programie RFEM	42
Rys. 44. Odkształcenia globalne KO21	45
Rys. 45. Pas dolny – SGU	46
Rys. 46. Odkształcenia SGU pasa dolnego	46
Rys. 47. Ściskanie i rozciąganie – siatka górna	47
Rys. 48. Wykres koncentracji wyników – siły normalne	49
Rys. 49. Wykres koncentracji wyników – siły tnące	49
Rys. 50. Wykres koncentracji wyników – momenty	50
Rys. 51. Ściskanie i rozciąganie – siatka dolna	51
Rys. 52. Wykres koncentracji wyników – siły normalne	52
Rys. 53. Wykres koncentracji wyników – siły tnące	52
Rys. 54. Wykres koncentracji wyników – momenty	53
Rys. 55. Ściskanie i rozciąganie – skratowanie	53
Rys. 56. Siły normalne – skratowanie	54
Rys. 57. Słup narożny- 11111	56
Rys. 58. Słup wewnętrzny-11147	56
Rys. 59. Siły normalne- słup (elementy skończone)	57
Rys. 60. Siły tnące - słup	57
Rys. 61. Momenty – słup	58
Rys. 62. Siły normalne - gałąź	59
Rys. 63. Siły tnące - gałąź	60
Rys. 64. Momenty – gałąź	60
Rys. 65. Postacie drgań własnych	62
Rys. 66. Naprężenia od siły normalnej i momentów zginających	64
Rys. 67. Naprężenia – pas górny	64
Rys. 68. Naprężenia – pas dolny	65
Rys. 69. Naprężenia –skratowanie	66
Rys. 70. Naprężenia w słupach	66
Rys. 71. Postacie wyboczeniowe – przekrój wielokątny	67
Rys. 72. Postacie wyboczenia – przekrój rurowy	68

Rys. 73. Podstawa słupa	73
Rys. 74. Wyniki analizy – podstawa słupa	75
Rys. 75. Węzeł – słup	76
Rys. 76. Wyniki analizy – węzeł słup	77
Rys. 77. Mapa naprężeniowa – połączenie słup	79
Rys. 78. Połączenie profil	
Rys. 79. Wyniki analizy połączenia z profilem	
Rys. 80. Połączenie blacha węzłowa	
Rys. 81. Wyniki analizy połączenia z blachą	
Rys. 82. Fazy pożaru samochodu elektrycznego	
Rys. 83. Uderzenie pojazdu – lokalizacja	
Rys. 84. Uderzenie pojazdu – odkształcenia słupa	90
Rys. 85. Uszkodzenie podstawy słupa – 3 przypadki	

Spis tabeli

Tab. 1.	Charakterystyka przekroju słup i gałąź (RFEM)	16
Tab. 2.	Charakterystyka przekroju siatki górnej i dolnej	20
Tab. 3.	Charakterystyka skratownia	21
Tab. 4.	Zestawienie ilościowe materiału	22
Tab. 5.	Zestawienie reakcji węzłowych w stosunku do przemieszczeń	25
Tab. 6.	Parametry profilu wiatru	36
Tab. 7.	Wartość ciśnienia zewnętrznego z współczynnikiem Cp w punktach kontrolnych	38
Tab. 8.	Przypadki obliczeniowe	43
Tab. 9.	Sytuacje obliczeniowe	43
Tab. 10.	Kombinacje obciążeniowe	44
Tab. 11.	Zestawienie maksymalnych sił w siatce górnej	48
Tab. 12.	Zestawienie maksymalnych sił w elementach siatki dolnej	51
Tab. 13.	Wyniki dla skratowania	54
Tab. 14.	Wyniki dla słupów	55
Tab. 15.	Wyniki dla gałęzi	58
Tab. 16.	Współczynniki obciążenia krytycznego	61
Tab. 17.	Długości efektywne i obciążenia krytyczne	62
Tab. 18.	Naprężenia na prętach według przekrojów	63
Tab. 19.	Wymiarowanie - słup	69
Tab. 20.	Wymiarowanie – gałąź	70
Tab. 21.	Wymiarowanie –pas górny	70
Tab. 22.	Wymiarowanie – pas dolny	71
Tab. 23.	Wymiarowanie - skratowanie	72
Tab. 24.	Wymiarowanie - skratowanie przy słupach	72
Tab. 25.	Obciążenia podstawy słupa	74
Tab. 26.	Naprężenia w płytach – podstawa słupa	74
Tab. 27.	Wyniki - kotwy	74
Tab. 28.	Wyniki – spoiny podstawy słupa	75
Tab. 29.	Wyniki analizy – węzeł słup	79
Tab. 30.	Obciążenie w węźle – wariant 1	80
Tab. 31.	Naprężenia w płytach – węzeł typ 1	81
Tab. 32.	Łącznik – węzeł typ 1	81
Tab. 33.	Spoiny – węzeł typ 1	83
Tab. 34.	Obciążenia w węźle – wariant 2	85
Tab. 35.	Naprężenia w płytach – węzeł typ 2	86

Tab. 36. Łączniki – węzeł typ 2	
Tab. 37. Spoiny –węzeł typ 2	
Tab. 38. Masa połączeń	