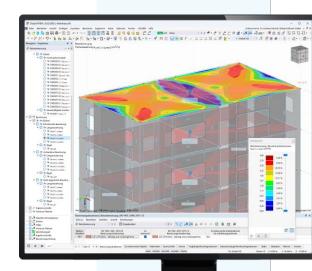


Structural Analysis & Design Software

Dipl.-Ing. (FH) Andreas Hörold Organizer

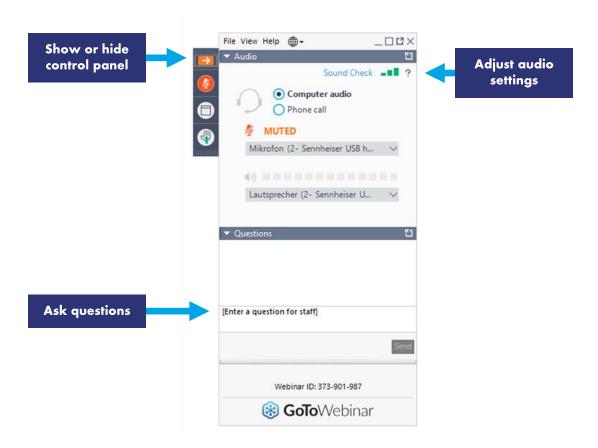
Marketing & Public Relations
Dlubal Software GmbH



Dipl.-Ing. (FH) Jürgen Theilmann, M.Eng. Co-Organizer

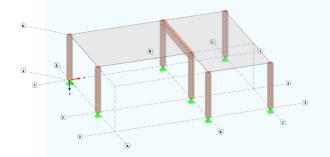
Customer Support
Dlubal Software GmbH

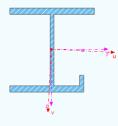
QuestionsDuring thePresentation



GoToWebinar Control Panel **Desktop**

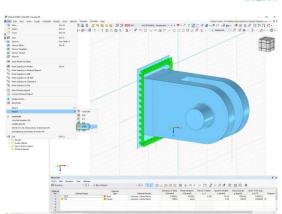
E-mail: info@dlubal.com



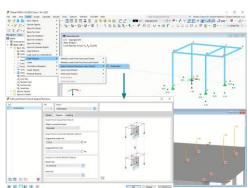

炭

CONTENT

- Ol New features in RFEM 6 and RSTAB 9
- New features implemented in add-ons and stand-alone programs
- 03 New add-ons
- **04** Prospects

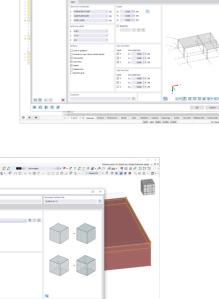

Support Force Transfer from Other Model

- "Import Support Reactions" Load Wizard
- Transfer of reaction forces as nodal and line loads from other model
- Based on item list concept
 - More information


New Interfaces

- Tekla Structures
- STEP
- ALLPLAN (*asf)
- SVG (vector graphics)

Building Grid


- Intuitive input of grid coordinates and labeling of grid lines
- Optional dimensions
- Preview in input dialog box

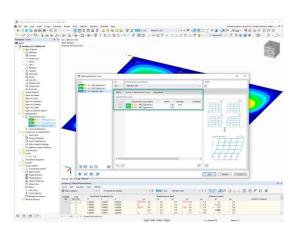
Layered Mesh for Solids

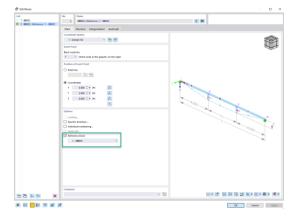
 Division of solid by FE elements between two parallel and opposite surfaces The state of the s

DE Canon Apply

The set was not see that the first two color one of the first two color one of the first two colors one of the f

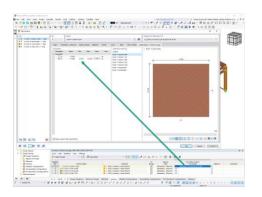
Superposition of Several Geometric Imperfection Cases


For example, for GMNIA analyses (buckling analyses)


More information

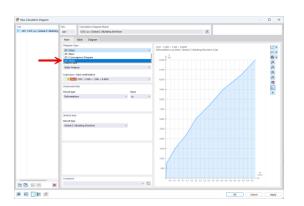
Blocks with Reference Block Specification

- Definition of a reference block for several identical blocks
- Transfer of modifications on reference block for "child blocks"



Optimization of Cross-Sections

- Available in Design add-ons like Steel Design, Timber Design etc.
- For example, for standardized sections of a series, or for parametric cross-sections concerning width, depth and so on
 - More information



Calculation Diagram Type "2D | Story"

- Creation of result diagrams via building axis
- For example, to visualize the seismic force over building height

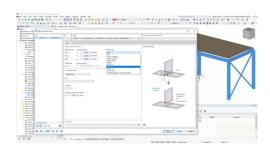
$\overset{\sim}{\sim}$

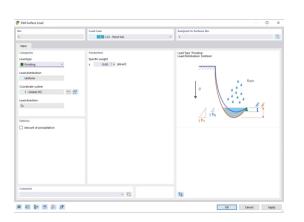
Webinar

Features

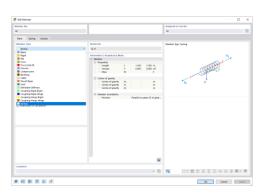
Friction Properties for Line Releases

Static friction effects between two supporting components along a line





- Analysis of rainfall portions draining away and accumulating in ponding water on the surface
- Ponding size results in corresponding vertical load
- For example, for analysis of almost horizontal membrane roofs under rain loading



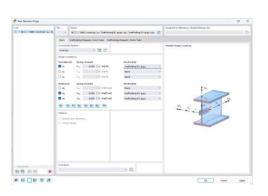
Features

"Spring" Member Type

- Simulation of linear and nonlinear spring properties by means of a linear object
- Stiffness specifications given in force/displacement unit

Generating Combination with More Than One Initial State

- Different initial states (prestress, form-finding, strain, and so on) for target combination
- For example, for load states on the basis of a form-finding analysis with varying imperfections



Features

Scaffolding Hinge

 Member hinge nonlinearty "Scaffolding N | phiy,phiz" for simulation of an inserted scaffolding tube joint

More information

Cross-Section Modification Using RSECTION

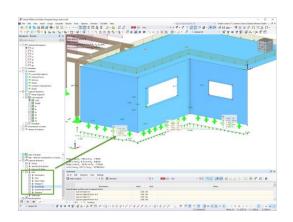
- Direct connection to RSECTION
- Open it in RSECTION, modify it and return it to RFEM/RSTAB

Features

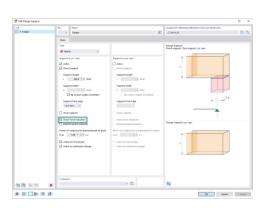
Cloud Calculations

- Outsourcing calculation on a computing server in the cloud
- Option to select Choice between different powerful computing servers
- Calculation does not the limit processing power of your local computer
- Clearly arranged display of all calculation tasks in the Extranet




Info Bubbles for Line Supports

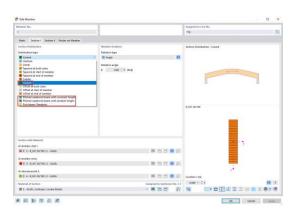
- Additional information such as description, sum, mean value, and so on.
- Activation in Navigator Results



Features (Timber)

Shear Force Reduction

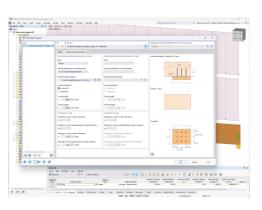
- Shear force reduction for design supports of "Timber" type
- Shear design with governing shear force at a distance of the beam height from the support edge



Curved Section Distributions

For curved beams (for example, made of glulam) the following is available:

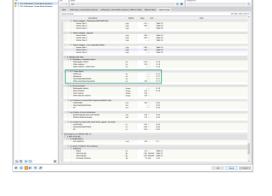
- Curved
- Pitched cambered beam with constant height
- Pitched cambered beam with variable height
- Fish beam | Parabolic



Features (Timber)

Transversal Compression Stiffening Elements for Design Supports

- Definition of fully threaded screws as transversal compression stiffening elements for "Compression Perpendicular to Grain" design check
- Bolt analysis for pressing-in and buckling
- Design shear resistance is checked in plane of screw tip


Timber Design Add-On

Considering Crack Factor k_{cr} for Surfaces

Negative influence of cracks on shear capacity is taken into account

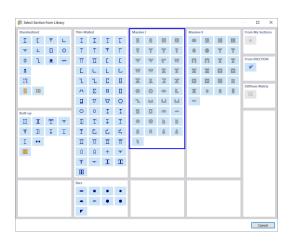
More information

| No feet on the tags come found to the feet time them collection for はさか自然表現者を目的へつい。 ・・アグ・ヴェミル になっていることができます。 ・・アグ・ヴェミル になっていないでは、コースをはないでは、これをはないできます。 ・・アグ・ヴェミル になっていないでは、コースをはないでは、これをはないでは、アメリカのでは

Design of Laminated Veneer Lumber (LVL) Members acc. to EN 1995-1-1

Manufacturer:

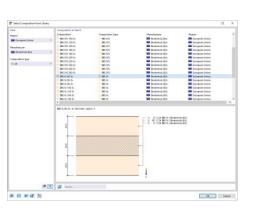
- Pollmeier (BauBuche)
- Metsä (Kerto LVL)
- STEICO
- Stora Enso



Timber Design Add-On

More Features

- SIA 265 (Swiss standard): Design of cross-sections of "Massive I" type
- Implementation AS 1720 (Australian standard)
- Design of cross-laminated timber panels acc. to following standards:
 - SIA 265:2021-05 (Swiss standard)
 - ANSI/AWC NDS:2018 (US standard)
 - CSA O86-19 (Canadian standard)


Multilayer Surfaces Add-On

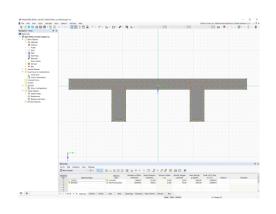
Manufacturer Library for Cross-Laminated Timber

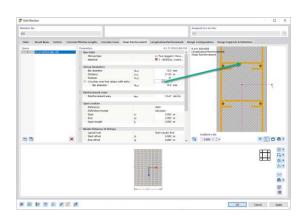
Compositions of companies:

- Binderholz
- CLT CH
- Derix
- KLH
- Martinsons
- Pfeifer
- Pivetegubois
- Schilliger
- Stora Enso
- Södra
- Theurl
- Züblin Timber
- ... and more compositions for USA and Kanada

Concrete Design Add-On

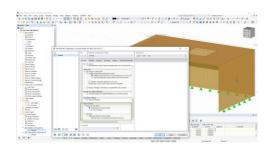
Design of RSECTION cross-sections


- Creation of any cross-section including definition of concrete cover, shear reinforcement, and longitudinal reinforcement in RSECTION
- Import of reinforced RSECTION section in RFEM 6 / RSTAB 9 and design



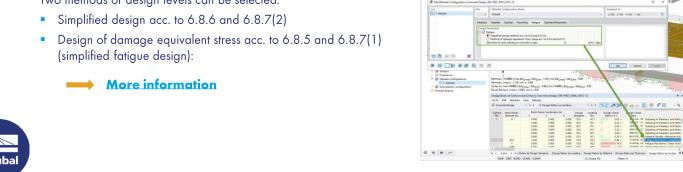
"Crosstie" Reinforcement Option for Design acc. to EN 1992-1-1

- Arrangement of additional crossties on free rebars of longitudinal reinforcement
- Consideration for ultimate limit state designs and for design checks of secondary reinforcement


Concrete Design Add-On

Design of Fibre-Reinforced Concrete

 Design as per EN 1992-1-1 acc. to German "DAfStb Stahlfaserbeton" guideline (German Committee for Reinforced Concrete)



Webinar

Fatigue Design acc. to EN 1992-1-1, Chapter 6.8

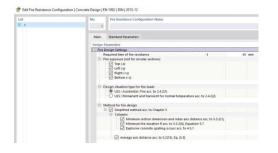
Two methods or design levels can be selected:

Concrete Design Add-On

Seismic Design acc. to EC 8 for Reinforced Concrete Members

Seismic design includes, among other things, following functionalities:

- Seismic design configurations
- Differentiation of ductility classes DCL, DCM, DCH
- Option to transfer behavior factor from dynamic analysis etc.
- Capacity design checks of 'strong column weak beam'
 - More information
 - **Webinar**

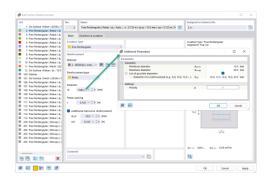

Simplified Fire Resistance Design acc. to EN 1992-1-2 for Columns (Section 5.3.2) and Beams (Section 5.6)

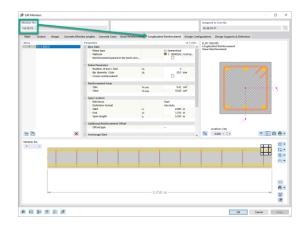
Design checks for:

- Columns: minimum cross-sectional dimensions for rectangular and circular sections acc. to Table 5.2a and Equation 5.7 for calculating time of fire exposure
- Beams: minimum dimensions and center distances acc. to Tables 5.5 and 5.6

Concrete Design Add-On

Layout of Surface Reinforcement


- Automatic layout in order to cover required reinforcement
- Selection whether to lay out rebar diameter or rebar spacing



More information

More Features

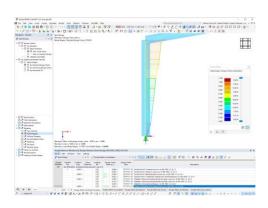
- Multiple editing of member reinforcement (definition for several members or member sets at the same time)
- Required reinforcement for serviceability limit state (limit stresses, minimum reinforcement due to restraint, limit diameter or limit spacing for indirect crack width control)
- Printing reinforcement graphics via print templates

Steel Design Add-On

Design of Cold-Formed Sections

Standards and codes:

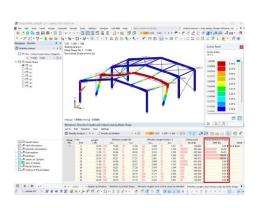
- EN 1993-1-3 (Eurocode)
- AISI S100 (USA)
- CSA S136 (Canada)


More information

Webinar

New Standards and Codes

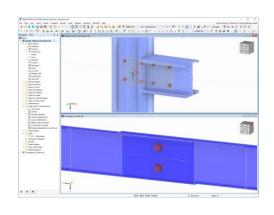
- SIA 263 (Switzerland)
- NBR 8800 (Brazil)
- AISC 341-16 (American seismic designs)



Add-On Structure Stability

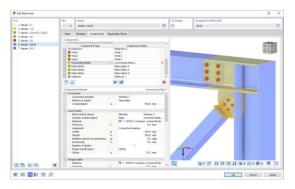
Modal Relevance Factor (MRF) for Stability Analysis

- Assessing to which extent specific elements participate in a specific mode shape
- MRF can be used to distinguish between local and global mode shapes
- Determining equivalent buckling lengths of certain structural components
 - **More information**


Steel Joints Add-On

Steel Joint Design for Built-up and Thin-Walled Cross-Sections

Standards: Eurocode 3, ANSI/AISC 360

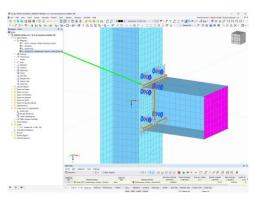


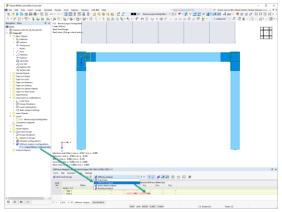
More information

New Components

- Connecting plate
- Member Editor
- Inserted member
- Auxiliary solid
- Cap plate

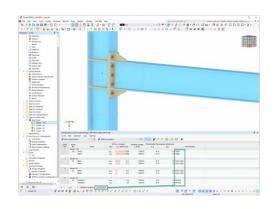
Steel Joints Add-On


Plastic Material Model for Weld Design


- "Orthotropic | Plastic | Weld (Surfaces)" material model
- Plastic calculation of all stress components
 - More information

Calculation of Initial Stiffness Sj,ini

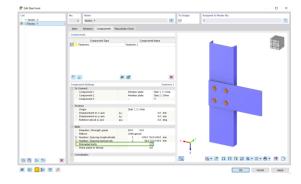
- For internal forces and moments N, My and Mz (Multiple selection is possible)
- Display of stiffnesses with a positive and a negative sign



Steel Joints Add-On

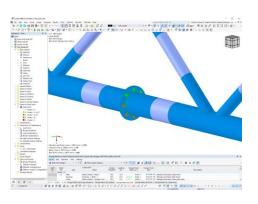
Classification of Steel Joints by Stiffness

Classification is displayed in tables as "hinged", "semi-rigid", or "rigid"


More information

Preloaded Bolts for Steel Joints

- Optional definition in bolt parameters of all components
- Impact on stress-strain analysis as well as stiffness analysis



Steel Joints Add-On

Connection of Circular Hollow Sections

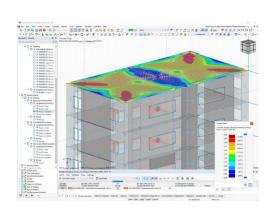
- Weld joint
- Connecting sections to each other or to planar structural components
 - More information

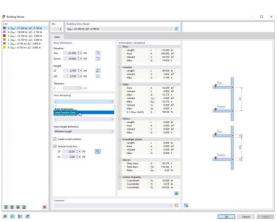
Building Model Add-On

Floor Analysis as Detached 2D Structures

Building model is calculated in two phases:

- Global 3D calculation of entire model, where slabs are modeled as a rigid plane (diaphragm) or as a bending plate
- Local 2D calculation of individual floors


More information


"Load Transfer Only" Story Type

- Considering slabs without stiffness effect in and out of plane
- Collecting loads on slab and transferring them to supporting elements of a 3D model

Building Model Add-On

Modeling Tools for Building Models

- Vertical line
- Column
- Wall
- Beam
- Rectangular floor
- Polygonal floor
- Rectangular floor opening
- Polygonal floor opening

More information

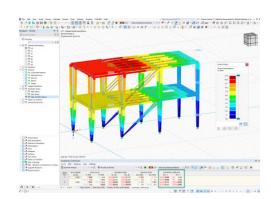
More Features

- Shear walls: automatic definition of result members of any cross-section
- Definition of deep beams
- Building story generator

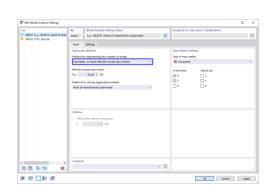
Add-Ons for Dynamic Analysis

Automatic Operation to Reach Specific Effective Modal Mass Factor

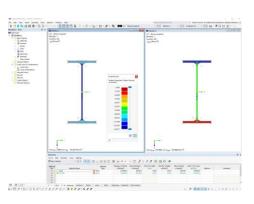
- Automatic increase of required eigenvalues until reaching a defined effective modal mass factor
- Possible to easily calculate required 90% of effective modal mass for response spectrum method



More information


Sensitivity Coefficient

- For a response spectrum analysis of building models
- Table display of sensitivity coefficients for horizontal directions by story
- Key figures for interpreting sensitivity with regard to stability effects



RSECTION 1

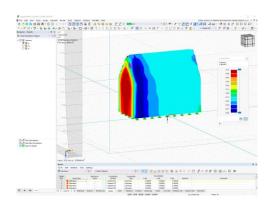
Plastic Resistance with Variation of Shear Stresses

- Using redistribution reserves for "Plastic capacity design | Simplex Method"
- Distribution of shear stresses over cross-sectional area
- Extended form of analysis especially for cross-sections subjected to shear loading

RWIND 2

Displaying RWIND Results Directly in RFEM 6

- Surface pressure
- Cp coefficient of surface
- Wall distance y+ (steady flow)



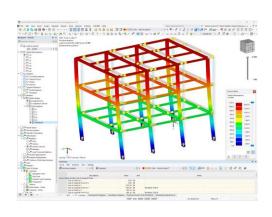
More information

More Features

- Generation of zones from RFEM surface numbers
- Support for verification / experimental data
- New scaling function for wind tunnel optimization
- Display of max and min values in each time step

Pushover Analysis

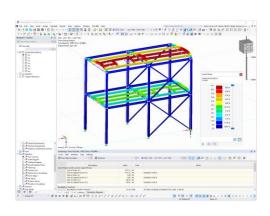
Analysis of Deformation Capacity of Nonlinear Systems


- Consideration of real structural behavior in seismic analysis, leading to efficient designs
- Considering all nonlinearities
- Applying user-defined response spectra as well as response spectra from data base
- Estimation of system capacities in nonlinear range
- Evaluation via diagrams for better understanding

More information

Time History Analysis

Dynamic Structural Analysis for External Excitation


- Analysis of time diagrams and accelerograms (acceleration-time diagrams exciting supports of a structure)
- Possible to enter and calculate several time history analyses at the same time
- Optional superposition of several force-time diagrams within load combinations, but also option for combination with static load cases
- Display of results in graphics, tables, and calculation diagrams
- Envelope (maximum and minimum results) over entire time is also displayed

More information

淤

Planned Features (from 2023)

- Interface with Autodesk Revit 2023
- Interface with Tekla Structures
- Load transfer
- Building Model (load transfer)
- Time history analysis for accelerograms
- Pushover analysis
- Cloud computing
- Consideration of precipitation quantities
- Nonlinear concrete analysis
- Fire resistance design for concrete
- Foundation design
- Glass design
- Steel joint design of circular pipe sections
- Determination of cutting patterns for membranes
- Guidelines
- Interface for import of empirical wind tunnel data
- and much more

淤

Planned Features (from 2023)

- Interface with Autodesk Revit 2023
- Interface with Tekla Structures
- Load transfer
- Building Model (load transfer)
- Time history analysis for accelerograms
- Pushover analysis
- Cloud computing
- Consideration of precipitation quantities
- Nonlinear concrete analysis
- Fire resistance design for concrete
- Foundation design
- Glass design
- Steel joint design of circular pipe sections
- Determination of cutting patterns for membranes
- Guidelines
- Interface for import of empirical wind tunnel data
- and much more

Planned Features (from 2024)

- Nonlinear concrete analysis
- Foundation design
- Glass design
- Determination of cutting patterns for membranes
- Design of timber frame wall assemblies
- Python console
- Steel joints: dimensioning and labeling tools, stiffness consideration, footing
- Partial deletion of results
- Moved loads
- Support load transfer to free loads
- Bridge combinatorics
- Damping elements
- Pulley members
- RWIND results completely in RFEM
- Hinge result diagrams
- Nonlinear time step analysis
- Scaffolding support

- Ground linearization
- Fire protection of timber surfaces
- Semi-rigid diaphragms
- Timber connections
- Independent mesh
- Concrete design: pushover hinges, automatic reinforcement layout for members, fire protection: zone method, definition of existing punching shear reinforcement
- RSECTION: welds
- Shear wall design + coupling beam design
- Enhanced plasticity design
- New standards for steel and timber structures
- Wind analysis using cloud computing
- Python: interface with BricsCAD, Excel, DSTV, SDNF
- Al chatbot
- and much more

炭

Book Your Live Presentation at digitalBAU 2024

Secure Your Free Ticket!

Your Advantages

- You get a live product demonstration on our **booth 201 in Hall 1**, showing the latest developments in our structural analysis programs
- You can benefit from the long-standing know-how of absolute experts in the areas of reinforced concrete structures, steel structures, timber structures, dynamic analysis, and FEM calculations
- You receive a free admission ticket

Book Live Demo

춨

Book your free Online Appointment!

Get valuable insights from one of our experts

Dipl.-Ing. (FH) Dipl.-Wirtschaftsing. (FH) Christian Stautner

Bastian Ackermann, M.Sc.Sales

Daniel Dlubal, M.Sc.COO of Dlubal Software GmbH

淤

Free Online Services

Geo-Zone Tool

Dlubal Software provides an online tool with snow, wind and seismic zone maps.

Cross-Section Properties

With this free online tool, you can select standardized sections from an extensive section library, define parametrized cross-sections and calculate its cross-section properties.

FAQs & Knowledge Base

Access frequently asked questions commonly submitted to our customer support team and view helpful tips and tricks articles to improve your work.

Models to Download

Download numerous example files here that will help you to get started and become familiar with the Dlubal programs.

Free Online Services

Youtube Channel -Webinars, Videos

Videos and webinars about the structural engineering software.

Webshop with **Prices**

Configure your individual program package and get all prices online!

Trial Licenses

The best way how to learn using our programs is to simply test them for yourself. Download a

We offer free

and chat

support via email

Get Further Details About Dlubal

Visit website www.dlubal.com

- Videos and recorded webinars
- → Newsletters
- Events and conferences
- Knowledge Base articles

See Dlubal Software in action in a webinar

Download free trial license

Phone: +49 9673 9203-0 E-mail: info@dlubal.com

www.dlubal.com